T A7=2y 249 A1z pp. 167189, &ttty
Journal of Engineering Research Vol. 24, No. 1. pp. 167189 1993,
University of Ulsan.

Performance Analysis of Distributed Deadlock Detection and
Resolution Algorithms based on a Hybrid Wait-for Graph and

Probe Generation Scheme*

Young Chul Park* - Yang Soo Park* + Young Phil Cheung**

Dept. of Computer Science* - Computer Engineering**

Abstract

We present a continuous algorithm for deadlock detection and resolution in distributed database
systcms, our algorithm maintains at each local site an augmented transaction wait-for graph and
uses a modified priority-based probe generation scheme in order to minimize the number of inter-
site messages sent. The augmented transaction-wait for graph contains, in addition to lock-wait
informatin, also information about message-wait relationships among the agents of a transaction,
received probes and transitive wait-for relationships among transactions. Global deadlocks are
declared whenerver a probe or transitive-wait relationship is propagated to an agent of the
transaction that initiated the probe. In order to minimize the probability of false deadlocks, two
extensions to the original algorithm are presented which make use of an additional validation
procedure, We report on the results of simulation experiments that compare the performance of the

three proposed schemes for deadlock detection and resolution.

W7 adzs TEun gyl Fxd axdele] 24 AE Y
8% el B YAt

EEEANED IR L
AR AT Fohape

¥ This paper was supported in part by FACULTY RESEARCH FUND, University of Ulsan, 1992.

— 167 —



2 Young Chul Park - Yang Soo Park - Young Phil Cheung

2 o

1 o H
B oEle B4

A dolgho] 4
B uda Agy E5E
Abggch HAtg =aAAH o) T
rel wAA-th7] R 4% Tess
¢ AR 2, d9 maidde o
EdNAS ofd oo]dEZ A “11‘3}4
7] 2k A AT

Fote] HlaEy g,

A zelol o] madeE s 2 HES e Az &
AA G, o] Ll Fe Z x| Alo|Eo A BEAMM tfr] 1 ]
HAslel7] gl $-H;
a7} R ,
:Llhl ERAME Aol g
1 Zz e ojg-t)y] A
k=
gl Fel st F74x] &73-2 7p3lo

AT ATE 2R Aste Foha Rol,

Qo] 7]zx% =2

zA4ee A4

T r&."‘

oAE
A 7FA] A <k

1. Introduction

A distributed database system consists of a
collection of sites intcrconnected through a
communication network, each of which
maintains a local database system. Users
interact with the system via transactions. A
transaction is an execution of a program that
accesses a shared database. Each site is able
to process local transactions, which access
data only in the single site. In addition, a site
may participate in the exccution of global
transactions, which access data in several
sites. Execution of global transactions
requires communications among sites,

A deadlock occurs when a set of
transactions are circularly waiting for each
other to release resources. When the circular
wait occurs at a single site only it is referred
to as a local deadlock, while a circular wait
involving transactions executing at multiple
sites is called a global deadlock. The
difficulty in dealing with deadlocks in a
distributed database system is duc to

detection of global deadlocks. Global
deadlocks in the system access only
resources local to their originating sites.
Therefore, a distributed deadlock detection
approach has been adopted most widely [2],
41, 171, [12], [17], [19], [21] instead of a
centralized or hierarchical approach [5], [8],
[11], [20].

In distributed deadlock detection, global
deadlocks are dctected by sending inter-site

~ deadlock detection messages. Detection

schemes for global deadlocks can be
classified into two categories depending upon
the type of graph they construct, which is
either an actual graph or a condensed graph.
Schemes that construct an actual graph[3],
[7], [12] are based upon transmission of
detection messages, which convey string of
transactions of an arbitrary length. In the
string, the first transaction is a global
transaction waitcd by some other site; each
transaction - global or local - in the string
waits for the completion of the immediately
following transaction in the string; and the

— 168 —



Performance Analysis of Distributed Deadlock Detection and Resolution Algorithms based on a 3
Hybrid Wait-for Graph and Probe Generation Scheme

last transaction is a global transaction that is
waiting for either a response or a new requset
from another site. The number of messages
sent can be reduced in half by assigning
priorities to transactions and transmitting
only those messages where the priority of the
first transaction in the string is higher than
the priority of the last transaction in the
string[12]. In either case, the detection
message is sent to the site where the last
transaction in the string is waiting and used
to construct an actual deadlock detection
graph at that site. This scheme requires the
trans-mission of a large number of messages,
expecially when shared locks are permitted,
and is not very practical when the number of
transactions is large.

