Be dPeEF 229 ®2Z pp, 107125 1991, -&4ruigta
Journal of Engineering Research Vol, 22, No. 2, pp. 107~125 1991
University of Ulsan,

=2 ESAA g A3 H2e aHZ 2l o
Lol F71H A% 2 2% o

A |
AR A 83}

2 =

o] 2o AAF T A = guA ZF ekl oAl riAl 23 v (IS, IX, S,
SIX zgjz X) & ¥ §3te @409 3 EWAHA Held dojxel nFdy EAE ©HE
o $3e 2AEY FHe a9 WAL A A4 EMUR 23 878 AFT
e =72, aRgdd W Axde] FE3 duE sty Hstd, H/W-TWBG
e A2 AT E A, o 2T R uEAE 4L 7D dolA
W7 2T fAlstd A8 4 Ak, H/W-TWBGe E4E0] AAHI o249 2dE
o])Mt H/W-TWBGH 7128 T1, aadadd oA 4z £252 #d ddE
AAstn, agm elgdd A 2 98 BER4E R EE FUEA nddde HE R
B8 duEEFE A $Ee adE HEVYe @ F89% YL ofv aAFHES
oL EdAMAe] ¥7] glo|x HZEE F 3k

A Periodic Deadlock Detection and Resolution
Algorithm with a New Graph Model for Sequential
Transaction Processing

Young-Chul Park
University of Ulsan

{Abstract)

This paper addresses the deadlock problem in the sequential transaction

* This paper is supported in part by Asan Foundation,

—107—

2 el A

processing where the strict two-phase locking and the multiple granularity
locking protocol with five lock modes (IS, IX, 8, SIX and X)are employed,
Our scheduling ploicy honors lock requsts in a first-in-first-out basis except
for lock conversions, As a basic tool, we introduce a new directed graph
model called Holder/Waiter-Transaction Waited-By Graph (H/W-TWBG) to
capture precise status of systems in terms of deadlock. The graph has a
number of desirabe properties which allow us to use instead of the wait-for
graph, The properties of H/W-TWBG are presented and theoretical aspects of
it are also analyzed. Based on H/W-TWBG, we establish the identification
principles of victim candidates in a deadlock cycle, and then present a new
periodic deadlock detection and resolution algorithm which has a reasonable
time and storage complexity, One important feature of our deadlock
resolution scheme is that some deadlocks can be resolved without aborting
any transaction,

It has been shown that there exists a
deadlock if and only if there is a
cycle in TWFG [11).

Agrawal et al. (1) preserit a periodic
deadlock detection algorithm which
has O(n) storage and time complexity
(Chin(6) modified this algorithm for
the correct detection of deadlocks)
where n is the number of transactions
in the system considering only
exclusive lock modes (X locks), They
extend the algorithm to allow shared
lock modes(S locks) as well as X
locks. In order to maintain the same

1, Introduction

A transaction in database management
systems is a sequence of database
operations which is atomic with
respect to the recovery, thereby
transforms the database from one
consistent state to another consistent
state, Each transaction requests at
most one lock at a time, and when a
request cannot be granted immediately,
the transaction is blocked until either
the request is granted or the
transaction itself is aborted by some
reasons (deadlock or site failure),
Deadlocks are usually characterized
in terms of a transaction wait-for
graph(TWFG), The TWFG is a
directed graph where each vertex
represents a transaction; each edge of

time and space complexity however,
only one of the readers, say Tj is
selected to represent a wait-for
relationship Ti—Tj in TWFG even
though a writer Ti is blocked by
multiple readers, Because of that,
detection of some deadlocks can be

the form T+—T; means that transaction
Ti is waiting for the completion of Tj

—108—

delayed and some transactions may
hold resources or wait for other

£2 EAAA NAE A9 A2 TUZ wde] 9% 3
nague 2714 2% 2 2% /Y

transactions unnecessarily even they
might be aborted later. In (2,3) they
permit each transaction to have
multiple wait-for edges but do not
show the cycle detedtion scheme and
the victim selection strategy.

Jiang (14] proposes a continuous
algorithm to cure those problems of
Agrawal et al, (1) while supporting
the same lock modes. The TWFG in
his algorithm is represented by a
(n+1)* n-matrix, and O(e) time is
required for finding a cycle and
listing all participators in the cycle,
where n is the number of transact-
ions and e is the number of wait-for
relationships in the grph. In general,
his algorithm is restricted to the
continuous case, Furthermore when a
deadlock is involved in multiple cycles
and each cycle has a different cycle
length, to list all participators in
" each cycle he shows that it works in
an exponential function of the number
of transcations O(37~%) in the worst
case,

Elmagarmid [8) develops a continuous
algorithm for multiple outstanding
lock requests with the same lock
modes as the above two algorithms,
Because a special case of that can be
the conventional transaction mode, a
slight modification of his algorithm
can make his to be compared to the
others, Instead of TWFG, two tables
are maintained in his algorithm,
namely T-table and R-Table, R-table
keeps all the blocked transactions with
their requesting resources and lock
modes, R-table keeps all the
resources which are currently held by

recording holding transactions with
their requesting lock modes, His
algorithm works in O(n+e} space and
time complexity where n is the
number of blocked transactions and e
is the number of edges in the tables,
However, his resolution scheme which
always aborts the current blocker
whenever there is a deadlock is
simple but far from being optimal
(2]. Moreover, the whole T-table has
to be searched to schedule some
waiting requests whenever all the
holders of a resource are completed,
because each resource being locked
does not contain its own queue of
blocked requests, The scheduling
policy might be unfair and indicates
the possiblity of live-lock (5].

