UIT Report Vol.11, No.2, pp.281~286, 1980.

d+e=1d A114 2235 pp.281~286, 1980

On the Decoupling of Multivariable Systems by State Feedback
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{Abstract)

This paper treats the decoupling problem, which was considered by Falb and Wolovich[1] and

Gilbert[2], more explicitly and rigorously in mathematical standpoint than they had taken and

completes the proofs which they had omitted in the development of the theory.

In particular, we

show that the same results can be obtained without introducing the notion such as F-invariance or

Integrator decoupled systems which was originally proposed by Gilbert[2].
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1. Introduction

Consider the linear dynamical system with
input u, output y and state x:
.1 x=Ax+Bu
y=Cx
where
u(t)=mXx1 input control vector
y(i)=mXx1 output vector
x(#)=nXx1 state vector
and A4,B, and C are constant matrices of size
nXn, nXm and mXn, respectively.
Often one is interested in applying feedback
control in order to implement certain control
objectives. In conjunction with this approach,

it is often of interest to know whether or not

1t 1s possible to have inputs control outputs in-
dependently, i.e. a single input influences a
single output. This is so-called the problem of
decoupling.

We denote the m-input, m-output, #n-th order
system (1.1) briefly by the triple S={A,B,C}

Now we consider the state feedback control
law of the form

(1.2) u(t)=Fx(@)+Gu(t)
where F and G are constant matrices of size
mxn and mXm respectively and v() is the new
mX1 input vector into the closed-loop system
(Fig. 1)

Taking the Laplace transform of both sides
of (1.1) with zero initial condition (7.e. x(0)=
0), we obtain

X(s)=(sI,—A)BU(s)
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(Fig.1. Multivariable staie feedback system)

Y(s)=C(sI,—A)'BU(s)
where s 1s a Laplace transform variable and I,
is the #X# identity matrix and X(s), U(s), Y (s)
are Laplace transforms of x(#), u(f), y()
respectively.
Thus we obtain the transfer function of the
system (1.1):

Y(s)
U(s)

(1.3) H(s)= =C(sI,—4)'B

If we represent the control law (1.2) by the
pair {F,G} and the system (1.1) with the cont-
rol law {F,G} by S(F,G), then we can obtain
easily the following simple results.

Lemma 1:

S(F,G)={A~+BF, BG,C} (1.4)
H(s,F,G)=C(s[.,—A—BF)BG. (1.5)
where H(s, F,G) is the transfer function of
the system S(F,G).
(proof) The system S={A4, B,C} was defined by
the equations.
x=Ax+Bu (state equation)
y=Cx (output equation)
If we substitute the control law u=Fx+Gv 1n
to the above state equation, we obtain
x=Ax+BFx~Gv)=(A+BF)x-+BGv
y=Cx

. S(F,G)={A-+BF,BG,C}

The last part of the proof is obvious by rep-
lacing A by A+-BF and B by BG 1n the equation
(1.3).

A common control objective is to decouple the
closed-loop system S(F.G) (Fig.1) by making
the transfer function H(s,F,G) be diagonal

and nonsingular, 7.e. causing

Y(s)=H(s, F,GYV(s)

{Y(s)'} (s, F,G) 0 Q- O-l i'Vl_(s)}
D= 0 (s, F,G)0 00 :
¥u(s)) {O T (s FLG) j V()
or, taking the inverse Laplace trausform,
y(®O=h{,F,Guv(t) (i=1,--,m)

where k¢, F, G)=%"Y1(s, F, G)}.

Now we must examine the properties of H(s,
F,G) in order to obtain the necessary and
sufficient conditions for decoupling.

Lemma 2. The transfer function H(s, F,G) of
the system S(F,G) can be expanded in the
following form.

