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Grammatical Description of the Behavior of LR(k)
Parsers®

Myung-Joon Lee - Yang-Su Park
Department of Computer Science

Abstract

We show that given a context-free grammar G, the behavior of the LR(k)
parser for G can be abstractly described in terms of grammar symbols. For this,

we introduce an LR(k) machine description grammar whose sentences describe the

sequences of actions taken by a given LR(k) parser.
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1. Introduction

Since the announcement of LR(k)
grammars and their parsing[6], much work
has been done to discover the properties of
LR(k) grammars and LR(k) parsing[2,4,5,8].
Recently, a new grammar called LR(k)-
colored grammar[7] has been introduced as a
tool for transforming an LR(k) grammar into
an SLR(k) grammar[3] that covers the LR(k)
grammar. Besides the covering property, the
LR(k)-colored grammar can be effectively
used for establishing formal properties
related with LR(k) parsing since the grammar
transforms each reduction of an LR(k) parser
into its grammar symbol in addition to the
transformation of each GOTO transition.

In this paper, we exploit the properties of
the LR(k)-colored grammar useful for
describing the behavior of a given LR(k)
parser by showing that there is a one-to-one
correspondence between shift and/or reduce
actions of the parser, and those symbols that
appear in the LR(k)-colored grammar. Using
the properties, we present an LR(k) machine
description grammar whose sentences
describe actions of a given LR(k) parser
abstractly.

The organization of this paper is as
follows. In Section 2, the notion of LR(k)
parsing is revisited for clarifying the
arguments in the later sections after the
notation and some definitions arc given. In
Section 3, LR(k)-colored grammar is
revisited and its fundamental properties arc
examined, In Section 4, an LR(k) machine
description grammar is presented as a result
of this paper after the descriptive power of

o m %
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LR(k)-colored grammar is exploited.
2. Notation and Definitions

This section reviews the basic concepts
concerning context-free grammars and LR(k)
parsing, and introduces some fundamental
definitions and known results with our
notation. For general background the reader
is refered to [1].

A context-free grammar (CFG) is a 4-tuple
G=(N, =, P, §), where N is a finite set of
nonterminals; ¥ is a finite set of terminals
such that NN Z=(; P is a finite subset of N
X V*, where V(vocabulary) stand for NUZ,
and each member(A,a) of P is called a
production, written A—a, and the Greek
letter 7 is reserved to denote a production;
and § is the start symbol. For the convenient
description of LR(k) parsing, G is assumed to
be augmented in the sense that P contains a
special (start) production §'—S, where §'
does not occur in any other procuction,

Lower-case Greek letters, such as o,p, and
y denote vocabulary stings in V*; lower-case
Roman letters near the beginning of the
alphabet, such as 4, b, and ¢ are terminals in
¥, and those near the end, such as w,x,y, and
z are terminal strings in £*; upper-case
Roman letters near the end of the alphabet,
such as WX, and Y arc vocabulary symbols
in V. The empty string is denoted as &, and is
of length 0. For two vocabularies V; and V,
a homomorphism is defined as a mapping &
V,—V2; the domain of the homomorphism A,

throughout the paper, is extended to Vi by
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letting h(g) =¢ and A(xX)=h(x) + A(X) for all x
€V1, and X&V,. The homomorphism # is
said to be fine if h:V,—V,U {e}, and very
fine if h: V,—V,.

When a production A—o is in P, a
derivation pAy==Pay holds, and if y&X*, the
derivation is said to be rightmost, and is
written BAy=>m pPoy. The reflexive transitive
closure, and the transitive closure of the
relation = are denoted by =* and =+,
respectively. A sentential form of G is a
string o such that § =" «, and a right
sentential form is a string o such that § =,
a. The language generated by a string o is L
(o) = {(we2 |o=>'w}. Conventionally, L(G)
is used to denote L(S). A string vy is called a
viable prefix of G if y is a prefix of aff such
that S'=>,, 0AW =>m afw.

