2% A3 =53 A228 A2% pp. 87105, 1991, g4zt
Journal of Engineering Research Vol, 22, No. 2, pp., 87--105, 1991,
University of Ulsan,

oA 23 Zeg b £ EdAd XelE A
2Ael) A4 A% o HE A

oo A
AAA 2433}

2 b

ol & 9AY ¥ ©@A 240 44 AL A HEHn GoA 2A5de] oA
7 23 2=(18, IX, 8, SIX a2z X)& A&ste §4dM9 o4 =dud el
geiAel RAYH FAE R dndEE ANGT Z Ao st o) 2 EY
B2 239 WAL AYstue AAL MU 23 878 AT AP FE&S
HBE §% 718 A4e H/W-TWBGeh= M2 Agadze] ddd Sl of 2=
o 7kA w2 FA4E FIAR AN dZI2g2E didste] A8 o Ak madE
ol P2 WEUE s, 2Ea BB AL 2 2 EJ3EE A 3 8
Aol A HAA HE F HE SnFL AANGY. felo] ngy FE2Yel ¢ 8
T 5L oW ZAYHEL o= ERAHL] Er|glolk sdE 5 Ut

A Continuous Deadlock Detection and Resolution
Algorithm for Sequential Transaction Processing with
Multiple Lock Modes

Park, Young-Chul
Department of Computer Science

{Abstract)

An algorithm for deadlock detection and resolution in the sequential

* This research is supported in part by a grant from Asan Foundation

2 uteg #

transaction processing is presented, where two-phase locking is assumed for
ensuring serializability, the lock requests obey the granularity locking
protocol and each granule may be locked in one of the following lock modes:
IS, IX, 8, SIX and X. For each object, lock requests are honored according
to a first-come-first-served basis except for lock conversions, The basic idea
for the deadlock detection and resolution is in the construction of a new
directed graph called a Holder/Waiter-Transaction Waited-By Graph. We
establish guidelines for the identification of a victim in a deadlock cycle and
propose a resolution algorithm whose time and space requirements are
resonable and its solution is near optimal. In addition, our algorithm allows
us to resolve some deadlocks without aborting any transaction.

Agrawal et al, (1) presented a linear

1, Introduction time and space algorithm with

respect to the number of transactions

In conventional transaction mode, a considering only exclusive lock modes
transaction is defined as an atomic (X locks). They extended the algorithm
execution of a program that by allowing shared lock modes(S locks)
manipulates the database by means as well as X locks., However, to
of read and write operations, thereby maintain the same time and space
transforms the database from one complexity, even when a writer T; is
consistent state to another consistent blocked by multiple readers, only one
state, In this environment, each of the readers, say T; is selected to
transaction requests at most one lock represent a wait-for relationship T—
at a time and when a request cannot T; in TWFG, Because of this, detection

be granted immediately, the transaction
is blocked until either the request is
granted or the transaction itself is
aborted by some reason(deadlock or
site failure), Deadlocks are usually
characterized in terms of a transaction
wait-for graph(TWFG), The TWFG is
a directed graph where each vertex
represents a transaction;each edge of
the form T/—-7; in TWFG means that
transaction Ti is waiting for the
completion of T; It has been shown

of some deadlocks can be delayed and
some transaction may hold resources
or wait for other transactions
unnecessarily even they might be
aborted later. in [2) and [3), they
permit each transaction to have
multiple wait-for edges but they did
not show the data structure for the
TWFG construction, explain how to
detect deadlock cycles and how
minimal cost victim can be selected
for a found cycle,

that there exists a deadlock if and Jiang (11) proposed an algorithm to
only if there is a cycle in TWFG(9),

o) 23 RoE S} £3 EAA4 AAE Y 3
DAL d&H AE 3 HE Iy

cure those problems in Agrawal et al,
(1) while supporting the same lock
modes. The TWFG, in his algorithm,
is represented by a (n+l)*n-matrix
and O(e) time is required for finding
a cycle and listing all participators in
the cycle, where n is the number of
transactions and e is the number of
wait-for relationships in the graph,
However, in general, when a deadlock
is involved in multiple cycles and each
cycle has a different cycle length, to
list all participators in each cycle, in
the worst case, he showed that it
works in an exponential function of
the number of transactions: O(3r/3),
Elmagarmid(6) developed an algorithm
for multiple outstanding lock requests
with the same lock modes as the
above two algorithms, Because a
special case of the multiple outstanding
lock requests can be the conventional
transaction mode, through the slight
modification, his algorithm can be
compared to the others, Instead of
TWFGQG, in his algorithm, two tables
are maintained: T-table and R-Table,
The T-table keeps all the blocked
transactions with their requesting
resources and requesting lock modes,
R-table keeps all the resources which
are held by some transactions by
recording holding transactions with
their requesting lock modes, Compared
to the above two algorithms, his one
works in O(n+e) space and time
complexity, where n is the number of
blocked transactions and e is the
number of edges in T-table and R-
table, However, by aborting the
current blocker whenever there is a

deadlock, victim selection is so simple
but far from the optimal(2). Moreover,
because each resource to be locked
does not contain its own queue of
blocked requests, whenever all the
holders of a resource are completed,
the whole T-table has to be searched
to schedule some waiting requests
and that scheduling might become
unfair and contains the possibility of
live-lock (4],

