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<Abstract>

In spite of their frequent uses as submarine pressure hulls and major structural
members of various offshore structures, the complicated structural behaviours of
cylindrical shells make their design not to depend on analytical or numerical method
but on semi-empirical method. The basic concept of the latter is that the ultimate
strength of the member can be thought as linear elastic buckling loads multiplied by
reduction factors derived from the test data. So the most important thing in making
the semi-empirical formulae is to derive the reduction factors efficiently from the
limited number of test data which can not cover the whole range of the cylinder
gemetries.

In this paper worldwidely used semi-empirical formulae, API code and BS5300, are
investigated and finally measures are proposed to improve them.
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INTRODUCTION

Cylindrical shells having been used as
submarine pressure hulls and major
structural members of various offshore
structures are not flat but curved in
their shapes and are usually subject to
various types of stiffening (unstiffened,
ring-stiffened, stringer-stiffened, both
ring- and stringer-stiffened) and load
cases(axial load, bending load, external

pressure, combined load) and also
contains initial imperfections such as
shape imperfections and residual
stresses introduced during the

fabrication processes.

Due to these complex factors to be
considered, it is known to be almost
impossible to predict the exact strength
of these members by analytical methods
alone.

And even the  finite  element
method(FEM), which is very powerful
in almost every other field of structural
analysis, has not given satisfctory
answer to this field for practical use.

In this context the ultimate strength
estimation of these members usually
depends on  semi-empirical method
which has its own shortcomings in
many aspects.

The basic concept of the semi-
empirical method is that the ultimate
strength of the member can be obtained
by multiplying the linear elastic buckling
loads by reduction factors which account
for the effects of initial imperfection,
geometric and material nonlinearity, un-
certainties in boundary condition, etc.
which are not considered in the linear
elastic buckling theory. In most codes or
recommendations[1-3] reduction factors
were obtained by comparing the linear
elastic buckling loads with the lower
bounds of test results. The choice of
lower bounds was very deliberate, since
generally too few test data were avail
able on which to bhase a statistical in-
terpretation for the formulael7). How-
ever, the gap between the real structural
behaviours and the linear elastic analysis
results seems too big to be properly
filled only with the reduction factors
directly derived from the limited number
of test results, and it seems that any
possible nonlinear finite element analyses
could be stepping-stones across this
gap.

Adopting these assumptions, in this
paper, the semi-empirical method and
the finite element method are applied to
the models tested by Miller and Kinral5],
and these two kinds of evaluated results
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are compared with each other and also
with the test results to derive useful
informations in improving the semi-
empirical method. As examples of
widely used semi-empirical formulae,
API code[l] and BS5500[2] are chosen.

FAILURE MODES

The collapse of cylindrical shell under

various loads are caused by yielding, or
elastic buckling or inelastic buckling
depending on the sturdiness of the shell.
While vielding is a very simple mode
which keeps the axisymmetricity of the
shell, buckling shows various modes as
follows depending on the type of
stiffening and the relative proportion of
the shell plating to the stiffeners.
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FIGURE 1. Shell buckling modes for cylinders[1]
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a. Local shell buckling; buckling of
the shell plate between stiffeners.
The stringers remain straight and

the rings remain round.

b. Bay Instability; buckling of the
stringers  together  with  the
attached shell plate between

rings(or the ends of the cylinders
for stringer stiffened cylinders).
The rings and the ends of the
cylinders remain round.

c. General Instability; buckling of one
or more rings together with the
attached shell (shell plus stringers
for ring- and stringer-stiffened
cylinders).

d. Local Stiffener Buckling; huckling

of the stiffener elements.

