On the boundedness of the set containing univalent functions

Gyu Ihn Chae
Dept. of General Education

(Abstract)

We denote a set of locally univalent functions defined on D by L.S. and S denote the subset of L.S. We consider X_3 as a norm topology defining a norm $||f||_3 = \int_0^1 M(r; f) dr$. First, we explained properties of X_3 as a set, or a norm topological space.

Finally, we shall introduce the boundedness of S in X_3 on the compact open topology.

다엽함수를 포함하고 있는 집합의 유계성에 관하여

채 구 인 교양과정부

〈요 약〉

복소수 평면상의 단위원 내부영역에서 국소단엽함수족들을 L.S.라 표시하고 그 부분집합을 S로 표시했다. 우리는 norm(노름)을 $\|f\|_{S}=\int_{0}^{1}M(r:f)dr$ 로 정의하여 X_{S} 을 norm 위상으로 생각했다.

처음에 X_3 에 대한 집합 또는 norm 위상공간상에서 여러성질을 보았다. 결론으로 L.S.부분집합 S의 유계성을 compact개위상에서 증명한다.

T. Introduction

Let L.S. denote the family of locally schlicht holomorphic functions in $D=\{z:|z|<1\}$ and let S denote the family of schlicht functions in $L.S.=\{f:f \text{ analytic in } D, f(0)=0, f'(0)=1\}$. In [1], [2], [3] and [4], the set L.S. can be given a real linear space structure with operations.

$$[f+g](z) = \int_0^z f'(\varphi)g'(\varphi)d\varphi$$

$$[\alpha f](z) = \int_0^z (f'(\varphi))^\alpha d\varphi$$
(1·1)

where f and g is in L.S. and α is real. And two different normed topological spaces, X_1 and X_2 were introduced, the next theorms were shown.

In this paper, we first study some results on X_3 , and we shall introduce a theorem on X_3 and show the main theorem that S is bounded in X_3 on the compact open topology.

II, Some results on X and topological properties

In [1], [2], [3] and [4], if F is a linear-invariant family, the order of F is defined as the real number

$$\alpha = \sup \left\{ \left| \frac{f''(0)}{2} \right| : f \in F \right\} \tag{2.1}$$

[4] is shown that $\alpha > 1$. And if

$$t(z,f) \equiv \left| -\bar{z} + \frac{(1-|z|^2)}{2} \frac{f''(z)}{f'(z)} \right| \quad (2\cdot 2)$$

then $\alpha = \text{order } F = \sup_{f \in F} \sup_{|z| < 1} t(z, f)$.

Let \mathcal{U}_{α} denote the union of all linear-invariant family of oder $\leq \alpha$, that is,

$$\mathcal{U}_{\alpha} = \{ f \in L. S. : \sup t(z, f) \leq \alpha, |z| < 1 \}$$
 (2.3)

Then we can see easily that for each α , \mathcal{U}_{α} is also a linear-invariant of order α . For any function f(z) in X and any $0 < \rho \le 1$, we define $f_{\rho}(z) = f(\rho z)/\rho$.

Proposition 2.1: If f(z) is in \mathcal{U}_{α} , then $f_{\rho}(z)$, $(0 < \rho \le 1)$ is also in \mathcal{U}_{α} .

Proof. D.M. Campbell, Locally univalent functions with locally univalent derivative. Trans. Amer. Math. Soc. 162(1971), 395–409. results and $\sup_{\|\boldsymbol{z}\|<1} t(\boldsymbol{z},f) \leq \sup_{\|\boldsymbol{z}\|<1} t(\boldsymbol{z},f)$ gives the proof.

Pommerenke [4] showed that if f is in \mathcal{U}_{α} , there is a constant $K=K(\alpha)$ such that

$$|\log f'(z)| \le K \log \frac{1}{1 - |z|} (z \in D) \tag{2.4}$$

Let X be the union of \mathcal{U}_{α} , i.e., $X = \bigcup_{\alpha \geq 1} \mathcal{U}_{\alpha}$

(2.5)

then X is a proper subset of L.S. and is a real linear subspace of L.S. with the induced operation (1.1). The above result is shown in [1], [2], [3] and [4], they introduced two different norm topology from a norm topology in this paper. As a result of that, they found several topological properties on them.

