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Fast Computing Algorithm of Constrained Minimization

Park, W. S. Cin, Q Young
Dept. of Electrical Engineering

{Abstract)

In finding out the mimmun value of an objective function with constraints, the pattern move

1s strongly appheable to ill-behavior funections.

In this paper a fast computing algorithm for minimization of an objective function 1s proposed

using pattern move. The basic idca comes from reducing penalty term weighting factor according

to one cycle of pattern move,
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1. Introduction.

For many years smce 1960°s, the control En-
gineers and apphied mathematicians have endea-
vored to find an efficient method to mnimize/
or maximize . given objective function under
several constramts,

But thesc sort of problems were begun earlier
in 18th century as in post-office parcel probl-
ems, in which it 18 required to find the large-
st volume given some constraints concerning to
length, widih and depth. Eearliest workers in
this field were:® George Danzig(1947 Simplex

_method), 1. Koopmans®, H. W. Kuhn® and

A. W. Tucker(1951, Nonlincar programng).

In 1954, A.Charnes and C.Lemke® published
an approximation method of treating problems
which have an objective, the minimization of a
separable function, subject to linear constraints.

In mud-fiftics, Quadratic programming was
studied by E.Barankin and R.Dorfman, (1955)
E.M.L Beale(1955), M.Frank and P. Wolfe(195
6), H.Markowitz(1956), C.Hildreth(1957), H.
Houthakker(1957), and P. Wolfe(1959)

In 1960 H.H.Rosenbrock® contrived an algo-
rithm to find the greatest or least value of a
function with the aid of first derivatives.

In 1964 A. V, Fiacco and G. McCormick™®
Proposed an algorithm well known as SUMT
and cxtended their idea when the constraints

are a mixture of mequalities and equalities,
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Afterwards Powell, Fletcher and Zanwill w-
ere the main contributors n this field.

M. ].D Powell, while, has extended the 1dea
of pattern move n 1964 which leads to 1 met-
hod of conjugate dircetions.

As for the penalty funetions, Zangwill® has
rendered a complete theoretical basis which sh-
all be reviewed briefly in this paper.

The basic techniques used m finding the ma-
Ximum or minimum of a function are umvari-
ate method, pattern move, steepest descent me-
thod ete. But when the first derivative of an
objective function 15 not available, 1t seems the
pattern move 1s one of the strongest tools for
OUr purpose.

So 1n this paper, we shall treat the pattern
move as a basic tool and review Zangwill’s th-
cory briefly and present an Algerithm which
will shorien lhe lime comsumed in computing.

I. The Pattern Move. "

The pattern move 15 a uscful techmque for

Start

umproving the convergence. As we sce m the

Fig. 1

fig 1, the alternate punts in the deration(l, 3:
2.4.3.5: etc) define lines wluch lie :in the ge-
neral direction of the mimmum. This Property
18 so strong in 2 dimensions that f the function
being minimized is quadratic, all such lines pa-
s4 through the minimum.

In others words, they pass through the
common center of the family of clhpscs that arce
the contours of the quadratic. Unfortunately,
this property does not carry through directly

to higher dimensions, but the idea can still

Take step
X—X+a*S,

!
J]+1

Ll SJ:X“"‘XO

Take step ‘_l
X*“—X"- a'*S]

Fig. 2
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greaily speed convergepee mn these problems,
A general method imvolving pattern moves s
to take m univariate steps (often m=#n, 1f the-
re are # Varables in the problem) and take a
move m the direetion defined by
P . 2.1
The algorihm for m=un 15 defined by the bl-
oc diagram in Fig2. Blocks A and B of Fig2
imply the whole sequence of steps required to

determinc «* . scquence shall be treated later.

Il. Minimizing Steps : Quadratic
interpolation.

The procedutc determinming the step length

(x*

15 quile sunple if we choose quadratic inter-
polation.

