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A Note on the T,-Space and Derived Set

Lee, Kwang Young
Dept. of Electrical Engineering

<Abstract™>

A topological space is a T -space iff each set which consists of a single point is closed, and the
set of all limil points of a set is called the derived set of it.

We show the following: If X is a T\-space then the derived set of each subset of X is closed,
but the conversc is not alwys true. Furthermore, as a sharper result, a necessary and sufficient
condition that the derived sct of each subset be closed is that the derived set of the singleton{x} be

closed for each point x in a topological space X.
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1. Introduction and Preliminaries

In this note, we investigale some properties
concerning the limit points and closed sets in
topology theory.

We recall,

in this section, some necessary

definitions and lemmas for the note. We give
the propositions and theorem 1n the next section.

In set theory, the complement of a set A is
the set of elements which do not belong to A4,
that is, the difference of the universal set and

the given set 4. We denote the complement of

F5l Arkrel WOF closeddl sl & dsla, 3 setd]
Xob Ti-ZEfiljel] X o) 4 3334k "%ﬁax—-
b ol 2 Xl 7 gl @il closeds)

4
o} t},

A by Ac. The following property is a basic one
in set theory.

(Lemma 1). The difference of two sets 4 and
B is equal to the intersection of A and the
complement of B, that is, A-B=ANB"

Another important theorem 1n set theory is
due to De Morgan.

(De Morgan’s Law).

(VA= A5 (QAy = YA

A topology for a set X 1s a family 5 of

subsets of X which satisfies the two conditions;

(i) the union of the members of every subfa-
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mily of .7~ is a member of .77, and

(1) the mtersection of any finite members of
.77 is also a member of 9.

In this case, the sct X 1s called the space of
the topology 7. the pair (X, .97) a topological
space, and the members of the topology 7~
are called open relative to %7, or .7 -open, or
if only onc topology 1s under consideration,
simply open scts. The space X of the topology
is always open because X 1tself is the intersec-
tion of the members of the void family of
subsits of X, and the empty set ¢ 1s also open,
for it 1s the union of the members of the void
family of the subsets of X.

The open neighborhood of a point x in a
topological space X is an open set containing
the point x, and is denoted by N (x).

(Lemma 2). A set is open if and only if it
contains an open neighborhood of each of its
points.

A subset A of a topological space X 1s called
closed iff its relative complement X-A4 15 open.
The complement of the complement of a set A4
is again A, and hence a set is open 1f and only
if 1ts complement is closed. Because, in a
topological space, the void set or the whole set
is the complement of each other, it 1s always
true that the space and the empty set are closed
as well as open. According to De Morgan
formulae, the union of a finite number of
closed sets is necessarily closed, and the inters-
ection of the members of an arbitrary family
of closed sets 15 closed.

A pomnt x 1 a topogical space X 15 a limit
pomnt of a subset A of X iff every open neigh-
borhood of x contains at least onc point of A
other than x 1zself, that 1s, N@ —{xHNAxe.

(Lemma 3). A subset of a topological space
is clesed 1f and only if it contains the set of its
limit points.

The set of all limit points of a set A 1s called
the derived set of A and denoted by A<

(Lemma 4). The unjon of a set and the
derived set of it is closed.

The closure of a subset of a topological space
X 1s defined as the intersection of the members
of the family of all closed sets containing the
subsct. The closure of the set A4 1s denoted by
A-. The set A~ is always closed because 1{ 15
the intersection of closed sets, and evidently
A~ is contained in cach closed sot which contains
A. Consequently A is the smallest closed set
containing A4, and it follows that 4 is closed
if and only if A=A4-.

The next lemma describes the closure of a sct
in terms of its limit points.

(Lemma 5). The closure of any sct 1s the
umen of the set and its derived set, that 1s,
A=A A%

Fmally we can define the Ti-space as the
cquivalent form:

(Lemma 6). X is a T)-space 1ff for any two
points in X they have the opzn neighborhoods
not containing the other of the two points respe-

ctively.

. Propositions and Theorem

(Proposition 1). For any set X, there is a
unique smallest topology %~ such that (X,.97)
1s a T-space.

(Proof). Let .9~ be the family of all subsets
U which are the complements of syme finite
subsets ¥V of X together with X itself and the
void set.

First, for any subfamily {U,} of 7, since
UU.=UV  =(NV,) by the De Morgan’s Law,
\'\(rhere Zach V, 1s the complement of U, respec-

tively, the set UU, 1s the complement of a
p

finite subset of X, and 1t i1s a member of 7.

Second, considering any two raembers Uy, Us
of /7, since U NU=VNVS=V UV by
the De Morgan’s Law, where V,; and V, are
the complements of U; and U; respectively, the
U,NUz 1s the complement of a finite subsct
of X, and it 1s also a member of 5.

Third, for any x in X, X—{x}={x}° is
clearly open, and so the singleton {x} 1s closed.
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Consequently the family .7~ is a topology for
which (X, J7) is a Ty-space.

Last, since the singleton {x} is a closed set
with respect to any topology .7/ for X such
that (X, .7 7) is a T-space, every finite set
must be closed, and so the complement of 1t is
open. Hence the topology 7 is contained in
any topology /7 for X such that (X, /7)) 1s
a Ty-space, and so .7 is the smallest topology
satisfying the condition. The proof is complete.

(Proposition 2). If X 1s a infinite set and 9~
is the smallest topology for X such that (X,
7 ) is a Ty-space, then (X,.77) is connected.