FIGURE 1 shows the buckling modes
of cylinders together with several types
of stiffening. '

Most of rules recommend that the
stiffeners bhe sized so that the first
mode of failure will be local buckling of
the shell stiffeners. If the
failure loads for the bay or general
instability modes are equal to the local
buckling load, there may be
interaction of buckling modes which will
result in a lower buckling load than
predicted. To avoid mode interation with
local shell buckling it is recommended
that the elastic failure loads for the bay
and general instability modes of failure
be equal to or greater than 12 times
the elastic local shell buckling load.

between

dan

APPLIED METHODS FOR
STRENGTH ESTIMATION

Semi-Empirical Method

iz

Most of rules or recommendations for
the design of circular cylinders
based on this method. In this paper,
API codell] and BS5500[2] are selected
as examples of semi-empirical method.

are

Both cover the wide range of stiffening
and load types, but here investigations
are limited to the case of ring stiffened
cylinders hydrostatic
Strength formulae of API code for the
ring-stiffened cylindrical  shell
hydrostatic pressure are
summarized in APPENDIX.

under pressure.

under
briefly

Finite Element Method
There are two ways of finite element
analysis in the field of axi-symmetric

shell problems, that is, one-dimensional
shell and
three-dimensional general shell analysis.
The latter is of wide application but too
time-consuming for parametric studies.
Therefore, have heen
focused on the former. But it had had a
limitation that it treat the
elasto-plastic behaviour which is
essential in the ultimate strength an-
alysis. In the meantime, this limitation
was overcome by Parkl6] by introduc-
mng a quadrature
instead of analytical integration in con-
structing of
dimensional shell
ment. In this paper, this new concept is
applied to calculate the ultimate strength
of the chosen models.

axi-symmetric analysis

more concerns

can not

Gauss integration

stiffness  matrix one-

axi-symmetric ele-

RESULTS OF ANALYSES
AND DISCUSSION

To investigate the validity and
accuracy of the semi-empirical method,

~172-



B 9814 dedde #g a7

APl codell! and BS5500[2] formulae are
applied to the 14 models tested by Miller
& Kinral5], all of which are ring-
stiffened and subjected to hydro- static
pressure and having shape im- perfection
data well measured after fa- brication.
And also the finite element analyses are
incorporated for com- parisons. Table 1
shows the geometric and matenal
properties of the test models, and Table
2 gives the com~ parison of the ultimate
strengths esti- mated by APl code,
BS5500 formulae and FEM.

2. FEM is in best agreement with the
test results among the three approaches.

One of the important reasons why the
agreements of various approaches with
the test data are poor is that circular
cylindrical shells are so sensitive to
initial imperfection that their collapse
load values are apt to vary at every
test. FIGURE 2 shows the shape im-
perfection sensitivities of some models
selected. In principle, experimental data,
therefore, should be treated statistically,
but it is almost impossible to perform

Table 1. Geometric and material properties of test specimens(5]

Modell L | R [t ] LR | R | Stiffener(mm) | E 0 | eu ea |
No. | (mm} | (mm) | (mm)| hw * ty | [GPal | [MPal | (mm) | (mum)
1 14877 11972112571 4.1 15 | 787 | 1328 | 204 272 412 | 3.00
2 14877 1196.2 13.08] 4.1 14 | -785 | 1313 | 204 408 523 3.02
3 14877 | 1969 |13.13] 6.2 14 | -772 | 1303 194 i 242 599 | 405
4 | 4877 [ 19701313, 83 15 | =777 | 13.03 194 242 6.15 | 4.05
5 14877 11973 1 11.02| 82 17 | =782 | 1113 196 260 452 | 397
6 487711977 975 3.1 20 | 765 9.91 202 289 267 | 2.87
7 14877 1988 960 82 20 | -795 978 | 200 231 39 | 396
8 | 4877 1982 B28: 82 ] 23 | -80.0 818 | 2001 | 287 274 | 389
9 | 4877 11994 6.601 20 , 30 | -658 6.96 194 278 1.93 1.95
10 | 4877 11989 | 6.83 | 2.2 1 29 | -699 6838 | 206 371 213 | 223
11 4877 11987 683 3.1 | 29 | -71.1 704 | 206 37 3.00 | 223
12 14877 11998 | 645, 81 ‘ 30 | -63.2 6.68 197 276 6.66 | 2.73
13 | 2438 60317 963] 1.0 : 62 101.6 9.52 190 259 305 | 414
14 | 4877 .301.8| 498 40 1 60 63.5 4,75 189 273 2.36 i 3.04

NOTE; Negative sign in hw means external ring-stiffener

Table 2 shows the followings.