The motivation of our research is
due to the fact that a work which
demonstrates the graph construction
schemes when multiple lock modes as
well as lock conversions are supported,
has not been found in the literature
to our best knowledge. In contrast to
the aforementioned schemes, the
periodic algorithm proposed here as a
companion of the continuous one (17)
permits lock conversions, allows
multiple lock modes and provides
victim selection strategies while
maintaining a reasonable time and
gspace complexity, The rest of this
paper is organized as follows. In
Section 2, the transaction model and
the lock modes under consideration
are explained, Our systematic scheduling
policy based on one important
observation is discussed in Section 3.
Section 4 introduces a new deadlock

—109—~

detection graph model and provides
the identification principles of the
viction selection strategies as well as
deadlock detection and resolution
scheme are presented in Section 5,
Section 6 contains some concluding
remarks,

2. Preliminaries

A transaction in this paper is a
sequence of database operations
which has four well known ACID
properties:atomicity, consistency,
isolation and durability (13)., For
ensuring serializability, our model
takes strict two-phase locking (5,7)
which requires that a transaction has
to lock a resourece before it accesses
the resource and all locks of a

transaction are held until the

NL|1s|ix|six| s | x|

NL | t t t t t |t

I8 I t t t t t f

IX t t t f f f

SIX t t f f f f

35 t t f f f f

X t f f f f f

Table, 1 Compatibility Matrix

A transaction which holds a
resource might re-request the same
regource to convert a lock from the
granted mode to a more exclusive
mode. We call such re-requests lock
conversions, When a request turns
out to be a conversion, the granted
mode of the requestor and the newly
requested mode are used to compute

uhed A

transaction terminates, We support
multiple lock modes(IS, 1X, 8, SIX
and X locks) (5,10,11) and our model
is upward compatible with the
multiple granularity locking (MGL)
protocol (10,11) in a sense that it
integrates without changes into a
system that supports a resource
hierarchy,

Two lock requests for the same
resource by two different transactions
are sald to be compatible if they can
be granted concurrently, The compatiblity
matrix, say Comp, is shown in Table
1 where NL means No Lock, Comp
(lockl, lock2) is true (faise) if lock 1
and lock 2 are compatible (incompatible,
respectively). For example, Comp(S,
I8) is true but Comp(IX, S8SIX) is
false.

NL| IS | IX| SIX| 8§ X_
NL | NL}{ IS X | SIX S X
I8 IS |18 | IX| 8SIX| 8 X
iX IX | IX | IX| SIX |s1ix| X
SIX | s1x ! SIX § 8IX| 8IX | 81X} X
<] 3 S | SIX) gIX | 8 X
x | x| x| X] x [x]|x
Table, 2 Conversion Matrix

the new mode by use of a conversion
matrix, say Conv. It is represented
by Table 2 with the granted mode as
row and the requested mode as
For example,
transaction holds an IX lock on a

column, when a
resource an re-requests an S lock for
the resource, the transaction eventually
wants to hold an SIX lock (conv(IX,

—110—

#3 ERAAH AAE AT A2 292 =] 4D 5
magde 74 e 9 A8 7Y

S1) for the resource,

In order to implement our schedul-
ing policy in which lock requests are
satisfied in a first-in-first-out basis
and to keep track of the requests of
each transaction, the lock manager
maintains a lock table which holds
the following information for each
resource being locked:a holder list, a
queue and a total mode (tm) of the
holders, Each holder in a holder list
takes three attributes:a transaction
identifier (tid), a granted mode (gm)
and a blocked mode (bm), i.e. (tid,
gm, bm)i.each request in a queue
takes two attributes:a transaction
identifier (tid) and a blocked lock
mode (bm), i.e, (tid, bm);and the
total mode of the holders is definde
as Conv (Conv[Conv(gmi, bmi),
gmz),..., bma), assuming that n
requests are in the holder list and
each one takes (Ti, gmi, bmi) where 1
<i<n,

The notion of the total mode is
introduced to check the grantability
of lock requests, The total mode is
different from the group mode (11) in
that the latter is defined as conv(, .,
Conv(Conv(gm:, gmz), gms), ...,
gmn) in our context. We hope that
the reader shall understand why the
total mode is more efficient than the
group mode after reading Section 3,

3. Scheduling Policy
Revisited

A transaction can request resources
while running. If a requested resource
is held by other transactions with

conflicting lock modes or the
corresponding queue is not empty,
then the request-ing transaction is
suspended (i.e, blocked) until the
request is satisfied. More specifically,
when a request from a transaction Ti
asking a lock Lifor a resource Ex
arrives, the holder list of Rx is
checked first to see if the request is a
lock conversion (i,e, Ti already holds
a lock), In the case of a new
requestor (i,e. the request is not a
lock conversion), the queue status of
Rx is checked, If the queue is not
empty, then the request is not
granted by appending (Ti, L) to the
end of the queue. If the queue is
empty and the requested mode Li is
compatible with the total mode tm of
Rx, then Ti is notified that the
request is granted after placing (77
Li, NL) to the holder list and
updating tm of Rx by Conv{tm, Li.
Otherwise, (Ti, Li is appended to the
queue, When a request turns out a
lock conversion (i,e, there is an entry
(Ti, gmi, bmi) in the holder list
where bmi is NL), a new mode is
computed as Conv(gmi, Li). If the
new mode is compatible with the
granted mode of all the other
holders, then Ti is notified that the
request is granted after substituting
the new mode for gmi and updating
tm of Rx by Conv(tm, Lij, Otherwise,
transaction Ti is blocked by substituting
the new mode for bmi and tm of Rx is
updated by Conv(tm, Li,

Example 3,1 Assume that a resource
R: is held by two transactions (T:
with IS lock and T2z with 1X lock)

—111—

which render the total mode of R: IX
lock and at the same time is waited
by two other transactions (T3 with S
lock and T¢ with X lock) to be
released in the queue. That situation
can be visualized as follows,

R1(IX): Holder ((T1,18,8) (T, IX,
NL) Queue((T3 8) (T4, X))