A grammar G is ambiguous if there exists a
string in L(G) with more than one rightmost
derivations. G is said to be unambiguous if it
is not ambiguous. G is ambiguous of degree n
if every string in L(G) has at most n distinct
rightmost derivations. Clearly, G is ambiguous
of degree 1 if and only if G is unambiguous.
G is boundedly ambiguous if there exists some
integer n such that G is ambiguous of degree

n. G is said to be unboundedly ambiguous if it
is not boundedly ambiguous.

A pair [A —a.B,u] is an LR(K) item for G if
A—af &P and uSFIRST(Z'$), where the

special symbol $ not in T denotes the
endmarker of an input string and the function

FIRST, is defined as FIRST0)={PREF(x)
|x €L(a)} (PREF(x) denotes the prefix of x

_83_

of length 4, or just x if the length of x is less
than k). It is said to be valid for ya, a viable
prefix of G, if G permits a derivation §=>

Aw =m yaPw, for which k=PREF {(w$). In
an itemn, the left part of the comma is called
the core of the item, and the right part is
calted the lookahead of the item. The
function closure, which maps a set of LR(k)
items to another set of LR(k) items, is
defined recursively as follows, Let g be a set
of LR(%) items. Then

closure(q)=s qU{[B—y,v]|[A—0.BB,u]
Eclosure(q), vEFIRSTfu), B —yEPY,

where the notation "X =, f(X)” means that
X is the smallest set which satisfies the

condition X=f(X). The canonical collection
of sets of LR(k) items for G, denoted C,, is

defined recursively by
Ci=; {9} U{GOTOG.X)|qeC, , X &V},
where ¢o= closure({[{S'—.S, $1}), and
GOTO(q,X)=closure({[A—0oX. pu]|[[A—
aXB.u]Eq}).
An element of C, is said to be an LR(k)

state over G. We call the state qq the initial
state. The domain of the GOTO function is

extended to €, X V* as follows:
GOTO(q,e)=q and GOTO(q,Xy)=GOTO

(GOTO(g.X),)-

To clarify the arguments in this paper, a
nondeterministic LR(k) parser for the whole
class of context-free grammars is defined by
the following formal system called LR(%)
machine. The LR(k) machine for G is a 4-
tuple LRM(GY=(C,, GOTO ACTION, gy),
where C,, GOTO, and q, are as was stated
above; ACTION is a function from Cj «



FIRST,(Z* $) to subsets of {shift, accept}
{reduce x| n &P} defined by
ACTION(quw) = {shift} if[A—a.Bv]Eg,
AFS', B¢, and uEEFF,(Bv)
U {reduce n} if n is A—a, [A—a.,u]
Eq, and A+£S'

U {accept} if [S'—S., $]E¢, and u=3,
where EFF,, the e-free FIRST, function, is
EFF (c)={PREF(a)|a€Z" $} U {PREF,

(x)| 0=> 1w p=>m x, PFAx for all AEN, xE
= $}.
It would be noted that if ACTION(q,u)

contains shift, then the state ¢ contains an LR
(k) item [A—c.ap,v] with u&FIRST (apv)
because of the definition of the closure func-
tion and the EFF, function above.

A configuration of LRM(G) is a triple (0,
w$,IT) in C ; X ¥*$ x P *, where o represents
the state stack as a sequence of LR(k) states,

w the remaining input string, and IT the
current output right parse. The initial confi-

guration for an input string z in 2" is (¢o, 28,
£). We define the state stack induced by a
viable prefix v, denoted G, by

o, = g if y=¢; otherwise o, =0yy = Oy
GOTO(qq, pX) withy = X

(obviously, o,=0, if and only if y=p
because the GOTO function is deterministic).
The top of the state stack o,, denoted top(o,),
is the state GOTO(qq,y). A move by LRM(G)

is represented by the following binary rela-

tions on configurations.
(1) s relation (shift move), defined by
(0,,aw$,IT) Fsi (0,,w$,IT) if ACTION(top
(0,)), PREF {aw$) contains shift;

o
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(2) | relation for nEP (reduce m move),
defined by

