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On Strongly Irresolute Mappings
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{Abstract)

In this note, a mapping f: X—Y is introduced to be strongly irresolute iff f(scl A)Cf(A) for
all subsets A of X, where scl A means the semi-closure[1] of 4 in X. Some characterizations of
these mappings are established and some of its basic algebraic properties are investigated.

Further, some of its properties related to other known concepts, viz., s-connectedness, s-

compactness, are discussed.
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1. Introduction

A necessary and sufficient condition for f:
X—-Y to be irresolute is that f(scl A)Cscl f
(A4) for all ACX, where scl A denotes the
semi-closure of 4 in X [2]. In this note, it is
attempted to investigate the strength of the
more restrictive condition f(scl AXCF(A) for
all AcX, with which the mapping is termed
strongly irresolute. Some characterizations of
strongly irresolute mappings are obtained and
its relation with some of the known concepts
are discussed in section 1. It is shown that the
class of strongly irresolute mappings contains
all strongly continuous mappings defined in
[7] and is contained in the class of all irresolute
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In Section 2, the
algebra of strongly irresolute mappings is
investigated.
study of these mappings associated with s-

mappings defined in [2].

Section 3 is concerned with a

connectedness property. In section 4, strongly
irresolute mapping in relation to s-compact
mappings is studied.

Throughout this paper, a space means a
topologieal space.

A set A of a space X is semi-open iff there
exists an open set O in X such that OcCAC
closure of O {9]. Any union of semi-open sets
is semi-open [1], Complement of a semi-open
subset of a space X is a semi-closed set in X
[1]. In a space X, intersection of all the
semiclosed sets containing A is called the
semi-closure of A and it is denoted by scl 4
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{1] and union of all the semi-open sets contained
in A is called the semi-interior of & uno 1t is
denoted by sint A [1]: also sint AcAcscl 4
[1]. Since any union of semi-open sets is
semiopen and any intersection of semi-closed
sets 1s semi-closed, it follows that sint A and
scl A are semi-open and semi-closed, respectively
[1]; A 1s semi-closed iff A=scl 4 and A is
semi-open iff A=sint A[1]. Union of two
semi-closed sets need not be semi-closed[1]. A
point p==X is a semi-limit point [3] of ACX
iff each semi-open set containing p, contains
a point of A distinct from p. The set of all
the semi-limit points of A4 1s called the semi-
derived set of 4 and is denoted by D,(4)[3].
AUD,(4)=scl A[3]. Also AcB implies D,(4)
cD,(B), and AcCX is semi-closed 1ff D,(A)
A [3]. A semi-limit point p of a subset 4 of
a space X is a limit point of 4 [3]. f: XY
is irresolute [2] iff f(S) 1s semi-open in X
for all semi-open S of Y, equivalently, iff f
(scl A)cscl f(A) for every A of X. f: XY
is pre-semi-open [2] iff f(A) is semi-open 1in
Y for all semi-open ACX. f: X-Y is a semi-
homeomorphism iff f is bijective irresolute and
pre-semi-open. If A is semi-open 1n a space X
and B is semi-open in ¥, then AXB is semi-open
in XXY [9]. A space X is semi-T,[10] iff for
each pair of distinct points x, y of X, there
exists a semi-open set V containing y such that
xctscl V.

I. Definitions and Characterizations
of Strongly Irresolute Mappings

Definition 1 : A mapping f : X—-Y is termed
strongly irresolute iff, for every subset A of
X, f(scl A)cf(4).

Obviously, every strongly irresolute mapping
is irresolute, but not conversely. It is shown
by the following example.

Example 1: Let X={a,b,¢} with the indis-
crete topology. Then the identity mapping 7:

X—X is a irresolute mapping but not strongly
rresolute.

It is quite evident that f: X—Y 1s strongly
irresolute iff f(D.(A))Tf(A4) for all ACX.

Theorem 1: f:X—Y 1s strongly 1irresolute
iff f~}(B) is semi-closed for all BCY.

Proof: Only if: Let p=D,(f*(B)). Then f(p)
Ef(D,(f~(B))CTS(S(B)) (since [ is strongly
irresolute)CB and hence p&f'(B).
quently f-*(B) 1s semi-closed for all BCY.

