UIT Report Vol. 11, No.2, pp.175~178, 1980

APy ALl A28 pp. 175~178, 1980

A Study on the Linear Estimation of Scale and

Location Parameters by Order Statistics

Yeo, Sung-Chil
Dept. of Industrial Engineering
(Received June 10, 1980)

{Abstract)

In many cases,

unbiased estimalors which are linear combinations of order statistics are best

linear unbiased estimators. But some estimators which are linear combinations of order statistics

mayv not be the best unbiased estimators.

Although all estimators of linear combinations of order statistics are less efficient than the best

unbiased estimator, there are many advantages in the use of such linear estimators.

A better linear estimator. based on the order statistics, may be obtained by the generalized least-

squares estimation procedure.
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1. Intreduction

In many cases, a linear combination ol order
statistics may yield the best linear unbased
estimator (BLUE). For example, the sample
mean 18 2 particular linear combination of order
statistics. In the case of a rectangular distribu-
tion R(8y,8s), —oo [0 {2< 00, the BLUE’s of 6,
and #; are linear combinations of the cxteme stati-
stics X ¢y and X .

order statistics are not in many other cases best

Whale linear combinations of

unhased estimators. This is the case, for in-

stance, when we are estimating the standard
deviation o of a normal distribution N(g,d?%).
The best unbiased estimator(BUE) of ¢, based
, Xu(n>2), 18

3,=C [‘\il'(X'—X)Q] 12 where C,=1"[(#—1)/2]
~ 21 (a/2).

In the normal case, an unbiased estimator of

on a sample X, -+

¢ can be obtained faster as a simple function of
the range., which 15 7,=(Xnw—Xw)/d. where
d.(n>>2) is the expectation of the range of a
random sample from the standard normal
distribution N(0, 1). This estimator 1s in common

use especially 1n the field of quality control.
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The estimator 7. 15 less efficient (large variance)
than ¢, and its efficiency declines rapidly as
the sample size n increases. This is due to the
fact that @, is not a function of the sufficient
statistics(37_, X,, X7, X,?), and the amount of
information 1n the sample that it discards 1s
considerable. A better linear estimator of o,
based on the order statistics, may be obtained
by a method which will be discussed presently.

Although all estimators of ¢ which are linear
combinations of order statistics are less efficient
than the best unbiased estimator &,, there are
many advantages in the use of such linear
estimators, especially in large sample situations.
A good discussion of the usefulness of such less
efficient estimators 1s provided by Mosteller [6].

In this paper we give the results of the
generalized least-squares estimation procedure
for estimating scale and location parameters by
linear combinations of order statistics, and
present a simple example of such a hnear estima-

tion for the case of an exponential distribution.

. The Generalized Leasi-Squares
Estimation by Order Statistics

Let # be a class distributions depending on
scale and location parameters only. That is,
every distribution function i # 1s of the
form F[(x—p/s], —ooluoo, 0< o< oo, The
quantity u designates the location parameter
and ¢ the scale parameter. The distribution
function of the standardized random variable
U=(X—u)/o 18 F(g), which 1s of a known
functional form. Let X1)<X@ <X <X be
the order statistics and U, =(X, —u)/o. Basic
quantities for the estimation of u and o are
the parameters

a,=EWU ), r=1,2,-,nm,
v,,=Cov(Un,U), 7,5=1,2,-, 1.
Let a@=(uy, an), V=Iv,5;7,5=1,2---,] be the

covariance matrix and X'=(X ), -+, X)), where

v,;s=0s, by symmetry of V. Then we have the
linear model

X=lptac-te
=(1, @) (jj) ‘e 1
where1,,=(1,1,--+,1), €=(&1+, &), E(e)=0and
E(ee’)=Vo2 Here we assume that V 15 positive
defimite (1t is always non-negative definite).
Then there exists a nonsingular %Xz matrix P
such that PP’=V. If we pre-multiply both
sides of the model (2.1) by a matrix P~!, then
the model (2.1) is tranformed 1into the model
such that
X =101 a*c -ex®
=(1, a*)( . >+e*
,where E(e*)=0 and E(e*e*’)=q?]

Hence the model(2.2) satisfies the usual ass-

(2.2)

umptions of an ordinary least-squares model.
Now 1f we apply the least-squares estimation
procedures to the transformed model (2.2), then
we have the least-squares estimator of (p, o)
such that

()= [1,/1/-1'” 1,.’V‘1a1‘1 [mfﬂx ]
o) T laV, «Voal LaVox
1 ((@V1)1/ VX)) —(a’V-1)(a’V 1 X)
& [(I/V‘lln)(a’V‘ll,,)—(ln’V‘la)(l,,'V‘lX)J
,where é=(1,V-11))(a«’'V'a)—(1,/V 'a)

If we let

D=L vl a—al, V-]

s

,then the least-squares estimators of # and o are
fi=—a’DX
6=1,DX
Since the covariance matrix Y of the estimator
(&, 06) 18
g L"I”’V"l,, 1,.’V‘Ia:]‘1
1, V1iae a'V'a
[ Vi
- L~1,1'V“a
we see that

Var(f)=

—1,,’V‘1a:I
1,V 11,

s

a?