(0, W8,IT) = (0,,w$, 1) if ACTION(top
(0,.), PREF(»$))) contains reduce ® with
n being A—a&EP;

(3) traceep relation (accept move), defined by

(0, W8,11) facce (,8,1T) if ACTION(top

(0,), PREF (w$)) contains accept

(In this case, w =g, and 0,=0s=¢,
GOTO(4o,5))-
For configurations C, and C,, we write C,
|-C, if at least one of the relations defined
above holds between C, and C,. In particular,
we write (0,,w$,IT) |- error if ACTION(top(
0,),PREF(w$)) is &@. The language accepted
by LRM(G), denoted L(LRM,(G)), which is
equivalent to L(G), is defined by

LILRMY(G)={2€Z2"| (gu,2$,€) | (&,8,1T)
for some [TEP"}

In this, IT is right parse of z. We use the
following terminology for configurations of
LRM(G). Let C be a configuration. (1) C is
valid for a string z in £* if(gy,z$,€) F*CIfc
is valid for some string in 2, then C is a valid
configuration of LRMG). (2) C is acceptable
it C is valid and C F*(&,$,11) for some IT in
P”. (3) C is nondeterministic it C |-C,, C |-C,,
and C,# C,. Here, each of the moves from C is
also said to be nondetermin-istic.

LRM(G) is said to be deterministic if no
(valid) configurations of LRM,(G) are
nondeterministic. Obviously, LRM(G) is
deterministic iff ACTION{q,u) has at most

one element for any ¢&C,, and uE FIRST(
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Z*$)(i.e., G is LR(k)). Let (o,w$,IT) be a
valid configuration for a string z in Z*. We
say that a sequence of moves from the initial
configuration (g,,z$,e) to the valid confi-
guration is an LR(k) parsing subsequence of
z over G. If o,=¢, it is said to be a valid LR
(k) parsing sequence of z, whereas it is said
to be invalid if (c,w8$,IT) |- error. It would
be worth pointing out that if LRM(G) is not
deterministic, then there exists a string in L
(G) with multiple distinct LR(k) parsing
sequences whether they are valid or not.

This section is ended by recalling some
well-known properties of LR(k) parsing
which are fundamental to the arguments in
the remaining sections.

Property 2.1. GOTO(q,,y) is defined if
and only if y is a viable prefix of G.

Property 2.2. C, is equivalent o ®,, the
collection of the sets of valid LR(k) items for
G, defined by

D, ={q|q is the set of valid LR(k) items for
some viable prefix of G}.

Moreover, a state q is the set of valid LR(k)
items for a viable prefix v iff g=GOTO(qq, ).

Property 2.3. There is a derivation in G
such that

S =sm YWy = rm Yo, =% 7, and yi and
Y, are viable prefixes of G

if and only if there is a valid LR(k) parsing
sequence over G such that

(qo2$,€) - (Oyz»W2W1$,H) - (Gqu1$,H/)

|*(e,$,I1") for some TI,I1" 11" < P*,

Property 2.4, If there is an invalid LR(k)

parsing sequence of xw over G such that
(qoxw$,e) | (o,w8$,IT) | error,

b

_,85_.
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then there is a string y in Z* such that

(@ry$e) F* (09810 F* (8,01,

That is, every invalid LR(k) parsing
sequence of a string is a subsequence of a
valid LR(k) parsing sequence of another
string in L(G).