If: Let AcX. Then AcCf-(f(4)) which
implies D,(A)D,(f~ (f(A)CTf(f(A)) since
f71(B) is semi-closed for all BCY. Therefore,
F(D,(ANCTFU (fLANITS(A) for all ACX.
Consequently f is strongly 1rresolute.

Conse-

Corollary 1: f: X—Y 1s strongly irresolute
iff f~1(B) is semi-open for all BCY.

Corollary 2: f:X—Y 1s strongly irresolute
1ff f~'(B) is both semi-open and semi-closed for
all BCY.

Let f:X—Y be a mapping. Then a set B of
X is termed an nverse set of f if f~'(f(B))=B.

Corollary 2-A : A surjective mapping f : X—
Y 1s strongly irresoluse 1ff each mnverse set is
semi-open as well as scmi-closed.

Now, a mapping f: X—Y is set-s-cennected
[4] iff f~*(V) is both semi-open and semi-closed
for every semr-open and semi-closed ¥V of f(X).
Hence, we have

Corollary 3: Every surjective strongly irre-
solute mapping is set-s-connected.

The converse to Corollary 3 need not be true
as is evident from the following example.

Example 2: Let X={a,b,c} with topologies
I ={0, X,{a}, {8}, {a, b}} and Z={0, X, {a}}.
Then the identity mapping ¢ : (X, 5 )—(X, %)
is set-s-connected but is not strongly irresolute.

Obviously, if f: (X, 9 )—(Y,%) is strongly
irresolute, then, for any other topology %~
for Y, the mapping f: (X, 9 )=, Z") is
also strongly irresolute. If follows, therefore,
that the knowledge of the domain of a strongly

irresolute mapping does not help in knowing
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the topology of its range.

Evidently, every strongly irresolute mapping
S (X, T )=(¥,Z) is irresolute for each and
every topology on Y.

Theorem 2 : A mapping f: X—Y is strongly
iff f:X-Y is irresolute with a
discrete topology on Y.

Proof : Obvious.

irresolute

strongly
irresolute mapping. Also, a continuous mapping
and a

Continuity 1s independent of a
irresolute mapping are independent
motions. However, we have that a continuous
mapping f: XY, where Y is a discrete space,
is irresolute. Hence, we have

Corollary 4: If f: XY is continuous with
a discrete topology on Y, then f: X-»Y is
strongly irresolute.

A weakly continuous mapping [6] into a dis-
«rete space is continuous. Hence, we have

Corollary 5: If f: X—Y is weakly continuous
with a discrete topology on Y, then f:X-Y
is strongly irresolute.

f: XY is weakly irresolute[6] iff, for each
x=X and each semi-open set H containing f
(x), there exists a semi-open set G containing
x such that f(G)cscl H. A weakly irresolute
mapping into a discrete space is, obviously
irresolute. Hence

Corollary 6:1f f: X—Y is weakly irresolute
with a discrete topology on ¥, then f: XY
is strongly irresolute.

S : XY is strongly continuous[7] iff f~(B)
is open as well as closed for all BCY.

Obviously, every strongly continuous mapping
is strongly irresolute but the converse may not
be true as is shown by the following example.

Example 3: Let X={a,b,c} with topology
T ={0, X, {a}, {b}, {a, b}} and ¥ =={p,q,7} with
.any topology. Then the mapping f: X-Y,
defined by f(a@)=f(c)=p,f(B)==r, is evidently
strongly irresolute but is not strongly contin-
wous.

However, a strongly irresolute mapping is

strongly continuous if it is defined on a discrete
space.

Thus, we have the following implications
diagram:

Strongly continuous mapping =—> Strongly

irresolute mapping —=> Irresolute mapping

==» Weakly Irresolute mapping

Theorem 3: If X is a discrete space, then
f: XY is strongly irresolute.

Proof : Since every subset of X is semi-open,
it follows that the inverse image of every
subset of Y is semi-open in X.

The converse to Theorem 3 does not hold,
in general. It may be seen by the following
example.

Example 4: Let X={q,b,c¢} with topology
T ={0, X, {a,b}, {c}} and Y ={p,q,7} with any
topology. Then, the mapping f: X—Y, defined
by f(a)=f(b)=gq,f(c)=r, is strongly irresolute
but X is not a discrete space.

However, we have

Theorem 4: An injective mapping f: XY
is strongly irresolute iff X is a discrete space.