In contrast to the above listed
schemes, the algorithm proposed here
permits lock conversions, allows
multiple lock modes, detects deadlocks
whenever they occur and gives a
victim selection mechanism which is
sub-optimal without sacrificing the
time and space complexity, The
remainder of this paper is organized
as follows, In Section 2, the underlying
transaction model that is examined in
this paper is explained. A storage
efficient deadlock detection graph is
proposed and its characteristics are
shown is Section 3. In Section 4, the
basic deadlock resolution strategy
used in our scheme is described and
our deadlock detection and resolution
algorthm ig presented. Preliminary
simulation results are included in
Section 5, Section 6 gives some
concluding remarks,

2. Underlying Transaction
Management

In our model of the database
system, a transaction is a sequence
of read, write operations and several
transactions can run concurrently,

For ensuring serializability,
model takes strict two-phase locking
{43, (5), which requires that a
transaction has to lock a resource
before it accesses the resource and all
locks of a transaction are held until

our

the transaction terminates, We allow
multiple lock modes(IS, 1X, S, SIX
and X locks) (4], (8), (9) and our model
is upward compatible with the
multiple granularity locking(MGL)
protocol(8)(9) in the sense that it
integrated without changes into a
system that supports a resource

NL| IS | IX| SIX | 8 | X
NL t t t t t t
I8 t t t t t f
Xt |t | v]| £] f ¢
sIX| ¢ | ¢ | £] £ | £ ¢
sl el el el ¢ | ¢t
X t f f f f f
Table. 1 Compatibility Matrix |

Sometimes, a transaction which
holdes a resource might re-request
the same resource to convert a lock
from the granted mode to a more
We call such re-

requests lock conversions, When a

exclusive mode,

request is found to be a conversion,
the granted mode of the requestor
and the newly requested mode are
used to compute the new mode, by
using a conversion matrix, say Conv,
which is represented in Table 2, with
the granted mode as row and the
requested mode as column, For
example, when a transaction hold IX
lock on a resource and re-requests the

utod A

hierarchy.

We say that two lock requests for
the same resource by two different
transactions are compatible if they
can be granted concurrently, The
compatibility matrix, say Comp, for
the given lock modes is represented
in Table 1, where NL means No Lock
and Comp(lockl, lock2) is true if
lockl and lock2 are compatible;
otherwise, it is false, For example,
Comp(8, I8) is true but Comp(IiX,
SIX) is false,

NL | IS IX | 8SIX 5 X
NL | NL | IS IX | SIX 38 X
I8 s | IS IX | SIX 8 X
IX | IX | IX | IX| SIX | 81X | X
SIX | s1x | 8IX | 8IX| SIX {sSIX| X
8 S| 8 I8Xypg8Ix; 5| X
X | x| X X{ x | x| X
Table, 2 Conversion Matrix

resource with S lock, the transaction
eventually wants to hold SIX lock for
the resource which is Conv{IX, S).
For scheduling lock requests in a
first-in-first-out basis and to keep
track of the requests of each transaction,
the lock manager maintains a lock
table which holds the following
information for each resource to be
locked: a holder list, a queue and a
total mode of the holders, Each
holder in a holder list takes three
attributes: a transaction identifier
(tid), a granted mode (gm) and a
blocked mode (bm), 1i.e, (tid, gm,bm);
each request in a queue takes two

o] 23 Brg A €

wEFee] A&7

attributes: a transaction identifier

(tid) and a blocked lock mode (bm),

i e, (tid, bm); and the total mode of

the holder, assuming that n requests

are in the holder list, where each one

takes(Ti, gmi, bmi) and 1<i<n, is

defined as follows: Conv(---Conv(Conv
(gmi, bmi), gms2), - bmn),

When a request to a resource is
received, whether the requestor is
new one for the resource or that
request is lock conversion is checked
first, In the case of a new requestor
for the resource, the queue status is
checked. If the queue is not empty,
the request is not granted and
appended to the end of theé queue, If
the queue is empty and the requested
mode is compatible with the total
mode of the resource, then the
request is added to the holder list,
the total mode is replaced by Conv
(current total mode, requested mode)
and the request granted.
Otherwise, the request is appended to

is

the queue. When a request is found
to be a conversion, the new mode is
computed by Conv(granted mode,
if it is
compatible with the granted mode of
all the other holders, the granted
mode of the requestor becomes the
the total mode of the
resource is recomputed as Conv
(current total mode, requested mode]
and the request is granted, Otherwise
the granted mode of the requestor
the blocked mode
is replaced by the new mode, the
total mode of the resource is changed
as before and the requestor is blocked

requested mode] and

new mode,

remains the same,

4 B
A& 4

A4% g AP
o

HE 7Y

until all the other granted modes are
compatible with the blocked mode of
the requestor,