3. LR(k)-Colored Grammar

In this section, we revisit LR(k)-colored
grammar|7] which is constructed from LR(%)
machine on the ground that GOTO transitions
on terminal symbols from each LR(k) state
causes shift moves, and reducible items in the
state causes reduce moves on the productions
in the items, while GOTQO transitions on
nonterminal symbols causes state transitions
as a part of reduce moves. For representing
such moves of the LR(k) machine as grammar
symbols, we transfigure each GOTO transition
into a symbol of the introduced grammar, and
also transfigure each reduction. As a resulf, we
will have a one-to-one correspondence
between shift and/or reduce moves of the LR
(k) machine, and those symbols that appear in
the LR(k)-colored grammar;

Defining the LR(k)-colored grammar, we
use new notations X¢ and n* to denote
nonterminals of the grammar; they mean the
transition on symbol X from state g and the

reduction on 7 at state g, respectively.
Construction 3.1, Let a CFG G=(N, 2, P,
S), and LRM(G)=(C,, GOTO, ACTION, gy)
The LR(k)-colored grammar for G is G=
(N, X, P, §), where
(1) N={S}U{X?|gECx, [A—0 X Bu]E
g, XeV}
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U{me|gECr, [A—0,u]Eq, A4S, 7 is A
—a &Pl

The set of new vocabularies, NUZ, is
denoted by V. For notational convenience,
we classify N into four disjoint sets, {S},
Ny, N 5, and Np, as follows:
Ny={A'|AEN, As=N}, Ny={a'laE3,
a'EN}Y, Np={n?|n&EP, &N}, and the
set Ny Ny is denoted by Ny.

(2) P={S— § “}

U, gck {A—0(q,0) - 7' |A #S' [A—.0,
uleq, nis A—a, g =GOTO(g,0)}
u Y @—au Y

a'ENy TEN {ﬁq‘)s}’

()N = {STUNyUN;UN,, where
IVN — {SIIO,A!IU, Alla’ Allu’ Bflu, qu’ B(]H}

vy

where 6(g,o) is a function from C, X V' to
Ny defined by

B(g,e) = ¢ and B(g, X o) = X* - 6(GOTO
(g:X),0)

if X7 is in N, (or equivalently GOTO(gq,X)
isin C).

Example 3.1. Consider an unambiguous
context-free grammar G = ({S, A, B}, {q, b,
0, 1}, P, §) with P:

.S —Aa, m2.S —Bb, maA—0A 1, mA—0

1, ms:B—08 11, n6:B—011

By Construction 3.1 and the LR(1) machine
for G° exposed in Figure 3.1, we get the LR(1)-

colored grammar G =(N, Z, P, §), where

N}; — {aqz’ bfh, Otla, Oqa’ 0(114, 1%’ 1(17’ 1‘19, 1‘110, 1!112, 1(114, 1‘“5’ 1‘717’ 11713 11730 }

14 16 qi2 420 qi 19

Np={x] 7 w5 5 my 7 %
(2) P is composed of the following productions:

S—8%,

SBoAD g% 7 | B® b nf

AP A 17 x| 0% 1% w1t

BO—(® Bl 1% 1t 5" | 0% 1% 192 qf

AT AT 105 n‘;"’ , (% 1 TCZZ“ ’

Ble—() RBhs (a7 (4 n‘;‘”
qi6
E4

A!luﬁ_.,ofm Alm 11115
Bflu;,,ofln B!H 1411 1II|3

| O‘ln 1(]14 TE:’:O ‘
Ny
Tts
XX for all X9 € N;

w—e for all 19 & Np

q13
T

921

¢ T

413

' Q% 124 Tc’él“ ’

| QT 194 {9 9’52“ ‘

* The grammar G is not LR(k) for any k and the language {0" 1" a[n=1}U{0" 1 b|n=1}

generated by G is not deterministic context-free [1}].

__86_
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For observing the basic properties of the LR phism % from the vocabulary symbols of G to
(k)-colored grammar, we define a homomor- those of G.

