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Ripplon spectrum or liquid *He
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{Abstract)

Ripplon spectrum using the model of Yim and Massey is calculated for entire wave vectors,

variationally, at zero bulk pressure. For small wave vectors less than 0. 1565A-! it is also obtained

using a hydrodynamics.

Eckardt and Gasparini.

The present result is in good agreement with the result of Edwards,
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There has been quite interest over the past
two decades, both theoretically and experimen-
tally, in the ripplon spectrum of liquid ‘He with
free surfaces after papers of Atkins.! A few
vears ago Edwards et al.? obtained the ripplon
spectrum for entire wave vyectors by hydrod-
ynamics. However, there is still lacking in the
microscopic consideration.® Here, the ripplon
spectrum is calculated for entire wave vectors,
Yim and Massey* (YM) gave a

simple model for surface regions of liquid ‘He

variationally.

in calculating surface properties of liquid ‘He
and properties of the surface state of He atoms
liquid “He. The
considered here is composed of a surface region
and the bulk phase. In YM model* the Hamil-
tonian, H, of this system is defined by(Assume

near surfaces of system

the translational invariance for the bulk phase)

H=H;-+H, , (D
where H; is the Hamiltonian for a surface
region given by
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and H; is the Hamiltonian for the bulk phase
given by

y bE
H=32 2 V) - &

my, N, N, zi, fir Po,Bs» and B, in the above
are, respectively, the mass of a ‘He atom, the
total number of ‘He atoms of this system, the
number of “He atoms, the positive vertical and

two-dimensional positional coordinates of 7th

— 125 —



Moo Bin Yim

2
particle, momentum operators of g~ and z-
components of fth particle in the surface region
and the momentum operator of /th particle in
the bulk. V(p) and V{(r) are the two-and
three-dimensional Lennard-Jones 6-12 potentials,

respectively, given by

V(0)=4e0 ((%)lz—(—‘;—)"> (4
and
vi=ie((5)" (). ®
with €=10.22 °K and ¢=2.556A, and
712 = s+ 24
One-ripplon states are chosen as
...... JFR)

SN (Frtt s

U x=0¥ (71,
X(NS(K)) 12, )
where K denotes a set of two-dimensional and

z-directional wave vectors of the surface region

and the bulk wave vector(é.e., &, #k: and &).

ok is the density fluctuation operator defined by

N . -
ek (8)

Px=£' eiZ,.a,e-:,z,_'_
i=1 I=Ny+1
and S(K) is the liquid structure function of
this system. Then the elementary excitation
spectrum of liquid *He with free surfaces, 7.e.,
ripplon spectrum, ex,® is given by
ex (N (k2 + k2o, +(N— N DW%kE?)/(2ma
X(N:(Ql’”. ‘{‘Sﬂk.z(s:(kp)-“l))
+(N—=N)S:(£))), €]
where S,(k,) and S:;(k) are the two-dimensional*
and bulk liquid structure functions, respectively,

and ¢m, is Laplace transform of the ground

state wave function in =z-direction, ¢o(2),

obtained in Ref. 4 given by
pomt= | go(2) |24 da.

In order to minimize ex for given wave vectors,

(10)

K, the following procedures are chosen: (a) ex
is minimized with respect to %2, and % for given

¥, and ¥, are the ground state wave functions
wave vectors, k4, (b) ex is minimized with
respect to k, and %, for given wave vectors,
k. The upper bound of ex at zero bulk pressure
presently calculated by the above procedures is
shown and compared with the classical capillary
2 3
wave, e;;,z(-%—b% k,
/] pendix A) in Figure, and it is in good agree-
i ment with the result of Edwards et al.? at zero
bulk pressure where 7, and ap are the number

density of the bulk and the surface tension,
for

of H,; and H; given by
HY.=EJ7.

and
HWy=E¥,,
15

D

172 /2

, 1(refer also to Ap-

ex
K
10}
respectively. In this calculation we take,
k larger than 1.58A-1, e, as the exact elemen-
tary excitation spectrum of the bulk, where
n2ke
:m. (1D
The present ripplon spectrum,
reliable for wave vectors, %, less than 0.1565
A-1 since the long-range correlation seems not
to be included in calculating ¢ (z). Therefore
for this limit we obtain e:, by hydrodynamics
as shown in Figure, where we use the experi-
mental result® ao=0.27°K/A? at zero bulk
pressure instead of using the theoretical calcu-
lation in YM model* ao=0.264 "K/A2 at zero
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Fig. :--and-—- are the classical capillary
wave and the present result at zero
bulk pressure respectively.
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bulk pressure. (Refer to Appendices A and B.)
Also, it is noted using the results in YM
model* the experimental result of the roton
minimum, 4, by Baliber et al.” can be explained
such as the roton minimum, 4, by them reduces
to 4 in the bulk “He as in Figure and a good
explanation® for a mechanism of a phonon-liquid
4He with free surfaces® can be also qualitatively

given.