(1.6) H(s,F,G)=q(s, F)-t (CBs*!
+CR\(F)Bs*2++CR,.1(F)B)G

where

,q(s, F)=|sI,—A—BF =s"—q(F)s" 1
an(F)
Ry(F)=1I,

q. 7){|R1(F)=(A+BF)-—q1(F)In
Ro(F)=(A+BFP—q(F)(A+BF)—q(F)I,
Ry 1 (F)=(A+BF)*1—q,(F)(A+BF)"?
——~gu2(F)(A+BF)—qu1(F)I,

(proof) We first expand (s/,—A)"! and then
extend these results to (s[,—A—BF)-.
Let P=(sI,~A)™.
By premultiplying (sf,—A) to both sides of
this equation, we obtain
sP=AP-+I,
and by premultiplying (sI,-~A) to both sides of
this equation, we have
s2P=A’P+A+sl,
In a similar way, by repeating this process we
obtain the following set of equations*
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P=P

sP=AP+1,

s2P=A*P+A+sl,
(1.8) s’P=AP+ A% +sA+s,

S P=A"P+ AP 145 A" 5" 2 A5,

Let the characteristic equation of A be

(1.9) |sI,~A|=s"—qs" =+ —gn-15— ¢, =0

Then from the Cayley-Hamilton theorem,

(1.10) A*—q A" =i —gp-14—¢ul =0

If we multiply —gn —@n-1, > —q1, 1, to both
sides of the first, the second, -, and the nth
equations of (1.8) respectively and sum up them
side by side, we obtain

(" —gq1§* "t s —gp-1S— g P

Z(A“"lhA""— —qn-lA"‘q':In>P
’:’_(A"—l—qlA"—?'— o _Qn~2A"—q»t-lIn)
+s(At—g A"t — oo —gusA~gn-2ls)

+s5" ¥ A—qD)
+s"t,
By making use of (1.9) and (1.10), we have
|s]y—A|P=5"1Ro+s" 2R+ +5Ry2+Ru-1
where
Ry=1,
R1:A-qll,,

Ry = A"t —qi A"t — o —gprly
o P=(sI,—A)t=q(s)W(s" '\ Ro+s" 2R+
+SRy-2-Ru-1)
where g(s)= |sI—A|=§*—gqs"1— s —gn-15—
e
Replacement of A by (A+BF), ¢(s) by ¢(s,
F), g, by ¢(F) and R, by R,(F) in the above
equation gives the results (1.6) and (1.7)
Remark: The origmal system S={4,B,C}
can be considered as a special case of the system
S(F,G) if we let F=0 and G=I,. Thus all the

relevant quantities of S can be written as follows:

H(s)=H{(s,0,I.), q(s)=4¢(s,0), ¢.=4,(0),
R,=R,0) etc.

I. Formulation the problem

Now we give the definition of decoupling

which was proposed by Falb and Wolovich (1]
and make the precise development of discussion
for the problem.

Definition 1: The control law {F, G} decouples
the system S(F, G) if the transfer function H(s,
F,G) of S(F,G) 1s diagonal and nonsingular.

We denote the ith row of H(s, F,G) by H.(s,
F,G) and 1n connection with this we define the
integer d.(F,G) and the IXm row matrix D.(F,
G) as follows.

Definition 2:

integer 7 such that

d.(F,G)=]lims' " H,(s, F, G)=finite(£0)
e (H/(s, F,G)#0)

n—1 (H.(s, F,G)=0)

lim s H (s, F,G) if H.(s, F,G)#0
D.(F,G)={""
0 if H.(s, F,G)=0.

Lemma 3. d,=min{j : C.A’B>0, j=0,1, -,
n—1}
D,=C,A*B (i=1, -, m)

(proof) Let C, be the ith row of C. Putting
F=0, G=I, in (1.6) and (1.7), we have
H,(s)=q(s)'[C.Bs" '+ C(A—ql)Bs" 2

+C(A*—q1A—g2l ) Bs" 3+ .-
+C (A ~ g1 A"t — gy A—Gn-11 ) B]
=g() M CB(s" = 18" =g )+
C.AB(s"2—g,8" 3—- —gp2)+
CLA®B(s"3—g1s" 4 — o —gu-3) +
C. A" 2B(s—g)+
C.A*1B]
where g(s)=s"—qi5" " 1— +++ —gp-15—
By the definition of d,,
d,=the integer j such that 1}}2 sHIHL(5)
=fimte#0
:{0 if C.B#0
j if C,B=0

where 7 1s the largest integer from {1,--,n—1}

such that C,4*B=0 for k=0, 1,, j—1.