Definition 3.1, A fine homomorphism 4: V— VU {e} is

S ,ifX=S§

e, if X €N,

X ifX =X"ENy
a,ifX = agXx

h (%) =

§'> .5%¢
S Aa, 3
S -3 .Bb, %
A= 0Al a
A—-0La
B— 0Bl b
B> .011b

qo

S5 B8b,8

g7
A A0A.1, a ! A—0Al. a

B—0BIl.1 b > B—0B11., b

e qdi12 13
A0l a 1
B—s01.1.b B011.,b

RS
)
»
2
!
) ) A<
o w w

A—=0Ala
A0l a
B—-0BI1b
B—0l11b
A 0ALI
A-.011
B—.0B11,1
B .0l 1

q1

qs

A—>0ALI
A=01,1
B—08B11,1
B—-0ll1
A— 0AL]
A—.011
B —.0B11,1
B— 0111

qi4

A-01., 1

Bs01.1. 1 B—011.,1

Figure 3.1. LR(1) machine for G in Example 3.1
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The following properties associated with G
are fundamental to our later arguments, and
can be casily obtained from the definitions of
the grammar G and the homomorphism /.

Property 3.1.

(1) For an arbitrary LR(k) state g, 0(q,c)0
(GOTO(q,2),3) = 6(g,B).

(2) 6(go,y) is defined if and only if y is a
viable prefix of G.

(3) Let y1=0(g,,y1) and y2=0(qy,y2). Then
there is a derivation in G such that S =,, 1
w1 =, y2wawr = z if and only if there is a
derivation in G such that §'=,, ywi=
o yawewr =z,

(4) If there is a derivation in G such that §
= yX* 0., then g=GOTO(qy, A(¥)).

A useful one-to-one correspondence
between rightmost derivations in G and valid
LR(k) parsing sequences over G can be
established by the following theorem.

Theorem 3.1, Let y1=0(g,,y1) and y2=06
(qoy2). Then there is a derivation in G such
that

S=, W= w1 =z
if and only if there is an LR(k) parsing
sequence over G such that

(g0,28,8) |~ (o,wami$,IT) |- (o, wi$,IT")

F* (e,$,]17) for some ILIT T &P .

Proof. By Property 3.1-(2), y1 and 2 are

viable prefixed of . Then the theorem

follows from Property 3.1-(3) and Property 2.
3.0

SEES
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4. Describing Moves of an LR(k)
Machine

In the formal section, it was claimed that
there is a one-to-one correspondence between
shift and/or reduce moves of an LR(k) machine,
and some kinds of symbols that appear in the
related LR(k)-colored grammar G. The
correspondence can be stated by the following
two theorems (Theorem 4.1 and Theorem 4.2):
one says that if a symbol in N, appears in a
sentential form of G, then the LR(k) machine
can take a shift move corresponding to the
symbol, and vice versa; the other says that if a
symbol a7 in N, appears in a sentential form of
G, then the LR(k) machine can take a reduce
move corresponding to the symbol, and vice
versa. In this section, we establish the validity
of the theorems, and present an LR(k) machine
description grammar of which sentences
describe parsing sequences of a given LR(k)
machine.

Theorem 4.1. Let a* be a nonterminal in
Ny. Then there is a derivation in G such that

§ = yaw=" z
if and only if there is a valid LR(k) parsing
sequence such that

(4028,) I (0, awd 1) by (0w8.00) |-
(e.3,11"),
where y=0(qy,Y), fop 0,=¢, and [LI1", EP

Theorem 4.2. Let n' be a nonterminal in
N, with © being A—2. Then, there is a
derivation in G such that

S=imymw="z
if and only if there is a valid LR(k) parsing

sequence such that
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(9u,28.€) = (Uyl«,z,W$,H) Fa (0'11A5W$!
Mn) | (e,$,11),
where y:EJ(q(,,olez), top (6,1,)=q, and 11,
n'ep’.

Theorem 4.1 says that if a symbol in Ny
appears in a sentential form of G, then the

LR(%) machine can take a shift move
corresponding to the symbol, and vice versa.

