UIT Report Vol. 12, No. 2, pp.239~248, 1981 AT=T3A A12d A4 235 pp.235~248, 1981

A Study on APL Interpreter Using Ladder Mechanism, *

Chisu wu
Dept, of Computer Science
(Recieved April 10, 1981)

{Abstract)

APL implementations have been carried out by transformations of arrayv accessings, reordering
of APL operators, syntactical analysis and using APL idioms.

In this study, I propose that A-Machine code is generated by a translator which is written by
APPLE-PASCAL using ladder mechanism.

LadderE o] 23 APL Interpreter 7 d] #3 &+

]

o

/I:
N

L

2 A o4 &
(1981. 4. 10 A F)

(5 2>

APL 2] ngh& wjdel Zupbalel wal, dakabel fula], F¥a, APLe Fojs] A&5-ol 25
Yated Ak

BB yads) o zapale "Hl LADDER & &3t APPLE-PASCAL & ol g3 9ol oI5
A-Machine & 7AlstE 29wl =] Alelxl,

and semantically, and hence could be called

1. Introduction mathematical. Because of its use of its use of

structured data and its primitives which are

1. A Programming Language quite different from those class of classical

A progamming language is based on the work digital computer, APL does not fit well onto

of K.E. Iverson.® APL is concise, highly ordinary machines. It is possible to do so, and

mathematical language designed to deal with interpreter have been written at least five

. . . . < .
array-structured data. APL program generally different machines. Finally, because of its

. . . mathematical properties, it is possible to discuss
contain expression with arrays as operands and

. . i n i ;an
which evaluate to arrays, while most other the semantics of the language rigorously and

. . . i ignifi 1 Xpr-
languages require that array manipulations to to derive significant formal results about expr

- ion i 1 3
be expressed element by element. To faciliate ession in the language

its use of array as operand, APL has rich 2. The Problem
operators for array calculations. Also it is In this thesis we represent a design of system
highly consistent internally both synatactically for excuting the language which alleviate some

* o] A& 19804 FRY & T2 oloted AFH A

— 239 —

2 Chisu Wu

of the difficulties that have becen cited as
limiting the continued growth of the language.
In particular wec address the following problems.
1. APL function will often generate large
arrays as as intermediate result.

2. APL’s interpretative execution can be slow
compared to that attained with programs
compiled from languages such as FOTRAN or
Algol 60. ¢

3. The style of APL programming most
efficient for experienced user tends to worsen

the problem 2.
3. Previous Work

Implementation of APL have been attempted
to solve problems mentioned 1.2.

(1) Simple Interpreter

The original implementations of APL and
that followed were interpreters which execute
cach operator separately as encounted. All
intermediate results are stored in memory.
Great speed improvement has been obtained by
fine tuning of the routines for various
operators and by the recognition of short
special patterns of operators which are often
called APL’s idioms. However, the reduction
of temporary storage may require interleaving
the individual calculations of a sequences of
operations. It is clear that the sequences of
operations which can be profitably interleaved
are too long to be recognized as special cases. ®

(2) Translation to Algol

A transltor which translate subset of APL
to Algol was implemented by Jekins® He was
forced to restrict the language so that com-
pilation could take place before any data was
available, and so a compiled module would
always remain valid. The feature of APL
which present difficulty in that regard are
discussed later. While compiled code is signific-
antly faster than interpreted APL for scalar

calculations the advantage almost disappears

for large array. Jekins did not investigate the
reasons for the inefficiency of array calcula-
tion. However experience gained in this imple-
mention suggest that it is resulted frem sequen-
tial execution of operators which require large
amounts of temporary storage, and {from the

cost of array element address generation.

