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{Abstract)

A method to predict the dispersion of passive contaminants in a turbulent boundary layer is

developed based on second-order closure approach. The dissipation of the mean scalar flux due

to pressure scrambling is assumed to be inversely proportional to the plume length scale when

the plume scale is small. The result appears to be in general agreement with the experiment.
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1. Introduction

Predicting the dispersion of passive conta-
minants in a turbulent boundary layer has a
great importance with wide applications and
has been worked out by several authors.

The houndary layer approximation of the
transport equation for the mean concentration

C is, neglecting the molecular diffusion,

aC ac ac _  dve dwe
Uﬁx +V&’y +W62— dy ~ 0z M
Here x, y, and z are the Cartesian coordinates
in the mean flow, vertical, and lateral direc-
tion respectively and U, V, and W are mean

velocities in the x-, y-, and z-direction res-

pectively, while vc and wec denote the mean
fluxes of contaminants in the y- and z-direc-
tion due to the turbulent fluctuation.

One of the simplest and the most widely used
approach is to relate the mean fluxes to the
gradients of the mean concentration assuming
the eddy diffusivies, i.e.,

— aCc  —
vc:—K,T,y , wc:—K.%—zQ (2a,b)

where K, and K, represent the eddy diffusiv-
ities in the y- and z-direction respectively.
In developing numerical solutions it is usual
to relate the eddy diffusivity K, for the
vertical flux to the eddy viscosity vr via a
relation of the form

Ky=vr/Pr,
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where Pr, is the turbulent Prandtl or Schmidt
number. However, no equivalent formulation
exists for the diffusivity K. of the lateral
flux and it is known that the turbulent Pra-
ndtl number must be a function of the height
from the solid surface and another empirical
relation is needed®?, Further, combined with
cquations (2a,b), equation (1) becomes parabolic
while the turbulent diffusion shows the wave-
like characteristics®,

Another approach is to use so-called second-
order closure models. Bradshaw and Ferriss®
assumed that statistical propertics of the tem-
peraturc fluctuation {ield can be expressed as
empirical functions of the heat flux and shear
stress profile and modelled the transport equa-
tion for the mean square of temperature
fluctuations adopting the turbulent bulk-con-
vection velocity representation proposed by
Townsend®. Lewellen and Teske® developed
a method for calculating turbulent diffusion
in the planetary boundary layer using second-
order closure approach and showed that the
resulting partial differential equation for the
turbulent mass flux has a hyperbolic character
for early times, when the plume scale is
small compared with the ambient turbulent
scale, with a smooth transition to a para-
bolic, gradient diffusion-tvpe character when
the plume scale is large. Gosman et al.\@
obtained fairly good results wusing Rodi’s®
algebraic equation turbulence model.

The present contribution adopts the same
general approach as the above second-order
closure models but in a slightly different way.
Pressure scrambling terms are modelled follow-
ing Launder® but the constants are assum-
cd to be functions of plume width. Instead
of taking conventional gradient diffusion or
turbulent bulk-convection velocity model, tur-

bulent transport terms are assumed to be

functions of plume width and height and

their inter-relationships are formulated accord-
ing to the measurements of Nakayama and
Bradshaw o,

. Turbulence Modelling

Boundary layer approximations of transport
equations for mean fluxes, vc and wc, become,

neglecting molecular effects,

duc dvc duc = 4C
UGV G WS
o L1, oc
Oy T e Moy
and
dwe dwe dwe __ — C
U5z +V"_¢?§‘+W 9z 9z
oW 1 ,dc
Gy, P
- e I (L var) @b
In equations (3a, b) generation terms,
~F«%%, etc., needs no further modelling, The

behaviour of the correlation p’—;%— has been
discussed by Launder®. He argues that like
its counterpart in the Reynolds stress trans-
port equation it contains two parts (three in a
buoyant flow) corresponding to the two parts
of the source term in the Poisson equation for
the pressure fluctuations p’. However the lack
of sufficient experimental measurements on
the contribution due te the mean strain makes
it difficult to model properly and, more over,
in the neutral boundary layer the generation
of mean fluxes due to the mean strain which
is generally of the same form as those fre-
quently suggested for the contribution to the
pressure scrambling terms due to the mean
strain is negligible. Hence it is simply neglect-
ed and only the contribution due to the

turbulence is considered.