LR(k) Parsing Sequence of z over G

(90,001128,8) |y (90gs011a8$,e)
h/uﬁ (Godsq14,11a8 )
Fop (God6q14G20,108,8)
P (9096gr1a8,m,)
Fon (909607a,08,710)
Fo (40208, 7470,)
F s (Qodada3mars)
F (o843, )

}_ﬂc‘n’pl

(e,$,m )

The reversed sequence of the rightmost
nonterminals appearing in the above rightmost

derivation, contained in Ny U N, ,is (Q™0%19

For clarifying the property formally, we
remark the following. Let X; s be symbols in V,
and o s be strings in V* such that X; =* x; for
1 <i<n, and o; =* w, for 1<j<n+1. Then,

the following three statements are equivalent.

(1) G permits a derivation
S =" alealXZ' "aanalH-l =* z
Wori1)

(2) G permits a rightmost derivation

(=wxwyx;

* * *
S = I‘II)Y,,X”H’,,+ =P e 'YZXZW.?X} L

¥ .
xnwnJr l:>nn Y1X1w2. ' .xuwnJr l:> Z,

_89_

Theorem 4.2 says that if a symbol &7 in Np
appears in a sentential form of G then the LR
(k) machine can take a reduce move
corresponding to the symbol, and vice versa.
This one-to-one correspondence can be
appreciated by the following example.

Example 4.1. For the grammar G in Ex-
ample 3.1 and a sentence of G, z=0011a,
consider the followings.

Rightmost Derivation for z in G

0011a ¢, 0"01la
& 0%0%11a
LS 07091941 g
&=, 000%1% 1’ 1g ¢, 0%4%1q
=, OPAM] g
S 0RA%LY g &, A%a
(- Adg
e AT T e S0
= S
i 19 g a® g . Note that the symbols in

this sequence are in one-to-one correspondence
with the moves of the LR(£) parsing sequence.

where y=> o, X,a;_ X, ,0; for 1 <i<n.
(3) there is a valid LR(k) parsing sequence
over (& such that

(q0,2%,e) F* (walwz’ X Wy 1 $,114)
}‘4* (0y27x2w3' . 'x,,W,,+1$,H2)
|>* (Gynyxnwn-r l$:Hn)
F* (e$,00)

where yi=8(qo, y:) and where yi =>* o, X+

o Xi_ o for 1 <i<n (by Theorem 3.1).
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For the formal proofs of Theorem 4.1 and 4.
2, we will examine the relationship between
right sentential forms of G and acceptable
configurations of the LR(k) machine, and the
relationship between right sentential forms of
G and moves of the machine in order. First, we
introduce some relations which are useful for
capturing the relationship.

Definition 4.1, Two relations sdescribes
(stands for "describes a shift move") and
rdescribes (stands for "describes a reduce
move") from right sentential forms of G to
acceptable configurations of LRM(G) are
defined as follows:

(1) Let g7 be a nonterminal in Ny, and ya

w a right sentential form of G. Then,

ya'w  sdescribes (o, aw$,IT)

itf y=0(ge,y) and there is a string z in £
such that

S =m ya' w =* z, and (go,2%,8) ¥ (o,
aw$,Il).

(2) Let m# be a nonterminal in N, and yz?
w aright sentential form of G. Then,

ya'w rdescribes (o,w$,I1).

iff y=0(goY) and there is a string z in =*
such that

S = ya'w =% z, and (q2$,8) * (0,
w$,IT).

Definition 4.2. Two relations sdescribed_by
(stands for "a shift move is described by") and
rdescribed _by (stands for "a reduce move is
described by") from acceptable configurations
of LRM(G) to vocabulary strings of G are
defined as follows:

(1) Let (0,,aw$,IT) be an acceptable confi-
guration of LRM(G). Then,

o

A

,90_

1ok

R
[<]

s
= T

(0,aw$,IT) sdescribed_by ya'w

iff y=0(qoy), g=top(o,), and ACTION(g,
PREP {aw$)) contains shift.