For example, when two transactions
Ti and Tj hold IS and IX lock
respectively for a resource, the holder
list of the resource has entries of (Tj,
IS, NL) and (T IX, NL), and the
total mode is IX lock., Later, when
Ti re-requests the
resource with 8 lock, because the

transaction

new mode which T wants to hold for
the resource is S lock{Conv(IS,S))
and it is not compatible with the
granted mode of transaction Tj, this
request is blocked, the holder list of
the resource has entries of (T},1S,8)
and (T3IX,NL), and the total mode
of the resource becomes SIX, When
transaction Tk requests S lock for the
resource, because S and SIX are not
compatible, the request cannot be
granted and is appended to the queue
with (Tk, 8) if
transaction Tk requests IS lock and

entry, However,
the queue is empty, it is granted,
When two or more requests in a
holder list are blocked by lock
conversions, for the given lock modes
(IS,1X,8,8IX and X locks), the
following observation can be found,
Observation 1, For any two requests
which are blocked by lock conversions
in a holder list,
(Tj, gmj, bmyj),
1) if Comp(bmi bmj), any one of the
two requests can be scheduled in
the presence of another,

say (Ti, gmi, bmi) and

2) if Comp(bmi, gmj) and not Comp
(gmi, bmj), the request of Ti can
be scheduled before that of Tj but

the reverse is not possible, and
if not Comp(bmi, gm;) and not
Comp(bmj, gmi), any one of the
two requests cannot be scheduled
in the presence of another, i.e,
this is a kind of deadlock,
Based on QObservation 1, when a
conversion is blocked, the position of
the requestor, say(Ti, gmi, bmi), in the
holder list is rearranged according to

3)

the following upgrader positioning
rule(UPR):

1) If there are some requests whose
bm are not NL and are compatible
with bmi, put(Ti gmi bmi) right
before the first request among
them,

If UPR 1) cannot be applicable
and there are some requests
whose gm are compatible with
bm; and gm;i is not compatible
with the bm of them, put (T gmi,
bmi) right before the first request
among them,

If UPR 1) and 2) cannot be
applicable, put(Ti, gmi, bmi after
all requests whose bm are not Nl

3)

and before all requests whose bm
are NL,

When some holders are deleted from
the holder list, owing to UPR and by
putting all the blocked conversions
ahead of the non-blocked ones in a
holder list, checking whether some
blocked request can be granted can
start from the front of the holder list
down to the end of it and can stop
immediately when one cannot be
granted or a non-blocked one is
found, All the newly granted ones
are put after the blocked holders and

g

if the queue of the resource is not
empty, the queue is checked to grant
some requests from the first waiter,
Once the total mode of the resource
is compatible with the waiter's
requested mode, the request is added
to the holder list, the total mode is
replaced by Conv(current total mode,
requested mode), and the request is
granted, This continues until the
queue becomes empty or the total
mode of the resource is not compatible
with the waiter' s requested mode,

3. Graph Construction

In this section, we introduce a new
directed graph called a Holder/Waiter-
Trangaction Waited-By Graph(H/W-
TWRG). Each vertex of H/W-TWBG
is a transaction identifier and each
edge Ti—T; is labeled with H/W,
where the completion of transaction
T; is waited by transaction Tj and
either Ti is a holder of the resource
which T is waiting (H-label)
another waiter in the queue of the
Edges in H/W-
constructed by the

or

resource (W-label),

TWBG are

following edge construction rules

(ECR):

1) For every two requests in the
holder list of a resource, say(Tj
gmi, bmi) and (T}, gmj, bmj), where
(T, gmi, bmi) precedes(Tj, gmij, bm)),
if not Compl(gmi, bmj or not Comp
(bmi, bmj), then add edge Ti—T;
with H-label, and if not Comp
(gmy, bmj), then add an edge Tj—
Ti with H-label,

qdg 23 =3 713 £31 EA4AR ML g 948 17
Agele] A& HE 9D AR 7Y

2) For each request(Ti gmi, bmi) in
the holder list of a resource, find
the first request(Tj, bmj), if any,
in the queue of the resource
whose blocked mode bmj is not
compatible with either gmi or
bmi, and add an edge Ti—Tj with
H-label,

3) For every two requests, say(Ty,
bmi) and (Tj, bmj),
adjacent in the queue of a
resource and (T, bmi) precedes(T)
bmj), add an edge Ti—T; with W-
label,

Example 3.1, Assume that the
following is a part of the lock table:
R1({SIX): Holder((Th,IX, SIX) (T, IS,

S) (T5,I1X,NL) (T4, IS, NL))

Queue ((T5,1X) (Ts, S) (T7,1X))
According to UPR given in Section

2, the entry of Ti precedes that of T:

in the holder list and according to

ECR, H/W-TWBG which is related to

resource R1 is shown in Figure 3.1,

Note that T4 does not block any

request and T is not blocked by Th,

which are

H

@4@«@ ®
RER%;

Figure 3,1 H/W-TWBG for example 3,1

In H/W-TWBG, each H-labeled edge
is followed by a sequence (possibly
zero) of W-labeled edges. We call a
path which consists of one H-labeled
edge and all of its following W-

labeled edges, possibly empty, as a
Transaction Resource Request Path
(TRRP), by the way, it shows a
partial status of the holder list and
the queue of a resource, A cycle in
H/W-TWBG thus can be defined as a
cyclic sequence of two or more TRRPs
such that a cycle detection problem
can be transformed into finding those
TRRPs which constitute a cycle,

Example 3.2, Assume that the
following is a part of the lock table:

R1(X): Holder((T1,N,NL)) Queue
((Te,S) (T5,8) (T4, X)

R2(3): Holder((T4,S,NL) (T5,S,NL))
Queue ((Ts, X) (T7, X) (T1, S))

According to H/W-TWBG construction
rule, Figure 3.2 can be obtained,
where there are 3 TRRPs: TRRPi(Th,
T2, T3, Te), TRRP2(T4, Ts, T7, T1), and
TRRP3(T5, Te, T, T1). Among those,
TRRP: and TRRP2 constitute a cycle,

SLENG) e
.