The most widely used form for the contribu-
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tion to the pressure scrambling terms due

to the turbulence is and so —:‘7 p’—g}%— could be
approximated by
P @
where ¢2/2 and ¢ represent the turbulent kinetic
energy and its dissipation rate, respectively.
¢1c is a constant whose value is about 3.4,
Instead of adopting eq. (4) directly, we take
a rather simplified form. In a boundary layer
outside the viscous sublayer
¢%/2=~=—3uv
and
e=(—u)¥¥/1,
where / is a mixing length, Thus eq. (4) could
be reduced to

Loy eyl ®

o ? =,
where ¢, is a constant whose value is about
1,
Eq. (5) could be derived in a different way.
Applying the local-equilibrium assumption to
eq. (3a) we get

Lp’ﬂ_z-—zga,cﬁ

o 0y ay
The definition of the mixing length [/, for C
says

9C _ __zve

gy — (—an)!.
Thus

_l. ’,_a_g.:-—zv_ac_—__,-z?_____;é.

ot 0y ay = C—ud'? L

2
et ©
In a boundary layer

P2 2y
and, if the plume scale is large enough so
that the local-equilibrium condition can be
applied, we could assume
1=l
Hence we get eq. (5) again.
___ At the early stage of the plume when the

plume scale is small, however, it is difficult

to assume that /. will be of the same order of
{, which means that ¢, or ¢, can not be a
constant but a function of / and /,, i.e.,
cr=f{4 4 ) ™
where H is a plume source height from the
ground. When the plume scale is small to
cover only a small portion of the boundary
layer, [ will be nearly constant and I/H could
be dropped from eq. (7). When the plume
scale is large to cover a significant part of
the boundary layer, [/, will be of the same
order of ! and I/H could be dropped again. In
other words ¢y, is more closely related to I./H
than to //H and to the first approximation
the terms containing //H could be neglected
in the eq. (7). If we assume further that /;
is directly related to the plume length scale
!, when the plume scale is small, we can
write
Cry=f(Ip/H), ®

since ¢y, approaches to a constant and becomes
independent of /. and /, when the plume scale
is large. Equation (5) and (6) say that ¢y,
must be inversely proportional to I, when the
plume scale is small. The simplest funtional
form satisfying the above conditions seems to

be
ery= P +dy ©)
P)
where ¢y, and d, are constants. d, must be
of order 1.
Similar arguements can be applied to another

pressure scrambling term —:Tp’—g%’ which

leads to

1 0., V—ur _
*p—‘[)—a—z——‘Cf:—— 7 we (10)

and
__ G2
Crz= lp/H ""dz

The constants ¢,, d,, ¢, and d. have been
determined by comparing the numerical results
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with the experimental results of Nakayama
and Bradshaw®®. Their values are taken to be
1.65, 1.0, 1.98, and 0.5, respectively.

One of the widely accepted models for the
triple products 2%, vwe, etc. may be a so-call-
ed gradient diffusion model like

Though it has a merit that it prevents exces-

vic=

sive gradients in the species flux, it makes
the governing equations parabolic. There is
no reason that a gradient diffusion model will
be applied well to the second-order closure
models while eddy diffusivity models for the
mean concentration do not work satisfactorily.

Another approach is to put into formular
directly. Nakayama and Bradshaw®? suggested
formular like

o= (e +ie N w2, &,
without giving an explicit expression of fs.
But their experimental results®® show that
2% is not zero at the point of maximum concen-
tration were vc and wec must vanish. ¢ may
be used instead of ,\/(v_cz—l—uﬁ'z) in the above
formular, which requires another equation for

¢ To avoid solving an equation for ¢%, the
maximum concentration Cmex is taken instead

of ¢z Hence the expression will be of the form

o= Con(~udgi(3y, 2, 2

H® H' H-
YVeax Zmax
H ’“H ) (12)

where ymex 2and zmax are coordinates of the point
of maximum concentration. Last two non-
Ymex/H and  zma/H,
in eq. (12) are added to give more generality
to the expression. To make the work simpler
it was assumed that the function g; can be
separable, i.e.,

v Ly,
(= %0)Crax ‘Y‘<ff * "H -

dimesional parameters,

)