T. Array Access
1. Address-sequencing Technique

Data selection in random access memories is
accomplished by means of an address, a number
that uniquely identifies a cell in the memory.
To step through the data elements in an APL
array in a particular order, the element must
be stored in a random access memory, yields
the desired sequence of data elements., Since
one iteration of this algorithm is ecxecuted
each time a data element is fetched, the time
required for the algorithm to generate one
address from previous one should be short as
possible. The arithemetic technique uses the
operators +, —,* and/in the sequencing algori-
thm. The expression that yields the location
of an element of FOTRAN array from its
subscription and dimension is:

LOC(A(#, 42, i3))=LOCCA(L, 1, 1)) +é1—1+
k(ie—14-ko(33—1))
=LOCCAQL, L 1))+ X2
(z',»—l):ifllkz

LOC(X) is the location of X and A is dime-
nsioned A(ky, k2, k3). The code generated by
some compilers can reference array elements
with less work than is reqired to evaluate this
expression; one method reference an array
element with no multiplication. It is not
necessary to subtract from all subscripts if
LOCCA(0,0,0)) is substitute for LOC(A(1,1, 1))
in expressions above; while A(0,0,0) does not
exist in FORTRAN, this imaginary location

— 240 —

A Study on APL Interpreter Using Ladder Mechanism. 3

implifies the address-generation expression:
LOC(A(é1, é2,£3))=LOC(AC0,0,0))+41+k
3 i=1
(f21kats) = LOC(A(0, 0, O>+1§<i’}gkl)
The evaluation of the first of the first of these
two simplified expressions for N-dimensional
array reqirees N—1 multiplications and N
additions. For A<B+C,
amount of overhead to insert at each step.
But the FORTRAN address-generation expres-

sion produces an address given the subscripts of

this is a tremendous

the desired element; the address generation
expression for the simple APL statement must
sequence through all the addresses and need not
be able to select elements in arbitary order
with the same ease.

FORTRAN compiler would

use a more efficient method than the expression

An optimizing

given abovess elemsent of an array, especially
if the references occurred within the range of
the DO loop where the index variable of the
DO loop was one of the subscripts of the array

reference.
2. Ladders

A ladder is a structure, introduced by Perlis®,
that combines a data acces mechanism for
array structured data with computational and
linkage capability. One ladder is associated
with each occurance of an array in an APL
statement are connected to from a ladder
network for the statement.

A ladder can be divided into two part, a
fixed part are a variable part. The fixed part
handles the accessing of the array elements
and check for completion. It is associated. The
variable part performs the computation specified
by the operators in the statement.

The fixed frxmework ladders provide for an
APL statement to be generated easily. The
fixed parts of the ladders for an APL statement
can be formed as soon as the ranks of arrays

referenced by the statement are known. If the

ranks are not known at the time the statement
is to be executed then the statement must be
broken into parts. The first part is the largest
part, beginning at the right of the statement,
for which the ranks of all the arrays are
known. The ladder network for this statement
fragment can be formed and executed. After the
execution another ladder network is formed
from the rest of the statement in the same way
as before. Then the network is exccuted. This
process continous until the entire statement
has been executed. Any legal APL statement
can be executed in this manner.

The variable
generated in much the same way code is

parts of each ladder are
genecrated by a standard compiler. If the ladder
network for a ststement is saved after the
statement has been executed, it is likcly that
the same network can be used the next time
the statement is encountcred. The conditions
in which a ladder network can be reused are
discussed in more detail below.

Ladders can be explained most effectively
by {irst discussing the workings of the data-
access mechanism. The mechanism used in
similar to others‘’.

Let A be an array of rank threce and shape
ki1, ko, ks stored in ravel(row-major) order. the
separation between adjacent elements on the
same row(differing in only the last subscript)
is 1. The separation between elements differing
only in the second subscript(and there only by
one) is ks, or number of elements in a row.
And the separation between elements differing
by one in the first subscript and not at all in
the others is £2X %3, or the number of elements
in a planar cross-section of the array. The
storage arrangement is the same as the one
used for storage of FORTRAN array except
that the order of the subscripts is reversed.
The analogous expression that gives the loca-
tion of a paricular element of the array is:

LOCCA(Gy ¢ 420 i3))=LOCCA(L 1 1)) +is—1

— 241 —

4 Chisu Wu

~+ka(f2— 1)+ koks(é1—1)
=LOC(A(1;1: 1))+f§
G-Ik

Consider the problemof delivering, in ravel
order, the elements of the array A to a
computational procedure. The address of the
element to be delivered must be initialized to
the address of the element to be delivered must
be initialized to the address of the element.
Since the array is stored in the row may be
produced by adding one to the current address.
Continuing to apply this procedure will yield
the sequence of addresses of all the data
elements in the first row. Because rows are
stored sequentially, the last element of one row
is followed immediately by the first element
of the next row; therefore, adding one to the
address of the last element of one row will
generate the address of the first element in
the next. In fact, adding one will always
produce the address of one data element from
the address of the previous data element. This
procedure obviously work; it is clear that
beginning with the address of the first element
of an array stored in ravel order and adding
one to that address until the address of the last
element in the array is reached will produce
the sequence of addresses of the data elements
in ravel order. A simple extension of this
technique can produce the sequence of addresses
of the elements of an array in ravel order
even though the array itself is not stored in
ravel order.

The mechanism depicted in the figure. 1 is
designed to produce the addresses of the
elements of an array in ravel other. In the
figure, PI is a pointer that is initialized and
stepped so that it sequences through the ele-
ments in the array referenced by the ladder
in ravel order. BETA represents the address
of the first element in the array, the array’s
base address. The RHO variables are the com-

ponents of the shape, or dimension vectors of
the array and the I variables are the subscripts.
The origin is assumed to be one. When control
passes through the bottom block, PI points to
the array element specified by the subscripts.

It is clear that the mechanism will step
through the elements of an array stored in
ravel order (DELTA,=DELTA,=DELTA;=1).
You will see that the application of certain
common APL operators to an array stored to
permit access in ravel order by this mechanism
yields an array that can be accessed in ravel
order by the same mechanism but with different
BETA, RHO, and DELTA. Since these opera-
tors change the logical order but not the
physical order of the data, the resulting array
is not stored in ravel order. The mechanism
can be used to access these arrays, so storage
orderings that the mechanism can handle that
differ from the ravel ordering are common.
The operators, which Abrams called selection
operators, are reverse, transpose, take, drop
and certain types of subscriptings.

It is sometimes necessary to access a partic-
ular element of an array, as specified by its
subscrpts. For an array that the procedurc
descibed above can access. The address of a
particular element of an array is given by:

LOC(A(1: ja "'jn)):BETA+f‘i:1'(jf‘l)G,
Not only does the mechanism sequence through
the addresses and perform a check for comple-
tion, but it is also enables some computations
to be simplified. The question remains how to
interface this structure with the computation
still reqired bo the statement.

Figure. 2 shows a ladder structure for an
array of rank three as described above except
that seven numbered boxes, called splices,
have been inserted in the structure. Code to
perform the calculations associated with the
statement is placed in the splices. For an APL
statement involving only the simple scalar

— 242 —

A Study on APL Interpreter Using Ladder Mechanism. 5

ENTER

|

Pl:BETA
I =1

L =L+l
PI: PI+DELTA,

Iz : :Ig'f"‘l
PI: PI+DELTA.

Ia: =Ig+1
Pl: =PI4-DELTAs

Pl Points to
the desired
array clement

Fig.1 Data-access mechanism

operators, all code goes into the splice in the
innermost loop, splice 4 the rank-three case.
In addition one of the arrays has an END
instruction in the splice encountered only when
an entire pass has been made through the
array, splice 7 for the rank-three example.
The additional splices are used for the more
complicated operators like inner or outer
product, scan, and reductjon. The instruction
in the splices are simple scalar oriented instruc-
tions; they include the basic arithmetic opera-
tions, some of the Boolean operations, and
testing and branching instructions.

The ladder structure provides a way to step
through the elements in an array and to
perform computations on them. Since almost
all APL statements involve more than one
array, there must be a way to link ladders so
that data as well as control can be transferred

among them. The data can bLe transferred

by allowing the cede in each ladder to reference
a shared memory where all data (except the
arrays themselves) are stored. The binding of
the code to this shared data take place at
code-generation time. Control is passed among
ladders by means of coroutine jumps.

