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Abstract

We present a periodic algorithm for deadlock detection and resolution in distributed database
systems, which allows for early dctection of explicit and implicit deadlocks, Our algorithm uses
an augmented transaction wait-for graph (TWFG) at each site, which contains in addition to lock-
wait information, also information about message-wait and master-slave relationships among
agents of a transaction, and status of transactions with respect to the commitment protocol. In
order to detect and resolve global deadlocks with a minimal number of inter-site messages we
adopt a modified version of the probe generation scheme such that two pools are maintained at
each site. One pool keeps probes received, while the other keeps the receipts of probes sent.
Periodically, we check for deadlocks by using the information contained in the local TWFGs and
the probes received. The receipts of probes sent are used to avoid retransmission of the same
probe and also to transmit antiprobes. Our algorithm allows for parallel execution of transactions

at multiple sites and supports multiple modes of locks and lock conversion.
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1. Introduction

A distributed database system consists of a
collection of sites interconnected through a
communication network, each of which
maintains a local database systern. Each site is
able to process local transactions, which access
data only in that single site. In addition, a site
may participate in the execution of global
transactions, which access data in several sites.
Exccution of global transactions requires
communications among sites.

- A deadlock occurs when a set of transactions
are circularly waiting for each other to release
resources, When the circular wait occurs at a
single site only it is referred to as a local
deadlock, while a circular wait involving
transactions executing at multiple sites is
called a global deadlock. The difficulty in
dealing with dcadlocks in a distributed
database system is duc to detection of global
deadlocks. Global deadlocks in distributed

database systems involve in most cases only a
few sitcs since most transactions in the system
access only resources local to their originating
sites. Therefore, a distributed deadlock
detection approach has been adopted most
widely [7], [10], [20], [29], |34], [35], [37]
instead of a centralized or hierarchical
approach [12], [21], [27], [36]-

In distributed deadlock detection, global
deadlocks are detected by sending inter-site
dcadlock detection messages. Detection
schemes for global deadlocks can be classified
into two categorics depending upon the type of
graph they construct, which is either an actual
graph or a condensed graph. Schemes that
construct an actual graph [9], [20], [29] are
based upon transmission of detection
messages, which convey string of transactions
of an arbitrary length. In the string, the first
transaction is a global transaction waited by
some other site; each transaction - global or

local - in the string waits for the completion of
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the immediately following transaction in the
string; and the last transaction is a global
transaction that is waiting for either a response
or a new request from another site. The
number of messages sent can be reduced in
half by assigning priorities to transactions and
transmitting only those messages where the
priority of the first transaction in the string is
higher than the priority of the last transaction
in the string [29]. In either case, the detection
message is sent to the site where the last
transaction in the string is waiting and used to
construct an actual deadlock detection graph at
that site. This scheme requires the transmission
of a large number of messages, especially
when shared locks arc permitted, and is not
very practical when the number of transactions
is large.

Onc the other hand, in schemes that are
based on the construction of a condensed
graph [16], [27]. deadlock detection messages
contain only two transactions, (T}, 7)), where T;
transitively waits for the completion of 7). The
message is scnt either to the site of origin of
transaction Ty(backward transmission) or to the
sitc of origin of transaction T,(forward
transmission). Backward transmissions result
in a very large number of messages transmitted
when there are no deadlocks in the system. In
order to alleviate this problem, this method has
been modificd by making also use of a priority
scheme such that a message, called a probe, is
sent when a transaction with a higher priority
transitively waits for another transaction with a
lower priority [10], [33]-[35]. While priority
based probe schemes avoid the transmission of
backward messages, they also have a problem

of sending messages (o transaction managers

and also to resource managers. This problem
causes the number of messages to be doubled
compared with schemes that do not send
messages to resource managers. However, an
interesting feature of the modified probe
scheme is that once a probe is received it is
stored and forwarded until no more paths are
found for delivering the probe or a compensa-
ting message for the probe, called an
antiprobe, is received. This feature eliminates
the need to retransmit the same probe a number
of times and speeds up the detection and
resolution of future deadlocks.

In this paper we introduce a new deadlock
detection and resolution scheme that reduces
significantly the overall number of deadlock
dctection messages sent. Our scheme uses a
hybrid combination of a transaction wait-for
graph(TWFG) and a probe generation
mechanism. In our probe mechanism each site
maintains two pools of probes: one for probes
received and onc for receipts of probes sent.
Since majority of transactions are local and
distributed deadlocks are known to occur
infrequently [17], [29], [36], our algorithm
constructs periodically local TWFG at each
site to detect local deadlocks without any
deadlock detection message transmission as in
(7], [9], [12], [13], [29], [38]. Global deadlocks
are detected by using the local TWFG and the
probes received. Then probes, each of which
represents the fact that a global transaction
with a higher priority transitively waits for
another global transaction with a lower
priority, are sent to remote sites to construct
condensed graphs. In order to compensate for
the probes that have been sent already

antiprobes are sent.
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The rest of this paper is organized as
follows. In Section 2 the transaction model and
the modes of locks under consideration are
explained. Our systematic scheduling policy is
discussed in Section 3. Section 4 introduces
our graph construction mechanism in detail for
detection of deadlocks in our system. Our
message transmission mechanism for sending
probes and antiprobes are given in Section 5
and our new distributed deadlock detection and
resolution algorithm is presented in Section 6.
The performance characteristics of the
proposcd scheme and a refinement for the
minimal cost victim sclection are illustrated in
Section 7 and Scction 8 respectively.
Concluding remarks arc given in Section 9.

2. Preliminaries

A transaction in this paper is a sct of
database operations, which has four well
known ACID properties: atomicity,
consistency, isolation, and durability [19]. In
order to perform functions of a transaction at
different sitcs, the transaction has one or more
processes executing of its behalf at cach of the
corresponding sites, We call these processes
the agents of the transaction. The agent that
starts a transaction is called the root agent of
the transaction, and the site of the root agent is
called the site of origin of the transaction. An
agent can initiate other agents for its own
purpose. In that case, the former is called a
master agent and the latter is called slave
agents. An agent can have at most on¢ master
agent(of course, the root agent of the

transaction cannot have its master agent) and at

the same time can have several slave agents of
its own. In other words, all the agents of a
transaction constitute a tree structure that is
denoted as a process tree [17]-[19], [25], [26].
An agent carries a transaction identifier, an
identifier of the process that executes the part
of the transaction, and a site identifier that
denotes the site where the process is running,
All the agents of a transaction can run in
parallel. However when a transaction has
multiple agents running of its behalf at the
same site, we assume that only one of them is
executing by blocking the others as in [25],
[39].

For ensuring serializability, our model uses
strict wo-phase locking [S], [11], [24], which
requires that a transaction has to lock a
resource before it accesses the resource and all
locks of a transaction are held until the
transaction terminates. We support multiple
modes of locks(IS, IX, §, SIX, and X locks)
[3], [15], [17]. Our model is upward compatible
with the multiple granularity locking protocol
[15], [17] in the sense that it integrates without
changes into a system that supports a resource
hierarchy.

Two lock requests for the same resource by
two different transactions are said to be
compatible if they can be granted concurrently,
The compatibility matrix, say Comp, is shown
in Table 1 where NL. means No Lock. For
short hand notation, we shall also usc a
function with the same name as the matrix to
indicate the truth table. Compl[lock1, lock2] is
true (false) if lockl and lock2 are compatible
(incompatible, respectively). For example,
ComplS, IS] is true but Comp[IX, SIX] is

false.
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NL IS IX SIX S X
NL t t t l t t
IS | ¢t [t ¢t f | t]f
X | ¢t e £ |t °f
SIX| ¢ | t ]| £ £ | f] ¢
S|t |t | £ f [ t]¢t
X [t ¢ ¢ f | t]f

Table. | Compatibility Matrix

A transaction that holds a resource might
request a more exclusive lock mode on the
same resource, which is denoted as a lock
conversion or a lock upgradation. When a
request turns out to be a conversion, the
holding lock mode and the requesting lock
mode of the transaction are used to compute a
new lock mode that the transaction eventually
wants to hold for the resource by use of a
conversion mairix, say Conv. It is represented
in Table 2 with the holding lock mode as rows
and the requesting lock mode as columns. For
example, when a transaction holds an IX lock
on a resource and re-requests an S lock for the
resource, the transaction eventually wants to
hold an SIX lock (Conv[IX, S]) for the
resource.