Figure 3.2 H/W-TWBG for example 3.2

We now give the detailed data
structures for the implementation of
H/W-TWBG as well as the lock table
representation, Because those labels
used in H/W-TWBG are not explicitly
represented and some additional
variables are included in its data
representation, we will call the latter
TWBG to differentiate it from H/W-
TWBG, Lock-Table which has an
entry for each locked resource is an

array (0..M-1) of record with rid
(record identifier), tm(total mode),
queue(queue pointer), and holder
(holder 1list), Each holder of a
resource is represented by a record
with tid(transaction identifier), gm
(granted mode), bm(blocked mode),
and next(pointer to the next holder).
Each transaction has an integer value
between 1 and N as its identifier and
gets its entry in TWBG according to
its identifier, TWBG is an array of
size N and contains visit, ancestor,
pr(the position of the resource in the
Lock-Table),
current,

in-cycle, waited, and
The variable visit and
ancestor are used for the detection of
cycles in TWBG and are initialized to
0. During the search of a cycle, once
a vertex is probed, visit becomes
nonzero and ancestor keeps the
returning vertex value to be used in
the backtracking of a depth-first-
search(DFS) (7], The variable in-cycle
is set when the vertex is involved in
any cycle, the variable waited points
to the first edge incident to the
vertex and the variable current,
which initialized to waited,
indicates the next edge to be searched

is

Lock-Talble
0
1
« R[> [1[IX[SX]
M-1

vy A

in a vertex,

Each edge incident to a vertex is
represented by a record with lock (lock
mode), tid(transaction identifier), and
next(pointer to the next edge). The
edge T—Tj with H-label in H/W-
TWBG is represented as an edge (NI,
T) in TWBG{). waited. However, W-
labeled edges in H/W-TWBG are
implicitly represented at TWBG by
maintaining a queue of a resource as
follows: Let a resource, say Em, has
its entry in Lock-Table(k],

1) Lock-Table(k)., queue takes 0 or the
identifier of the first transaction to
be in the queue,

For each request(Tj, bmi) to be in

the queue, TWBGI(]. pr is set to

k and an edge (bmi () is put on

the list of TWBGI[i). waited,

However, if the request is followed

by another request, say(T), bm),

an edge(bmi, T) is put on the list
of TWBG(). waited. Actually,

this is the edge Ti—T, with W-

label in H/W-TWBG,

For example, for the given status

in Example 3.1, the corresponding

Lock-Table and TWBG are shown in

Figure 3.3,

8 23 Z=8 7R &3
DA A&H 4

FAA AMjE AP 9
2 HE 1Y

TWBG
1 Jofol-To 3 NL] 5 NL] 2
2 10]0]- |0 =" wNL[5[}——
300—0—~E::»MI__’_..NL2
4 o]ol|- |0 l=——T

= NL| 1
B R iE
=

1x o [=1

N

Figure 3,3 Lock-Table and TWBG for example 3,1

For maintaining the queue of a
resource easily, when multiple edges
are put on an entry of TWBG, the
W-labeled edge, if any, i.e. the edge
whose lock is not NL, is put at the
front of the list, Based on the
construction of Lock-Table and
TWBG, in the next section, our
deadlock detection and resolution
algorithm is presented,

4., Deadlock Detection and-
Resolution

In continuous deadlock detection
and resolution, whenever a lock
request can not be granted
immediately, the existence of a
deadlock is checked and resolved(9).
When a deadlock is found, abortion
of the current blocker might be a
reasonable solution if the size of
every transaction is so small(13).
Compared to its simplicity, if the size
of each transaction varies in large,
selection of victims may render a big
difference in database performance

and user s waiting time variance(2].
Another mechanism for deadlock
resolution is the so called one-cycle-
at-a-time(9), In this method,
whenever a found, a
transaction which has minimal cost
among those transactions involved in

cycle is

the cycle is selected as a victim and
aborted,

There can be several criteria for
deciding cost of each transaction, for
example, number of locks it holds,
statring time of it, the amount of
CPU and 1/0 time which it consumed
and so on (2),(3),(4). We assume
that the cost of each transaction is
determined by some combination of
the above methods and it is stored in
a cost-table such that Cost(Ti)
indicates the cost of transaction Ti
In this section, a continuous deadlock
detection and victim selection
mechanism without sacrificing the
time and space complexity is given,

Under the construction mechanism
of the deadlock detection graph,
called H/W-TWBG, because a cycle in
the graph can be defined as a cyclic

10

sequence of two or more TRRPs,
guidelines for the identification of
victims in a deadlock cycle can be
defined by the following observation,

Observation 2, Two consecutive
TRRP: in H/W-TWBG, say TRRP:i(T:
—+—T) and TRRP2(T++-—Tk) where
T; is blocked at resource Rx, can be
disconnected by the following TRRP
disconnection rules:

1) By aborting T;, TRRP: and TRRP:
are disconnected,

2) If the last edge of TRRP: is W-
labeled and the blocked mode of
Tj is compatible with the total
mode of resource Rx, let the set
of requests which precede the
request of T in the queue of
resource Rx and whose blocked
modes are not compatible with the
total mode of resource Rx be 8T,
By repositioning those requests in
ST right after that of Tj in the
queue, TRREP: and TRRP:2 are
disconnected,

For instance, the cycle in H/W-
TWBG in example 3.2 has two
TRRPs: one with (T, Te, T3, T4) and
the other with(Ty, Ts, T%, T1). Tt and
T4 are the tail transactions of the
starting edge of each TRRP. According
to Rule-1, by aborting either Ti or Tu,
the deadlock can be resolved,
Moreover, because the total mode of
resource Rz is compatible with the
blocked mode of transaction T! at
resource Rz Rule-2 can be applied
such that ST becomes ((Ts, X), (T7, X)i
and by repositioning (T%,X) and (Tv,
X) right after (T1,S) in the queué,
the request of Ti for resource Rz can

be granted and the deadlock is
resolved,

In applying TRRP disconnection rule
for each cycle found, to select the
minimal cost victim and to prevent
some requests from repeated repositioning
by the application of Rule-2, the
victim-cost is calculated as follows:
When Rule-1 is applied, victim-cost
becomes the cost of the corresponding
transaction, However, when Rule-2 is
applied, it becomes the summation of
the cost of each transaction in ST
divided by 2. ‘We select the minimal
cost among those and if it came from
Rule-2, the cost of each transactin in
ST in increased by some constant
value,

When a blocked lock request causes
only one cycle, by applying TRRP
disconnection rule, the minimal cost
victim can be selected, However,
when it causes several cycles to be
occurred simultaneously, to get sub-
optimal solution, we take the
following strategy: The deadlock
detection starts from the current
blocker and whenever a cycle is
found, TRRP disconnection rule is
applied, If the victim comes from
Rule-2, the corresponding requests are
repositioned and their costs are
increased by some value, However,
when it comes from Rule-1, the
victim is added to the victim set.
When there are no more cycles
reachable from the current blocker,
the victim set is called as the abortion
set-0(ABS-0) and the cumulative cost
of transactions in ABS-0 is compared
with the cost of the following three

d 23 Z&g 713 €3 A4 Mg 99 11
AR 954 P 9 8 Y

more abortion sets and the minimal

cost set among those is selected and

its consituent transactions are aborted,

ABS-1 The current blocker (cb),

ABS-2 The set of the last transactions
of each TRRP which starts
from cb and is involved in any
¢yele,

ABS-3 If cb is a lock upgrader of a

H/W-TWBG

resource, the set of holders of
the resource which made cb to
be blocked, Otherwise, the set
of holders of the resource
which blocks any one of the
requests in the queue,
Example 4,1. Assume that H/W-
TWBG and Cost-Table are given as in
Figure 4.1,

Case 1 3

.
|3~
IS

Case 2| 10| 4| 4] 5

Cast-Table

Figure 4,1 H/W-TWBG and Cost-Table for example 4,1

There are two deadlock cycles: one
with {Ti, T2, T4 and the other with
iT1, T3, T4h. Assume that Ti is the
current blocker, For the first case of
Cost-Table, each abortion set is
defined as follows: ABS-0={Ti, T4,
ABS-1={T1}, ABS-2={Tb T4 and ABS-
3={T4 . Among these four sets, ABS-1
takes minimal cost and T: which is
the current blocker is aborted. For

Algorithm Continuous-Detection-Resolution

the second case of Cost-Table, each
abortion set is defined as follows:
ABS-0=1{T2, T4, ABS-1={Thi, ABS-2=

T2, T4 and ABS-3={T4. Among these
four sets, ABS-3 takes minimal cost
and T4 is aborted.

We now give the details of our
continuous deadlock detection and
resolution algorithm which is a kind
of a depth-first-search (DFS) method,

/*A transaction cb requests a lock Lcb on a resource Reb */

Input: cb, Lcb, Reb, Lock-Table and TWBG,

Output: abortion-list of transactions to be aborted and
grant-list of transactions to be granted,

begin

Step 0/* edge construction */
modify Lock-Table and TWBG,
if ¢b is granted, return,

12 v A

Step 1/* search cycles */
vi=ch; TWBG(v], ancestor:=-1;TWBG(v), visit:=-1;
visit-top:=v; abortion-cost:=0;
abortion-list:=}}; change-list:=}} ;grant-list:={};
repeat
if TWBG[v), current=nil then begin/* backtracking */
w:=v; v:=TWBG(w], ancestor;TWBG([w], ancestor:=0;
if (v#-1) and (TWBG(w], in-cycle)
then TWBG(v]), in-cycle:=true;
if (v£-1)
then TWBG(V), current=TWBG[v], current”, link
end else begin
w:=TWBG(v], current”, tid;
if w=0 /* v is at the end of a queue*/
then TWBG(v), current:=TWBG{v]. current”, link
else if w=cb /* a cycle is found */
then Victim-Selection (v)
else if TWBG{w). current=nil then begin
if TWBG(w].in-cycle
then TWBG(v]. in-cycle:=true;
TWBG(v), current:=TWBG(v). current™ link
end else begin /* forward search */
if TWBG(w). visit=0 then begin
TWBG([w). visit:=visit-top; visit-top:=w
end;
TWBG(w), ancestor:=v; v:=w
end
end
until v=-1;
TWBG (cb]. ancestor:=0;
if (abortion-cost=0) or (abortion-list=icb})
then goto step 3.