(2) Let (o,,w$,1T) be an acceptable confi-
guration of LRM(G). Then,

(0,,w$,IT) rdescribed_by ym'w

iff y=0(qu.y), 9=top(o,), and ACTION(q,
PREP{(w$)) contains reduce 1.

The relationship between right sentential
forms of G and acceptable configurations of
the LR(k) machine is shown in the following

two lemmas (Lemma 4.1, and Lemma 4.2).

Lemma 4.1,

(1) Let ya* w be a right sentential form of G.
Then there exists C, an acceptable configuration
of LRMJG), such thaty w rdescribes C.

(2) Let yo' w be a right sentential form of G.
Then there exists C, an acceptable configuration

of LRM(G), such thatyie w rdescribes C.

Proof. First, suppose that ya' w is a right
sentential form of G. Then there is a siring z
in Z* such that

§ = myat w =wmyaw =%z

Then from Theorem 3.1, we know that there
exists an LR(k) parsing sequence over G such
that

(G0,28,8) F* () goaw$,IT) ¥ (e,$,1T7)
for some I,YT" & P*,

Therefore, the relation sdescribes holds
between yasw and (0y, q,aw$,IT).

Second, suppose that ya' w is a right
sentential form of G. Then there is a string z
in £* such that

S =y wi Y = 2,

Again from Theorem 3.1, we know that there
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exists an LR(k) parsing sequence over G such
that

(90,78,8) |* (0, w8, IT) |-* (e,8,I1") for
some ILIT = pP*,

Now, the relation rdescribes holds between
y'w and (0, ,aw$,I1).[]

Lemma 4.2, Let (o,w$,11) be an
acceptable configuration of LRM(G). Then
there exists a, a right sentential form of G,
such that (o,,w$,IT) sdescribed_by @, or (o,
w8 IT) rdescribed_by a.

Proof. First, suppose that ACTION(q,
PREPYw)) contains shift, and top(o,) is the
state g.

Then there is string z in =* such that

(q0,2$,¢) f‘* (UT,a)’$k,H) |’.vh1ﬂ (07a7y$k3n)

F* (e,$4,117),

where ay = w. Then by Theorem 3.1,
there exists a derivation in G such that

S =m 8(qyya)y =* 2.

Since 8(qo,ya) =0(qq,y)a’, the relation
sdescribed_ by holds between (o,w$,IT) and
6(qov)a’ y.

Second, suppose that ACTION(q, PREP:
(w)) contains reduce w with 7t being A—a,
and fop(c,) is again the state ¢. Then there is
string z in £* such that

(@028,8) |- (OpaoW$IT) b, (0hw8, T

F (e$,11),

where Ba=y. Again from Theorem 3.1, we

know that there is a derivation in G such that

8 = 0(qo,pAYW =* 2.

Since 6(qy,PA)=0(q,B)A" with p=GOTO
(90,B), Construction 3.1 says that P contains
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the production A” —8(p, ) such that p*
GOTO(p, o) (=GOTO(qe,Bo)) =gq). Thus,
there exists a derivation in G such that

S = 0(q0.f)A" W =>m 0(90,8)8(p, wn
w ="z,

Since 6(qo,f) - 6(p, a)= 0(qe,y), the
relation rdescribed_by holds between (o.w$,

IT) and 6(q,,y)m* w.[]

The following two properties (Propety 4.1
and 4.2) and two lemmas (Lemma 4.3 and 4.
4) are devoted to exhibit the relationship
between right sentential forms of G and
moves of the LR(k) machine. Property 4.1
and 4.2 are obvious from the argumerits in
the proof of Lemma 4.2.

Property 4.1. Ler C and C’ be acceptable
configurations of LRM(G) such that C o
C’. Then G has a right sentential form o
such that C sdescribed_by a.