Proof : The if part follows from Theorem 3.

Only if : If f is injective strongly irresolute,
then every point subset {x}=s=(f(x)) is semi-
open in X. But every non-empty semi-open set
has a nonvoid open set[l]. Hence every
singleton {2} is open in X. Consequently, X
is a discrete space.

Example 1 proves also that even a semi-
homeomorphism may fail to be strongly irre-
solute. However, we have

Corollary 7: A semi-homeomorphism f: X—
Y is strongly irresolute iff X and Y both are
discrete spaces.

Proof : If : Obvious from Theorem 3.

Only if : By Theorem 4, X is a discrete space
and so every subset of X is semi-open. Since f
is a semi-homeomorphism, semi-open sets have
semi-open images, and hence every subset of
Y is semi-open. Consequently, ¥ is a discrete
space,
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Theorem 5: f: X—Y is strongly irresolute
iff /~'(y) is semi-opcn for each yeY.

Theorem 6 : If f: XY is strongly irresolute,
then f~*(y) is semi-closed for each yCY.

The converse to Theorem 6 may tail to be
true as the fellowing example shows.

Example 5: Let X={a,b,¢,d} with topology
7 =10, X, {a,b. ¢}, {c}, {a,8}} and Y ={p,q,7}
with any topology. Let the mapping f: XY
be defined by f(@)=f(b)=p, f(c)=q, f(d)-r
Then, obviously, f~'(¥) is semiclosed for cach
y-Y but f is not strongly irresolute.

. Algebra of Slrongly Irresolute
Mappings

Theorem 7:If f:X—-Y is a strongly irre-
solute mapping and g : Y—Z is any mapping,
then gef : X—Z is strongly irresolute.

Corollary 8: The composition of two strongly
irresolute mappings 1s strongly irresolute.

Theorem 7 is not necessarily truc for irre-
solutc mappings as is shown by the following
example.

Example 6 : Let X={a, b, ¢} with an indiscrete
tonology .7 and a discrete topology <. Then,
obviously, the identity mappings f: (X, .7 )—
(X,Z) is irresolute and g :(X,Z)—(X,5)
is any mapping but g-f is not irresolute.

Lemma 1: f: XY is weakly irresolute [6,
Theorem 1], iff for each semi-open subset H
of YV, f'(H)csint f~(scl H).

Proof : Let x=f~'(H). Then f(x)e<H. The-
refore, by definition of a weakly irresolute,
there cxists a semi-open set G containing x
such that f(G)Cscl H. This implies x=f-*(scl
H), 1c., x=sint f-'(scl H). Conversely, let
=X and f(x)=H(semi-open in Y). Then
xE f~YH)Csint f~'(scl H)=G(say). Therefore,
J(G)=f(sint f(scl H))CF (f1(scl H))Tscl
H. Hence, f is weakly irresolute.

Theorem 8 : If f: X—-Y is weakly irresolute
and g :Y—Z is strongly irresolute, then gof :

X—Z is strongly irresolute.

Proof : Let A be any subset of Z. Then g-*
(A) is a semi-open as well as semi-closed subset
of Y. Smcc [ 15 weakly irresolute, by the
above Lemma 1, f~(g='(4))Csint f-i(scl g
(A))=sint [~ (g '(4)), i.e., (g-f)""(A)Csint
((g-f)(4)). It follows, therefore, that (g°
f)71(A) is scii-open in X, Consequently gof
1s strongly irresolute.

Corollary 9:1f f: XY 1s irresolute and g :
Y-»Z 1s strongly irresolute, then gof: X—Z
is strongly irresolute.

Lemma 2: [2] If 4 1s semi-open and Y is
open 1 a space X, then ANY is semi-open 1n
Y.

Restriction of a strongly irresolute mapping
to any subset of the domain need not be
strongly 1rresolute. As, in Example 3, f 1s
but f]A:A-Y,
A={b, c}X, 18 not strongly irresolute. Howe-

strongly i1rresolute, where
ver, we have

Theorem 9:If f: XY is a strongly irre-
solute mapping and 4 1s an open set in X, the
FlA 1 A-Y is strongly irresolute.