Step 2/* Consideration of TRRPs of the current blocker*/
Find ABS-1,2 and 3,
Replace abortion-list as the minimal cost set
among those and the one found at Step 1,

Step 3/* table clearance and grant-list decision*/

for each transaction v in abortion-list do
if v is in grant-list

g 23 2 & 7k ¢4 EdA A= A% 13
ZAGele] A4 AE 2 A% 7Y

then delete v from abortion-list
else for each resource Rv which v holds/is waiting for do
Delete v from holder-list or queue of Rv while
modifying Lock-Table, TWBG and constructing
grant-list according to our scheduling policy and ECR,
for each resource in change-list do
modify Lock-Tabel and TWBG, and construct
grant-list according to our scheduling policy and ECR,
w:=visit-top;
while w=-1 do begin
v:=TWBG(w), visit; TWBG(w], visit:=0;
TWBG([w). in-cycle:=false;
TWBG({w). current.:=TWBG{w], waited; w:=v
end
end;/* end of algorithm Continuous-Detection-Resolution*/

Procedure Victim-Selection(var s:integer;)
/*The calling value of s is the vertex which found a cycle, */
/*The return value of s is the new search starting vertex,*/
begin
vi=8; min-cost:=cost(ch); min-node:=cb;
/*Apply TRRP disconnection rule*/
new-trrp:=true; rule-2:=false;
repeat
TWBG(v). in-cycle:=true;
if TWBG(v), current”, lock=NL then begin
if cost(v){min-cost then begin
min-node:=v; min-cost:=cost (v);
rule-2:=false
end;
new-trrp:=true
end else/*W-labeled edge*/
if new-trrp then begin/* a new TRRP*/
w:=TWBGI(v], current™ tid; res:=TWBG(w]. pr;
if Comp(Lock-Table{res}, tm, TWBG(w]. waited”, lock]
then begin/* apply Rule-2*/
/*Change-Cost-Calculation*/
next:=Lock-Table{res). queune;
t-cost:=0; t-point:=0;
while next#+w do begin
if not Comp(Lock-Table(res). tm,

14 whed A

TWBG(next), waited”, lock)
then begin
t-cost:=t-cost+cost (next); t-point:=next
end;
next:“TWBG(next), waited”, tid
end;/* end of while loop*/
t-cost:=t-cost div 2;
if t-cost<min-cost then begin
min-node:=w; min-cost:=t-cost;
L-point:=t-point: rule-2:=true
end
end;/* end of apply Rule-2*/
new-trrp:=false
end;/* end of a new TRRP */
w:=v; v:=TWBG(v). ancestor
until (w=cb);

/*the victim is decided, starting from s, modify ancestors*/
vi=s;
if rule-2=false then begin/* victim from Rule-1*/
while v#min-node do begin
w:=TWBGI([v], ancestor; TWBG(v], ancestor;=0; v:=w
end;
w:=TWBG(v), ancestor;
TWBGI(v]. current:=nil: TWBG([v), ancestor:=0,
abortion-list:=abortion-list+ v ;
abortion-cost:=abortion-cost+min-cost:
s:=w /* victim’' s ancestor is a new search starting vertex */
end else begin /* victim from Rule-2*/
while v#L-point do begin
w:=TWBG(v), ancestor; TWBG{v), ancestor:=0; v:=w
end;
8:=L-point;
/*the last transaction in ST is a new search starting vertex*/
change-list:=change-list+ {TWBG (min-node). pr} ;
/*Repositioning while setting ancestors of vertices*/
new-ancestor:=0; pre:=0; res:=TWBG(min-node)}. pr;
next:=Lock-Table{res), queue;i-point:=min-node;
while i-point#L-point do begin
if not Comp(Lock-Table(res), gm, TWBG (next], waited”, lock)
then begin/*rearrange “next’ right after “u-point"*/

—100—

oy 23 RS 7k £a EPyA N 4¢ 15
A4 443 A R 35 7Y

if TWBG(next). ancestor+0 then begin

if new-ancestor==0

then TWBG(next). ancestor:=new-ancestor:

new-ancestor:=next
end;
cost (next) :=cost (next)+1;
temp:=TWBG [next]. waited”, tid;

TWBG (next], waited™, tid:=TWBG (i-point), waited”. tid;

TWBG(i-point), waited”, tid :=next;
i-point:=next;
if Lock-Table(res), queue=next
then Lock-table(res). queue:=temp
else TWBG (ore). waited”, tid:=temp;
next:=temp

end else begin

if (new-ancestor=0) and (TWBG (next), ancestor=+0)
then new-ancestor:=TWBG(next). ancestor;