Suppose that transaction T: re-
requests S lock for Ri That request
cannot be granted because S lock
(Conv(I8,S)) is incompatible with IX
lock (the granted mode of transaction
T2). The situation becomes as follows,

R1(IX): Holder ((T1,18,8) (Ts, IX,
NL) Queue((T3,8) (T4, X))

A transaction
another resource when being blocked.

cannot request
That i8, a transaction whose request
is not satisfied cannot proceed,
However, there are two cases where
we need to check whether there are
some blocked requests which can be
granted and, if grantable we need to
grant those requests at this point,
The first case is that a member of
the holder list is forced out either
due to the commit or the abort. The
second case is that the first member
of the queue leaves the system due to
the abort, When any one of the two
cages takes place, we want to check
the blocked requests in a systematic
and efficient way. In order to present
the detailed scheme some preliminary
materials need to be presented first,
Observation 3,1 Assume that there
are two blocked requests (Ti, gmi,
bmi) and (T, gmi, bmj in a holder
list due to lock conversions,
(1) if Comp(bmi, bmj), one of them

Bk

can be scheduled in the presence
of another, ,

(2) If Comp(bmi, gmj) and not Comp
(gmi, bmj)), Ti can be scheduled
before Tj but the reverse is
impossible,

(3) If not Comp(bmi, gmj and not
Comp(bmj, gmi}, none of them
can be scheduled in the presence
of another (this is a kind of
deadlock),

Based on Observation 3.1, when a
conversion is blocked, the position of
the requestor (Ti, gmi, bmi) in the
holder list, after substituting Conv
(gmi, requesting lock mode) for bmi,
rearranged according the
following upgrader positioning rule
(UPR):

(1) if there are some requests whose

is to

bm are not NL and are compatible
with- bmi, put (Ti, gmi, bmi)
right before the first request
among them,

(2) If UPR(1) cannot be applicable
and there are some requests
whose gm are compatible with

and whose bm are not

compatible with gmi, put (T

gmi, bmi) right before the first

request among them,

If UPR(1) and (2) cannot be

applicable, put (Ti, gmi, bmi)

after all requests whose bm are
not NL and before all requests
whose bm are NL.

bmi

(3)

Theorem 3,1 Let (Ti, gmi, bmi) and
(Ti, gmi, bm) be two blocked requests
in the holder list of a resource where
(Ti, gmi, bm)) precedes (1), gmj bm)

—112—

24 2R48 HUE A Aze 14 vdd 9 T
nAgee 24 2 2 8% Y

according to UPR, If the request of
Ti cannot be granted, then that of Tj
cannot be either,

proof: Let us consider each conditions
of UPR one by one,

(1) Assume UPR-1 is applied,
Because a blocked lock mode can take
one of {IX, 8, 8IX, X} and bmi and
bm; are compatible accordng to the
rule, either bmi and bmj; are IX or
bmi and bmj are 3. The theorem
follows.

(2) Assume UPR-2 is applied, That
means that the request of Tj cannot
be granted in the presence of Tj,

(3) Assume UPR-3 is applied.
There are two cases to satisfy UPR-3,
The first case takes following
conditions: not Comp{gmi, bmj and
not Comp(bmi, gmj). That implies
none of them can be granted in the
presence of the other (i.e, a
deadlock). So, trivial, The second case
takes following conditions: not Comp
(bmi, bmj), Comp(gmi, bmj and Comp
(bmi, gmj), From these conditions we
can simply derive that bmi and bmj
can take one of [IX, 8, SIX], Because
bmi and bm;j are incompatible, the
combination (bmi, bm) or (bmj bmi)
can have one of |(IX, 8), (IX, SIX),
(S, SIX){. Considering that Ti and Tj
are blocked at the holder list of a
resource, there should be at least one
holder (Tk, gmk, bmk) such that gmx
is incompatible with both or bmi and
bmj, Therefore, gmk is an SIX lock
for (IX, X) combination, an S or an
SIX for (IX, SIX) and and IX or an
SIX for (S, SIX), This gives us that
both gmi and gmj can have IS locks

only, In that environment, when the
last holder which block both of the
requests of Ti and Tj leaves the
holder list, any one of them can be
granted. Otherwise, none of them
can be granted,

QED

When a holder is deleted from the
holder list of a resource Rx, the total
mode (tm) of Hx is recomputed and
the process (checking whether some
blocked request can be granted) can
start at the front of the holder list
all the way down to the end as well
as can stop immediately when either
one cannot be granted anymore or a
non-blocked one is found, All the
newly granted ones are put after the
blocked holders after substituting the
blocked mode (NL) for the granted
mode (the blocked mode) respectively,
In addition to that, if the queue of
Rx is not empty, the queue is checked
to grant some requests from the first
waiter, say (Ti, bmi), Once the tm of
Rx is compatible with the bmi the
request is granted by placing (T,
bmi, NL) to the holder list and the
tm of Rx is updated by Conv{tm,
bmi), That process continues until
either the queue becomes empty or the
total mode of Rx is not compatible
with the waiter' s blocked mode. When
the first member of the queue leaves
the system, after deleting the request
(i.e. the second member becomes a
new first member), the same process
is done for the queue.

There is another important point of
UPR which should be precisely

—113-

stated, Our UPR greatly influences
our graph(H/W-TWBG) construction
sheceme which is presented in the
next section so that H/W-TWBG has
a number of desirable properties.