Proof : Let B be any set mn ¥. Then (f]A)-!
(B)=f"(B)NA. f bemg strongly irresolute,
S7U(B) is semi-open in X. It follows, then, by
Lemma 2, that (f|A)-(B) is semi-open in A.
Hence f14 is strongly irresolute.

In Theorem 9, if A is semi-open in X, then
f1A 1s not always strongly irresolute, as shown
by just before Theorem 9 where A={b,c} is
semi-open in X.

If the restriction of a mapping to an open
subset of the domain is strongly irresolute,
then it 1s not necessary that the mapping is
strongly irresolute. As in Example 5, flA: A
—~Y, where A={a, b, c} is open in X, is strongly
irresolute but f is not strongly irresolute.

Theorem 10 : Let f, : X,—Y, and f,: X,»Y:
be strongly irresolute mappings and let f: X
—Y, where X=X,XX, and Y=Y,XY, be
defined as f(x, x)=(f.(x), f:(x.)). Then f is
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strongly irresolute.

Proof : Let y<Y. Then y=(#.,¥:) where »&
Y, and y,=Y, and f)=fT0) X (0.
Since f; and f, are strongly irresolute, fr'(y.)
and f5'(y.) are semi-open in X, and X, res-
pectively, for each <Y and 3.=Y,. It follows
then, due to Levine [9], that f*(y) is semi-
open 1 X. Hence f is strongly irresolute.

Theorem 11:Let f: X—Jlses Xa be a st-
rongly irresolute mapping and let f.: X—X,
for each ae=4 be defined as f.(x)=x, where
f(x)=({x,}). Then f, is strongly irresolute for
each we&A

Proof : Let p, be the projection of [[ees Xa
onto X,. Then, obviously, f.=P, of for each
ac=.1. Since f is strongly irresolute, each f, is
strongly irresolute in view of Theorem 7.

IF. s-Connectedness and Strongly
Irresolute Mappings

Lemma 8 [4] : If A is semi-closed and Y is
open in X, then ANY is semi-closed in Y.

In a space X, a set is s-connected iff it is
s-connected as a subspace of X [11]. A space
X is s-connected iff nonempty proper subset
of X is both semi-open and semi-closed[11]. A
space X is locally s-connected [11] iff, for
each *&X and each open set 0 containing =z,
there exists an open s-connected set G such
that x=GC0.

Theorem 12:1f f:X-—Y is strongly irre-
solute, then, for every non-empty open s-
connected subset A of X, f(4) is a single
point.

Proof : Suppose f(A4) contains more than one
point. Let p&f(A). Then, f being strongly
irresolute, f~'(#) is a nonempty semi-closed as
well as semi-open subset of X. Therefore, in
view of Lemma 2 and Lemma 3, F(p)NA4 is
a nonempty proper semi-closed and semi-open
subset of A.
contradiction.

Thus A is not s-connected, a

Corollary 10:Image under a strongly irre-
solute mapping f: X—Y of a nonempty open
s-connected set of X is s-connected.

Proof : Obvious, since every singleton is s~
connected [11].

The converse to Theorem 12 does not hold,
in general, as in Example 5, image under f of
every nonempty open s-connected subset of X
is a single point, but f is not strongly irre-
solute., However, we have

Theorem 13: If the image under f: XY,
where X is locally s-connected, of every non-
empty open s-connected subset of X is a single
point, then f is strongly irresolute.

Proof : Let A be any subset of X. We show
that f(D,(A))f(A). Let x=D,(A). Then x=
D(A) (D(A) denotes the set of all limit points
of 4). 8Since X is locally s-connected, there
exists an open s-connected set G containing x
and so GNA#0. Now, obviously, f(x)=f(G)
and since f(G) is a single point, f(x)=f(G).
Also, 9=f(GNAICTF(G)=F(x). Hence f(x)=
f(GNA)Cf(A) and thus f(x)=f(A). This
proves the theorem.

Every s-connected space is connected [11].
A space X is totally disconnected iff the sing-
letons are the only connected subsets of X.

The converse to Corollary 10 may fail to be
true, as, in Example 5, image under f of every
non-emply open s-connected subset of X is s~
connected, but f is not strongly irresolute.
However, we have

Theorem 14 : If the image under f: X-Y,
where X is locally s-connected and ¥ is totally
disconnected, of every nonempty open s-
connected subset 4 of X is s-connected, then
[ is strongly irresolute.