TWBG[next), ancestor:=0;

pre:=next; next:=TWBG(next), waited”. tid

end
end/* end of while loop*/

end;/*end of the case when rule-2=true*/
if s#=-1 then TWBG(s]. current:=TWBG(s), current”, link

end;/*end of procedure Victim-Selection*/

Space complexity of our algorithm
becomes O(n+e), where n is the
number of transactions in TWBG and
e is the number of edges in it. When
there is not any cycle in the graph,
O(e) time is required to search all the
vertices which are reachable from the
current blocker. Different from listing
all the elementary cycles in a directed
graph as in Johnson's algorithm (26],
when a cycle is found at Step 1, it is
searched again to find the minimal
cost victim and search resumes at the
ancestor of the aborted one with
setting the variable current of
aborted one as nil or at the last

transaction of ST with setting the
variable current of the transaction as
next edge of it, By doing this way,
the same cycle can not be searched
again and total number of cycles
searched(c') can not exceed the
number of elementary cycles (¢) in
the graph and also can not be greater
than the number of transactions (n)
in the graph. Because procedure
Victim-Selection can be done in 0(n)
time, the total time complexity of the
algorithm becomes Ole+n*c’).

5. Simulation Results for

-—101—

ig

5. Simulation Resulls for
the Proposed Scheme

OQur simulator for studying the
performance of the propesed rontinuous
deadlock detecticon and resolution
glgarithm is basged on the closed
gueteing model, Whenever a
transactiot: {eaves the system, a new
one i3 generated and added to the
ready queue to bound the maximum
number of transactians, called the
muitiprogramming level{MPL}, in the
system, However, note that there
might be fewer than MPL transactions
that are ready to run when a sget of
trangactions block themselves, To
simplify cur simulaticr, one level
hierarchy for the locking is assumed;
sach resource 18 2 granule and there is
not any data hierarchvy which implies
chat only 8 locks, X locks, and lock
conversions from & locks to X locks are
supported,

Initialty, all transactions are
generated and put into the ready
guewe, A randam number genérator
is used during the transaction
creation precess to define the
{ransactien size within ceriain limits,
the Tesotrees o be accessed, aad the
lock request made far each resource,
Each ‘ransaction accesses the
database randomly, in other words,
each resource has an egual chance to
be referenced., A FIFD serice
dascipline is employved for the ready
gueue, Fach transaction makes its
lock request one at a time, If its
reguest is grantable by our locking
policy, its request is set and it

uh3y

accesses 118 reguested obiect. 1¥ there
18 more than one object left to be
accessed, the transaction re-enters
the ready guene and waits for its
turn to request the next resource, If
a transaction firiszhes, it leaves the
gystem by releasing all the locks i
holds, These locks are deleted from
ihe Lock-Table and some blocked
transactions waiting for the related
regources might be granted, When a
lock request cannot be granted, the
requesting transaction is blocked and
the existence of a deadlock is checked,
We model the environment as 1000
resources and each trnsaciion Tequests
at least 4 regsources, at most 12
resaurces, and its mean value is 8§
regourcas, We sioalated six different
MPLs: 5,25,50, 100,200 and 400
transactions, In any MPL, simulation
terminates when a pedefined number
of transactions, in our ecase 1000
transactions, commit, Transaclions
are atlowed to request 8§ locks, X
locks, and logk conversions, where
80% of the requesting modes are S
lacks and 20% of them are X locks
and among those 9 Jocks, 6 25% ave
converted to X lochs, In this experiment,
sourtce requests ave uniformly distribut-
ed such that each resource has the
same probabilily of beirng requested.
We first examined how those
ahortion seis defined for continaous
deadlock detection and resolution
algarithn{ affecis to each other. To
see the exact portion of each abartion
set, ABS-0 is classified into two sets:
set-0 and set-4, where set-(indicates
the set of victims to be aborted for

—162-

W7 22 REd 714 €& Edsd Hg 99 17
apAAHY A4 H2 D N5 Y

each cycle found and set-4 indicates

the set of transactions which are

repositioned according to the TRRP

disconnection rules, ABS1,2, and 3

are represented as set-1,2, and 3

respectively, We also compared the

following three different deadlock
resolution stategies:

1. Resolve deadlock according to our
scheme,

2. Resolve deadlock by aborting the
minimal cost transaction for each
cycle,

3. Resolve deadlock by aborting the
current blocker,

We included strategy 2 because it
gives the best results for continuous
deadlock detection and resolution in
Agrawal et al's report(2), In our
graphical representations, we use ps,
min, and cb referring to strategy 1,2,
and 3 respectively, To compare the
relative performance of each strategy,
two ratios, called blocking ratio and
restart ratio, are calculated., The
blocking ratio is defined as the
number of blocked transactions per
committed transaction and the restart
ratio is used to describe how many
transactions are restarted on the
average for every committing
transaction. Initiallty, the variable
tr-blocked (tr-aborted) is set to 0,
Whenever a transaction is blocked
(aborted), tr-blocked (tr-aborted) is
incremented by one, After 1000
transactions are committed, blocking
ratio (restart ratio) is set to tr-
blocked/1000 (tr-aborted/1000). In the
experiment, every strategy was tested
by using six different random number

generators, The best and the worst
outcomes were not considered,
Therefore, our results are showing
the average of four simulation runs,

The percentage of each abortion
sets, the blocking ratio, and the
restart ratio for the experiment are
listed in figure 5,1, 5.2, and 5.3
respectively,