On the other hand, in schemcs that are
based on the construction of a condensed
graph[6], [11], deadlock detection messages
contain only two transactions, (T;, 7)), where
T: transitively waits for the completion of 7.
The message is sent either to the site of
origin of transaction T{backward trans-
mission) or to the site of origin of transaction
Ti(forward transmission). Backward trans-
missions result in a very large number of
messages transmitted when thate are no
deadlocks in the system. In order to alleviate
this problem, this m¢thod has been modified
by making also use of a priority scheme such
that a message, called a probe, is sent when a
transaction with a higher priority transitively
waits for another transaction with a lower
prority {4], [14], [17], [19]. While priority
based probe schemes avoid the transmission
of backward messages, they also have a

problem of sending messages to transaction

managers and also to resource managers.
This problem causes the number of messages
to be doubled compared with schemes that do
not send messages to resource managers.
However, an interesting feature of the
modified probe scheme is that once a probe
is received it is stored and forwarded until no
more paths are found for delivering the probe
or a compensating message for the probe,
called an antiprobe, is received. This feature
eliminates the need to retransmit the same
probe a number of times and speeds up the
detection and resolution of future deadlocks.

In this paper we introduce a new deadlock
detection and resolution scheme that reduces
significantly the overall number of deadlock
detection messages sent. Our scheme uses a
hybrid combination of a transaction wait-for
graph (TWFG) and a probe generation
mechanism. A local TWFG is maintained at
each site to detect local deadlocks and to
avoid the inter-transaction messages. Probes,
each of which represents the fact that a global
transaction with a higher priority transitively
waits for another global transaction with a
lower priority, are sent to remote sites to
construct condensed graphs. Global
deadlocks are detected by using the local
TWFG and the probes rcceived. In order to
compensate for the probes that have been
sent alrcady antiprobes arc sent.

The rest of this paper is organized as
follows. In Seciton 2 our new distributed
decadlock detection and resolution algorithm
is presented. Section 3 presents two
validation algorithms for the one given in
Section 2. Thesc two algorithms will reduce

the chance of false deadlocks. In order to

— 169 —



4 Young Chul Park - Yang Soo Park - Young Phil Cheung

evaluate the performance of our proposed
algorithms, intensive simulations have been
conducted. Section 4 presents these
simulation results in detail. Concluding
remarks are given in Section 5.

2. A Distributed Deadlock
Detection and Resolution Algorithm

Transaction operations are carried out by
processes generated at each sitc. When a
process needs a resource at another site,
another process is created at that remote site
to represent the parent process at that site,
Each child process will carry the transaction
identifier of its parent process. Processes of a
transaction are called agents or cohorts of the
transaction and they constitute a tree
structure that is denoted as a process tree [9],
[10]. Because multiple agents of the same
transaction may exist on one site, we define a
process P. of transaction T: at site S, to be
TP.S, for clarity. All the agents of a
transaction can run in parallel. However
when a transaction has multiple agents
running of its behalf at the same site, we
assume that only one of them is executable
by blocking the others as in [9], [22]. For the
rest of this paper, let the transaction identifier
of an agent W be TID(W). For example, TID
(TP:Syis T

Each transaction has a globally unique
identifier that consists of two fields: one
denoting the site at which the transaction is
originated and the other containing the value
of the olcal clock at that site when the

transaction sas gencrated. Based on this, a

unique priority can be assigned to each
transaction as follows. For two transactions
T: and T, T: hs higher priority than Ti(or T: is
younger than T)), denoted as T: > T; if either
loacal clock of T: is greater than that of 7} or
local clock of T: is equal to the local clock of
T; but the site identifier of 7: is greater than
the site identifier of 7. Throughout the rest of
this paper, we-assume that 7. > 7; if i > j: for
instance, Ts > Ts.

Each site maintains a local TWFG, which is
a directed graph whose nodes are transaction
processes running at that site. Let us assume
that N is the maximum number of transactions
that are executable at site S.. The local TWFG
at site S, denoted as TWFG.,, is represented as
an array [1...N] of records with the following
fields: TID(transaction identifier), global
(boolean), LWS(lock waits), MWS(message
waits), TAWS(transitive-antagonistic waits),
and PBS(probes). We assume that the network
guarantees that messages are error-free and are
able to arrive at their destination in finite time
and in the same order as they were sent.
Definition 2.1 A process waiter lock-waits
for another process waitee, denoted as LW
(waiter, waitee), if waiter is waiting for
waitee to telease a resource needed by waiter.
Definition 2.2 A process sender of a
transaction message-waits for another process
receiver of the transaction, denoted a MW
(sender, receiver), if sender is waiting to
receive a message (either an answer or a new
request) from receiver.
Definition 2.3 A transaction 7 is antagonistic
with another transaction 7; if T is a global
transaction and cither T:> T or T; is a local

transaction.

