Derivation of the Tensor-Products of C^* -algebras

Jang, Sun-Young Dept. of Mathematics (Received April 26, 1983)

(Abstract)

Let A and B be C^* -algebras. If A or B has outer derivations, $A \otimes B$ has outer derivations. Among the case of A and B with only inner derivations, we are going to show that if A is a Von Neuman algebra and B is a commutative algebra, then every derivation of $A \otimes B$ is inner.

C^* -대수들의 텐서적에서의 미분

장 선 영 수 학 과 (1983, 4,26 점수)

〈요 약〉

 $A \otimes B$ 가 C^* -대수일 때, A 혹은 B가 외부미분(outer derivation)을 갖으면 $A \otimes B$ 는 외부 미분을 갖는다. 이 논문에서는 A, B가 모두 대부미분(inner derivation)만을 갖는 경우 중 A가 Von Neumann 대수이고 B가 가학 C^* -대수일 때 $A \otimes B$ 가 내부미분마을 갖음을 보였다.

I. Introduction

A derivation of a C^* -algebras A is a linear map D on A satisfying D(ab) = D(a)b + aD(b) for all a, $b \in A$. Every derivation of A is norm continuous ((1)) and ultra weakly continuous in any representation of the C^* -algebra. Each norm continuous one parameter group of automorphism of A is of the form

$$A \Longrightarrow a \cdots \rightarrow \exp(tD)(a)$$

where D is a derivation of A.

If there exists an element $b \in A$ that D(a) = ab - ba for all $a \in A$, then D is called an inner derivation. The question of which C^* -algebras have only inner derivation has been considered by many authors. Sakai showed that W^* -algebra, uniformly hyperfinite C^* -algebra and

simple C^* -algebras with unit have only inner derivations ((5), (6), (7)). The case of separable C^* -algebra has been completely by G, A. Elliot, Pederson and Kadison ((2), (3)).

This note represents the derivation of the C^* -tensor product of C^* -algebras.

I. Derivations on the von Neumann algebras

Let L(A) be the Banach space of the bounded linear operators on a C^* -algebra A and $\Delta(A)$ be the space of derivations on A. Hence $\Delta(A)$ is the subset of L(A).

Definition 2.1. Let D_s be the inner derivation of A_s . We define the norm of D_s as follows;

 $||D_x|| = \sup\{||xa - ax|| : a \in A \text{ and } ||a|| = 1\}.$

Lemma 2.2. Let A be a von Neumann algebra and X a point-norm compact subset of $\Delta(A)$. Then X is norm compact in L(A).

Proof. Suppose that A has a von Neumann subalgebra invariant under X with a countable weak* dense subset. We assume that X is not norm compact. By the point-norm compactness of X, the pointwise norm sequence of X is uniformly convergent. Hence X is norm closed in L(A) and by the completeness of L(A), it is complete. Since X is not norm compact, X can't be totally bounded. So there exist an \$>0 and a sequence of derivations $\{D_i\}\subset X$ such that $||D_i - D_j|| > \varepsilon$ for all $i \neq j$. We may choose an element $a_{i,j} \in A$ satisfying $\|a_{i,j}\| < 1$ and $\|D_i - C_i\|$ $|D_i|a_{ij}| > \varepsilon$ for each $i, j=1, 2, \cdots (i \neq j)$. Let C be the *-algebra over the rationals of all polynomials in the variables $\{D_n^k(a_{ij})\}$, where $i, j, n=1, 2, \cdots (i \neq j)$ and $k=0, 1 \cdots$. Cleary, C is countable and invariant under each D_i . Let \tilde{C} be the von Neumann subalgebra of A generated by C. Then $D_{i}(\tilde{C})\subset \tilde{C}$ for all D_{i} and \tilde{C} has countable weak* dense subset. This contradicts $\|(D_i - D_j)a_{ij}\| > \varepsilon$ for all $i \neq j$.

Theorem 2.3. Let A be a von Neumann algebra and B be a commutative C^* algebra with unit. Then $A \otimes B$ has only inner derivations.

Proof. We may regard $A \otimes B$ as $C(\Omega, A)$, the space of continuous A-valued function on the spectrum space Ω of B. Let D be a derivation of $A \otimes B$. It determines a derivation $D_w(a) = D(\alpha)(w)$, where α is the constant function in $C(\Omega, A)$ whose value is a. We consider the map $\theta: w \to D_w$ on Ω . By the norm continuity of derivations, θ is continuous for

the point-norm topology on L(A). Sine Ω is compact, $\{D_w\}_{w\in\Omega}$ is point norm compact. And by Lemma 2.2, $\{D_w\}_{w\in\Omega}$ is norm compact, so point-norm and norm topology agree on $\{D_w\}_{w\in\Omega}$.

Futher, we represent the map $\Phi: a \longrightarrow ad(a)$ from A/Z(A) to A(A), whose Z(A) is the center of A. Since every derivation of von Neumann algebra is inner ((4)), it is onto. By (8, theorem 5) Φ is bicontinuous, so it is homeomorphism. Hence $\Phi^{-1}\theta$ is a continuous map Ψ on Ω to A/Z(A). By selection theorem (3), Ψ has a selection Γ in $C(\Omega, A)$ and cleary $D = ad(\Gamma)$.

Reference

- J. Diximer, Von Neumann algebra, North-Holland Publishing Company, 1981.
- GA. Elliot, Some C*-algebras with outer derivation, III, Ann. of Math. 106(1977), 121-143.
- E. Michael, Continuous selection, I, Ann. of Math. 63(1956), 361-381.
- G.K. Pederson and C.A. Akeman, Central sequence and inner derivations of separable C*-algebra, Amer. J. Math, vol. 101(1979), 1047~1061.
- S. Sakai, Derivation of W*-algebras, Ann. of Math 83 (1966), 287~293.
- S. Saki, Derivation of simple C*-algebras,
 J. Funct. Anal. (1968), 202~206.
- S. Sakai, Derivation of simple C*-algebras, Bull. Soc. Math. France, 99(1971), 259-263.
- J.G. Stampell, The norm of a derivation, Pacific J. Mach 33(1970), 737-747.