o d,=min{j : C,A’B#0, {=0, 1,-, n—1}

D,=lim s?*1 H,(s)

swrco

-1 shtl c Ad’B( hids
TS T g [c. s
_qlsn—z—dx_ e = um1-ds)
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+C,A* L B(s* &4 — oo —@gup_a)
4 C,A"-1B]
=C,A"B (=1, - -, m)

Lemma 4. For the system S and S(F,G),
D.(F,G)=D,G, where D,=D,(0,1,)
d,(F,G)=d, for |G|+0,
where d,=d,(0,1,) (z=1, -+, m)

(proof) By Lemma 3, d,=min{j : C,4’B+0,
7=0,1, -+, n—1} i.e., C,A*B=0
for £=0,1, -+, d,—1
C,A¥ B=D,40.

Then by simple algebraic manipulations, we

have

C.(A+BF)=C,A
C.(A+BF)?=C,(A+BF)(A+BF)
=C,A(A+BF)=C,A?
C.(A+BF)*=C,A* (k=0,1, -, d.)
C.(A+-BF)*=C, A" A+ BFy-%(k=d,+1, -, n)
S d(F,G)=min{j : C.(A+BF) B30,
7=0,1, -+ n—1}
=min{j : C,A’B#0,7=0,1, -, n—1}
=d,
From the above discussion, we can see that
C.R(F)B=C,[(A+BF)*—q,(F)(A+-BF)t-1-...
—q(F)I,]B
_ {O (k=0, 1, -, d,— 1)
D,(k=d,)
.. D(F, G):lstn;s"'”-c)*"[l,(s, F,G)

:1u_n shtig(s, F)1{C,Bs"1+-C.R(F)BS"-2
+C1Rn—-l(F)B: G

=lim st
smoo S"—q1(F)s"1-eemg (F)

[C.R“(F)Bs"~% +C,Ra,t1(F)Bs"2% .
+C.R,-1(F)B] - G

=C.R.(F)B-G

=D.G

Remark: Gilbert[2] has introduced the notion
of F-invariant. He called the properties of S(F,
G) which are not affected by changes in F by
F-invariant. In this context, we can say that
d,(F,G) and D,(F,G) are F-invariants of S.

M. Main Results for Decoupling

Theorem 1: Let D be the mXm matrix given
by

L lctes)
D=\ i |=|
Dl LC,4%B

If D=I=diag(y1,*, ym) where 7,7#0 ({=1, -+, m)
and C,A%*'=0 ({=1, -+, m), then the transfer
function H(s) of S is also diagonal and nonsin
gular,i.e., H(s)=diag (m(s), -+, ha(s)), where
h(s)=p, s9~L
(proof) Letting F=0, G=1I, 1n (1.6) and (1.7),
we have
H.(s)=¢(s) 1 [C.B(s" 1 —q18"2— s —@qu-1)-F
C.AB(s"t—qi5" 33— gu2)+
C, A" 2B(s—q1)+
C.A*'B]
By Lemma 3 and the hypothesis of the Theo-
rem 1, we have
C.A%B=D,=v,E, where E,=ith row of I,
C,A*B=0 for k#d,
co Hi(s)=q(s) [C, A" B(s"~1-% —gs" 24t —ee

—qn-1-4,)]
=g(s)I(s" It —gusn Il —
—@gn-1-2)7: E,
Now from the Cayley-Hamilton theorem,
A= AP = —qu1 A—qal =0

Premultiplying C,A’ and postmultiplying B to
both sides of this equation, we have
C A" B—q,C,A"*1"1B—+..—q,C, A’ B=0
(J=0,1,2 -
Taking 7=0, 1, -, d, and noting that the
coefficient of C,A%*B must vanish, we obtain
Grn—d,=Qn-d,—1 =+ =¢,=0
Ceg(8)=s"—qs" 1~ - —gu_a,—1 85T
SH(S)=g() M (sr i gist 2 —gumiman By
=g(s)' - g(s) - s~ 1,E,
=s~4~lr, E,
Remark: By Theorem 1, if
D=diag(r1, **, 7»), 7,70 and C,A%*!
=0 (=1, -, m)
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then from the transfer properties of H(s) of S,
Y()=H(sU(s)

or [Y(s) ris™-'0 0 - 0 U, (s)