Although the cubic mterpolation 1 sometimes
more accurate, we will consider only quadratic
mterpelation  Copsider any vector S, and the
move prescripiion

X X,ias, 3.1
where, 1if « 18 considered a varable, the locus
of X for a range of values of @ 15 a straight
line. Substituting this formally mto F(X)., we
obtain

F(X) - F(X,+aS)=F(a) (3.2)
Since the obfective funclion F can be conside-
red a funclion of « alone (X, and S, are con-

sidered fixed). We seck here the value of « w-

F(X,+as,)

=)
R
*
R

Fig. 3

hich mimimizes F{r), Note that this value, denoted
by «*, docs not produce the global minmum of
F unless the line X=X+ S, contains the global
minimum point.

With this concept, the problem of minumzi-
ng F(X) can be reduced to a succession of 1-
dimensional mimmzation problem regardless of
the dimensionality of X, If F 15 a simple expl-
it function of X, eq. (3.1) can be written dire-
ctly in terms of the varable o, the quantity
a* can be computed exactly. However, 1n pr-
actice we rarely have the good fortune to carry
out the operation and must usually resort to
numerical means for finding a*

Consider approxamating the function F(a) by
a function H(a) which has an easily determined
minmmum point.

The simplest one-variable function posses-

sing a mimmum 1s the quadratie

H(a)—a-+batcal (3.3)
the minimum of which occurs where
dH _
_d(t__b+2ca—0 (3. 4)
or a*‘:—i (3.5)
2c :

The constants & and ¢ for the approximating
quadratic (a 16 not needed) can be determined
by sampling the function at three different «
values a1, a2 and as and solving the equations.

J1—a Fbay+ea)®
fa - @+ bag+can®
fa=a+baz+cas

Where f) denotes the valuc of F(a), etc. If
we use 0, ¢ and 2 for ai, as, and as,

(3.6)

where
t 15 a preselected trial step, eq.s(8.6) are part-
wularly easy o solve and we can save one fu-
netion evaluation. With this choice, eq.s(3.6)

become
fi—e
Sfe—a+bt+et? 3.7
Sfa=a+2bt+4ct?
From these we obtan
a—f
b= @3.8)
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= fatfi-2f
= P
¥oms _4}_c2_3f1-'f3
and oo 4fz—2fs—2f1t (.9 Akeo
For «* to correspond to a minimum, 1t must e e,
satisfy P T
o?H 7 S— M
dat LY:(I*>0 (3.10) I E
The case in which H 18 quadratic requires ' !
C>0, or | J
fal fulo2fe (3.10) - i |
This means that the value of f» must be bel- d <
ow the line connecling fi and fa. (scc fig 4) Fig. 4
Enter
|
Compute initial #
J1—=F(0)
J=F()
foT true False | f=F
v T
S—F(2) farf tet/2
F=F®
alsel ;o
true ,
Sfa—f true
Sof
- ar=A=3h—fs
4fu_2f3_2f]
Exit

12—
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A scheme for cnsuring that cq. (3.11) is sati-
sfied and that th¢ mimmum les in the mterval
0.Ja~2{ 15 as follows:

1. Choose an mitial value for f based on pr-
cvious 1terations or other mformation regarding
a reasonable value for the step length, Ideally
t would he on the order of «*

2. Compute F(&)

3. If FUO™FO)=f, then set fi=F(), Cut
f1n half, and repeat step 2
f2—F(t), double ¢, and repeal siep 2.

4. When a value / has been obtamed such
that fe-_f1 and fi f.
e, (3.9)

The logic for the quadratic interpnlation alg-

Otherwise set

», compute «* according to

orithm deseribed above 18 given in the flow

diagram shown in Fig 5

. Brief Review of Zangwill's
theory.

So far we have discussed on pattern move
which shall be ba-

nonhnear programming, and

and quadratic interpolation,
sic Lools for our
now we shall examine the fundamental theory
for nenlinear programming. The problem is to

maximze f(X) (4.1)
subject to the constraints
g,(X)=0 7 1,---,m (4.2)
g.(X)=0 : om'+1, e, om (4.3)

where F(+) and g,(-) arc rcal valued functions
defined on £7,
,X,) is a pomt in 7. A pomnt x* which solve
(4.1),(4,2) and (4.3) 15 called an optimal point,
Tet
S={X|g/(X)=0, ¢ -1,--,
i=m'+1,-mh.