Property 4.2. Let C and C’ be acceptable
configurations of LRM,(G) such that C |-,
C’. Then G has a right sentential form a

siech that C rdescribed by a.
Lemma 4.3. Let a® be a nonterminal in N 5

s and Ya' w be a right sentential form of G.

Then for each C such that ya' w sdescribes
C, there exists an acceptable configuration

C " such that C |-, C".

Proof. Since ya* w is a right sentential
lorm of G, there is a derivation in G such that
S = 8A Y = S0t By =, Soat w,

where mis A—h(ow® BYEP, Sa=Y., p=
GOTO (40,h(8)), g=GOTO (g4,h(Y)) =
GOTO (p.h(a)), r=GOTO (q,ah(P)), and
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B y =>* w. Them according to Property 3.1-
(3), there is a derivation in G such that

S ‘=0 MB)Ay$=>n A(BYh(0)ah(B)y$=>),

h(y)aw$.

From Theorem 2.2, we know that the state
g, i.e., GOTO(guh(y)), contains all valid LR
(k) items for the viable prefix A(y). Therefore
the state g contains an LR{k) item [A—h(a).
ah(P),u] with PREP (aw$)& FIRST,(ah(B)u).
According to Definition 4.1-(1), every

configuration satisfying the condition of this
lemma is of the form (0j, ,aw$,IT). The state
top(0, ) is g because of g==GOTO(gy,h(Y)).
Therefore, ACTION(q, PREFi(aw$)) contains
shift; and thus

(On paw$,IT) Foir (04 oS, IT).

Moreover, Theorem 2.3 says that the
configuration (0, ¢,,w$,IT) is acceptable
because there is a string z in %* such that §
= h(y)aw$ =" z$, and h(y)a is a viable
prefix of G. (]

Lemma 4.4. Let n“ be a nonterminal in
Ny, and Yo' w be a right sentential form of G.
Then for each C such that yn' w tdescribes
C, there exists an acceptable configuration
C’ suchthat C |-, C".

Proof. Assume n is A—a. Because the
state g is the state GOTO(qq,h(y)) (from
Property 3.1-(4)), the state g contains an LR
(k) item [A—a. PREP(w$)] by the similar
arguments in the proof of Lemma 4.3,
According to Definition 4.1-(2), every
configuration satisfying the condition of this

lemma, is of the form (0, 4,w$,IT). Because

o] W {8
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ACTION(q, PREP,(w$)) contains reduce n

and the state g is top (O, (), the following
move holds:

(CpaesW$I1) |, (Opg,w$,ITm),

where Ba=#(y). Further, Theorem 2.3 says
that the configuration (op,w$,Ilx) is
acceptable because there is a string z in X7 such
that § = ., PAWS= m Pow$=" z$, and pA
is a viable prefix of G.[]

Now Theorem 4.1 is established by Lemma
4.3 and Property 4.1, and Theorem 4.2 is
established by Lemma 4.4 and Property 4.2,
In virtue of the descriptive power of G
represented by the two theorems, we present
an LR(k) machine description grammar and
our main theorem on the description of LR(k)
machine as a concluding result of this paper:

Definition 4.3, Let & be the LR(k)-colored

grammar for a CFG G. The LR(k) machine
description grammar for G is defined by

G,=(8UNy, N;UN,, P, §) with
P,=P—({a=-a|laENs} U {n+—e|mwEN,
13X
Theorem 4.3. Let a description sentence

of z be a string o. such that 0=" z and 0L

(Gp). Then, there is a valid LR(k) parsing

sequence of z if and only if there is a decription

sentence of z. (In other words, the shift andjor
reduce moves in an LR(k) parsing sequence
can be described by the at andfor it symbols

in a description sentence of z.)

Proof. Immediate from Definition 4.3,

Theorem 4.1 and 4.2.[]
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