..... - 170 J—



Performance Analysis of Distributed Deadlock Detection and Resolution Algorithms based on a 5
Hybrid Wait-for Graph and Probe Generation Scheme

Definition 2.4 A path from a transaction
process T:P.S: to another transaction process
TP, in the global TWFG is an antagonistic
path if T: is antagonistic with every transaction
on the path except for the first one.

When there exists an antagonistic path
from an agent of T: to another agent of 7), we
say that T waits for the agent of Tjtransi-
tively and antagonistically. A transitive-
antagonistic wait (TAW) record, denoted a
TAW (initiator, terminus, count), means that
some processes of transaction initiator wait
for a transaction process terminus transitively
and antagonistically and count different
incoming edges(lock-wait edges and/or
message-wait edges) to terminus are related

TAW(TID(a), c, a)

to antagonistic paths connecting some
processes of initiator to terminus. Consider a
partial TWFG presented in Figure 2.1. In the
figure a through % represent transaction
processes and directed edges represent either
lock-wait edges or message-wait edges.
Assume that transaction TID(a) is anta-
gonistic with other transactions in the figure
except for transaction TID(e). Note that e
cannot be a terminus of any TAW record
whose initiator is TID(a) because TID(a) is
not antagonistic with TID(e). The count of
TAW(TID(a), f, 2) is 2 since f has two
incoming edges that are related to the

antagonistic paths from a.

TAW(TlD(a)__,___p,....l--)-'*r“KW(TID(;“)':'“&;‘-ﬂmxéysf(TID(a), f, 2) TAW(TID(a), g, 1)

a—- - b _—__, -

md——— % f
_—

L8
C m—— _+g

Figure 2.1 Propagation of transitive-antagonistic waits

We declare that there. is a potential dead-
lock in the system when a transaction T
transitively waits for a process of transaction
T; and there are somc paths from 7; to 7.
Suppose that an cdge from g to # is added
into Figure 2.1. Then we declare that there is
a potential deadlock in the system since TAW
(TID(a), g, 1) holds and there is a path from
TID(g) to TID(a).

In order to facilitate the construction of

TAW,, inter-sitc messages called probes arc

sent as in [4], [7], [16], [17], [19], [21]. A
probe, denoted as PB(initiator, sender,
receiver), is a message from the site of agent
sender to the site of agent receiver to inform
receiver that the transaction initiator has
been transitively and antagonistically waiting
for sender at the site of sender. A probe PB
(initiator, sender, recciver) is sent when onc
of the following holds: (1) TAW(initiator,
sender, count) exists and MW(sender,
receiver) is newly added. (2) MW(sender,

—171 —



6 Young Chul Park - Yang Soo Park - Young Phil Cheung

receiver) exists and TAW(initiator, sender, 1)
is newly adde.

To construct the condensed TWFG at a
site, upon receiving a probe and upon adding
a lockwait edge, the following procedure
TAW_propagation is called to represent that

Procedure TAW_propagation(initiator, terminus)

begin

a transaction initiator waits for a transaction
process terminus transitively and antagonis-
tically through an incomng edge to terminus
and also to propagate that effect down to
lock-wait edges and message-wait ¢dges that
are outgoing from terminus.

if initiator < TID(terminus) and TWFG[TID(tcrminus)]. global = TRUE

then return;

if TAW(initiator, terminus, count) is in TWFG[TID(terminus)]. TAWS

then increase count by 1 and return;

add TAW(initiator, terminus, 1) into TWFG[TID(terminus)]. TAWS;
for each MW(V, W) in TWFG[TID(terminus)]. MWS do

if V = terminus

then send probe PB(initiator, V, W) to the site of agent W;
for each LW(V, W) in TWFG[TID(terminus)}. LWS do

if V = terminus
then TAW _propagation(initiator, W)

end;

To compensate for probes sent, inter-site
messages called antiprobes [16], [17] are
introduced. An antiprobe, denoted as AP
(initiator, sender, receiver), is a message
from the site of agent sender to the site of
agent receiver to inform receiver that sender
is no longer waited by transaction initiator.
An antiprobe AP(initiator, sender, receiver)
is sent only when TAW(initiator, sender,
count) is deleted in the presence of MW

(sender, receiver).