4, H/W-TWBG: A New
Graph Model

In this section, we introduce a new
directed graph called a Holder/Waiter-
Transaction Waited-By Graph(H/W-
TWBG). Each vertex of H/W-TWBG
represents a transaction identifier
and each edge Ti—T; is labeled with
H/W, where the completion of transaction
T: is waited by transaction Tj and
either Ti is a holder of the resource
which T; is waiting (H-label) or
another waiter in the queue of the
resource (W-label), Edges in H/W-
TWBG are constructed by the
following edge construction rules
({ECR):

(1) Let two requests in the holder list
of a resource be(Ti gmi, bmi) and
(T}, gmi, bmy) such that (T gmi, bmi)
precedes (Tj gmy, bm). I not Comp
(gmi, bmj] or not Comp(bmi, bmjl,
then add an edge T—T; with H-
label, If not Comp(gm; bmi], then
add an edge Tr-Ti with H-label,

(2) For each request (T gmi bmi in
the holder list of a resource, let
the first request, if any, in the
queue of the resource whose
blocked mode is not compatible
with either gmi or bmi be (Tj, bmyj).
Add an edge T+Tj with H-label.

(3) Let two adjacent requests in the

H3d

queue of a resource be (T, bmi) and
(T, bmj) such that(Ti, bmi) -precedes
(T}, bmj), Add an edge T#~Tj with

W-label,

In H/W-TWBG, each H-labeled edge
is followed by a sequence (possibly
zero) of W-labeled edges. We call a
path which consists of one H-labeled
edge and all of its following W-
labeled edges,
Transaction. Resource Request Path
(TRRP). A TRRP shows a partial
status of the holder list and the
queue of a resource, It is worthwhile
at this point to note a number of
properties of H/W-TWBG, Because
the theoretical analysis on H/W-
TWBG is found in Appendix, we only

possibly empty, a

list the properties here,

(1) No cycle can be made without
any H-labeled edge.

(2) No cycle can be made with only
one TRRP,

(3) Each cycle in H/W-TWBG
consists of at least two TRRPs,

(4) There exists a cycle in H/W-
TWBG if and only if there exists a
deadlock in the database system,

Due to the third and the fourth
properties, the deadlock detection
problem corresponds to finding those
TRRPs which constitute a cycle,

Definition 4.1 Let two consecutive
TRRPs in H/W-TWBG be TRRPI1
(Ti*...*Tj) and TRRP2(Tj*...*Tk)
where Tj is blocked at a resource Rx,
The TRRP disconnection rule (TDR)
is defined as follows,

(1) Abort Tj, or

(2) If the last edge of TRRPI is W-
labeled and the blocked mode of Tj is

—114—

€4 Eddd Ad A9 e 2= 2dd 49 9
wAdHe 714 A4 L 98 7Y

compatible with the total mode of
Rx, then starting from the first
request up to the request of Tj in the
gqueue of Rx, let the set of requests
whose blocked modes are compatible
(incompatible) with the total mode of
Rx be AV (ST, respectively). Reposition
those requests in ST right after all
the requests in AV in the queue,

Lemma 4.1 Once TDR-2 is applied
to a resource Rx, those requests in
AV cannot be involved in any
deadlock cycle,

proof: Let those requests in AV be
(T1, bmi), (T2, bmz),...and (T, bms) in
the sequence of the queue, Ti cannot
be in any deadlock cycle because T is
not blocked at any other resource and
bmi is compatible with the total
mode of resource Rx. Because Tii is
not involved in any deadlock cycle
and the only incomming edge of T; is
from Tii(because all the requests in
AV are repositioned not to have any
incomming edge from any holder of
Rx), Ti cannot be involved in any
deadlock cyele(1<i<r), QED

Theorem 4,1 A deadlock cycle in
H/W-TWBG can be resolved by
applying TDR,

proof: Application of TDR-1(,e,
aborting a transaction) is straightfor-
ward and Lemma 4.1 justifies the

application of TDR-2. QED

As for our victim selection strategy,
the victim candidate and its cost are
defined as follows:When TDR-1 is
applied, the transaction to be aborted
is the victim candidate and the
summation of the cost of each
transaction in ST divided by 2 is the
cost of the candidate because those
transactions in ST are not aborted
but their executions are simply
delayed. Among multiple victim
candidaes in a cycle, one with the
minimal cost is selected as a victim
and when the victim comes from
TDR-1(TDR-2), the corresponding
transaction is aborted (the resqusts in
ST are repositioned right after those
of AV, respectively).

Example 4,1 Assume the following
situation,

R1(SIX);Holder ((Ti, IX, SIX) (Ty, IS,
S) (Ts, IX, NL) (T4, IS, NL))

Queue ((T5, IX) (Ts,S) (T7, I1X))

R2(IS):Holder ((T7, 18, NL)) Queue
(T8, X) (9, IX) (T3, 8) (T4, X))

According to UPR-2 given in Section
3, the entry of T1 precedes that of
T2 in the holder list. Note that T4
does not block any request and the
request of T2 cannot be granted in
the presence of T1. Figure 4.1 shows
H/W-TWBG for the above situation,

H
(ﬂﬂw(i}ma To
TN

(15 —W—b('i"i)ip@ H T

Figure 4.1 H/W-TWBG for Example 4,1

~115—

10 | ey

There are four cycles in Figure 4,1,
Let’ s consider one of them which
consists of four TRRPs: (Ti, T?), (Tg,
Ts, Ts, T7), (T7, Ts, To, T'5) and (T3, T1).
According to TDR, there are four
vietim candidates from TDR-1 {Ti, T,
T7, T4 and there is one victim
candidate from TDR-2 {Td. When
one of {T7, T4 is aborted or the
request of Ts is repositioned right
after that of T3 in the queue, all the
deadlocks are resolved., When one of
iT1, T4 is aborted however, there still
exists some deadlocks, Note that the
remaining cycles are not newly

H

=)
H
W

,.—;\H
H
Ts

H
(s

o

w

formulated one but they were already
there, When Ts is selected as a
victim, AV is {(Ty,IX), (T%, S} and ST
is {{T5,X)!. By repositioning (T, X)
right after (7%,8) in the queue, the
following modified situation for
resource R2 can be obtained.