Most operators in APL can be accomodated
within the computational structured outlined
above. The fixed address sequencing that the
ladder mechanism provides is not suitable for
some APL operators such as grade up and
down; such operators can be handled by
standard interpretation technique.

The ladder structure handles changes in the
shape of arrays automatically. Once the ladder
and the associated splice code have been
generated, they can be used the next time
statement is executed if the conditions described
by Perlis'®, are not violated. The rank and
type of each variable in the statement may

not change from execution to execution; every

ENTER

}
SPLICE 1 |

SPLICE 7

Lt =1
PI+-DELTA,

Is: 341 T
PI:PI+DELTA,

———

1

!

o] SPLICE 4
-

Fig.2 Ladder mechanism

— 243 —

6 Chisu Wu

function called in the statement must return
a result with the same rank and type for
every call provided the same arguments also
have the same rank and type; and no (X)0Q
or (X)¢Q may occur where X is an expression
other than a constant vector and Q is any
expression. Of course, a perfectly legal APL
program can violate these conditions, and, as
a result, the ladders and splices code will have
to the regenerated.

These limits on the use of ladders in the
execution of APL programs detract from the
clegance of the approach, but the thrust of this
work is to improve the overall efficiency of
execution of APL programs even at the expense
of some elegance.

In summary, ladders provide a data-access
mechanism for arrays in APL statements. Some
APL operators can be implemented by altering
data-access parameters without fetching any
elements of the array argument; most others
can be executed by inserting code into the
splices in the strucure. For most APL state-
ments the ladders and splice code generated
when each statement is first executed can be
interpretation/compilation overhead. A normal
interpretation scheme can be used for for those
APL

operators not casily implemented with ladder,

statements that certain operands or
such as null array and grade up/down. Since,
for som APL statements, accessing array
elements requires a large fraction of the state-
ment’s execution time, an efficient accessing
mechanism will allow the construction of a

fast APL processor.

. A-Machine

To implement programmimg languages such
as FORTRAN, BASIC or PASCAL, sometimes
special machines are devised as FORTRAN-
Machine, BASIC-Machine, PASCAL-Machine.

According to programming language, each

language has special fcatures: APL has many
operators to manipulate mathematical arrays,
PASCAL has scme keywords to handle files.

Generally, hest machine has compiler and it
makes equivalent code for special machine for
given program and execution is handled by
P-machine is
used to implement APPLE-1I PASCAL™®.

Now I am going to propose thc A-machine

special machine. For examples,

which has instructions in Table 1. Those are
appropriate to excecute APL scalr operators.
Selection operators are manipuated by host
machines program (compiler) using array
accessing mechanism. By the way selection
operators is done by reorganized accessing at
the run time.
divided {four

classes accoring to APL operators.

A-machine’s instructions are

Table. 1. Single Operand Instruction
or OPN
INC 0000001 CO0001 |
DEC 0000001 000010 .
TST 0000001 000011 |
CLR 0000001 000100
NEG 0000001 000101
NOT 0000001 000110 |
RECIP 0060001 000111
SIG 0000001 001060
CEL 0000001 001001 |
FLR 0000001 001010
ABS 0000001 001011 |
ROLL 0000001 001100
EXP 0000001 001101
LN 0000001 001110
FAC 0000001 001111
PIT 0000001 010600
SIN 0000001 010001 |
CoS 0000001 000010 |
TAN 0000001 000011
CIRA 0000001 000100 |
SINH 0000001 000101 l
COSH 0000001 000110 |
TANH 0000001 000111 |
CIRO 0000001 001000 |