Proof ; f(A) is s-connected and hence con-
nected for every A. Since Y is totally discon-
nected, f(A) is a singleton for every A.
Consequently, by Theorem 13, f is strongly
irresolute.

Theorem 15: A space X is s-connected iff
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every strongly irresolute mapping on X is
constant,

Proof : Only if : It is obvious in wview of
Theorem 12.

If : Let X be not s-connected. Then there
exists a nonempty proper subset 4 of X which
is both semi-open and semi-closed. Let ¥Y'={p,
g}, where p3£¢q, with any topology. Now define
a mapping f: X—Y such that f(4A)={p} and
f(X-A)={q}. fis a

irresolute but not a constant mapping on X.

Obviously, strongly
This, being a contradiction, proves the theorem.

In a locally s-connected space X, the s-
component [11] of p=X is the union of all open
s-connecsed sets which contain the point p.
Each s-component is open, s~-connected and
closed [11].

Theorem 16 : Let X be a locally s-connected
space and let m be the cardinality of the family
C, of all s-components of X. Let ¥ be any
space. Then the following statements are
equivalent:

(a) f(X)=Y for some strongly irresolute

mapping f: X-Y.

(b) Cardinality of Y=m.

Proof : Let Y be any space with cardinality
n<m. Let C; be the subfamily of C, of car-
dinality #. Then there is a one-to-one mapping
g from C; to Y. Define a mapping f: XY
such that f(x)=g(D,) when x=D,=C; and f
(x)=g(D,) when z&DeC, but De£C;, D, being
some fixed member of C.. Since each D&C, is
semi-open, f~!(y) is semi-open for each y&Y.
Hence f is strongly irresolute. Further, if
f: XY isa strongly irresolute mapping of X
onto y, then f can take at most m different
values. Therefore, the cardinality of Y =m.

V. s-Compact Mappings and Strongly
Irresolute Mappings

A cover of X is termed semi-open iff the
union of its members, being semiopen, is X.

3

!
1
?
1
1
I
I
1
!
1

A space X is s-compact 1ff every semi-open
cover of X has a finite subcover. A subset ¥
of a space X is s-compact iff ¥ is s-compact
as a subspace of X.

Lemma 4[10] : Let X be a topological space
and B a semi-open set(semi-closed) in X conta-
ining a subset A of X. Then, A is semi-open
(semi-closed) in X iff A is semi-open(semi-
closed) in the subspace B.

Lemma 5 : Every semi-closed and semi-open
subspace Y of an s-compact space X is s-compact.

Proof : Let {S,:ac=A} be a cover of ¥ by
semi-open subsets of ¥. Then Y-S, 1s semi-
closed in Y for each asA. By Lemma 4, Y~
S, is semi-closed in X. Hence X—- (Y —-S,)=
(X-Y)US, is semi-open in X for ecach a&A.
Therefore, {(X-Y)US.: a4} is a semi-open
there is a
finite number of the S.'s, say, Sa, Scziese,
Saxs such that {(X—=Y)USq: £=1,2,.., 0} is
also a semi-open cover of X. Thus, obviously,
{Sax: £=1,2,...,2} 15 a finite subcover of Y.

cover of X. Since X is s-comract,

Hence Y is s-compact.

Defintion”2 : A mapping f: XY 1s said to
be s-compact iff the inverse image of every s-
compact subset of Y is an s-compact subse of X.

Theorem 17 : Every strongly irresolute map-
ping on an s-compact space is s-compact.

Proof : Let A be any s-compact subset of Y.
Then f-'(4) is a semi-closed as well as sem-
open subset of X. Since X is s-compact, it
follows by Lemma 5 that f-'(4) is s-compact.
Hence the theorem is proved.

Theorem 18 : Image under a strongly irreso-
lute mapping f : X—Y of every open s-compact
subset A of X is a finite set.

Proof : Since f is strongly irresolute, f~'(¥)
is semi-open in X for each y<Y¥. Thus {f!
(y) : Y} is a semi-open cover of X and so a
cover of A by semi-open subsets of X. Since
A isopenin X, by Lemma 2 {f'(3)N4:y=Y}
is a semi-open cover of X and so a cover of
A by semi-open subsets of X. Since 4 is open

in X, by Lemma 2 {f'())NA:y=Y} is a
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cover of A by semi-open subsets of A itself.
Since A is s-compact, there exits finitely many

points Y1, ¥z,...,% in ¥ such that A:g{f“
(39N A} Therefore, FIAY=F(ULf(3INAD)
C'k':'! y.(a finite subse® of ¥). Hence f(4) is a
finite set.