R2(IS):Holder ((T7,18,NL)) Queue
((Th, IX) (T5,8) (T8, X) (T4, X))

According to our scheduling policy,
the request of Tv is granted but that
of T% cannot be granted,

R2(IX):Holder ((To, IX,NL) (17,18,
NL)) Queue((Ts,S) (Tk, X) (T4, X))

Figure 4.2 H/W-TWBG for the modified situation

The modified situats another H/W-
TWGBG as shown in igure 4,2, Note
that .there is not any cycle in the
figure,

5. Periodic Deadlock Detection
and Resolution

In the periodic deadlock detection
and resolution, the deadlock detection
is done periodically different from the
continuous case where the existence
of a deadlock is checked and resolved
whenever a lock request cannot be

granted immediately(1,5,11), An
immediate question, therefore may be
how the period has to be decided. By
increasing the periodic interval, the
cost of deadlock detection decreases
but it will detect deadlocks late(5b,
11). The decision of the period is not
of our main concern here, so we will
focus on how fastly and correctly can
we detect deadlocks and select victims
to resolve deadlocks.

There can be several criteria for
deciding a cost of each transaction,
for example, number of locks it
holds, starting time of 1it, the

—116—

47 SddM NS 98 A2 1A= 2l 9@ 1
w3gefel #7114 A& 2 AE

amount of CPU and I/0O time which
has beem consumed and so on [2,3,
5). We assume that the cost of each
transaction is determined by some
combination of the above metrics and
it is stored in a cost-table such that
Cost (Th) indicates the cost of
transaction Ti, It is known to be NP-
hard to find the minimal cost victims
to break all cyeles in a directed graph
(2,11). Consequently, we presents a
periodic deadlock detection and
resolution algorithm whose time and
space requirements are resonable and
its solution is near optimal, Before
we explain our periodic-detection-
resolution algorithm, we need to
present the internal data structure
for - the implementation of our
scheduling policy and of H/W-TWEG,

Our internal structure called the
lock table consists of two tables,
namely the resource status table
(RST) and the transaction status
table(TST). The RST which has an
entry for each locked resource is an
array [(0,.M-1] of record with rid
(resource identifier), tm(total mode),
queue (queue pointer) and holder
(holder list). Each holder of a
resource is represented by a record
with tid(transaction identifier), gm
(granted mode), bm(blocked mode)
and next(pointer to the next holder),
Each transaction is assigned an
integer value between 1 and N as its
identifier which 15 used as an index
for an entry in TST. The TST is an
array (1..N] of record with ancestor,
pr, waited and current, The variable
waited maintains a linked list to keep

all the incident edges of a vertex in
H/W-TWBG and the variable pr
keeps the position of a resource in
RST where the corresponding
transaction is blocked in the queue,
The variables ancestor and current
which are used for detection of cycles
will be explained shortly.

Each edge in H/W-TWBG is
represented by a record with lock (lock
mode), tid(transaction identifier) and
next (pointer to the next edge). More
specifically, the edge T+—Ti with H-
label in H/W-TWBG is represented by
an entry(NL, Tj, next) in TST[i).
waited, The W-labeled edges in H/W-
TWBG are internaly represented by
TST as follows: Let a resource say Rx
have its entry in RST(k],

(1) TST(k).queue takes 0 or the
identifier of the first transaction in
the queue,

(2) For each request(T5, bmi) in the
queue of Rx, TST().pr is set to k
and an edge(bmj, Ti, next) is put on
the list of TST(i], waited if the
request is followed by another request
(T3, bmy). This is an edge T\—Ti with
W-label in H/W-TWBG as a matter
of fact, However, for the last request
in the queue of Rx, TST(].pr is set
to k and an edge(bmi 0,next) is put
on the list of TST(), waited.

It should be noted at this point all
W-labeled edges in H/W-TWBG are
present all the time in the system
because the queue status needs to be
maintained continulusly for our
scheduling policy, Different from
that, all H-labeled edges in H/W-
TWBG are made to be present in TST

—-117-

12

while our periodic-detection-resolut-
ion algorithm is activated., For
maintain-ing the queue of a
resource easily and to apply TDR
systematically in our periodic-
detection-resolution algorithm,
when multiple entries are put on

RST
0

ko msX|5 | {1 [IX[oIX] F——{ 2 [IS |
7 [1s [NL] | |

w |RIs |8 | ——>

TST

—E::*EC
~—— = 1X |
—

W 00 =1 G v b W
OOOOOO[OOO

dig |wilm|mig |5

Z

=
s 7] -
=/ Ix] 0 |

e [9] =
X3] =

the list maintained by a waited in
TST, the edge whose lock is not NL
is put at the front of the list., For
the situation given in Example 4.1,
the corresponding RST and TST are
shown in Figure 5,1,

s]
[8 [[NL] | |

1s [NLT
1

L 2] -
(5[4 [-—»NLl6 [J-»Nel2]

INL] 1]]
NL[8 [

Figure 5 1 RST and TST for Example 4,1

The overall process of our periodic
deadlock detection and resolution
scheme can be summarized as the
following three steps which are
repeated periodically. These three
steps will be refined shortly.

Algorithm periodic-detection-resolution;

Step 1: Construct H-labeled edges
and initialize some variables,

Step 2: Find cycles and select
victims to resolve them,

Step 3: Confirm transactions to be
aborted and granted,

In Step 1 only H-labeled edges are

-118~

23 EdNM NS A N2 e TR Bdo) g 13
aAde #7138 A2 L A% 7Y

constructed inte TST by applying
ECR-1 and 2 for each resource in RST
because all W-labeled edges are
always present in TST. The algorithm
employs two variables ancestor and
and current for each transaction node
in TST. The ancestor which is
initialized to O is used to mark
trarersed vertices in the current
subgraph as well as is used for the
backtracking of the depth-first-
search. The current of vertex v which
is initialized to waited indicates the
next edge to be searched from v. In
addition to that some global variables
(abortion-list, change-list and grant-
list) which will be explained in the
next steps are initialized to be empty.
As a matter of fact, Figure 5.1 shows
the result of Step 1 for the situation
given in Example 4,1, The whole
process of Step 1 is refined below,