3. Scheduling Policy

In this section we review the scheduling
policy that we introduced in [31] with some
modifications. Our scheduling policy honors
lock requests on a first-in-first-out basis except
for lock conversion. In our scheme the lock
manager of a site maintains a lock table that
holds the following information for each

resource being locked in the site: a holder list,

CONL IS X SIX S X
NL|NL| IS | IX]|sSIx| s | x
S [ 1S| 1S | IX | SIX | s | X
X | IX ]| XX | sIX|six] X
X
X
X

six | six | six | six | six | six
s | s | s |six|six| s

X X X X X X

"Table. 2 Conversion Matrix

a queue, a total mode of the holders (1m_h),
and a total mode of requests in the queue
(tm_q). Each holder in a holder list takes three
attributes: a transaction identifier (¢tid), a
granted lock mode (gm), and a blocked lock
mode (bm), i.e. (tid, gm, bm), cach request in a
queue takes two attributes: a transaction
identifier (¢id) and a blocked lock mode (bm),
i.e. (tid, bm); the total mode of the holders is
defined as Conv|...Conv[Conv[Conv[gm,,
bm\], gm,), bms], ..., bm,] assuming that n
requests are in the holder list and each one
takes (7;, gm;, bm;) where 1={i=In; and the
total mode of requests in the queue is defined
as Convl[...Conv[Conv[bm,, bm,|, bms], ...,
br,] assuming that n requests are in the queue
and each one takes (7}, bmm;) where 1=2i<<n,

The notion of the total mode is introduced in
order to allow for a more efticient checking of
lock grantability as compared with the group
mode concept of [17]. The reader should notice
that the group mode of the holders corresponds
in our notation to Convl[... Conv[Conv[gm,,
gmy), gms], ..., gm,].

A transaction can request resources while
running. If a resource that a transaction wants
to hold a lock is held by other transactions with

conflicting modes of locks or the total mode of
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the corresponding queue is not compatible
with the requesting lock mode, then the
transaction is suspended, i.e. blocked, until the
request is granted. More specifically, when a
request from transaction 7; asking lock L; for
resource R, arrives, the holder list of R, is
checked first to see if the request is a lock
conversion (i.e. 7; alrcady holds a lock). In the
case that the request is not a lock conversion, if
Comp[tm_h, £;] and Comp[tm_g, L;], then T;is
notified that the request is granted after placing
(T}, L;, NL) behind all the blocked holders in
the holder list and updating tm_h of R, by
Conv[mm_h, L;]. Otherwise, the request is not
granted by appending an entry (T, L;) at the
end of the queue and updating tm_g of R, by
Conv([tm_q, L;]. When a request turns out a
lock conversion, i.e. there is an entry (T}, gm;,
bm;) in the holder list where bm; is NL, a new
lock mode is computed by Conv[gm;, L;]. If the
new lock mode is compatible with the granted
lock mode of every other holders in the holder
list, then T is notificd that the request is
granted after substituting the new lock mode
for gm;, and updating trm_h of R, by Conv
[tm_h, L;]. Otherwise, bm; is replaced with the
new lock mode, tm_h of R, is updated by Conv
[tm_h, L;], the entry (T;, gm; bm;) is
repositioned in the holder list according to the
upgrader positioning rule that will be explained
below, and 7; is blocked until the request is
granted.

Example 3.1 Assume that resource R, is held
by two transactions (T} with an IS lock and 7,

with an IX lock) and at the same time is waited
by two other transactions (T3 with an § lock

and T, with an X lock) in the queue. According
to our definition, #m_h and tm_g of R, become
an IX lock and an X lock respectively. We shall
use a schematic notation where for a given
resource R; we indicate R[tm_h] followed by
the holder list and [tm_q] followed' by the
elements in the queue. Thus the present

configuration corresponds to:

RI1[IX]: Holder((T}, IS, NL)(Ty, IX, NL))
[X]: Queue((T3, SY(T4, X))

Suppose that T re-requests and S lock for
R;. Since an S lock (Conv]IS, S): the new lock
mode that 7; wants to hold) is not compatible
with an IX lock (the granted lock mode of T5),
T; is blocked and bm; and tm_h are replaced
with the new lock mode and an SIX lock
(Conv[IX, S]) respectively. The situation
becomes as follows:

R1[SIX]: Holder((7, IS, SXT», 1X, NL))
[X]: Queue((T5, S)(T4, X)) ]

There are two cases where we need to check
whether there are some blocked requests that
can be granted and if they are grantablc we
need to grant those requests at this point. The
first case is that a member of the holder list is
forced out due to commitment or abortion. The
second case is that some member of the queue
leaves the system due to abortion. When any
one of the two cases takes place, we want to
check the blocked requests in a systematic and
efficient way. This is enabled in our scheme by
repositioning the entries in the holder list,
which denotc lock conversion requests that
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cannot be granted. More specially, when a
request of transaction 7 for a resource is found
to be a lock conversion and is blocked, we
replace the bm; value in its holder entry with

the value Conv[gm,, requesting lock mode],

replace tm_h with Conv[tm_h, requesting lock
mode], delete the entry (T, gm;, bm;) tempor-
arily from the holder list and then we position
the entry in the holder list according to the
following upgrader positioning rule(UPR);

Starting from the beginning of the holder list, find the first three requests, if any, denoted as
T,, T, and 7, that satisfy the conditions below:

(T, gmg, bm,), where bm,=NL and Comp[bm,, bm,).
(T, gmy, bmy,), where Comp[gmy,, bm;] and Not Comp[bmy, gm;].

(T, gm,, bm,), where bm =NL

(UPR-1) If T, is found then place (T, gm;,, bm,) as an immediate predecessor of (T, gm,, bm,) in the

holder list.

(UPR-2) If T, is not found but T, is found then place (T}, gm,, bm;) as an immediate predecessor of

(T}, gmy,, bm,) in the holder list.

(UPR-3) If T, and T}, arc not found then place (T}, gm;,, bm,) as an immediate predecessor of (7, gm,,

bm,) in the holder list.

Example 3.2 Assume the following situation
of a resource R1. For the explanation of the
upgrader positioning rule, only the holder list

is shown.

R1({IX]: Holder((T,, X, NL)T5, IS, NL)
(7131 lX: NL)(T47 lS, NL))

When T, re-requests R, with an S lock, the
request cannot be granted and its entry
becomes (73, IS, ). According to UPR-3 the
entry is rearranged to the beginning of the
holder list.

R1[SIX]: Holder((T,, IS, S)(T;, IX, NL)
(T3, TX, NL)(T,, IS, NL))

When T re-requests R; with an S lock, the

request cannot be granted and its entry becomes

(T3, IX, SIX). According to UPR-2 the entry is
rearranged to be the immediate predecessor of

T, s request.

R1[SIX]: Holder((Ts, IX, SIX)(T>, IS, S)
(T, IX, NL)(T,, IS, NL))

When T, re-requests R; with an S lock, the
request cannot be granted and its entry
becomes (T, IS, S). According to UPR-1 the

entry is rearranged to be the immediate

predecessor of T s request.

R1[SIX]: Holder((T3, IX, SIX)(T,, IS, S)
(T, 1S, ST}, IX, NL))

In fact T, and T, cannot be granted in the

presence of Ty and T;3. When T, completes, T
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can be granted even though T, and 7, cannot

be granted. ]

The following lemmas and theorem follow
as a consequence of the upgrader positioning

rule. For the proofs sec [31].

Lemma 3.1 Let (T;, gm;, bm,) and (T}, gm,
bm;) be two requests in the holder list of a
resource where bm;=NL. If bm; is compatible

with gm;, then gm; is an IS Jock.

Lemma 3.2 Let (T;, gm;, bm;) and (T}, gm,,
bm;) be two blocked requests in the holder list
of a resource. If bm; is compatible with bm;,
then gm=gm; is an IS lock and bm=bm; is

either an 1X lock or an S lock.

Lemma 3.3 Let (T}, gm;, bm;) and (T}, gm,,
bm;) be two blocked requests in the holder list
of a resource. If gm; is compatible with bm; and
bim; is not compatible with gm;, then (T;, gm,,
brm;) cannot precede (T}, gm;, bm) in the holder
list,

Theorem 3.1 Let (7, gm;, bm;) and (T;, gm,
bm;) be two blocked requests in the holder list
of a resource where (T}, gm;, bm;) precedes (7},
gm;, bm;). When we grant blocked requests

from the beginning of the holder list, once the
request of T, cannot be granted, the request of

T; cannot be granted either.

As a consequence of Theorem 3.1 it follows
that when a holder is removed from the holder

list of a resource R,, &m_h of R, is re-computed

and the process of granting blocked requests
can start from the beginning of the holder list
and stops searching the holder list when it
encounters an entry whose blocked request
cannot be granted or when a non-blocked entry
is found. Note that a blocked request can be
granted only when its blocked lock mode is
compatible with the granted lock modes of
every other holders in the holder list. All the
newly granted requests are put behind all the
blocked hoiders after substituting the blocked
lock mode for the granted lock mode and NL
for the blocked lock mode. In addition to that,
if the queuc of R, is not empty, after setting
tm_g of R, to NL, each request (7}, bm;) in the
queue is checked starting from the first waiter
up to the last one in the queue. Once bm; is
compatible with tm_h of R, and also
compatible with #m_g of R,, the request is
granted by removing the request from the
qucue, placing (7;, bm;, NL) behind all the
blocked holders in the holder list and updating
tm_h of R, by Conv[tm_h, bm;]. Othcrwise,
tm_g of R, is replaced with Conv[im_g, bm,].
When some member of the queue leaves the
system due to abortion, after removing the
request from the queue, the same process of
granting blocked requests as we did for the
case of a holder deletion is carried out for the

queue.