(2’V ),

=
s

o2

Var(@)=—7(1/V 1),

N

(1) Here we have set X*=P-'X, 1L,*=P-11,, a*=P g and e*=P"'le
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and Cov(fi,d)= ~——052—(1,,’V“a).

According to the Gauss-Markov theorem, we
conclude that the estimators are the best lincar

combinations of the order statistics.
I. An Illustrative Example
Let X, Xs,---, X, be independent identically

distributed (4.7.d.) random variables having a

2-parameter exponential distribution, that is,
0, ifx g,
F( r—u >:
a

where —oo<{u<(co, 0o <oo; u designates the

_ [ X8 5 >
1 expy - }lf x=>p,

location parameter and ¢ the scale parameter.
Let X3<<--+<XX» be the order statistics of the
given sample and U =(X ¢ —u)/o.

We prove lirst that

4

ay=EU )= (n—e-+1), r=1,2,--,1
1=1
G0
and then establish that, for all 1<r (s i,

Var(U ) =Cov(U .U )= = (n—i+ D",
(3.2)

Consider the exponential distribution F(x)=
1—e¢* for ¥>>0. Suppose that the random varia-
ble Z, having the distribution F(x), respresents
an ohservation on the lifetime of a certain app-
aratus. Let Zy, -, Z, be 1.4.d. random variables,
representing the lifetime of # such apparatuses.
Let U, U, Uwm be the corresponding order
statistics, representing the time of first failure,
second failure, and so on. Since Z1, -+, Z, are 2. 4.
d., having a distribution F(x), the distribution
function of the first failure time Uy 1s F(ux)
and hence EUw)=1/r and Var(Uy)=1/n%

Since the stochastic process governing the fai-
lure time ponts is a Poisson process with a mean
of one failure per time unit, the distribution of
U5—U ) is again exponential with the expec-
tation of

EUp~Uu)=n—171,

(2) See (raymil[3] pp. 168—169.

and

Var(Ue—Ua)=(nm—1373,
Furthermore, since Uy and U@y —Uq, are ind-
ependent we have

EUe)=n"1+G—1)71,
and

Var(Ug)=n"2+(n—1)"2

In a similar manner (3.1) and the {irst part

of (3.2) are proven for any r=1, -, #. Finally,
to prove that Cov(U»,Uy)=Var(U,) for all
r=s, we wnte Uwyw=Uun+Uy-—-U). Since
the increment U)—U, is independent of U,

the required result is proven. Thus
a:(ﬂ"l, n‘1+(n~1)“1, ey \“_'(n__z‘,i_l)-l’ e
1=1

);'j(nqu)—l)

and
Vi1 Vet
V=] *» vova
. U

,where v,,=%7_ (n—¢-+1)"2 for all r<s, r=1,2,

«, 7, and v,5=v,, Since the inverse of V is @

V—l
(n—1)ru- - (n—1)*
—(n=1) (n=2)} (n—1)*  —(n--2)*
— —Gr=2y el L
O ‘k\‘\\:\‘\\~‘\7\\\ -
RSN

we have that 1,/V-1=(% 0V,-1) and @' V-1=1..
From this fact we see that
‘5:(1,/V‘11n)(a’V“af)—(1,,’V-1a)2

=2(n—1) and
D=t (V)@ V)~ (V) (1, VD)
o 0 n?. "'722 ‘}
D S ‘
T | " O |
(—#? J
Thus we obtain that
e X X —X
H= aDX—“ n—1
o=1,Dx =25 =X,
" n—1

The covariance matrix Y of the estimators £
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and ¢ 18
o o [ aV-'la ~1/V“a:1
T eVt 1V,
R T S
o #n—1) n(n—1)
=g
=1 L
n(n—1) n—1
Hence we have that
AN g2 7 5o 7>
Var(u)-~—-—n(n_1). Var(é) pryr i
. Dy T
and Cov(f,6)= =)

In the above example we see that (X, X)
1s a minimal sufficient statistic for the 2-para-
meter exponential family. ® Hence by the Rao-
Blackwell theorem, ft and ¢ are not only BLUE’s
but also BUFE’s.

F. Conclusion

We have applied the least-squares theory for
estimating scale and location parameters by
linear combinations of order statistics, The
advantage of estimators based on order statistics
is especially great in situations where trimming
or censoring of observations in the extremes is
part of the experimental model (e.g., 1n life
testing experiments). The efficiency of such
estimation procedures, when the distributions

are normal, exponential, gamma, rectangular,

~
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acks[8) pp. 32,
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etc., has been studied and discussed by Gree-

nberg and Sarhan(4].
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