N

The experimental results of Nakayama and
Bradshaw®® have been used to get explicit
expressions of ¥, and Z; and corresponding

ones for w?c and vwc. The formulae are

vic . Iy v — Yoex \
e OB (T o)
Xex p( -3. 22(3’—“12’”—“— —0. 25)2
?
—1.93("‘—‘1—?&)2), (13
wic B dp ( (Z=zZmar)® o4
om0 (R0
Xexp<_2_77<__y__lypl“’_>2_1.11<£,7j?3x >2>
(14
and
vwe=0. (15)

The pressure transport term p’c/p is simply
neglected. This is equivalent to assume that
in the equations dbove the pressure transport
term p’c/p is contained in the triple product

terms implicitly, i.e.,

7

Ty D€
_1; :‘-;)(%.? =0. 252—’ %(Vy‘lﬁm“ ~0.25)
Xexp(—s. 22(3’—_]%’2 ~o0. 25)2
—1.93 (i“l%— >2) (139
and L
w2 B
f;_—ﬁ)fé’; —0. 20%(( Z—l—f&f—o. 04)
><eXp( ~2.71( -y:l‘:’"’k )2 ~1. 11<‘,Llfm )/
14"

There are various ways to define the plume
length scale /,. In this study it is defined as
twice of the vartical distance from the point
of maximum concentration to the point where
the concentration is a half of maximum con-
centration in the plane of symmetry. At the
initial stage of the plume where the plume is
almost symmetric this is same as the half-

width of the plume defined as the vertical
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distance between two points whose concentra-
tion is a half of maximum concentration, but
they deviate from each other as the plume
goes downstream and the point of maximum

concentration approaches the ground.

IT. Method of Solution

used to
It has

in ease of programming and

The “Hopscotch”
solve the set of governing equations.

algorithm®? is

an advantage
running speed comparing to the other powerful
methods such as the alternating-diretion im-
plicit method and Keller and Cebeci’s box
method.

The boundary conditions on the ground is
the “impermeable” one. In order to avoid calcu-
lations in the viscous sublayer for a smooth
wall or in the roughness-influenced region for
a rough wall, a height of 20 times roughness
height or viscous length scale »/#. from the
wall is taken as the effective ground. There
3C/dy=wvc=0.

Conditions at infinity are replaced by con-

—iv/u?

Fig.1 Velocity and shear stress across a
simulated neutral atmospheric boun-
dary layer (from Nakayama and
Bradshaw(®), —mean velocity;---Rey-
nolds stress

ditions at finite distances from the plume centre
line where C=vc=wc=0.

Before the plume reaches the ground, this
condition is used on all four sides of the
calculation domain. When the plume nears
the ground the condition here is replaced by

the impermeable condition above.

Y. Results and Discussion

For the calculations presented here, data on
turbulence are given according to the experi-
mental results of Nakayama and Bradshaw(®
who measured in a simulated neutral atmos-
pheric boundary layer. They are shown in Fig.
1, 2, and 3. They obtained the value of the
friction velocity #. from the mean velocity
profile, but it shows a slight inconsitency with
the measurements of the shear stress, However
we followed their measurements without cor-
rection. The values of the mixing lengths are
calculated from the mean velocity and shear
stress profile and might be erroneous at the
outer edge of the boundary layer (y/H>2.5)

V’/ U7, ?/ u:-?

yv/H

Fig.2 Turbulence intensity profiles across
a simulated neutral atmospheric boun-
dary layer (from Nakayama and

Bradshaw®), —w?/u.?; -v%/u?
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Fig.3 Variation of mixing length across a
simulated neutral atmospheric boun-
dary layer (calculated from the experi-

mental data of Nakayama and Brad-
shaw(10)

as both the gradient of the mean velocity and
the shear stress are too small.

Initial concnetration of the plume is assumed
to be Gaussian and the mean fluxes are set to
zero. The numerical results show that it can
be assumed that the point source is located at
the upstream and in the following discussion
the streamwise coordinate is measured from
that point source.