4. Transaction Wait-For Graph

We make use of an augmented transaction
wait-for graph (TWFG) in order to detcct
deadlocks in the system. Our TWFG captures

additional information in comparison with

— 140 —



A Distributed Deadlock Detection and Resolution Algorithm Based on a Hybrid Graph Construction 9
and Probe Generation Scheme

other such graphs reported in literature [7], [9],
[12], [29], [37], [38], namely message-wait
relationships, hierarchy among agents of
global transactions, and transaction state with
regard to commitment protocol. Periodically,
each site constructs its own up-to-date local
TWFG by making use of its lock table plus
other run-time information about its
transactions as will be cxplained below. Thus
the TWFG of the entire system is the union of
the individual local TWFGs constructed at the
corresponding sites.,

Let us assume that N is the maximum
number of transactions that are executable at
site S,. The local TWFG at site S,, denoted as
TWFG,, is represented as an array [1..N] of
records with the following fields: TID
(transaction identifier), LWS (lock-wait edges),
MWS (message-wait edges), State (state of
transaction), MTS (master agents), TAS
(transitively antagonistic waits), ancestor
(integer), and current (lock-wait cdges). TAS is
explained in Scction 5, and ancestor and
current are explained in Section 6 when cyles
in TWFG are searched. We will explain LWS,
MWS, State, and MTS in this section.

We assume that all the transactions running
at a site can have their entries in the local
TWFG. For notational convenience, when
transaction 7; is running at site S,, T; has an
entry in TWFG, and it is represented as T;&
TWEG,. Otherwise, it is shown as T, & TWFG.,.
Each entry of TWFG, can be accessed by a

regular hashing method for the corresponding

transaction identifier. Throughout the
remainder of this paper, once T, TWFG,, we

assume that T has its entry in the i position of

TWFG,. In other words, we assume that
TWFG,[T;] and TWFG,[i] are interchangeable.
In addition to that the terminology vertex will
be used to represent a transaction when it is
appropriate for the explanation of our graph

structure.
4.1 Lock-Wait Edges

In distributed database systems due to the

‘fact that transactions can be executed at

multiple sites concurrently, special attention
needs to be devoted to the representation of the
system with respect to deadlock. In the case of
parallel transaction processing where a
transaction can have multiple outstanding lock
requests, it is possible that a transaction is not
currently blocked, yet it may become
deadlocked later in time if the agent that
currently executes terminates successfully and
the remaining agents are blocked.

Different definitions of deadlock have
appeared in literature: one definition declares a
deadlock when an agent transitively waits for
itself [7), [12], [13], [20], [38], while another
declares when a transaction transitively waits
for itself [4], [10], [29], [33], [35]. The first
definition is useful when nested transactions
[28] are allowed, but when only conventional
transactions are considered, the latter definition
allows for earlier deadlock detection. We shall
adopt this definition of a dcadlock. More
precisely, a deadlock occurs currently or will
occur in the future if there exists a set of
transactions {7y, T}, ..., T,.1} such that for any
two transactions 7; and 7; in the set, T; 1s

waiting for the completion fo 7}, where 0= i(n,

j=(i+1) mod n, and nz1. We call the set of
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transactions a deadlock set.

We classify deadlocks into two types:
explicit deadlocks and implicit deadlocks. An
explicit deadlock is a current deadlock due to
the fact that for every transaction T, in a
deadlock set, there cxists a transaction 7} in the
deadlock set such that 7; holds a resource and
T; transitively waits for 7} at this resource. An
implicit deadlock is a deadlock that will occur
in the future due to the fact that there exists at
least one transaction 7; in a deadlock set such
that for every resource that T; is waiting to be
granted, the holders of the resource that are
transitively awaited by 7; are not included in
the deadlock set. In our scheme we detect not
only explicit deadlock but also implicit
deadlocks in the system. The reason might
become clear through the following example.
Example 4.1 Assume the following situation
at two different sites S, and S,

AtS,,
R1[X]: Holder (T}, X, NL))
[X]: Queue (T2, X)(T3, X))
AtS.,
R2[X|: Holder (T3, X, NL))
[X]: Queue (T, X)(T, X))

According to our definition of deadlock and
our scheduling policy, there is an explicit
deadlock between T and T because T; and T;
wait for each other and they are holders of R,
and R, respectively, In addition to the explicit
deadlock, there are two implicit deadlocks: one

between T, and T; (because T, waits for the

completion of Ty at R,, T; waits for the

completion of T; at R,, and 77 is not a holder

of R;) and the other between Ty and T,

(becausee T waits for the completion of T, at

R;, T, waits for the completion of T at R,, and

T, is not a holder of R;). Assume that 7 is

aborted by some reason. Then according to our

scheduling policy, T, becomes a holder of R,

and we obtain an explicit deadlock between T,

and T3.

Suppose that all the lock-wait information in
S, and 8, are gathered at site S,. For each
request (7}, X) in a queue of a resource, lock-
wait edges can be constructed according to the
following three different schemes as far as only
X locks are concerned:

Scheme-1: Construct an edge from 7} to the
transaction in the holder list.

Scheme-2: If (T, X) is the first request in the
queue, construct an edge from 7} to
the transaction in the holder list.
Otherwise, construct an cdge from
T; to the transaction whose request
immediately precedes (T, X) in the
queve.

Scheme-3: Construct edges from 7; to the trans-
action in the holder list and to
every transaction whose request
precedes (T, X) in the queue.

Depending on the edge construction scheme,
we can have three different graphs as shown in
Figure 4.1, where label on each edge is put to
show at which site the edge is constructed (R
for §, and S for S,).
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Figure 4.1 Three different TWFGs

Scheme-1, which is taken by [13], [16], [38],
represents only one cycle (an explicit dead-
lock). When we abort either T or 73 as a
victim, one deadlock still remains. For the
detection of the remaining deadlock we have to
wait until the graph is modified to reflect the
system state correctly. In Scheme-2, which is
used in [2], [3], when we select T, as a victim,
a deadlock still remains between T and 7. For
the resolution of the remaining deadlock we
have to wait as in Scheme-1. Scheme-3
represents the exact status of the system by
showing all deadlocks: one explicit deadlock
and two implicit decadlocks. We will now show
that Schemnc-3 can be formally defined for a
systemn that allows multiple modes of locks and

supports lock conversion. |

Definition 4.1 A transaction 7; lock-waits for
another transaction 7; at site S,, denoted as LW,
(T}, T)), if a request of T, for a resource at site
S, cannot be granted under the presence of a
request of 7; for the resource.

When LW (T,
from a vertex representing T; to a vertex of T;
can be added into TWFG,. Lock-wait edges for
TWIEG, are constructed by the following lock-

T;) holds, a lock-wait edge

wait edge construction rule:

(1) Let two requests in the holder list of a
resource at site S, be (T}, gm;, bm;) and (T},
gmj, bmy) such that (T;, gm;, bm;) precedes
(T}, gmj, bm)). If Not Comp([gm;, bm;] or
Not Comp[bmi, bmj}, then LW/(T;, T)
holds. If Not Comp([gm;, bm;], then LW(T,
T)) holds.

(2) For each request (T}, gm;, bm;) in the holder
list of a resource at site S, and for each
request (7}, bm;) in the queue of the
resource, if bm; is not compatible with
either gm; or bm;, then LW/(T}, T;) holds.

(3) Let two requests in the queue of a resource
at site S, be (T}, bm;) and (T}, bm;) such that
(T, bmy) precedes (T}, bm;). If bm; is not
compatible with bmj, then LW(T}, T,)
holds.

Lock-wait edges from requests in the queue
to other requests in the queue or to the holders
would suffice if no lock conversion is allowed.
Rule (1) is added to account for lock-wait
edges due to lock conversion. According to our
upgrader positioning rule and scheduling
policy the holders currently granted are at the
end of holder list and have a blocking mode
equal to NL, while the blocked holders are
arranged at the beginning of list such that if T;
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precedes 7; this implies that 7; cannot be
granted before T,. Hence, rule (1) has two parts
to account for the lock-wait edges going
between blocked holders and unblocked ones.

Example 4.2 Assume the following situation

at site §,.

R1[SIX]: Holder (T, IX, SIX)X(T>, IS, S)
(TBs IX: NL)(T47 IS:NL))

[SIX]: Queue (7, IX)(T5, S(T7, IX))

According to rule 1 of lock-wait edge
construction rule, LW/(T,, Ts), LW/(T>,, T}), and
LWLT,, T5) hold. From rule 2, LW(Ts, T)),
LWATs, Ty), LW(Tg, Ty), LWATe, T3), LW(T,
T)), and LW(T,, T,) hold. From rule 3, LW,
(Te, T5) and LW,(T5, T;) hold. The resulting
graph is shown in Figure 4.2. [ ]

(T

Figure 4.2 Lock-wait edges for Examplc 4.2

When some transactions are aborted during
deadlock resolution all the locks they held
should be released and some transactions that
are waiting for these locks can be granted. In
the algorithms bascd on the lock-wait edge
construction rules corresponding to Schemes 1
and 2 discussed in Example 4.1 some new
lock-wait edges might have to be added and
deadlock detection has to be performed again;
this process is repeated until no more dead-
locks are found [12], [13]. Using our lock-wait
edge construction rule once lock-wait edges
are constructed at deadlock detection and
resolution time, no new lock-wait edges need
to be included in the graph during the timc.
This amounts to only one invocation of the
deadlock detection and resolution process and

hence is more time efficient.