— 244 —

A Study on APL Interpreter Using Ladder Mechanism, 7

ASIN 0000001 001001 Double Operand Instructions
ACOS 0000001 001010 OP 1st OPN 2nd OPN
ATAN 0000001 001011 LT 00001 t
CIRMA 0000001 001100 LE 00010 |
ASINH 0000001 001101 EQ 00011 l
ACOSH 0000001 - 001110 GE 00100 |
AIANH 0000001 { 001111 GT 00101 l
Coroutine Jump Instruction NE 00110)
OR 00111
CR] 0000000 | 00000001 |CLRNO AND 01000 |
ISTLE;:{)BEEB 00000000 ; OicordJ, 1) 1 off set NOR 01001
—— , NAND 01010
HAL1 _ | 0000000 | 000000 00070“003) XOR oto11 |
MAX 11001 | } EQUIV 01100 |
MIN 11010 | ! ADD 01101
MOV 11011 : MUL 01110
CMP 11101 i SUB 01111 ~
RSUB 10000
Branch Instructions DIV 10001
op OPN RDIV 10010
BR 00000 1000 RES 10011
BN 00000 1001 RRES 10100 |
BNE 00000 1010 PWR 10101
BEQ 00000 1011 LOG 10110
BGE 00000 1100 CIR 10111
BLT 00000 1101 CoM 11000
BGT 00000 1110 MAX 11001
BLE 00000 1111 MIw 11010
MoV 11011
COM 11100
MLT 00000 | 00000000 | 00000000
Table. 2
Primitive scalar operators.
Monadic form fB ‘ f Dyadic form AfB
Definition or example Name 1 Name Definition or example
+Be—0+B plus | + | Plus 2+43.2¢—5.2
—B«—0—B Negative — | Minus 2—3.2—"1.2
X Be——{B>0)~(B<0) Signum X | Times 2% 3.2¢+6.4
+B——1+B Reciprocal <+ | Divide 2+3.2—0.625
B B_B_ Ceiling [| Maximum 3[7«—7
g I “31 = Floor L | Minimum 37«3
«Be—(2.71828--)+B Exponential % | Power 2¢3¢—8
@*Ne—— Ne—%BN Natural ' ® | Logarithm A®B<——log B base 4
logarithm ! A®B—(®B)+®A

s Chisu_ Wu

[-3. 14¢—3. 14 Magnitude | | | Residue Case AlB
‘ A#0 B—(J|A)X|B+14
‘ A=0, B0 B
A=0, B<O Domain error
10e—1 Factorial ! Binomial A!B—(!B)+(1A)X!B—-A
'B——BXx!'B—1 coefficient 2!5¢—10 31510
or ! Be—gamma(B+1)
?B——random choice from B Roll ? i Deal A mixed function (see Table 2)
OB« BX3.14159- Pi times O | Circular See table at left
~1e—0 ~01 Not ~
Table of dyadic O functious { /| And A B ANB AVB AfB AE
'V Or 00 0 0 11
-0B_ | 4 | 408 l A | Nand 01 0 1 10

(1—-B¥2)%.5 | 0 | (Q—B¥2)¥%.5 % | Nor 10 0 1 L o
Arcsin B 1 Sine B I 11 1 1 0 0
Arccos B 2 Cosine B | <1 TLess
Arctan B 3 Tangent B ’ = | Not greater Relations:

C1+B*2)%.5 4 (1--B%2)%.5 L= Equal Result is 1 if the relation
Arcsinh B 5 Sinh B = | Not less holds, 0 if it does not:
Arccosh B 6 Cosh B > | Greater 3<T 1
Arctanh B 7 Tanh B = { Not equal 7<3e—0
Mixed-operators.

Name ‘ Sig l Definition orexamplet
Size oA 1 oPo4 pEe3 4 p5ee0
Reshape VoA , Reshaped to dimension V 3 4p112E
i 12pE« [12 0pE« [0
Ravel LA ! sAe(x/A)pA o, EJ12 p.56:1
Catenate v,V P,12:235712 ‘T, ‘HIS - ‘THIS’
via] P[2]«-3 P[4321}l-753 2
Index MI[A; A] El13:3211e321
11 10 9
AlA; ... A] Ell:]leo1 234 ABCD
: El:l]lel 59 *‘ABCDEFGHIJKL [El«-EFGH
IJKL