Step 1:/* Initialization*/
for v:= 0 to M-1 do
Construct H-labeled edges into
TST by applying ECR-1 and 2
for RST(v).
for vi= 1 to N do begin
TST{v). ancestor:=0;
TST[v), current:=TST[v], waited;
end;
abortion-list:=4 ; change-list:=¢;
grant-list:=¢ ;

In Step 2 a directed walk in TST
starting from vertex v always either
terminates at v or takes us back to a
vertex marked a non-zero ancestor,
The first condition corresponds to the
case in which there is no more cycle

reachable from v in the following
senses: (1) There is no cycle in the
beginning in that subgraph, (2) There
was a cycle which had beem already
resolved by previous another directed
walk, or (3) The walk has already
resolved a cycle, if exists, so at this
point there is no more cycle reachable
from the root node. The second
condition is satisfied when there is a
cycle in it, During the directed walk,
we backtrack to the ancestor and then
proceed to the next incident vertex
when we cannot move forward
anymore, That condition is expressed
in our internal structure in such a
way the current value of a vertex is
nil, That internal condition takes
place when all reachable cycles, if any,
have beem resolved by selecting some
vertices or the corresponding vertex as
victim (s). The whole process of Step 2
is refined below,

Step 2:/* Cycle detection and victim
selection*/
for vi= 1 to N do begin
TST(v), ancestor:=-1;
while v+ -1 do begin
if TST(v), current = nil then begin
w:=T8T(v]. ancestor;
TST(v], ancestor:=0; v:=W,;
end else begin
Let the edge pointed to by TST
(v].current be{Lock, w, link),
if (w=0) or (TST[w),current=nil)
then TST[v].current:=link
else if TST[w).ancestor+0 then
begin
victim-selection (v); vi=w;
end else begin

~119—

14

TST([w], ancestor:=v; v:=w;

end

end

end-while
end-for;
Based on TDR and our victim
selection strategy, the process of
victim-selection can be explained as
follows, More detailed one which is
written in an algorithmic language
can be found in [16)., Let an edge v—
w be the one which detects a cycle in
our directed walk, Starting from v,
we backtrack until w is visited again
while applying TDR and our victim
selection strategy to find a victim in
the cycle., During backtracking, the
ancestor of each backtracked vertex
is cleared except for w, On finishing
backtracking, if the victim is decided
by TDR-1, then the current of the
victim is set to nil and the victim is
added to the abortion-list which
keeps all the victims to be aborted.
When it selected by TDR-2
however, the followings take place:
First, the requests in ST are
repositioned right after those of AV,
Second, the queue of the resource in
RST is set to the first request in AV,
Third,
requests in ST from the repeated
application of TDR-2, the cost of
each ransaction in ST is incremented
by “some” value which might be
determined according to the current
cost of the transaction and the period
of the deadlock detection, Fourth,
the resource identifier which they are
blocked is added te the change-list

is

in order to prevent the

uhg

which is taken care of at Step 3,
Finally, bhecaue they cannot be
involved in any deadlock cycle, the
current of each transaction in AV is
set to nil,

During our directed walk, once a
cycle is detected with an edge (v-—w)
and resolved appropriately with
backtracking, the walk resumes at
the vertex w. It should be noted that
we may traverse more than once a
subset of transactions in the cycle
which has been resolved just before to
check undetected cycles reachable
from the root,

In Step 3, with the abortion-list
and the change-list obtained from
Step 2, we confirm transactions to be
aborted and granted in addition to
modifying RST and TST. The details
for Step 3 is given below,

Step 3:/*Confirm transactions to be
aborted and granted*/

for vi=1 to N do
delete all the H-labeled edges
in TST(v].
for each transaction v in abortion-
list do
if v is in grant-list
then delete v from abortion-list
else for each resource Rv to
which v is related do
delete v from Rv and construct
grant-list according to our
scheduling policy,
for each resource in change-list do
construct grant-list according to
our scheduling policy.

As resuits of Step 3 (in fact, the
result of periodic-detection-resolution

—120-

&2 2L AEE 9% A2 o 2l o 15
gl 214 e 2 H8 7Y

algorithm), we get the abortion-list
which contains transactions to be
aborted and the grant-list whose
constituting transactions are to be
granted. One comment might be in
order for Step 3 in which a transaction
Ti in the abortion-list is not aborted if
it exists in the grant-list, The reason
for this can be clarified through the
following example,

Example 5,1 Suppose that two
resources R1 and R2 are requested as
follows:

Ri(S):Holder ((T1,8,NL)) Queue(T:
X), T2(5))

R2(S) :Holder ((T%, S,NL), (T3, S,NL))
Queue (T1(X))

Then the above situation has two
cycles {Th, T2, T3} and |{Ti, T2l as
shown in Figure b, 2,

T

gl | NI

A
T2)——
p— @
Figure 5.2 An example of a deadlock

Assume that the cycle search
started from T at Step 2 and cost for
each transaction Ti, T:. and Tt is 6,4,
and 1 respectively, Because W-labeled
edge, if any, precedes H-labeled edges
in an entry of TST, the cycle Ty, Te,
T4 is detected first and according to
our deadlock resolution rule, T3 is
selected as a victim to be aborted and
added to the abortion-list, When the
cycle {Ti, T% is detected next, T% is
selected as a victim to be aborted and
added to the abortion-list, At Step 3

of our periodic-detection-resolution
algorithm with the abortion-list {72,
T3}, suppose that T2 is examined
first, After deleting T2 & requests
from R1 and R2, according to our
scheduling policy, T3 has to be
granted at Ri such that it is put in
the grant-list, When T3 is checked
from the abortion-list, it has to be
deleted from the abortion-list because
T3 is not involved in _deadlock any
more. As results of Step 3 in this
example, the abortion-list is |T%, the
grant-list is {73 and the situation is
modified as follows,