4.2 Transaction Status

When a transaction process lock-waits for
another transaction process, the process is
blocked until the request can be granted. In
order to enable parallelism in distributed
database systems, an agent of a transaction can
proceed with its computation after sending
some requests to agents of the transaction at
remote sites. The fact that an agent is waiting
for a reply from another agent at a remote site
and the latter is owing a reply to the former are
represented by message-wait relationships.
Unlike lock-wait relationships, message-wait
relationships are not exclusively blocking. The
concept of message-wait is introduced by the
following two definitions.
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Definition 4.2 An agent of T; in S, message-
waits for another agent of T in S,, denoted as
MW(S,, S,. T;), if the former has sent a request
or a response to.the latter and has not received
a response or a ncw request respectively from
the latter yet.

Definition 4.3 An agent of T; in §, owes a
message-wait to another agent of T; in S,
denoted as MW,(S,, S,, T)), if the former has
received a request or a response from the latter
and has not sent a response or a ncw request
respectively to the latter yet.

The message-wait in Definition 4.2 is
denoted as an outgoing message-wait from the
viewpoint of the waiting agent. On the other
hand, the message-wait in Definition 4.3 is
denoted as an incoming message-wait from the
viewpoint of the awaited agent. These
message-wait relationships are used for two
purposes: one for conveying the deadlock
detection messages from the site of the waiting
agent to the site of the awaited agent and the
other for checking whether a transaction is a
global transaction or not. Note that we do not
represent identity of agents in a message-wait
rclationship. A slave agent message-waits for
its master agent only when the former finished
its assignment from the latter. However, a
master agent message-waits for its slave agents
after it gave new assignments until they send
the results back to the master agent.

To enable early detection of some deadlocks
in an environment where parallel execution of
transactions arg permitted, we represent
master-slave relationships among agents of a

transaction. When an agent of T; in site S, is a

slave agent of another agent of T; in site S, that
relationship is denoted as MT (S, T;). Note that
as in the case of message-wait relationship, we
do not care about identity of the agents in a
master-slave relationship. In other words, when
some agents of a transaction T; in site S, are
initiated by some agents of T; in sites S and S¢
, that relationships are represented by MT,(Sp ,
Ts5) and MT4(S¢, Ts). Note also that this
information is represented only at the site
where the slave agent resides since it is used
for conveying the deadlock detection messages
from the site where the slave agent resides to
the site where the master agent resides.

We will use message-wait relationships
(master-slave relationships) and mcssage-wait
edges (master-slave edges, respectively)
interchangeably, since they are used for
sending deadlock detection messages. Figure
4.3 shows lock-wait, message-wait, and
master-slave edges among transactions in three
sites S,, Sg, and Sc. Solid arrows in a site
represent lock-wait edges. Message-wait cdges
are shown near the corresponding transactions
and dotted arrows connecting transactions in
two different sites are added to make them
more readable. For instance, the dotted arrow
from T, in S4 to T, S¢ signifies MW4(S4, Sc»
T4) and MWL(S,, Sc, Ty). The sites of master
agents are indicated near the corresponding
transactions and solid arrows connecting
transactions in two different sitcs are added to
make them more readable. For example, the
solid arrow from T in Sy to T in S, signifies
MT(Sp, Ty).

When a local TWFG is constructed during

our periodic deadlock detection time, our dead-
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Figure 4.3 TWFGs in three sites

lock detector augments the graph also with
information regarding the transactions  status
with regard to the execution of the com-
mitment protocol. We assume that the two-
phase commit (2PC) protocol [5], [6], [17],
[25] is employed. After a global transaction
completes its execution, we enter the voting
phase of the protocol that starts by having an
agent, called the coordinator, polls the other
agents, called participants, by sending them a
VOTE-REQ message. A participant responds
by sending a YES or NO message depending
upon whether it is ready to commit; if it
responds NO then it aborts the transaction. In
the decision phase of the protocol, the
coordinator gathers all the votes from the
participants. If they all YES vote he sends a
COMMIT message to all participants;
otherwise thc coordinator sends an ABORT

message to all participants that voted YES.

—1

Definition 4.4 A global transaction in a site
can be in one of threc different states defined
below in connection with 2PC protocol.

(1) When any agent of a transaction in a site
has not received or not sent any message
rclated to 2PC (either VOTE-REQ, ABORT,
or COMMIT message), the transaction in
the site is in active state.

(2) When some agent of a transaction in a site
has decided to abort the transaction
(reccived or sent either ABORT message
or NO vote), the transaction in the site is in
abort state.

(3) When some agent of a transaction in a site
has received or sent some messages
related to 2PC (either VOTE-REQ or
COMMIT message) but no agent of the
transaction in the site has decided to abort
the transaction, the transaction in the sitc is

in pending state.
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When a transaction is in pending state, the
transaction cannot be involved in any deadlock
becausc the transaction has completed its
execution such that all deadlock detection
messages related to the transaction can be
neglected. Once a transaction is in abort state
however, the transaction has to be aborted at
all sites for the atomicity of global transactions
and all deadlock detection messages related to
the transaction have to be canceled. A local
transaction can be in cither active or abort
state.

We discuss now how these additional rela-
tionships can be reflected in the local TWFG at
site S,. For cach lock-wait tuple LW(T, T)) a
record of the form (7}, link) is added to the list
TWFG,|T,.LWS. For each master-slave tuple
MT (S, T) a record of the form (S,,, link) is
added to the list TWFG [T;].MTS. Similarly,
for each message-wait tuple MW,(5,,, S, 7)) a
record of the form (§,,, S,, link) is added to the
list TWFG,[T;]. MWS. Thus, in our context a
transaction T; that executes at site S, is declared
as a global transaction if TWFG,[T;] MWS is
not null. Otherwise, it is declared as a local

transaction.

5. Message Transmission

In order to facilitate the detection of global
deadlocks, inter-site messages called probes
are sent as in [10], [20], [33]-[35], [37]. A
probe, denoted as PB(initiator, terminus,
sender), is a message from the sender site to
the recciving site to inform it that the

transaction called initiator has been transitively

waiting for the transaction terminus at the
sender site. For each probe sent, a site keeps a

receipt of the probe in order to avoid retrans-
mission of the probe. The receipt of the probe
is denoted as PB(initiator, terminus, receiver).
Correspondingly, each site maintains two
pools: onc pool of probes received (RPP) and
one pool of receipts of probes sent (SPP).
Before we present the generation of probes and
the maintenance of thosc two pools of probes
in detail, some preliminary explanations are
given first.

Until now we didn’ t say anything about how
to assign transaction identifiers. In order to
guarantee uniqueness of a transaction identifier
we assume that each identifier consists of two
fields: one denoting the site at which the
transaction is originated and the other
containing the value of the local clock at that
site when the transaction was generated, Based
on this assumption, a unique priority can be
assigned to each transaction as follows. For
two transactions 7; and 7}, T; has higher
priority than Tj, denoted as T; ) T, if either
local clock of T; is greater than that of 7; or
local clock of 7; equals to the local clock of T;
but the site identifier of 7; is greater than the
site identifier of 7;. Throughout the rest of this
paper, we assume that 7; ) 7;if i ) j: for
instance, T5) Ts.

During deadlock detection time, we declare
that there is a deadlock in the system when
cither a cycle in a local TWFG is found or
there exists a probe PB(initiator, terminus,
sender) in RPP and also there is a path from
the terminus to the initiator in the local TWFG.

Once a deadlock is found, a transaction with
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the highest priority in the cycle or on the path
is selected as a victim to be aborted and the

statc of the victim becomes abort.

Definition 5.1 A transaction 7; is antagonistic
with another transaction 7; if 7; is a global
transaction and either 7; »T; or T} is a local

transaction.

Definition 5.2 A transaction T; waits for
another transaction T transitively and anta-
gonisitically at site S, denoted as TA(T}, 7)), if
all of the following hold:
(1) T; is antagonistic with T}.
@) It T, ETWFG,, then TWFG [T;].State is
active.
(3) [;,&=TWFG and TWF G [T} State is active.
(4) At lcast one of the following holds.
4-a) LWS(T;, T).
4-b) for some site S,, PB(T;, T}, S,)&RPP,.
4-¢) for some transaction Ty, TA(T;, T)
and LW(T,, T)).

When the condition 4-a of Definition 5.2 is
satified while satisfying conditions (1) - (3),
we call the lock-wait an antagonistic lock-
wait. Conditions 4-a and 4-b above are called
TA triggering conditions and condition 4-c is
called TA propagation condition. TAs are
constructed during our periodic deadlock
detection time and at that time for each tuple
TA(T; T;) a record of the form (T}, link) is
added to the list TWFG,[T;]. TAS.