Fuclidean 7 space, and X (X,

m . g (X)=0,

S 18 called the feasible set or feasible region,
Define the real valued function
P(X,n)=f(x) FrLig(x)) (4.4)
where 7 _-0 L(0) is a loss function which will

be defined below.
Put [y)'=]y| =1, m (4.5)
[y,]+=—m1n(,y,,03 1--m’+1, m
Lop=L+(t50 {201 Byiss
where y 1s a m component vector.
Note that for 220, P(X,r)=f(x) if XES,
and P(X,r) Jf(x) for X&Z8§ 4.7)
The hastc steps 1n the algorithm can easily
be stated.
Consider an ncreasing **non-negative seque-

(4.6)

nce of scalars {7} | where hm rf—— oo, For
k=0

each % let

P(X*r%) ZI?aXP(X, r*) (4.8)
where X* 13 the X which gives the unconstrai-
ned maximum of P(X,r?). Under reasonable
assumptions, the maximizing X* will exist and
the scquence {X*}y-, will have a convergent
subscquence,

Let Z be the Iimit of such a convergent seq-
ucnce, The pair Z, f(x) will be an optimal se-
lection to the nonlinear programng and furt-
hermore,

];1111 f(X’?)szjr:P PCXE D =f(x) (4.9

(See references 7 and a for rigorous Proofs)
V. The Algorithm

The penalty function can be classified into
two categories; exterior penalty function and
interior  penalty function. But the latter has a
mumber of computafional and egmneering adva-
ntages. So we will consider the interior penalty
function mainly.

The most commonly used function of this

soril 1s

#x, r)= F(x)+r R - (5.1)

1 g; (x>

Where F is to be mlmmlzed over all X sati-
sfying £,(X) =0
7j=1, - m.

* Hi= onginal paper 1s Lu maximize a functon, but thi can be casily modified (o a problem to minumix a functi-

on. The details will be omitted here,

#* |n mimmiang problems 7% sequence s 4 decreasing non negalive one where Iim #2——0.

50
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r will take deercasing non-negative sequence
-

1
of real number the penalty term 320 ———
P y T8 X)

18 added to the eriginal ebjective function F(X)
to prohihit the scquence of X,'s gomng outside
the feasible region. The effect of penalty fun-
ction 15 shown m fig 6, for one dimensional
casc.

The Algorithm for this casc s

1. Given a starting point Xo satisfying all
£,(X)™0 and an mmnal valuc for ., mmmsze
¢ to obtain X,.

2. Cheek for convergence of X, to the opti-
mum.
3. If the convergence criterion 1s not satisfied,

reduce 7 by r«—rc, where ¢<1,

Start

Choose Values
for r and X,

from Xo

Minimize ¢(x, #)

Check for
Convergence

r—cr

- 1 F(x)

il
P
{0 ..% 1
| '3 MR Te)
[ i@
! A-true Optimums

Initialize
Minimizer and
generate X,

— 14—

Fig. 7

--------- ol
a* A X
£>0 g -0 £€<0
Fig. 6
Terminate
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4. Compuie a new starting point usually the
last optimized pomnt of former sequence for the
minimization, initialize the mimimization algori-
thm, and repecat from step 1.

The logic diagram for this algorithm is sho-
wn in fig7

But, if we follow the logic depicted in fig7
for n-varmable function, for cach r say 7y, it is
reasonable that we must take » step, that is,
# times of computing, and for 7., » step etc.

Start

X

So for a s Sequence of r, we compute ns ti-
mes, and this would be a large number if the
convergence criterion is not satisfied.