1. Agreement between the two semi-
empirical formulae, ie. APl code and
BS5300, is very poor. Comparing the
two formulae aforementioned, BS5500
strength formula is in better agreement
with the test results but it is too early
to say that BS5500 is better than APl
code just with this extremely limited
comparison.

enough experiments to meet the st-
atistical treatment.

So this paper proposes that, prior to
application to the strength formulae, test
data be modified by the ratios of coll-
apse load values of models correspond-
ing to tolerance values of the codes for
initial imperfection to the ones corres—

ponding to actual initial imperfection.
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Table 2. Comparison of collapse load values derived from various approaches|[Test,
API code, BS5500 and FEM]

E Model | Imperf. Mx Prest ; Prest/Ppre
No. €act/Cal [=L/(R*] | [MPal Prew/Pr APl 1 BS&%%(J?H FEM |
1 1.37 163 15.20 032 | 153 1.08 136 |
2 1.73 16.0 18.60 0.33 1.72 0.90 1.16
.3 1.48 24.0 | 1410 0.41 151 1.14 1.50
4 151 32.0 12.40 0.56 1.59 1.16 1.38
5 1.14 349 9.32 0.59 1.45 ’ 1.20 1.19
6 0.93 139 12.80 0.39 1.76 ‘ 1.12 1.36
7 1.00 37.2 7.45 0.68 144 | 139 124 |
8 0.71 40.1 6.00 0.77 1.41 ) 1.53 0.97
9 0.99 11.2 7.87 0.43 175 | 113 1.33
10 0.96 12.0 8.31 0.44 1.70 ] 0.97 112
1 1.34 166 8.28 0.62 187 | 115 118 |
I 2.44 45.3 311 | 078 1.06 . 1.16 0.68
13 0.74 16.0 293 1.00 192 | 108 1.18 |
14 0.78 314 1.44 0.97 121 | 187 062 |
. Mean | 157 | 121 116 |
cov. 015 | 020 021 |

These ratios can be approximated as
the ratio between two collapse loads
calculated by FEM, respectively for both

1

initial imperfections. Table 3 shows the
shape imperfection sensitivities and the
modification of test data.
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FIGURE 2. Ultimate strength varying with the magnitude of shape imperfection[6]
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Table 3. Imperfection sensitivities within the tolerance limit and the modification of the
actul test data

Model (Pu)a Correction| Actual | Modified
No. (Puiclo (Pur)u (P::;ﬁ (Poae)ac Ratio | test data | test data

1 i 19.00 12.20 0.64 11.20 1.09 1520 16.57

2 3100 18.00 058 16.00 113 18.60 21.02

3 16.80 10.00 0.59 9.40 1.06 14.10 14.95

4 16.80 9.40 0.55 9.00 1.04 12.40 12.90

5 14.20 7.80 0.54 7.80 1.00 932 9.32

6 14.90 920 0.62 9.40 0.98 12.80 12.54

7 10.60 6.00 1 0.56 6.00 1.00 7.45 745

8 8.50 6.20 | 0.72 6.20 1.00 6.00 6.00

9 10.20 5.80 057 | 5.90 0.98 7.87 7.71

10 14.00 7.40 052 740 1.00 8.31 831

11 13.10 7.00 053 | 700 | L0O 828 8.28

12 5.00 4.50 0.90 | 460 0.93 3.11 3.05

13 4.48 2.46 054 | 248 0.99 293 2.90

14 | 220 1 234 106 | 232 1.01 1.44 1.45
CONCLUSIONS the test data is deemed to make it
possible to apply test data more
In this opaper the validit and rea§onably and save Fhe test results
accuracy of ?hfe semi-empirical 3;nethod “{hmh should .otherwxse _ have b‘een
were investigated and the recently dxscard‘ed because of large initial im-

developed one-dimensional FEMI[6] was perf? ction of the ‘test model.