The generation of probes and the corres-
ponding actions taken are governed by the

following PB_Transmission Rule.

PB-1. During deadlock detection time at site
S,, probe PB(T; T}, S;) is sent from site
S, to another site S, and a receipt PB(T},
T;, S,) is stored at SPP, if all of the
following hold:
(D TALT: T)
(2) PB(T,, T, )& RPP,USPP,.
(3) either MW,(S,, S, T)) or MI(S,, T)).
PB-2. Upon recciving probe PB(T;, T}, S,) at
site S,, it is stored at RPP,.

Since we store all probes received in RPP
and the receipts of probes sent in SPP we can
avoid retransmission of the same probe by
checking whether the reccipt of the probe is
already in SPP. The reason why we check RPP
in condition (2) of PB-1 is to guarantee that at
least at the time of the probe generation TA (T},
T;) does not hold at site S,. According to
condition (3) of PB-1, we send probes from the
site of the waiting agent to the sites where the
awaited agents of the waiting agent reside.
While this condition is included also in other
probe generation scheme [37], we also send a
probe to the site where the master agent of the
agent of the terminus transaction resides. This
enables us to detect some deadlocks earlier in
an environment where we have parallel
execution of transactions.

Example 5.1 In Figure 4.3, assume that all the
probe pools in three sites are empty. When
deadlocks are checked at S, there is not any
deadlock but there exist two anatgonistic lock-
waits: LW,(Ty, T,) and LW,(T;, T>). Based on
this, the following TAs can be constructed: T4,
(T4, Tg), TAN(Ts, Ts), TA4(T4, T), TA4(Ty, T2)s
and TA (T4, T»). Note that TA4(T}, T7) does not
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hold since T, and T, arc global transactions
and T,(T;. According to PB_Transmission
Rule, probes PB(T, T5, S4) and PB(T5, Ty, S4)
are sent to Sp, and probe receipts PB(Ty, T,
Sg) and PB(T5, Ty, Sp) are stored at SPP,.

Assume that deadlocks are checked at Sg
before those two probes sent from S, are stored
at RPPp. Then no deadlocks are found and
owing to the antagonistic lock-wait edge LWy
(T4, T3) and an outgoing message-wait edge
MWg(Sg, S¢, Ts), probe PB(T, T3, Sp) is sent to
S¢ and probe receipt PB(T4, T3, ;) is stored
SPPy,.

Sc

When deadlocks are checked at Sy again
after those two probes sent from §4 are stored
at RPPy, since TAg(Ty, Ts) and MWg(Sg, Sc,
T5) hold, probe BB(T, T, Sp) is sent to S¢ and
probe receipt PB(T,, T3, S¢) is stored at SPPp.
Even though TAKT;, T5) and MWg(Sg, Sc, T3)
hold, we do not send PB(T, T3, Sy) to S¢
because probe receipt PB(15, T3, S¢) is already
in SPPg. Assuming that those two probes sent
from Sy are stored at RPP, probes and probe

receipts stored up to now are shown in Figure
5.1.

PB(T,.T;.5
gep, | PBISTLSD -
PB(T5T,55)

SPP.. SPP,

|

PB(74,7,.55)

Ss
PB(T,. T,
RPP, (T0,T2S))
PB(7,7,,54)
SPP PB(T4’T3aS(.')
PBIES:) | " PB(TLTLSe)
. J

Figure 5.1 Probe pools with an optimal solution

When deadlocks are checked at S after
receiving both of the two probes, since there is
a probe PB(T,, T, Sg) in RPP¢ and also there
is a path from T to T, in TWFG,., a deadlock
(Ty »T3—TyT,) is tound and Ty that has the
highest priority on the path is aborted. Note
that the cycle is not an actual cycle. In fact it is

a condensed one for two cycles in the system:
one with T, »Tg—Ts ~Ty—T; »Ty—T, and
another with T,—T, »T\—Ty—T;~Ty—T,.
Wait-for rclationships on site S, arc condensed
by the probe PB(T,, T,, S4) in RPPy and those

of site S, and site Sy are condensed by the
probe PB(T,, T3, Sp) in RPP. By aborting T,
other two deadlock cycles in the system (one
with T,—T;—T,—T, +T3—Ty T, and
another with 7,—T,—T, »Ty—Ty 'T,) are
also resolved. In this case, 4 messages(4
probes) are sent for detection and resolutoin of
deadlocks in the system. As far as current
situation is concerned an optimal solution is
obtained, i.e. all deadlocks in the system are
resolved by aborting only one transaction Ty

that is the transaction with the highest priority
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in every deadlock cycle in the system. | |
Definition 5.3 Probe PB(7,, T, S,) in RPP, is a

[ L L

stale probe if one of the following holds:
(1) T,=TWFG, and TWFG,[T].State
active.
(2) T; £ TWFG,.
(3) T;,=TWFG, and TWFG,[T}].State +

active.

Definition 5.4 Probc receipt PB(T}, T, S,) in
SPP, is a stale probe receipt if one of the
following holds:
(1) T; € TWFG,,
(2) T;ETWFG, and TWFG,[T}] State
active.
(3) T, TWFG, TWFG [T State=active,
and 7A (T}, T}) does not hold.

The terminus transaction of a probe or a probe
receipt does not cxist in the corresponding site
when the transaction has been either committed
or aborted already. We call those probes and
probe receipts that are not stale the active probes
and probe receipts respectively. Checking
whether a probe or a probe receipt is a stale one
is done at three different times: (1) during the
deadlock detection time, (2) upon receiving a
compensating message, and (3) when a global
transaction is aborted. Once a probe (receipt) is
found to be a stale one, it is removed from the
corresponding pool. When condition (3) of
Definition 5.4 holds, in addition to the deletion
of the probe receipt from SPP, a compensating
message has to be sent against the corresponding

probe sent. Therc is no need to send any

compensating message in other conditions of

Definition 5.4 since any agent of the terminus

transaction at a different site is guaranteed to be

in the same destiny, i.e. either committed or
aborted due to the atomicity of distributed
transactions.

To compensate for probes sent, inter-site
messages called antiprobes [33], [34] are
introduced. An antiprobe, denoted as AP
(initiator, terminus, sender, status), is a message
from the sender site to inform the receiving site
of the message that the transaction terminus in
the sender site is no longer waited by the
transaction initiator by some reason marked at
status that is cither abort or active. The
generation of antiprobes and the corresponding
actions taken are governed by the following
AP Transmission Rule.

AP-1. During deadlock detection time at site
S, for each probe receipt PB(T}, T}, S,)
in SPP,, if T,&TWFG, TWFG[T}].
State is active, and TA(T; T)) does not
hold, then the reccipt is removed from
SPP, and antiprobe AP(T;, T, S, status)
is sent to site S,. If T,&TWFG, and
TWFG | T}).State is abort, then the status
of the antiprobe becomes abort. Otherwise,
it becomes active.

AP-2. Upon recciving antiprobe AP(T;, T, S,
active) at site S,, if probe PB(7;, T}, S;)
exists in RPP,, then the probe is removed
from the pool.

AP-3. Upon receiving antiprobe AP(T}, T}, S,
abort) at site S, or when a global trans-
action 7; at site .S, is aborted, we do
both of the following:

(1) for each probe PB(T}, T, S,) in
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T,

RPP,, if cither Ty or T, is equal to
T, then the probe is deleted from
RPP,.

(2) for each probe receipt PB(Ty, T,
S,) in SPP,, it either 7 or T, is
equal to T;, then the receipt is
deleted from SPP, and only when
Ty is cqual to T;, antiprobc AP(T,

T,y S,, abort) is sent to site S,.

Note that even though deadlock detection is
done periodically, actions taken when a global
transaction is aborted or upon receiving probes
and antiprobes are done continuousty.
Example 5.2 Consider Figure 4.3 again

assuming that all the probe pools in three sites

are empty and deadlocks are checked at S, and
S as in Example 5.1 such that probes PB(T,
T, S4) and PB(T,, T,, S4) are sent from S, to
Sp; and probes PB(T}, Ts, Sg) and PB(T4, T,
Sp) are sent from Sy to Sc. Different from
Example 5.1, assume that deadlocks are
checked at S right after probe PB(T7, T3, Sg) is
stored at RPP- but before probe PB(7}, T, Sg)
is received. then TA(T4, T,) holds since PB(T5,
T;, Sp) is in RPP and there is a path from T to
T, in TWFG. According to that and MT(S,,
Ty), probe PB(T7, Ty, S¢) is sent to S, and probe
receipt(T5, Ty, S,) is stored at SPP.. Assuming
that all probes sent up to now are received at
their destination sites, probes and probe

receipts stored arc shown in Figure 5.2.