Corollary 11 :Image under a strongly irre-
solute mapping of an open s-compact{compact).

Proof : It is obvious since every finite space
is s-compact.

Evidently, image under a strongly irresolute
mapping of an s-compact space is s-compact
(compact).

Definition 3: A space X is a s-s space iff
the semi-open se:s in X coincide with the s-
compact sets in X.

Every singleton in a space is s-compact.

Theorem 19 : Let f: X—Y be a mapping with
X a s-s space. Then f is strongly irresolute
iff it is s-compact.

Proof : If f is strongly irresolute and A is
any s-compact subset of Y, then f-'(4) is a
semi-open subset of X. Since X isa s-s space,
f~t(A) is s-compact and hence f is s-compact.
Conversely, let y=Y¥. Then {y} is s-compact
and hence semi-open. Consequently, f is
strongly irresolute.

Lemmsa 6 [5] : A mapping f:X—Y has a
strongly semi-closed graph G(f) iff, for each
=X, y=Y such that f(x)#y,
semi-open sets U in X and V' in ¥ containing
such that fU)Nscl

there exist
x and y, respectively,
vV =0.

A strongly irresolute mapping fails to have
a strongly semiclosed graph as is shown by
the following example.

Example 6 : Let X={a, b, ¢} with topology
T ={0, X, {a}. {6}, {a, b}} and Y ={p.q.r} with
topology 9'={0,Y, {#}}. Then, obviously, the
mapping f: X—Y, defined by f(@)=f(c)=2,
FB)=r, is strongly irresolute but G(f) is not
strongly semi-closed.

However, we have

Theorem 20 : Let £ : X—Y be a strongly irre-
solute mapping and ¥ be a semi-T; space.
Then G(f) is strongly semi-closed in XXY.

Proof ; Let z<X, y=Y, such that y#f(x).
Since Y is semi-T,, there is a semi-open set
V containing y such that f(x)<zscl V. Therefore,
Fi(scl V) is a semi-open as well as a semi-
closed set in X and aZf-'(scl V). Taking
U=X-f-1(scl V), U is a semi-open set conta-
ining x, and then f(U)Nscl V=0. Hence, by
Lemma 6, G(f) is strongly semi-closed.

In view of the following example, the con-
verse to the above Theorem 20 does not hold,
in general.

Example 7: Let X={a,b,¢} with topologies.
S =19, X,{a}, {b}.{a, b}} and I '={0, X,{e}
{b}, {c}, {a, b}.{a, c},{b c}}. Then, obviously,
the graph of the identity mapping ¢: (X, 9 )
—(X,.5") is strongly semiclosed but ¢ is not
strongly irresolute.

A space X is said to be almost compact (or
quasi H-closed) iff every open cover of X has
a finite subfamily whose closures cover X.

Theorem 21 : Every strongly continuous image
of an almost compact space is s-compact.

Proof : Let f : X—Y be a strongly continuous-
mapping of an almost compact space X onto a
space Y. If {Uq : a4} be any semi-open cover
of ¥, then {f*(U.) : a4} is a cover of X by
clopen sets of X. Since X is almost compact,
there exists a finite subfamily {f~'(U.): 1<d
<n} of {f~'(Us) : a4} which covers X It
follows then that {U, :1<i<n} is a finite
subfamily of {U. : @A} which covers ¥ and
hence Y is s-compact.

Lemma 7 [2] : If A is semi-open in U and U
is open in X, then A is semi-open in X.

Theorem 22: Let f: X—Y be a mapping and
{As: a4} an open (semi-open) cover of X If
flA,: A.—Y is strongly irresolute.

Proof : Let V be any arbitrary set in Y, Thus

for each a4, (FlADV) =(VIN4. is
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semi-open in A, because f|A, is strongly irre-
solute. Hence, by Lemma 7(Lemma 1), (V)
N A, is semi-open in X for each a4, Therefore,
qLé;{f“(V)ﬂA.,}zf"(V) is semi-open in X. This
implies that f is strongly irresolute.
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