II. On the results of X_3 with another topology

We shall introduce a different norm from that of X_1 and X_2 to equip X_3 with a normed topological space. If we define

$$M(\mathbf{r}; f) = \frac{1}{2\pi} \int_0^{2\pi} |\log|f'(\mathbf{r}e^{i\theta})| d\theta$$
 (3.1)

then we have for f & g in X_3 and α a real number

$$M(r; [f+g]) \leq M(r; f) + M(r; g)$$

$$M(r; [\alpha f]) = |\alpha| M(r; f)$$
(3.2)

We use (3.1) &(3.2) to equip X_3 with a norm topology by defining the norm

$$||f||_3 = \int_0^1 M(r; f) dr$$
, where f is in X_3 (3.3)

We have written X_3 as the above normed topology.

Papers [1]&[3] let us obtain that the convergence in X_1 or X_2 implies the convergence in the compacta, as well as in X_3 -topology. (shown in my the graduate degree paper). That is, convergence in X_3 implies convergence in the compact open topology. From this, we can see that X_3 -topology is not weaker than the compact open topology. The partial converse of the above is shown by the following.

Proposition 3.1: If a sequence $\{f_n\}$ in \mathcal{U}_{α} converges to f in \mathcal{U}_{α} in compact open topology, then $\{f_n\}$ converges to f in the X_3 topology.

Proof (2.4) implies that for |z|=r (0< r<1),

$$|\log|f'_n(re^{i\theta})| \leq K \log \frac{1}{1-r}$$

where K is a constant, if we choose a integral both sides,

$$M(r;f) \leq K \log \frac{1}{1-r}$$

then we can take $r_1(0 < r_1 < r < 1)$ such that

$$K \int_{r_1}^{1} \log \frac{1}{1-r} dr < \frac{\varepsilon}{4}$$

and by the assumption, there exists an integer N such that for all $n \geqslant N$,

$$|\log |f'_n(z)| - \log |f'(z)|| < \frac{\varepsilon}{2}$$
 $(|z| \le r_1)$

hence
$$M(r: [f_n-f]) < \frac{\varepsilon}{2}$$
 $(r \le r_1)$

Thus for such $r_1 \& N$, if n > N then

$$||f_{n}-f||_{3} = \int_{0}^{r_{1}} M(r; [f_{n}-f]) dr + \int_{r_{1}}^{1} M(r; [f_{m}-f]) dr + \int_{r_{1}}^{1} M(r; [f_{m}-f]) dr + \int_{r_{1}}^{1} M(r; f) dr$$

The proof completes.

In order to prove the main theorem in this paper, we need the followings (Lemma and Definition).

Let \mathscr{F} be the family of sets of holomorphic (or continuous) mappings on $D=\{z:|z|<1\}$

Definition 3.2: The subset F in \mathcal{F} is said bounded if and only if for each compact set K contained in D,

$$\sup_{K}\{\|f\|:f{\in}F\}{<}\infty$$

That is, the definition tells that the functions in F are uniformly bounded on each compact subset.

Lemma 3.3: For F in \mathcal{F} , F is bounded iff each sequence in F has a convergent subsequence.

Proof. It follows from the problem 2[5.p.168]. Theorem 3.4: The subst S of L.S. (defined in 1. Introduction) is bounded in X_3 on the compact open topology.

Proof. As a result of Lemma 3.3, it's sufficient to show that each sequence in S has a convergent subsequence. Let f be in S, and $\{\rho_n\}$ be a sequence of positive number increasing to 1. For each $n=1,2,3,\cdots$,

 $f_n(z) = \frac{f(\rho_n z)}{\rho_n}$ is analytic in $|z| < \frac{1}{\rho_n}$, and $f'_n(z) \neq 0$ on \overline{D} . Since S is \mathscr{U}_{α} , by the proposition 2.1 $f_n(z)$ is contained in S. And from

proposition 3.1, the sequence $\{\log |f_n'(z)|\}$ converges to $\log |f'(z)|$ uniformly, that is, $\{f_n(z)\}\longrightarrow f(z)\equiv S$ in X_3 on the compact open topology. Since uniformly convergent sequence has a convergent subsequence, by Lemma 3.3 the proof completes.

References

- D.M. Campball, J.A. Cima, and J.A. Pfaltzgraff. Linear space and linear-invariant families of locally univalent analytic functions, Manusoripta Math. 4(1971), 1-30.
- J. A. Chima, and J. A. Pfaltzgraff, Banach space of locally univalent functions, Michigan Mach. 17(1970), 321—334.
- 3. J.A. Chima, and J.A. Pfaltzgraff, A normed linear space containing the schlicht functions, Monatsbefte Math. 75(1971), 296—302.
- Ch. Pommerenke, Linear-invariante Familien analytischer Funktion 1. Math. Annalen 155 (1964), 108-154.
- Robert B B. Ash. Complex variables. Academic press, Inc. 1971.