applied to  seek the improvement Finally, followings are recommended

measures in the semi-empirical method
and following conclusions were drawn.

1. The poor agreement between the
predictions of APl code and BS5500
says that there is much room for
improvement in the present semi-
empirical formulae.

2. Analysis results of the applied
FEM show enough accuracy for the
FEM to be used in constructing
strength formulae together with test
results[refer to Table 2].

In addition, it was proposed as a way
of considering shape imperfection effects
to modify the test data by the finite
element analysis. This modification of
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as future works.

- Further investigation of semiempirical
formulae with more test models.

- Improvement of the present semi-
empirical strength formulae with
modified test data and finite
element analysis data for the range
for which no test data is available.
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NOTATION LIST

L length of the cylinder

L. distance between stiffening rings
R shell radius

t shell thickness

hw web height of ring-stiffener

tw web thickness of ring-stiffener
E Young's modulus

Oy yield stress of material

e amplitude of shape imperfection
€act actually measured value of e

ea allowed value of e by rules or codes
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Drest test value of collapse pressure
Pe elastic buckling pressure
Pura theoretically predicted collapse

pressure
(Purdo ultimate (or collapse) pressure
when e= 0

(Pud)a ultimate (or collapse) pressure
when e= ey

(Pudac ultimate (or collapse) pressure
when e= ey

APPENDIX:APl code for the ring
stiffened cylinders under
hydrostatic pressure

The value of My appearing

following equations is defined as;

in the

L,
M,= 71?;
where
L= distance between stiffening rings
R= shell radius
t= shell thickness

1) Local Buckling of Unstiffened or
Ring stiffened Cylinders
a. Theoretical elastic buckling pressure,
PoL.

A+;{2+70§ E(t/R)* it M\>1.5 and A<2.5
022 gpy? if 2.5¢A<0.208 R/t

Pa. =
0.83C, "™ E(t/R)*
0.275E(t/R)*

if 0.208¢C,<2.85
if C,>2.85

where
A = M, - 0636

A
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b. Failure Pressure, Pa.
Per = ndiPe
where

ar’ imperfection factor, 0.8 is recom-
mended for fabricated cylinders
which meet the fabrication tolerances

7. plasticity reduction factor given as
1.0 if &<0.55
(0.45/~)+0.18 if 0.55<{a<1.6

1.31/(1+1.154) if 1.6<2<6.25

1/ 5 if & 26,25
Where
NS
where
O = 'EetLPO . elastic buckling stress

g, © yield stress of material

2) General Instahility of Ring Stiffened
Cylinders

a. Theoretical elastic buckling pressure,
P

- .4 y
Pe(» E:(t/R)A(,’ + Elﬂ(nq 1)

T 0545 — D) (T AD)? L, R'R,

where L = aR/L. Rc is the radius to
the centroid of the effective section, R,
is the radivs to the outside of the shell
and I is the moment of inertia of the
effective section given by the following
equation;

. L L.t*

le=1+A, Z; A +Lx + 12

where Z: 1s the distance from the
centerline of the shell to the centroid of
the stiffener ring (positive outward) and

1.1yDt+t, if M,>1.56
L.=
L, if M,<1.56

and n is the non-integer value which
gives the minimum value of Pe.

b. Failure Pressure

P = MosPe

Where imperfection factor dg and
plasticity reduction factor n are the

same respectively as those values in
local buckling.
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