S(.‘ SA SB

PB(T..T+.55 e p— ‘m.
RP[’{-- ( 443 li) RPPA ALYt () RPPB ( T A)
il PB(7,75,54)
PB(77.74,54) PB(7,.T5,S,) PB(T, T,.5,)
SPPc | SPP, S sep, wT3Sc
& PRI T50) PB(T, T:,50)

Figure 5.2 Probe pools before any transaction abortion

When deadlocks are checked again at S
after receiving probe PB(Ty, T, Sg), a cycle
(Ts—Ty—Ty—T,) is found and Ty, that has the
highest priority in the cycle is aborted. In this
situation probe receipt PB(T5, T, S,) in SPP.
becomes a stale one because TA (T, T,) docs
not hold any more. According to AP_Trans-
mission Rule the probe receipt is deleted and
antiprobe AP(T, T,, S¢, active) is sent to S,

Depending on the arrival time of the antiprobe

and the deadlock detection time at S,, the
following two cases arc possible:

(Case 1) If the antiprobe sent from S arrives
before another periodic deadlock detection
time comes at Sy, probe PB(T4, T}, S¢) in RPP,
is removed and no more message transmission
is required. In this case, 6 messages (5 probes
and 1 antiprobe) are sent for the detection and
resolutioin of deadlocks. The remaining probes
and probe receipts in each probe pool are

shown in Figure 5.3.
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r PB(T,,T5.55)

RPP | RPP,
PB(T7.75,5p)

Sy Sp
PB(T,.T..8 T
wop, | PEALDS)
PB(T,,T,,5,)
PB(T,,T,.5y) PP PB(T,,T3,50)
) ‘
PB(T,,T,,55) PB(75,T5,50)

Figure 5.3 Probe pools after abortion of 7,

(Case 2) Assume that deadlock detection at
S4 is done right after probe PB(T,, T,, S¢) is
received but before the antiprobe from S
arrives. By considering RPP, and TWFG,, a
deadlock (T5—T, ~T4—T>) is found and T; is
aborted. According to this the state of
transaction 17 in TWFG, becomes abort and
TA(T5, T;) does not hold anymore. Because T
is selected as a victim, PB(Z7y, 74, S¢) in RPP,
and PB(T5, 75, Sy) in SPP, become stale and
are removed from their corresponding pools.
In addition to that antiprobe AP(T,, T, S,
abort) is sent to Sp. Actually this is a false
deadlock because there is not any more
deadlock in th system once 7 is aborted at S

LSVC’

PB(T.TS,) |
RPP, (ToT53) RPP,
SPP,. SPP,

For the rest of this example, we will continuce
deadlock detection and resolution based on the

Figure 5.4 Probe pools after abortion of 7, and 75,

Later when the antiprobe from S, arrives, it is
simply neglected because there is not any
matching probe in RPP,. At Sz, upon
receiving the antiprobe sent from S, because
the state of the antiprobe is abort, we do all of
the following three actions: PB(T5, T,, S,) in
RPPy is removed, PB(Ty, T, S¢) in SPPy is
removed, and antiprobe AP(T;, T3, S, abort)
is sent to S¢. At S, upon receiving the
antiprobe sent from Sg, PB(T, T3, Sg) in RPP,.
is removed and no more message transmission
follows. In this case, 8 messages (5 probes and
3 anti-probes) are sent for detection and
resolutioin of deadlocks. The remaining probes
in each probe pool arc shown in Figure 5.4.

SA SH
o | OPB(ILI.S) |
RPP, | (TeT253)
o L
PB(T4,7>,S5) PP, / PB(7,,75.5¢)

result of Case 1 above, i.e. Figure 5.3. Suppose
that transaction T at S requests a lock for a

— 152 —



A Distributed Deadlock Detection and Resolution Algorithm Based on a Hybrid Graph Construction 21
and Probe Generation Scheme

resource that T, holds with a conflicting lock
mode. When a next deadlock detection time
comes up, owing to PB(Zy, T, Sg) in RPP. and
LWAT,, Ty), a cycle (T Ty -»Ty) is found, T,
is aborted, and PB(T,, T3, Sp) in RPP. is
removed. Once T, is aborted at S, it is also
aborted at S, for the atomicity of a global
transaction. When 74 is aborted at S, according
to AP-3 of AP_Transmission Rule, probe
receipt PB(Ty, T,, Sp) in SPP, is removed and

antiprobe AP(T,, T», Sy, abort) is sent to Sg.
Upon receiving the antiprobe at Sy, because the
state of the antiprobe is avort, PB(Ty, T, S4) in
RPPy and PB(Ty, T3, S¢) in SPPg are removed
and antiprobe AP(T,, Ts, Sp, abort) is sent to
S¢. Upon receiving the antiprobe at S, because
there is not any probe in RPP whose initiator
is the same as that of the antiprobe, the
antiprobe is simply neglected. The result of this
situation is given in Figure 5.5.

Se S Sy
_ - - ,
PBR(T,, TS, PB(T,,T..S
. (T, T555) wor, . L (T3 725
PR(T,,T5,S) PB(T;,T5,5c)
SPP, | J SPP, [ sPP, (T ToSe

For the completeness of our example,
assume that transaction 75 has completed its
job and committed. Based on the situation in
Figure 5.5, when deadlock detection time
comes up at Sg and S, PB(75, T3, S¢) in SPPy
and PB(T5, T, Sp) in RPP- become stale and
are removed because T does not have its entry
in TWFGg and TWFG. Note that we do not
send any antiprobes for the removal of those
probes and probe reccipts. The same concept
can be applied to other transactions such that

eventually all the pools of probes and probe

]

receipts in the system can be cleared.

As can be seen from the above example, our

scheme is not immune from detecting false

Figure 5.5 Probe pools after abortion of Ty and 7,

deadlocks. Trying not to detect any false
deadlock in the distributed deadlock detection
environment might cause some serious
performance degradation as in [37]. If the
probability of false deadlock detcction might
be so low, it can be a good idea to assume that
whencver a deadlock is declared it is a real
one.

Actually our probe gencration scheme is
very similar to the one used in [37] (also used
for the hierarchical deadlock detection in [27])
where the detection message is sent when a
global transaction transitively waits for another
global transaction. However, our scheme
differs from them by considering relationships
among agents of global transactions, status of

transactions in each site, and priorities of
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transactions for the formulation of probes and
antiprobes.

6. Deadlock Detection and Resolution

Deadlock detection and resolution in our
schemc is done periodically and each sitc may
or may not have the same period. In the
remainder of this section we assume that our
deadlock detection and resolution scheme is
explained for site S, without loss of generality.
In other words all subscripts representing the
site identifier will be omitted when it does not
cause any confusion such that TWFG,, RPP,,
SPP,, LW,, MW,, TA,, and MT, are represcnted
by TWFG, RPP, SPP, LW, MW, TA, and MT
respectively. The overall process of our
periodic deadlock detection and resolution
scheme can be summarized as the following

five steps. Each step will be refined shortly.

Algorithm periodic_detection_resolution
Step 1: Construct TWFG.
Step 2: Remove stale probes and reflect
some active probes into TWFG.
Step 3: Detect deadlocks and select victims.

Step 1: /* Construct TWFG */
abortion_set :={ };
for v :=1 to N do begin

Step 4: Remove stale probes and construct
TAs.

Step 5: Remove stale probe receipts, send
probes and antiprobes, and abort

victims

In Step 1 TWFG is constructed based on the
schemes given in Section 4. Lock-wait edges
are added to TWFG by applying lock-wait
edge construction rule for each resource in the
lock table. State of transactions, master-slave
edges, and message-wait edges are constructed
into TWFG by interogating all the transactions
running at the current site.

Our algorithm employs two variables
ancestor and current for each entry in TWFG.
The ancestor that is initialized to 0 is used to
mark traversed vertices in the current subgraph
as well as is used for backtracking of the
depth-first-search algorithm [14]. The current
of a vertex that is initialized to LWS of the
vertex indicates the next lock-wait edge to be
searched. Note that once State of a transaction
is marked as either pending or abort, MTS and
MWS for it arc set to null because probe
sending is not related to that transaction. The

whole process of Step 1 is refined below.

TWFG[v).TID := null; TWFG[v].LWS := null; TWFG[v].MWS := null,
TWFG[v].TAS := null; TWFG[v].MTS := null; TWFG[v].State := active;

TWEG|v].ancestor := 0;

end;

for each transaction T; in the current site do begin

TWEGHi].TID := T;

construct message-wait edges (MWS), master-slave edges (MTS), and
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state of the transaction (State).

end;

for each resource entry in the lock table do
construct lock-wait edges.

for v :=1 to N do begin
TWFG[v].current := TWFG[v].LWS;

if TWFG|v].State + active then begin

TWFG[v].MTS := null; TWFG[v].MWS := null

end

end;

In Step 2 probes in RPP arc ¢cxamined. For
each probe PB(T;, T}, S,) in RPP, if the probe is
a stale one, it is removed. If the probe is active
and T; and 7; habe entrics in TWFG, we add

LW(T;, T;) to TWFG. This makes detection of

j
deadlocks (actually cycles) simple. The whole

process of Step 2 is refined below.