LY";(S) ...... Ucs)

0 7ps=dx!

or, Y.()=rs"4"1U,(s)
or, taking the inverse Laplace transform,

yy=rf[-[wo @
that is, the 1th output is merely the (d,+1)-
fold integral of the ith input.
Gilbert[2] called such system the integrator
decoupled system.
Definitoin 3. S={A4, B, C} and S={4, B, C} are
control low equivalent (C. L. E)
¢ Ja1—1 correspondence between {F, G} and
{F, G} such that, for this conespondence H(-,
F,G)=H(-,F,G).
Theorem 2: (1) S={4, B, C}
D, C,A"B
(@) Dz[ : }z{ : } is nonsingular
D, CnA%B
Ci A%+
e
> (i) S and S$=S(F,G)=S(—D"14*,D-1)
are C.L.E.
() d,=d., D,=E, (i=1, -, m)
{proof) (i) S=S(F,G)=S(—D1A*, D), where
F=—D"'4% G=D"', u=Fx+Gv
={A+BF, BG,C}
={A--BD-1A*,BD,C}
={4,B,C}
where A=A—BD'A*, B=BD,
c=cC.
We wish to choose F and G so that
S(F.G)=S
and so H(s,F,G)=H(s,F,G)
where H(s,F,G)=C(l,s—A—BF)BG
H(S,F,G)=C(I,S—A—BF)BG
But A+BF=A—BD-1A* and
A+BF=(A—BD'A*)+(BD)F
Thus if we choose F=0 and let F=DF-+A*
then A+BF=A+BF,

(3) A*= [

Similarly, since BG=BD' and BG=(BD!)-
G, if we select G=1I, and let G=DG,
then BG=BG.
Hence 1f we establish the 1—1 correspondence
between {F,G} and {F,G} such that
DF-4-A*=F and DG=G, then S={4,B,C}
and §S={4,B,C} are C.L.E.
(ii) Simce d,=mm{j:C,A’B#0, j=0, 1, n—1}
and C,(A+BF)*=C A*(k=0,1, -, d.),
we have
d.=mmn{j : C, A B#0, j=0,1, -+, n—1}
=min{j : C,(A+BF)YBG#0, j=0,1,--,n—1}
=d, (¢/=1, -+, m) where F=—D"14*, G=
D1,
D,=C,A? B=C,(A+BF)% BD-!
=D,D-'=E,
C, A%+ =C,(A+BF)"+t
=C,A%(A+BF)
=C, A%+ +C, A4 BF
=A,*+D,(—D1A*)
=A*—-A*=0.
Theorem 3: (Necessary and Sufficient conditions
for decoupling)
S(F,G) 1s decoupled< DG=A=diag(As, -+, An)
(A45#0)
(proof) (=): assume that S(F,G) 1s decoupled,
f.e. H(s,F,G) is diagonal and nonsingular
or H(s,F,G)=h(s,F,G)E,, h(s, F,G)#0.
By using the definition of D,(F, G) and
Lemma 4., we have
D,(F, G)=D,G=31ﬁr2 st H,(s, F,G)

=lim s**+ h,(s, F,G)E,

s—00

=2,E,
where A,=lim s+ p,(s, F,G)

s—oo

#0 by the def. of d,.
.. DG=A=diag(4,, -, 2»), A nonsingular.

(&): assume that GD=A=diag(l:, -, Zm), AFZ0,

we need only to show that H(s,F,G) is

diagonal and nonsingular

CL A+

ijz]d..ﬂ}
Since GD=A=diag(4,, ---

Let A*=l:

s Aw)s A320, D=G4
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is nonsingular and so D! exists.

Then, with the control law {F,G}={—D14%,
D}, S=S(F,G)=8(—D"14*, D1) are C. L. E.
to S by the' Theorem 2. Furthermore D,(F,G)
=E, or D(F,G)=I,

Therefore, H(s, F, G) 1s

and has diagonal

by Theorem 1,
diagonal and nonsingular
element k,(s, F,G)=s"%"%
Remark: Since D(F,G)=I,=DG by Lemma 4,
D=G-'=nonsingular. Hence the system S

can be decoupled iff D is nonsingular.
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