R1(S):Holder ((T5, S, NL), (T1,8,NL))
Queue()

R2(S):Holder ((Ts, S, NL)) Queue(T:
(X))

Before we close this section, the
space and the time complexities of
our algorithm are discussed., Space
complexity is O(n+e), where n is the
number of transactions in TST and e
is the number of edegs in it, When
there is not any cycle in the graph,
O(n+e) time is required to search all
the vertices and all the edges in TST,
Different from listing all the
elementary cycles in a directed graph
as in Johnson's algorithm(15), when
a cycle is found at Step 2, it is
searched again to find victim;
transaction(s) in the victim are
marked not to search the same cycle
again; and the search resumes at the
vertex where the cycle is found, By
doing this way, the total number of
cycles searched(c') cannot exceed the
number of elementary cycles (¢) and
also cannot be greater than the

—121—-

16

number of transactions (n). Because
procedure victim-selection can be
done in O(n) time, the total time
complexity is O(n+e*(¢c’'+1)).

6. Closing Remarks and
Disscussion

In this work, we developed a new
deadlock detection graph, called
H/W-TWBG, in the environment of
sequential transaction processing with
supporting multiple lock modes and
permitting lock conversions, We also
established the identification principles
of the victim candidates: one by
aborting a transaction in a cycle and
the other by switching the order of
lock requests in the queue of a
resource without having the rigk of
the live-lock.

Based on the graph and the victim
selection strategies, we have developed
an efficient deadlock detection and
resolution algorithm which has O(n+e)
storage space and O(a+e*(c’+1}) time
complexity, where e is the number of
waited-by edges, n is the number of
transactions in the database system
and ¢’ is the number of cycles which
are actually searched such that ¢’ is
net greater than ¢, the number of
elementary cycles in the graph, and
also not greater than n,

References
1. R. Agrawal, M,J, Carey and D.dJ,

DeWitt, “Deadlock Detection is
Cheap,” ACM SIGMOD RECORD,

ed

Vol, 13, No,2, pp.19-34, January
1983, '

2. R. Agrawal, M.J. Carey and L. W,

10,

—122—

McVoy, The Performance of
Alternative Strategies for Dealing
with Deadlocks in Database
Management Systems,” IEEE
Trans. on Software Eng., Vol SE-
13, No.12, pp.1348-1363, December
1987,
R. Agrawal, M. J, Carey and M,
Linvy, “Concurrency Control
Performance Modeling: Alternatives
and Implications,” ACM TODS,
Vol,12, No, 4, pp.609-654, December
1987,
C. Beeri and R. Obermarck, “A
Resource Class Independent
Deadlock Detection Algorithm,” in
Proc. of 7th Intl Conf.on VLDB,
pp. 166-178, 1981,
P. A. Bernstein, V., Hadzilacos and
N, Goodman, “Concurrency Control
and Recovery in Database Systems,”
Addison-Wesley, 1987,
W.N. Chin, “Some comments on ’
Deadlock Detection is Cheap’ in
SIGMOD Record Jan, 83," ACM
SIGMOD RECORD, pp.61-63,
March 1984,
C.J.Date, "An Introduction to
Database Systems: Vol II,7
Addisin-Wesley, 1983,
A_ K. Elmagarmid, Deadlock
Detection and Resolution in
Distributed Processing Systems,
Ph.D Dissertation, The Ohio
State University, 1985,
S. Even, “Graph Algorithms,”
Computer Science Precess, 1979,
J, F, Garza and W, Kim,

L1,

12,

13,

14,

15,

16,

17,

18,

&3 ERQYY A F 9 Aae adz 2dd g 17
adgde) 514 A& 9 HE 7N

“Transaction Management in an
Object-Oriented Database System”,
in Proc. of ACM SIGMOD Intl,
Conf., pp.37-45, 1988,

J, Gray, “Notes on Database
Operating Systems,” in Lecture
Notes in Computer Science 60,
Advanced Course on Operating
Systems, ed. G. Seegmuller,
Springer Verlag, New York, pp.
393-481, 1978,

J. Gray and A, Reuter, "Transact-
ion Processing,” Version I of the
Slides, 1987,

T. Haerder and A, Reuter,
“Principles of Transaction-Oriented
Database Recovery,” ACM Comput-
ing Surveys, Vol 15, No.4, pp.
287-317, 1983,

B. Jiang, “Deadlock Detection is
Really Cheap,” ACM SIGMOD
RECORD, Vol, 17, No.2, pp.2-13,
June 1988,

D.B, Johnson, “Finding all the
Elementary Circuits of a Directed
Graph,” SIAM J Computing, Vol,
4, No, 1, pp.77-84, March 1975,

Y. C. Park, Deadlock Detection
and Resolution in Database Manage-
ment Systems: A Comprehensive
Approach, Ph.D Digsertation,
Northwestern University, 1989,

Y, C. Park and P, Scheuermann,
“A Deadlock Detection and Resolut-
ion Algorithm For Sequential
Transaction Processing with
Multiple Lock Modes,” to appear
in COMPSAC 1991,

K.H., Pun and G.G, Belford,
“Performance Study of Two Phase
Locking in Single-Site Database

Systems,” IEEE Trans, Software
Eng,, Vol SE-14, No, 12, pp.1313-
1328, December 1987,

Appendix

Recall the major features in our
model described in Section 2, One
important feature of our model is
that a transaction can wait for at
most one resource to be released, The
consequesnt of the
previous statement is formally stated
in Axiom 1,

Axiom 1 No transaction appears
more than once in the queue of the
whole system,

observation

A transaction, however can appear
in a queue of a resource K1 and at
the same time appear in the holder
list of a resource K2 because being in
the holder list does not necessarily
implies that the transaction is
blocked,