Step 2: /* Remove stalc probes and reflect some active probes into TWFG */

for cach probe PB(T}, T, S,) in RPP do begin

if (T; & TWFG and TWFG[T,).State & active) or

(T, & TWFG)or

(T; & TWFG and TWFG[T}].State + active)

then remove the probe from RPP

else

if T, € TWFG and LW(T,, T)) & TWFG[T,].LWS

then add LW(T}, T}) to TWFG[T;].LWS

end_for;

In Step 3 we do a directed walk for each
vertex in TWFG. A directed walk in TWFG
starting from vertex v (v becomes a root vertex
for this directed walk) always either terminates
at v or takes us back to a vertex marked a non-
zero ancestor. The first condition corresponds
to the case in which there is no more cycle
reachable from v in the following senses: (1)
There is no cycle in that subgraph at the
beginning, (2) Therc was a cycle that had been

already resolved by previous another directed
walk, or (3) The current walk has already
resolved a cycle, if it exists, so at this point
there is no more cycle reachable from the root
vertex. The second condition is satisfied when
there is a cycle in that subgraph. During the
directed walk, we backtrack to the ancestor
and then proceed to the next incident vertex
when we cannot move forward. That condition

is cxpressed in our internal structure in such a
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way the current value of a vertex is null. That
internal condition takes place when all

reachable cycles, if any, have been resolved by

Step 3: /* Cycle detection and victim selection */

for v :=1to N do begin
TWFG[v].ancestor := -1;
while v = -1 do begin
if TWFG[v].current = null then begin

selecting some vertices as victims. The whole
process of Step 3 is refined below.

w := TWFG[v].ancestor; TWFG[v].ancestor:=0 ; v := w;

end else begin

Let the lock-wait edge pointed to by TWFG[v].current be (w, link).

if TWFG{w].current = null
then TWFG[v].current := link
else

if TWFG[w].ancestor # 0 then begin

victim_selection(v, w); v := w;

end else begin

TWFG[w].ancestor :=v ; v := W;

end
end
end_while

end_for;

The process of victim_selection in Step 3

can be explained as follows. Let an edge v—w
be the one that detects a cycle in our directed
walk. Starting from v, we backtrack until w is
visited again while selecting a transaction with
the highest priority in the cycle. During
backtracking, the ancestor of cach backtracked
vertex is cleared except for w. On finishing
backtracking, current, LWS, MWS and TAS of

the victim are set to null and State of it is set to

Procedure victim_selection (s, t)

abort.

During our directed walk, once a cycle is

detected with an edge (v—w) and resolved
appropriatcly with backtracking, the walk
resumes at the vertex w. It should be noted that
we may traverse more than once a subset of
transactions in the cycle that has been resolved
just before to check undetected cycles
reachable from the root. The whole process of

victim_selection is refined below.

/* Starting from s we do backtracking until t is visited while selecting a victim. */

begin
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victim =t ; v :=s;
while v # tdo begin
if v > victim

then victim :=v;

w := TWFG(v].ancestor; TWFG[v].ancestor := 0; v :=w

end_while;

TWFG[victim].State := abort; TWFG[victim].LWS := null;
TWFG[victim].current := null; TWFG[victim].MWS := null;
TWFG{victim|.TAS := null; abortion_set:= abortion_set + {victim};

end;

/* Consider antagonistic lock-wait edges */
forv:=1toNdo

if (TWFG[v].MWS =+ null)

then for each LW(v, x) in TWFG{v].LWS do

TA_Propagation(v, x);

The process of TA_Propagation in Step 4
can be explained as follows. Let v and w be
two transactions such that v transitively waits
for w. We first check whether v is antagonistic

with w. Once it is true and TA(v, W) is not in

Procedure TA_Propagation (v, w)
begin
if (TWFG|w].State = active) and

TWEFG|w].TAS, TA(v, w) is added to TWFG
[w].TAS and for each lock-wait LW(w, x} in
TWFG[w].LWS, we call TA_Propagation (v,
x) recursively. The whole process of
TA_Propagation it refined below.

((TWFG[w].MWS #null and v > w) or (TWFG[w]. MWS = null)) and

(TA(v, w) & TWFG|w].TAS)
then begin
add TA(v, w) to TWFG[w].TAS;

for each LW(w, x) in TWFG[w].LWS do

TA_Propagation(v, x)
end

end;

In Step 5 we remove stale probe receipts
from SPP, send antiprobes and probes, and

abort victims in the abortion_set. Note that

when we consider message-wait edges for
sending probes, only outgoing message-waits
are considered. Incoming message-waits are
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not used for this purpose. The whole process of Step 5 is refined below.

Step 5: /* Remove stale probe receipts, send probes and antiprobes, and abort victims */
/* Remove stale probe receipts and send antiprobes */
for each probe receipt PB(T}, T}, S,) in SPP do begin
if (7; & TWEFG) or (T; € TWFG and TWFGI[T].State + active)
then remove the probe receipt
else if (TA(Z}, Tj) & TWFG[T;].TAS) then begin
remove the probe receipt from SPP
if (T; & TWFG) and (TWFG[T].State = abort)
then send an antiprobe AP(T}, T, S,, abort) t0 S,
else send an antiprobe AP((T;, T}, S,, active) to S,
end

end_for;

/* Send probes */
forv:=1toNdo
for each TA(7;, v) in TWFG[v].TAS do begin
for each MT(S,, v) in TWFG[v].MTS do
it PB(T}, v, S;) & RPPUSPP
then begin
send a probe PB(7, v, §,) to S,;
add a probe receipt PB(T}, v, S;) into SPP
end;
for each MW(S,,, S,, x) in TWFG[x].MWS do
if S, =S, and PB(T}, v, S;) ¢ RPPUSPP
then begin
send a probe PB(T,, v, S,) to S,
add a probe receipt PB(T}, v, S,) into SPP
end

end for;
/* Abort victims */

for each transaction v in abortion_set do
abort v;
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In our scheme the same deadlock can be
found at multiple sites due to the parallelism of
global transactions. However, when the
parallelism is not permitted as in [29], {33},
[34] our algorithm also detects a global

deadlock only at one site. For example in

Figure 6.7, there is a global deadlock(T—T,

—T; -Tg). In this case however, the same

transaction 7T is selected as a victim at Sp and

S¢ according to our deadlock resolution

algorithm.

Figure 6.7 Deadlock detection at two different sites

The fact that our algorithm detects all global
deadlocks in the system can be probed by the

following lemma and theorem.

Lemma 6.1 If TA (T}, T)) and LW, (T}, T;) hold
for two different sitcs 8, and S,,, then there will
be PB(T,, T}, S,) in RPP,, eventually for some
site S,

proof Without loss of generality, assume that
there are five agents V, M, X, N and W of
transaction 7; in §,, S,, S, §, and S,
respectively such that M is the master agent of
V, X is the master agent of M, N is a slave
agent of X, and W is a slave agent of N. In that
sense, agent X is the lowest common ancestor
of agents V and W. Because M ans X are

master agents of V and M respectively, MT,

(Sm» T;) and MT,(S,, T)) hold. In addition to
that since X and N are master agents of N and
W respectively and also agent W has not
finished its assignment (because W is in lock-
waint), MW,(S,, S, T)) and MW,(S,, S,,, T))
hold.

When deadlocks are checked at S,, because
TA(T;, T) and MT,(S,,, T}) hold, a probe PB(T,,
T;, 8,) is sent to S,,,. At S,,, when deadlocks are
checked after receiving the probe sent from S,,
owing to PB(Z; T}, S,) in RPP,, and MT,(S,,
T), a probe PB(T}, 7}, S,,) is sent to S,. Up to
now probes are sent through the ancestor path
of agent V in the process tree of 7;. Now, the
direction is reversed. i.c. probes are sent to
descendents of X in the process tree until a
probe in our concern is sent to S,, by the

following reasons. At S,, when deadlocks are
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checked after receiving the probe sent from S,
owing to PB(T, T}, S,,) in RPP, and MW (S,,
Sy T)), a probe PB(T;, T}, S,) is sent to S,
When deadlocks are checked at §, after
recciving the probe sent from S,, owing to PB
(T, T;, Sy) in RPP, and MW,(S,, S, T)), a
probe PB(T}, T}, S,,) is sent to S,, and when the
probe is received at S,,, it is stored in RPP,.
QED

Theorem 6.1 All global deadlocks in the
system will be detected and resolved.

proof Once there is a global deadlock in the
system, there exists a set of transactions (a
deadlock set) {7y, Ty, T3, ..., T,} such that each
transaction in the set transitively waits for the
completion of all other transactions in the set.
Without loss of generality, we assume that
each transaction in the set lock-waits for only
one transaction in the set at exactly one site
such that the lock-wait information makes
exactly one cycle and each transactiop in the
set is a member of the cycle.

Once there exists a global deadlock in the
system, there is a unique global transaction T},
in the deadlock set such that 7}, is antagonistic
with all other transactions in the set. According
to our assumption for the deadlock set, there is
another global transction T, such that there
exists a local path from T} to T, in TWFG, for
some site S,. Suppose that T, lock-waits for
some transaction in the set at site S, such that
there is a local path from T}, to another global
transaction T, that is in the deadlock set and
also is not in the lock-wait state at S, When
deadlocks are checked at S, TA(T}, T;) holds.