Hence there ariscs a motive for modifying this
method. each n

step forms a cycle and this cycle continues un-

In pattern move approach,

til a reasonable convergence criterion isg satisf-
jed.

If we reduce the value of r at each cycle,
the computing step will be greatly reduced.

Initialize Sg 1o be

coordinate unit vectors

g=—1,2 weeuee N
(]
Select @* to minimize
X‘——“X * -
$(X+aSy) - a7y YeoX
g=1
Truc
i
False Se—X—¥
Select a* heck~True |
1 or convergence Terminate b+ Exitl]
— *
X—X+a*s, False
1 recr
q—q-+1
Find a* to
minimize
dlx+aSy)
1
| X—X+as, |
SN:Sq
Sq““Sq-H_
g+1,2, -0, N—1,

Fig. 8
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The algorithm based upon this idea 1s

1. Given a starting point Xo 1n feasible regi-
on, and an imtal value of 7, Minimize ¢(X,7)
according to pattern move just one cycle.

2, reduce r and begin second cycle

3. check for convergence and if satisfactory
terminate

4, 1f step 3 15 not satisfactory go to step 2.
The logic diagram [or this algorithm 13 shown
m fig 8

. Other Problems

1. Convergence criteria

One of the perenmial problems (n munmmzati-
on 15 the termimation of the proccss.

A simple criterion 18 to compute the relative
difference

[Faolr,-1) = Fme(r,))
[ Fon(7,)]

and stop when ths value drops below a pre-

i=

scribed value,
An cqually appcaling criterien for convergence
15 Lo compute
A:X’H(rl_]>_X\l(ri>
where X () means mimimal point of (X, r,)
under fixed #,, and then compare the norm of

4 with a small number e.
.
or [ =132 J%) ¢
J=1

Where 4, is the 7-#2 component of 4.

Another methed 15 to compute the penalty
lerin al the mmimmum pomt
7 oL e
g (XD amaey

But this method must be carefully prigram-
nied lest 7, should fall down iteo rapudly.

2. Startmg Point

In engineermg problems we can usually find
the teastble pont, bul when the problem cons-
idered 15 compheated, 1t wnot easy to find a
feastble point Xy

Supprse we sclected o pomnt Xo which satisfics
g,(Xe)_0, for 3 1,2, - p, and g£,(X0) 0 for
J=p=1, = ,m.

Q. Young Cin .

Take k(k=={p+1, ,m}) for which the g.(Xe)
15 severcly violated, and we temporardy set
the g,(X) as the objective function to be max-
mmized. And so the problem 15 that

Find  g«(X)—max.
g,(X)=0 j=L2, » ., p
g, (X)—g,(X)20 j=p+1, - . n.

When this process 18 finished, at least one
constraint je satisfied besdes the formetly
established ones. And this process 1s contmued
until all the copstranits are sausfed.

3. Initial valuc of 7 and reductizn rafio.

Although the matter of sclecting an imtial
value 7 has been discussed n the Literaturc'?,
the task 18 still mamnly an art, ard the reduct-
ion ratio ¢ can assume a value hetween 0 and
1.

Another approach for reducing # 15 L2 take
cxpenentially deereasing 7., that 18

1, =re""
where 7 can be either 7>1, or 7 L, according
to the nature of the problem. If 7 18 large, 7,
will converge Lo zero rapidly wineh will nullify
the effect of penalty term bui speeds up the
process nside the feasible vegrm. 107 s small,
the penalty term will remain as an umenotable
part and the process will take a much longer

time.
. Conclusions

S0 far we have discussed the partorn move,
theoretical hasis for SUMT and {mally our alg-
orithm. 1f. for a fixed #, the numhu of cycles
of the pattern move s s and we have L redu-
ce 7 k-limes, the steps of X, will take As tunes,
But 1 our algorithm, by chunt:.mg 7 appropri-
ately, the steps of X, can be reduced to § steps
only.

This characteristic will be moic prwerfully
apphed for the functions with (Ji-behavior and

many varmbles as in computation of E L. D,
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