(Proof). From the proposition I, we know
that the smallest topology together with which
X is a Ty-space is the very family 5 in the
above proposition 1 that consists of X itself,
the void set, and the subsets which are the
complements of some finite subsets of X. By
the structure of .77, every open set is infinite
and every closed sct is finite except the void
set and the whole set X. Therefore none of
subsets of X other than ¢ or X is both open
and closed, and this means that (X, .97) 1s
connected.

(Proposition 3). If(X,./7) 1s a T\-space, then
the derived set of each subset is closed.

(Proof). Let A be any subset of a topological
space X, x a limit point of the derived set A7,
and N(x) an arbitrary open neighborhood of
the point x. Then there cxists a phint y 1n the
set N(x)N A7 other than x, that is, ¥ belongs
to the set (N(¢)~ {x})N A% Since the singleton
{x} 18 closed by« the assumption, N{(x)-~{x}==
N(x)N{x}° is an vpen sct containing ¥, and so
it is an open neighborhood of y. Because the
point ¥ alse belongs to A¢ by the above stated
fact, y is a limit punt of A. Hence there
exists a point z in the set (N(x)~{x})NA4
other than y, tco. Thus the set N(x) contains
a point in A other than x, and so x is a limit
point of A, that is, x is contained in the set
A%, From these facts, A7 contains all of its

limit points. Therefore the derived set of each
subset is closed by the previous lemma. In the
remark at the end of this section, however,
we shall sce that the converse is not always
true.

Now we are going to state the main result
that is a sharper one of this proposition 3.

(Theorem). A necessary and sufficient condi-
tion that the derived sct of cach subset be
closed in a topological space X is that the
derived set of each singleton {x} 1n X be closed.

(Proof). Since every singleton {x} is a subset
of X respectively, the nccessity of the condi-
tion is clear. So we have only to show the
Let A be any
subset of X. Then we must prove that 49 is
closed in X when each {x}¢ is closed. From

the previous lemma, the fact that A4¢ is closed

sufficiency of the condition.

is equivalent to the fact that it contains all of
its limit points, and hence in this case it suffi-
cies o show that if x is a limit point of A¢
then # is contained in AY, under the condition
that {x}¢ is closed in X. So we shall prove
that if x is a limit point of A¢ then x is a
limit of A when {x}? is closed in X. Suppose z
is a limit point of A% and N(x) is any open
neighborhood of x. Generally a point x can not
be a limit point of the singleton {x} itsclf by
the definition of the limit point, and s» the set
{x}? does not contain the point x. Hence the
puint x belongs to the set N(x)—{x}?. In this
case the set N(x) ~{x}¥=Nx)N{x}9° is open
in X, for {x}¢ is closed by the assumption,
and sa N(x) ~{x}¢ 1s an open ncighborhood of
the point x. Since x 15 a e point of A9,
there exists a point y 1 the set((N(x)—{x}¥)—
{2 N A%

Now, from the previnus lemmas and set thesry,
we have the following identitics:

(N(x)—{x}) —{z} =(N(ON{x}DD N{x}*

=NE N N =NE N U fxp)e
=N NHx} e

And the set {x}" is closed by the lemma that

the closure of any set is closed. So the sot
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(N(x)—{x}?)—{x} 1s an open set, furthermore,
an open neighborhood of y, for y belongs to
the set (N(x)—{x}9)—{x} by the above mentioned
fact. Also, since y 1s a limit point of A from the
fact that y belongs to the set ((N(x)—{x}%)—
{x})N A¢ above and hence particularly belongs
to A?, there exists a point z 1n the set:

(N @~ {x})—{2})— NN A=(N@&) —{x})—
{¥})NA by the nature of A% Because the poin:
z belengs o the set (N(x)—{x})—{y} and
clearly the sct (N(x)—{x}")—{y} 15 contained
m the set N(x)—{x} by the fact that {x}-
contains {x}, the point z neccssarily belongs to
the set N(x)—{x}, and zis a pint of A from
the above fact that z belengs tn the sev (N
(x)—A{x})—{¥HNA. Accordingly N(x) contains
a point z of A other than x, thatis, x1s a limit
point of A. Thus the theorem 1s established.

(Remark). If a singleton{x} 1s closed 1 a
topclogical space X, ihe derived ser {x}¢ 13
closed, but the converse dees not hold, We
proeve this fact. Suppose the set {z} 1s closed.
Then{x}® 1s open, and the singleton {x¥] must
contain all of its limit poinis 1n 1t. Bul since
it is always true that the point x itself can
not be a limit point of the singleion {x} by the
definition of himit point, (x}¢ must be the veid

sct, and so, {x}9 15 closed 1n X by the nature

of topology. To show that the converse is
not always true, we give a counter-example as
follows; Let X Dbe the set {a, 8}, and . the
family of subsets of X such that .9 ={¢, {a},
{a, b}}. Then we can check that .~ forms a
topclogy for X. In this case the singleton {a}
is open 1 (X, .97), but not closed for {a}’=
{b} 1s not open 1n this topological space. Now
consider the derived set {a}¢ of the singleton
{@}. Because cvidently {a}¢ 1s {b}, and {b}=
{a}¢ is closed, the derived sct {a}? 1s closed 1n
the topeivgical space {X, Y }. But the set {a}
itself 1s not closed in X by the above state-
ment. From this, v: sce that the converse is
not always true. Of cours:, inthis case we can
also deduce that the converse of the Proposition
3 docs not hold by the thecorem of this section.
S0, we can find the following: The condition
that the derived set of each singleton be closed

1s coavser than that of T-space.
References

i. KELLY, John L., General Topology. D. Van
Nostrand
2. ABIAN,

W. 2. Saunders

Alexander, The Theory of Sets,