Suppose T, lock-waits for some transaction in

the set at site S, that is different from §,.
According to Lemma 6.1, RPP, can contain a
probe PB(T}, Ty, S,) eventually for some site
S, Once again suppose that there is a local path
from T, to another global transaction T, that
is in the deadlock set and also is not in the
lock-wait state at S,. When deadlocks are
checked at S,, TA (T}, T,2) holds. Without loss
of generality, assume that T, is 7). Because T,
lock-waits for some transaction in the set at site
S,, RPP, can contain a probe BP(T}, T}, S,)
eventually for some site S, according to
Lemma 6.1 again. When a period comes up for
deadlock detection at S,, a deadlock is declared
because of PB(T}, T}, S,) in RPP, and local
path T;to T}, in TWFG,. QED

7. Performance Characteristics

One of the performance measures for
distributed deadlock detcction and resolution
algorithms is the number of messages
transmitted for detection and resolution of
deadlocks. For the measurement of its number
of messages, assume that n transactions
constitute a global deadlock and n transactions
among them are global transactions. The
number of probes and antiprobes sent for the
detection and resolution of global deadlocks
depends on the number of global transactions,
distribution of giobal transactions, and the
number of message-wait and master-slave
edges. According to the placement of these
parameters, we can easily specify the best
situation and the worst situation for the
number of messages transmitted to detect and

resolve a globa) deadlock cycle in the system.
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Since a master-slave edge can convey exactly
the same number of messages that an outgoing
message-wait edge can do in these extreme
cases, we will not consider master-slave edges
in this analysis. Let ¢ be the number of edges
(lock-wait edges and message-wait edges) and
¢' be the number of outgoing message-wait
edges in the cycle.
1) The best situation

This case can be occurred when only one

global transaction can initiate probes, which

Sh Sp

cause at most ¢'-1 probes. For the resolution of
a global deadlock detected, no antiprobes are
sent if the selected victim is a local transaction.
Therefore, the number of inter-site messages to
detect and resolve a global deadlock becomes
at most e'-1.

For example in Figure 7.1, 5 transactions are
involved in a global deadlock with 4 global
transactions and 5 outgoing message-wait
edges.

Se Sh

DT )3 (T ) (T | (T3 e (T e (T3 ) | (T2

Figure 7.1 The best acase for the number of messages

Among those global transactions only T at
S can initiate a probe and thc probe pro-
pagates to Sy, Sg, and S At S, a global dead-
lock is declared and a local transaction T is
aborted. In this case, only 3 probes are trans-
mitted without any antiprobe transmission,

2) The worst situation

This case can be occurred whtn n'-1 global
transactions initiate probes. In this case, an
outgoing message-wait edge might convey at
most #'-1 probes and at most ¢'-1 outgoing
message-wait edges can be involved in a
global deadlock detection and resolution such
that the mumber of probes transmitted becomes
at most (n'-1)*(¢"-1). After the global deadlock
is detected and a victim is aborted, at most ¢'-1

antiprobes can be transmitted. Therefore, the

total number of messages to detect and resolve
a global deadlock in the worst case requires at
most #'*(¢'-1) inter-site messages.

For example in Figure 7.2, 5 transactions are
involved in a global deadlock cycle with 4
global transactions and 5 outgoing message-
wait edges as in the case of the best situation
but different edge directions and transaction
placement.

Outgoing message-wait edges connecting Sy
and Sp, Sp and S¢, Sc and Sg, Sz and S, and S,
and S convey 0, 1, 2, 3, and 3 probes
respectively. For instance, the outgoing
message-wait edge connecting agents of T,
between S¢ and Sy conveys PB(T;, T, S¢) and
PB(T;, T5, S¢). At Sg, when deadlocks are
checked after receiving probe PB(T,, Ty, S4), a
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global deadlock is declared and T is aborted.
When T, at Sy, is aborted, and antiprobe AP
(T4, T3, Sp, abort) is sent to Se. This message

pro-pagates down the corresponding probe

path until it cannot go further at site 5. As a

result, 13 messages (9 probes and 4 anti-
probes) are transmitted.

Sp S

r

(5 ) (Ts )= (Ty)
.

[eyecn

Figure 7.2 The worst case for the number of messages

8. The Youngest Victim Selection

When a deadlock is declared in our scheme,
the deadlock cycle detected may not illustrate
the actual situation because of the probe trans-
mission mechanism. It is a condensed one.
Therefore, when a victim is selected according
to the algorithm given in Section 6, the victim
may not be the transaction with the highest
priority among transactions that constitute the
deadlock. Under some circumstances this
could have a significant impact on the fairness
of the victim selection. However, as in the case
of the local deadlock resolution, the youngest
transaction (a transaction with the highest
priority) in global dcadlock can be selected as
a victim by a modification of the original
algorithm. Note that we are not saying the
optimal cost victim selection in the whole
system (it is found to be NP-hard [17]) but the
selection of a victim in a deadlock cycle.

For the purpose of selecting the youngest
transaction in a deadlock, we can treat a local

transaction 7; as if it is a global transaction
only when it is transitively waited by a global
transaction 7; and at the same time the priority
of T; is greater than that of 7;. Once it is found
to be true, 7; works as if it is a global transaction
as far as deadlock detection and resolution is
concerned. For this work we need to modify

the definition of antagonisty.

Definition 8.1 (modification of Definition 5.1)
A transaction T; is antagonistic with another

transaction T} if 7)T; and either T} is a global
transaction or 7; is transitively waited by a

global transaction.

Note that other definitions for the construc-
tion and trecatment of TAs, probes, and
antiprobes are exactly the same as the original
scheme. Actually, we need to present the
whole algorithm for the modified version of
deadlock detection, but we show how they
work through the following two examples.
Example 8.1 Consider Figure 7.2. When we
follow the original algorithm given in Section
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6, T, is aborted at site Sg. To get the minimal
cost victim however, the modified algorithm
works as follows. At S, because a global
transaction T, lock-waits for a local
transaction T that has higher priority than T,
Ts, works as if it is a global transaction as far
as deadlock detection and resolution is
concerned. According to this, probe PB(Ts, T,
Sp) is sent to S¢. Note that TA,(T,, T3) does
not hold anymore in this modified scheme. By
the same way as before, probe PB(7s, Ty, Sy)

is stored at RPP; and when deadlocks are
checked at Sg, PB(Ts, Ty, Sp) is sent to Sp.
When deadlocks are checked at S, after

receiving the probe sent from Sg, a cycle (T

-—=T4—T5) is found and T is selected as a
victim. Once T is aborted, probe PB(Ts, Ty,
Sg) in RPPy, is removed and all probes and
probe receipts caused by 7’5 and stored in other
sites are rmoved by sending antoprobes
through the probe path. Including those probes

whose initiators are T5 and 75, the number of

probes sent is 10 and the number of antiprobes
sent is 5. If we apply the modified scheme to
Figure 7.1, the number of messages sent

becomes 13 (8 probes and 5 antiprobes). []

Example 8.2 Consider Figure 4.3. The
modified algorithm to get the minimal cost
victim works as follows. At S, when
deadlocks are checked, three probes whose
initiators are T, T, and T arc sent to Sy
because local transactions T, T are transitively
waited by global transation T, and they have
higher priority than 7, and 7,. When deadlocks

are checked at Sg after receiving those probes

from S, three probes whose initiators are T,
T, and T are sent to S¢c. When deadlocks are
checked at S- only one probe whose initiator is
T, is sent to S4. The probe whose initiator is Ty

propagates to Sy, Sp, and finally to S where a

deadlock (Ty +T3—Ty) is found. When T is
avorted at S¢, an antiprobe that compensates
for its corresponding probe is sent to S, and it
is propagated to Sg and then to S¢. As a result,
the number of total messages is 12 (9 probes

and 3 antiprobes). ]

Even though the modification of the original
algorithm for the selection of the minimal cost
victim causes more message transmission
compared to the original scheme (3 to 13 for
Figure 7.1, 13 to 15 for Figure 7.2, and 4 (the
best case) to 12 for Figure 4.3), when dead-
locks are very rare and minimal cost victim
selection in required, this modification makes

SEnse.

9. Closing Remarks

A new distributed deadlock detection and
resolution algorithm is presented in this paper.
Global deadlocks are detected and resolved by
constructing transaction wait-for graphs
periodically and also by sending deadlock
detection messages. We define how to extract
lock-wait information among transactions in
the environment of parallel execution of
transactions at multiple sitcs. Multiple modes
of locks and lock conversion are also
cousidered.

To minimize the number of inter-site mess-
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ages at the expense of the possibility of not
selecting the youngest victims, condensed
transaction wait-for graphs are constructed by
sending probes and antiprobes. In sending
probes and antiprobes we consider priorities
among transactions, message-wait and master-
slave relationships among agents of global
transactions, and status of transactions with
respect to the commitment protocol.

To further reduce thc number of inter-site
message transmission, each site maintains two
pools of probes (a pool of probes received and
another pool of receipts of probes sent) such
that once probes are sent they are not sent
again. Probes received are used for detection of
deadlocks that cxist currently or may occur

later in time.
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