Fig.4 shows the variation of the plume
length scale /, of the plume. The results are
in fairly good agreement with Nakayama and
Bradshaw’s¢® experimental results. Unexpect-
edly the plume length scale [, increases
almost linearly as the plume goes downstream
while the vertical and lateral half-width of
the plume, 7, and /,,, defined as the distances
Letween the points whose concentration is a
half of the maximum concentration® increase
a little slowly. For early times when the plume
scale is small the turbulent dispersion is wave-
like and the plume length scale will increase
linearly. In the downstream where the plume

scale is large the turbulent dispersion becomes

10, \
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Predictions

Plume length Scale, lp/il
- - ==V\ertical half-width of the Plume,ipy/H

« — ~— lateral half-width of the Plume lps, §
—-—Maximum Concentration, Cmax Qu- ¢
Experiments (Nakayama and Bradshaw)

G Piu wth scale

© MAaxNImuM conceniratiogn

Fig.4 Variation of width and maximum con-
centration of the plume

more parabolic and the half-widths of the
plume will increas directly as the square root
of the downstream distance, but the point of
maximum concentration nears the ground,
which helps the plume length scale increase
more rapidly.

The ratio of the lateral haliwidth to the
vertical half-width, /,./l;,, is about 1.1. This
means that the ratio of the eddy diffusivity,
K./K,, is about 1.2, the value frequently sug-
gested by various authors®.

The variation of the maximum concentration
is also shown in Fig.4. At the early times
when the plume scale is small it varies like

o =oo( )"

* When the concentration at the effective ground is greater than the half of the maximum concentraticn, the
vertical half-width is defined as the distance from the effective ground.
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Table.1
Experimental \ Predicted
*/H Con/ QU I \ [ Con/Qu.H?
1,/H (A) ‘ B ! AB | L/H© | C:D
4.7 ; 0.54 0.33 0, 096 0.54 0.33 0.096
7.9 0.90 0.125 0.101 0.90 0.13 0.105
11.3 \ 1.4 0.053 0.104 1.3 0.07 0.118
17.8 ‘ f 0.075 ‘ 2.0 0.035 0,140

1.8 f 0.023

where Q is the point source strength, In the
downstream predicted decreasing rate of the
maximum concentration drops slightly, while
the experimental results do not. This may be
due to the loss of heat by wvarious reasons
such as radiation and conduction through the
wall in the experiment. If the concentration
profile is assumed to be self-preserving, it can
be expected that Cuad? will remain nearly
constant. Table 1 compares the values of
(1p/H)*Cuax/Qu.H? In the experimental resu-
1ts it drops rapidly at x/H=17.8, while the
predicted value increases monotonically. The
latter is more reasonable. As the plume goes
downstream the concentration profile becomes
more unsymmetric (Fig.3) and [2Cn will
increase.

Predicted iso-concentration contours and con-
centration profiles in the plane of symmetry
are shown in Fig.6 and 5, respectively, and
again show fairly good agreement with the
experiment. At the early times the concentra-
tion profile is symmetric, but as the plume
goes downstream it becomes more unsymmetric
and the point of the maximum concentration
approaches the ground.

V. Conclusion

A method for computing turbulent diffusion
based on second-order closure, which appears
to be in general agreement with the experi-
ments, has been presented. The dissipation of
the mean scalar flux due to the pressure

Effective Ground L \ '
0.1 0.2 0.3 0.4 0.5 0.8
L C/Qu:.H?
Predictions — x/H=38.52 i ——-x/H=4. 72i—— x/H=7.6 ;
—x/H=12.4 ;= x/H=14.8:
Experiments (Nzkayama and Bradshaw) :
»%/H=24.75: o x/H=7.92e x/H=1L3

Fig.5 Variation of the concentration profile
in the plane of symmetry

e 0.5 L0 1.3
Y s H

Fig.6 (a) For legend see page 76
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Fig.6 Predicted iso-concentration contours of the plume at (a) x/H=7.6, (b) z/H=12.4,

and (¢) »/H=14.8

scrambling is assumed to be inversely propor-
tional to the plume length scale when the
plume scale is small.

In a neutral turbulent boundary layer the
plume length scale defined as the distance
from the point of maximum concentration to
the point whose concentration is a half of the
maximum concentration appears to increase
almost linearly as the plume goes downstream,
while the plume half-widths increase slightly
slowly. The maximum concentation varies as
of the distance
from the point source when the plume scale

is small.

—1,85 power streamwise

This work was carried out when the author
was at Imperial College. The author gives
deep thanks to Prof. P. Bradshaw for his
kind advice and to the British Council whose
fellowship helped him study in England.
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