At lower MPLs, set-1,2, and 3 are
never selected because deadlocks have
a single cycle. At the hightest MPL
(400 transactions), they are selected
14,35% of the time, Set-4 is selected
more frequently when higher number
of transactions are running in the
model, If there are enough deadlocks,
the effects of choosing set-4 can be
easily seen, As we said earlier, when
set-4 is selected, no transactions are
actually aborted, Instead, their
positions in the queue are repositioned,

Moreover, their costs are increased to
avoid the live-lock,

Figure 5,1 Selection percentage of
abortion sets vs, MPL

—103—-

18

12

)
Dimin
10 o pe
3
6
4
2
0]
100 200 0 400 500
Multiprogramening L evel

Figure 5. 2 Blocking ratio vs. MPL

As shown in figure 5.2 and 5,3,
unless a higher MPL is reached we
cannot distinguish one strategy from
another because there are less lock
conflicts, and consequently less
Although the
restart ratio of strategy 1 is 27 27%
better than strategy 2 when 100
transactions are in the system, this
does not affect the blocking ratio

number of deadlocks,

considerably because the total number
of deadlocks small, At 200
transactions and above, we experienced

is

remarkable differences, For example,
at 200 multiprogramming level,
stategy 1 outperforms strategy 2 by
6% in blocking ratio and 30% in
restart ratio. For 400 transactions,
these figures are 13.03% and 36.80%
respectively, Therefore, the use of
strategy 1 should be considered when
the database is heavily used.
Restarting the current blocker to
resolve deadlocks does not hurt much
until multiprogramming level of 100
transactions is reached., After that
point, it should not be the strategy

g

Figure 5.3 Restart ratio vs, MPL

of choice, To be more specific, at the
400 multiprogramming level, strategy
1 defeats strategy 3 by 53.49% in
blocking ratio and 72,37% in restart
ratio,

6. Conclusion

In this work, we have developed an
efficient deadlock detection and
resolution the
environment of sequential transaction

algorithm in
processing with multiple locking
modes and Jlock conversions based on
a new deadlock detection graph and
two types of deadlock resolution
strategies: by aborting
transaction in a cycle and the other
lock
requests in the queue of a resource
without having the risk of live-lock,

one a

by switching the order of

To get sub-optimal solution for the
vietim selection without sacrificing
time and storage complexity, four
different sets of possible victims to
resolve all deadlock cyeles in the

system are defined such that we got

—104—

e 23 228 73 &3 ERAA Ag A9 19
mEYee] 43 Ha 2 HE 1Y

0(n+e) storage space and Of{e+n*c’)
time complexity algorithm, where e is
the number of waited-by edges, n is
the number of transactions in the
database system and ¢’ is the number
which were actually
iz not greater

of cycles
searched such that ¢
than ¢, the number of elementary
cycles in the graph, and ¢ is not
greater than n,

We also compared our resolution
strategy with others which showed
that our one gives less blocking and
restart ratios especially in the higher
multiprogramming level.

References

1. R. Agrawal, M.J. Carey, and D.J.
DeWitt, “Deadlock Detection is
Cheap,” ACM SIGMQOD RECORD,
Vol, 13, No.2, pp. 19-34, January
1983,

2. R. Agrawal, M,J, Carey, and L, W,
McVoy, The Performance of Alternat-
ive Strategies for Dealing with
Deadlocks in Database Management
Systems,” IEEE Trans. on Sofware
Eng,, Vol BE-13, No.12, pp. 1348-
1363, December 1987,

3, R. Agrawal, M.J. Carey, and M.
Linvy, "Concurrency Control Perfor-
mance Modeling: Alternatives and
Implications,” ACM TODS, Vol 12,
No.4, December 1987,

4. P A, Bernstein, V. Hadzilacos, and N.
Goodman, “Concurrency Control and

10.

11

12.

13,

-106—

Recovery in Database Systems,”
Addison-Wesley, 1987,

C.dJ. Date, “An Introduction to
Database Systems: Volll,” Addisin-
Wesley, 1983,

A.K., Elmagarmid, “Deadlock Detect-
ion and Resolution in Distributed
Systems,” Ph, D,
Ohio State

Processing
Dissertation, The
University, 1985,
S, Even, *Graph Algorithms,” Comput-
er Science Precess, 1979,
J.F. Garza and W. Kim, “Transaction
Management in an Object-Oriented
Database System,” in Proc. of 1988
ACM SIGMOD Intl, Conf., Chicago,
IL., 1988,
J.Gray, “Notes on Database Operating
Systems,” in Lecture Notes in
Computer Science 60, Advanced
Course on Operating Systems, ed. G,
Seegmuller, Spirnger Verlag, New
York, 1978,
J.Gray and A, Reuter,
Processing,” Version I of the Slides,
Summer 1987,
B.Jiang, “Deadlock Detection is Really
Cheap,” ACM SIGMOD RECORED,
Vol. 17, No.2, June 1988,
D.B,Johnson, “Finding all the
Elementary Circuits of a Directed
Graph,” SIAM J Computing, Vol 4,
No.1, March 1975,
K.H, Pun and G.G, Belford,
“Performance Study of Two Phase
Locking in Single-Site Database
Systems,” [IEEE Trans. Software
Eng., Vol .SE-13, No.12, pp, 1313-
1328, December 1987.

“Transaction