Appendix A: Ripplon spectrum, es,, and ground
state wave function, ¥, for small £,(k,<0. 1565
A-D(Refer also to Ref. 10)

The system considered is defined as follo-
ws: a 0<z<d, the
surface at 2=0 and the bulk for 2<0. In order
to obtain e, to 0(k,%72) we only consider the

surface region for

Hamiltonian, H, for the small displacement,
and the small bulk

number density fluctuation, é#; where
_ mm ap
H="24 95.v5d0+-%-[ V,u-Vudd

-+ ch f ans2ds2.

In the above ,¢ and ¢ are the volume of the
bulk, the velocity potential and the sound speed,

u, of the surface, A,

(AD

respectively, and #=u(g,t). From Green’s

theorem the Hamiltonian, H, can be seperated

into two parts, i.e.,
H=H,+H,,

where

nym
H =2 il $Vg-ldA+

(42)

-";Lf VoV dA,

(A3)
and
__ mmy mac®
Hy=—200 [ 492d0+ 58 { ondg
(A9

where 7 is the unit vector of the surface. The
above Hamiltonian is subjected by the following
two equations, Z.e., one is the Euler’s equation
for the bulk and the other is the boundary
condition assumed the particle velocity to be
equal to the velocity of the surface displacement,

u, at the surface

2

—mp==-om, (A5)

and

Vg-l=1, (A6)
where ¢ and # represent the derivatives of é
and # with respect to the time £, Substituting

Egs. (A5) and (A6) into H results in
H="T00 f pud A+ [ V,u-V,udA,

and (AT

Hy=— 230 gy T ’”" ”b f #d0. (A8)

The representation of Eq. (A6) in the momentum
space gives

ko=, Pt,, (A9)
where %, is assumed an even function of zp,

p=g T enien | (2<0)
and

uz—i—%?u,, eFrB gt | (2<0) (A10)
Using Eqs. (A9) and (A10) H, is as follows:

. Ty ‘uwﬁ
H=5g 8 G tag = blul,
(A1D

Using the real amplitudes Q;, H; in the Q-

space becomes

B0 5o QiP 020 =k

24 w k,
and
He=—A4 0y, Pt 4 RAQR?
2nymac®  w e
(A12)
where

1
Qfﬂ=W(7‘h+u-b):

for £ >0; k=0, ky>o: kx:ky
=0 with 2,>0;

7
Qz,———-ZT/-z‘;g(u:.—u-;,),

for 2.<0; k=0, k>0 k.=k,
=0 with k.20
and
_aSmym

Pb‘“ Ak_“ t 783
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From Eq. (A12) we obtain
PTG+t B Q=0 (A13)

In the process of solving Eq. (Al3) we
obtain the ripplon spectrum, ¢, as the below:

PP, 4

ChpP=
T memy*

k. (A14)

We also obtain e, for the bulk in the same
procedures as the above:
ert=h2c? (k2 — k). (A15)

From the above result %, should be equal to
k, for the small &, in order that the bulk is not
disturbed by the surface excitation. Combining
the above argument with Eq. (A14) renders ex,
for the small #, the following:

_f PPas NP ae A16
ekﬁ——( n 1714> kR ¢ )

Now, we give the ground state wave fun-
ction, To, for the small &, where z<<0 and for
the completeness this type of wave function
may be included in the bulk part. (However,
it should yield negligible effects on the bulk.)
From Egs. (A12) and (A16) ¥ for the small
ko is
(mymaao™)17®

2Ah
N ‘—kal/?e"“’”‘lpfw) ’ (A1D)

¢ o=Const exp(-—

where Const and k. are the normalization con-
stant and the cutoff, respectively, p; is the

density fluctuation operator defined by

N -
pE:‘\:'eik,~ﬁjek,zl . (A18)
=1
In the above N is the total number of parti-
cles of the surface, 4, and the bulk. Using

Egs. (A17) and (A18) we obtain

. 1 Yoes =AW
Fo=Const exp —5 (K@) + 2 4 7)))
(A19)
where

W= 1'(5/2)(nymaona'®)
GO=Zah((1 k) —2207% °

and

w(Fi, 7)) = F(l.5)Sin(1.531n‘1(,0ﬁ(((716)
—z,— 22+ 05,7 VD)/(2rk

X (amacgr )V 2(((1/ kD) — 20— 2% 0,540 ).
(A20)
Appendix B: Theoretical calculation of the
surface tension, «,
The system considered is given in Appendix
A. The surface tension, «, can be calculated

°

by the following equation:

w=[ (P—P(z)dz . (B
where d is the positive value to render o(z)
zero calculated in Ref.4. P, and P(z) are the
bulk pressure and the local pressure of the
surface region. We may define the average
pressure of a surface region, P, as follow:

— d

Pa=[P(z)dz,

and

P=( 1) S -

where #;, v and ¢; are the area number density,
the surface thickness, and the ground state
energy per a ‘He atom of the surface region.
Using the results of d, = and & by YM.,! ao is
0.264°K/A? at zero bulk pressure.
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