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On the boundedness of the set containing
univalent functions

Gyu Ihn Chae
Dept. of General Education

{Abstract)

We denote a set of locally univalent functions defined on D by L.S. and S denote the subset

of L.S. We consider X3 as a norm topology defining a norm [[ffs= j; 1M (r f)dr. First, we explained

properties of X3 as a set, or a norm topological space.

Finally, we shall introduce the boundedness of S in X5 on the compact open topology.
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I. Introduction

Let L.S. denote the family of. locally schlicht
holomorphic functions in D={z ! |z| <1} and let
S denote the family of schlicht functions in
L.S.={f: f analytic in D, f(0)=0, f(0)=1}.

In [1], 2], [3] and [4], the set L.S. can be
given a real linear space structure with operati-

ons.

[F+81 D =[f(p)g’(p)dy
laf) D)= (f"())dp

where f and g is in L.S. and « is real.

a-n

And two diffe rent normed topological spaces,

X1 and X, were introduced, the next theorms
were shown.

In this paper, we first study some results on
X3, and we shall introduce a theorem on Xjs
and show the main theorem that S is bounded
in X3 on the compact open topology.

I, Soeme results on X and
topological properties

In [11,{2], (8] and [4], if F is a linear-
invariant family, the order of F is defined as

the real number

a=sup{'l”§—0)—l : fF) 21
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[4] is shown that e>>1. And if

(1—1zl®

t(z, fr=|—2+ 5 FMCIN

J )
sup £(z,f).
|21 <1

22

then a=order F=sup

feF

Let % denote the union of all linear-invariant
family of oder <ea, that is,

Y a={f=L.S. sup t(z, )Sa, 2|1} (23

Then we can see easily that for each o, %
is also a linear-invariant of order «. For any
function f(2) in X and any 0<p<1, we define
Fok2)=1(pz)/ 0.

Propsition 2.1 If f(z)is in Za, then f,(2),
(0<p<1) is also in Za-

Proof. D.M. Campbell,
functions with locally univalent derivative.
Trans. Amer. Math. Soc. 162(1971), 395—409.

results and sup £(z, f)Ssup #{z,f) gives the
lz| <1 lz] <1

Locally univalent

proof.
Pommerenke [4] showed that if fis in %,
there is a constant K=K (a) such that

logf (| SKlog = (:&D) (2.4

Let X be the union of Za, Z.e., X= Ul%a
(2.5)

then X is a proper subset of L.S. and is

a real linear subspace of L.S. with the induced
operation (1.1). The above result is shown in
[1], [2], (3] and (4], they introduced two diff-
erent norm topology from a norm topolgy in
this paper. As a result of that, they found

several topological properties on them.

M. On the results of X3 with
another topology

We shall introduce a different norm from
that of X1 and X2 to equip Xs with a normed

topological space. If we define
. 1 V2 , X
M f)= s, |log|f”(ref®)||d6 (3+1)

then we have for f & g in X5 and « a real

number

MG [f+gD)sSMQG HO+M(r i g)
Mr; lefl])=1alM(r:f) 3.2
We use (3.1) &(3.2) to equip X3 with a norm
topology by defining the norm

Ifls=[ MG £dr, where f is in Xs (3.)

We have written X3 as the above normed
topology.

Papers [1]&([3] let us obtain that the conve-
rgence in X1 or X implies the convergence in
the compacta, as well as in Xs-topology. (shown
in my the graduate degree paper). That is,
convergence in Xa implies convergence in the
compact open topology. From this, we can see
that X3-topology is not weaker than the compact
open topology. The partial converse of the
above is shown by the following.

Proposition 3.1: 1f a sequence {fs} in Z.
converges to f in #. in compact open topology,
then {f.} converges to f in the X3 topology.

Proof (2.4) implies that forlz|=r (0<r<1),

| log | 4(re®)| S Klog5-

where K is a constant, if we choose a integral
both sides,

M(r: f)=Klog11—
then we can take r1(0<r1<r<1) such that
Lo 1 €
Kfnlog =7 d1’<T
and by the assumption, there exists an integer
N such that for all #>N,

og| fu(2) | —logI /(DI <5 (Izl=r)
hence M(r: [fu~ F1)<-5- (r=ro)
Thus for such r1 & N, if n>>N then

1o Fls=[ MG [fam 71D dr [ M i U
~fDdr<L+[ MG fodrt

f'tM(r: fdr

The proof completes.
In order to prove the main theorem in this
paper, we need the followings (Lemma and

Definition).
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Let # be the family of sets of holomorphic
(or continuous) mappings on D={z: |z| <1}

Definition 3.2: The subset F in % is said
bounded if and only if for each compaet set K
contained in D,

sup{[Ifll : fEF} <0
K

That is, the definition tells that the functions
in F are uniformly bounded on each compact
subset.

Lemma 3.3: For F in %, F is bounded iff
each sequence in F has a convergent subseque-
nce.

Proof. It follows from the problem 2(5.p. 168].

Theorem 3.4: The subst S of L.S.(defined in
1. Introduction) is bounded in X5 on the compact
open topology.

Proof. As a result of Lemma 3.3, it’s suffi-
cient to show that each sequence in S has a
Let f be in S, and
{0s} be a sequence of positive number increasing
to 1. For each #=1,2,3,- ,

convergent subsequence.

Filay=-L8s2)

F’s(2)5#0 on D. Since S is Z,, by the propos-
ition 2.1 f(2) is contained in S. And from

is analytic in |z| <-—pi—, and
"

proposition 3.1, {loglfw’(2) 1}
converges to loglf’(z)| uniformly,that is, {f»
(R)}—f(2)&S in Xs on the compact open
topology.

the sequence

Since uniformly convergent sequence
has a convergent subsequence, by Lemma 3.3
the proof completes.
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