Lemma 1 No cycle can be made
without any H-labeled edge,

proof: Suppoese that there is a cycle
with W-labeled edges only, Because
the only way to draw a W-labeled
edge in H/W-TWBG is to use the
ECR-3 which is applicable for
transactions in the queue of a
resource, there must be a transaction
T such that either T appears more
than once at different positions of the
gueue of a resource or T appears in
the queue of a resource Ri and at the
same time appears in the queue of
another resource Rz Both cases
contradict Axiom 1,

QED

Lemma 2 No cycle can ‘be made

—123—

18

with only one TRRP

proof: Suppose that there is a cycle
only with one TRRP, say TRRPi, in
H/W-TWBG of a resource Rl. The
definition of TRRP says that TRRP:
consists of one H-labeled edge and
following multiple (possibly empty)
W-labeled edges. By Lemma 1,
TRRP1 should have at least one W-
labeled edge to form a cycle. Let the
tail transaction of H-labeled edge be
T. In order for TRRP: to be a cycle,
one of the following cases is true, 1)T
appears in the queue of R1 again or
2) There is a transaction T' such that
T appears in the queue of resource
Ri and at the same time T appears in
the queue of another resource. Both
cagses contradict Axiom 1, QED

Lemma 3 Each cycle in the H/W-
TWBG consists of at least two
TRRPs,

proof: First of all, Lemma 2
excludes a cycle with one TRRP in the
H/W-TWBG, Suppose followings, 1)
There is a path Ti—~Tv—, —Th with k
TRRPs(K=1) in H/W-TWBG, 2)Ta
holds a resource Rn, and 3)T: then
requests a lock for the resource Rn
which turns out to be blocked due to
lock conflicts, Then there will be a H-
labeled edge from Th to Ti, which iz as
a matter of facts a TRRP in our
definition, The resulting sequence
forms a cycle which consists of k+1
TRRPs, Therefore a cycle in H/W-
TWBG can be made with n TRRPs
where n>2,

QED

Definition 1 (Slight modifications of
the definition (4)) Let T be all transact-

ions in a system, The system ig in a
deadlock if there is a subset T' of
transactions such that all transactions
of T" have outstanding requests and
even all transaction T-T were
removed and their resources were
released, no request of a transaction
of T could be completely satisfied
(none of them could start to run). We
call such a set T' a deadlock set,

Definition 2 A deadlock set T is
minimal if and only if no proper subset
of T is a deadlock set any more,

The rationale behind the definition
of a minimal deadlock set is that we
are mainly interested in a single cycle
even though Beeri and Obermarck (4]
said that deadlock sets are closed
under union, The case in which a
number of cycles exist is easily
extended once we have established a
firm theory on a single cycle case,
Next is another definition of a
deadlock state which will be used
afterwards,

Definition 3 The system is in a
deadlock if and only if its minimal
deadlock set is non-empty.

Lemma 4 Let MDS be a minimal
deadlock set, Then the incomming
edge and the outgoing edge of each
transaction of MDS in H/W-TWBG
are unique,

proof: Let wus consider the
incomming edge first, Assume that a
transaction Ti is blocked for a
resource F1, As far as Ri goes, Ti has
a unique incomming edge. Suppose
otherwise,

Case 1:There is no incomming edge
to 1 at R,

—124—

=4 EdAH Adg AY A2 2d= 24 g% 19
aEgele 214 A % HE Ay

If Th is a member of holders of Ri,
then there is at least one transaction
T2(Th+ T2:) whose granted mode is
incompatible with the blocked mode
of Ti, If T is the first transaction in
the queue of Ri, then there is at
least one transaction T3 whose
granted mode or blocked mode is
incompatible with the blocked mode
of Ti. If T\ is in the queue and not
the first transaction in the queue,
then let T4 be a transaction preceding
Tt in the same queue. In all cases,
our ECR rule draws an edge to T
from 72, T3 or T4, A contradiction
arises,

Case 2:There is more than one
incomming edge to 7.

If there is more than one incomm-
ing edge to Ti, then deletion of all
incomming edges except one does not
allow Ti to proceed since Ti continues
to be blocked, This contradicts the
definition of MDS,

Therefore there 1is only one
incomming edge for each transaction
in MDS, As for the outgoing edge, if
T: in MDS has more than one
outgoing edge, sat k(k=2), then
there must be k distinct transactions
which is blocked by Ti because there
is only one incomming edge for each
transaction, Assume all (k-1) transacti-
ons are aborted, A deadlock is still
there, which contradicts the definit-
ion of MDS, The proof is completed.
QED

Now we present the main theorem
which states the deadlock condition

in H/W-TWBG,

Theorem 1 There exists a cycle in
H/W-TWBG if and only if there
exists a deadlock in the database
system,

proof: ({(---) Suppose that there is a
deadlock in the system, Then there is
a minimal deadlock set MDS ({Ti,
Te,..,Tnl. Assume that all transact-
ions except ones in MDS are sucessfu-
lly committed to release all their locks,
By Lemma 4, the incomm-ing edge
and the outgoing edge of Ti are
unique, The only way to construct
edges among those transactions while
satisfying the incomming edge and
the outgoing edge uniqueness for each
Ti(1<i=n) in MDS is to make a
cycle, Whenever there is a non-empty
MDS in the system (in other words,
there is a deadlock), there is a cycle
in H/W-TWBG,

(--->) Suppose that there is a cycle
in H/W-TWBG, Without loss of
generality, assume that the cycle is
an elementary cycle. Lemma 3 says
the cycle consists of at least two
TRRPs. Note that each transaction in
a TRRP except the tail transaction of
the H-labeled edge (which is the first
edge in the TRRP) is blocked by all
the preceding transactions in the
TRRP., Because all TRRPs constitutes
a cycle, no transaction involved in
the cycle can proceed without outer
intervention (in other
transactions in the cycle form a

words,

minimal deadlock set), Such condition
is a deadlock. QED

—125—