Index ' S First S integers tde>1 2 3 4

generatori ¢0-an empty vector

Index off VA Least index of 4 P32 5125

inU, pr 14,V PE-3545
4e41 55565

Take V1A Take(drop) |V [I] first 2 31 X« ABC

elements coordinate EFG

Drop VIA I(Last if V[I]1<0) 21 Po5 7

Grade-up AA The permutation which A35324132

— 246 —

A Study on APL Interpreter Using Ladder Mechanism. 9

wouled order A(ascending
Grade-down 1A or descending) 353202134
13
Com press V/A 101 0/Pe25 101 0/Ee57
911
101/[11Ee1 2 3 41 0 1/E
91011 12
ABCD
Expand V/A 101/26102 10111/X<~}E§(£H
DCBA EFGH
Reverse PA OX-HGFE O XeOXIJKL
LK]I cCP 7532 ABCD
BCDA
Rotate AQA 3QP-7 2356071¢gP 10 _1®XHI%_FI‘?(H
AET
Transpose L ZANY: | | Coordinate I of A 2 IQX-BFJ
i decomes coordinate CGK
; VIl of result 1 1SE+1 6 11 DHL
N4 1 Transpose last two coordinates RE-2 INE
0101
Membership A=A ‘ EOWIDEYIHp%’ P41 010
—=P-1100 0000
Decode | V1V 101177 601776 24 60 6011 2 3»3723
Encode ' VTS | 24 60 60T3723¢> 1 23 60 60T 37232
Dealt l S§7?S \‘ W?Y <random deal of W elements from (¥
tArrays used in examples:
1 2 3 4 ABCD
Pe2357 E——5 6 7 8 X«—EFGH
910 11 12 IJKL

1. Single operand instructions
2. Double operand instructions
3. Branch instructions.

4. Coroutine jump instructions

. APL to Ladder Network Translator

This Chapter program translate an APL
statement in reverse polish notation to ladder
network. The program can be made to simulate
the instructions defined for the
code, but it is abbreviated in this paper because

A-machine

it is a big tedious work.

Functions are divided into classes and all
functions are handled by the same procedure.
Only the dyadic and monadic scalar function

classes conlain more than one function. All

other functions are handled by separate,

usally small procedures.

The symbols for all the functions are defined
in a file that is read when the program begins.
The file also defines for each monadic and
dyadic scalar function the code to be generated,
for the dyadic

functions, whether or not the function com-

the identity element, and,

mutes. The interpreter does not handle some
of complicated monadic and dyadic scalar
operators: for instance, the trigometric func-
tions. But these can be included by adding an
entry to the function definition file; Ne change
of program is regired.

Other functions not handled by the interpreter
include deal, grade up, and grade down. These
functions are not included because the ladder
structure is not suited to their implementae

tion. The program can perform the selection

— 247 —

10 Chisu Wu

operator transformations described:----: .
These transformations assume that one or 3.
both of the operands are simple array references
and not expressions. Abrams® discusses method 4.
to transform statements that do not satisfy
these reqirements into statements that do.
Abdrew Moulton is working on a program to
transform statements like these into a format 5

compatible with the program.

References

1. Abrams, P.S., “An APL Machine”, Stanford
Univ. Computer Science Department, Report
STAN-cs-70-158 (18970)

2. APPLE-1T., “APPLE-II PASCAL Program-
ming” (1979)

— 248 —

John Wiley & Sons, Inc (1962)

Iverson, K.E., “A Programming Language”,
John Wiley & Sons, Inc (1962)

Jenkins, M.M., “Translating APL-An
Empirical Study”, Proc. of the APL Con-
ference, Pisa Ttaly, June 1975, SIGPLAN
Technical Committee on APL (1975).

. Minter, C.R., “A Machine Design for

Efficient Implemetation of APL”, Dept. of
Computer Science, Yale University, Rescarch
Report 81 (1974).

Perlis, A.J., “Step Toward an APL Com-
piler-Updated”, Department of Computer
Science, Yale Univ., Research Report 24
(1975).