Procedurc TAW_contraction(initiator, terminus)

begin

To compensate for TAW_propagation,
upon receiving an antiprobe and upon
deleting a lock-wait edge, the following
procedure TAW_contraction is called to
represent that the former TAW rclationship
from initiator to terminus through an
incoming edge to terminus does not hold
anymore and also to propagate that effect
down to lock-wait cdges and message-wait

edges that are outgoing from terminus.

it initiator < TID(terminus) and TWFG[TID(tcrminus)]. global = TRUE

then return;

— 172 —



Performance Analysis of Distributed Deadlock Detection and Resolution Algorithms based on a 7
Hybrid Wait-for Graph and Probe Generation Scheme

if TAW(initiator, terminus, count) is in TWFG[TID(terminus)]. TAWS

then begin
if count > 1
then decrease count by 1 and return;

remove TAW(initiator, terminus, count) from TWFG[TID(terminus)]. TAWS
for each MW(V, W) in TWFG[TID(terminus)]. MWS do

if V = terminus

then send antiprobe AP(initiator, V,W) to the site of agent W;
for each LW(V, W) in TWFG(TID(terminus)]. LWS do

if V = terminus
then TAW-contraction(initiator, W)
end:

end;

Deadlocks are detected upon adding a
lock-wait edge and upon receiving a probe.
Once a potential deadlock is declared by
detecting that transaction T: transitively waits
for transaction 7; and there arc paths from 7;
to T;, for each path from 7; to T,, the youngest
transaction on the path is selected as a victim
and it is added into victim_set. Checking

paths and selecting the youngest transaction

Procedure Deadlock_detection(s, t, victim_set)

on a path in a depth-first way can be found in
[12], [13]. After checking every path, if
either 7: or 7; is one of the victim, victim_set
is replaced by T: or 7, respectively. For each
victim in victim_set, before aborting the
victim, if the victim is a global transaction,
all PBs and TAWs having the victim as their
initiator are removed from the local TWFG.

/* check paths from transaction s to transaction t */

begin
victim_set = {};
if t does not have an entry in TWFG
then return;
for each path from s to t in TWFG do

slect the youngest transaction on the path and add it into victim_set.

if either s or t is in victim_set
then set victim_set as that transaction.

for each victim in victim_sct do begin

if TWFG[victim]. global + TRUE then begin

fori=1to N do begin

for each PB(initiator , V, W) in TWFG]Ji]. PBS do

— 173 —



8 Young Chul Park - Yang Soo Park - Young Phil Cheung

if initiator = victim

then remove PB(initiator , V, W) from TWFG(I]. PBS;
for each TAW(initiator , W, count) in TWFG{I]. TAWS do

if initiator = victim then begin

remove TAW(initiator , W, count) from TWFG[I]. TAWS.
for each MW(X, Y) in TWFGJi]. MWS do

fX=W

then send antiprobe AP(initiator , X, Y) to the site of agent Y;

end
end
end;
abort victim.
end;

end;

Upon receiving probe PB(initiator, sender,
receiver) at the site of receiver, procedure
PB_propagation(initiator, sender, receiver) is
called. In the procedure if TID(receiver) does
not have an entry in the local TWFG or MW
(receiver, sender) is in the local TWFG, the
message is neglected. Otherwise, we detect
and resolve global deadlocks by checking

paths from TID(receiver) to initiator in the

local TWFG. If initiator is not aborted in the
deadlock resolution, the probe is storcd in the
local TWFG and TAW_propagation follows.
Note that TID(receiver) does not have an
entry in the local TWFG if the transaction
has been aborted already. Having a message-
wait edge MW(receiver, sender) means that
thout of date. We do keep the received probe

for the correct construction of TAWSs.

Procedure PB_propagation(initiator, sender, receiver)

begin

if TID(receiver) does not have an entry in TWFG or
MW(receiver, sender) is in TWFG[TID(receiver)]. MWS

then return;

Deadlock _detection(TID(receiver), initiator, victim_set);

if initiator & victim_set

then return;

insert PB(initiator, sender, receiver) into TWFG[TID(receiver)]. PBS;

TAW_propagation(initiator, receiver);
end;

— 174 —



Performance Analysis of Distributed Deadlock Detection and Resolution Algorithms based on a g9
Hybrid Wait-for Graph and Probe Generation Scheme

Upon receiving antiprobe AP(initiator,
sender, receiver), procedure AP_propagation
(initiator, sender, receiver) is called. In the
procedure if TID(receiver) does not have an
entry in TWFG or PB(initiator, sender,

receiver) is not in TWFG, the message is
neglected. Otherwise, we remove PB(initiator,
sender, receiver) and TAW_contraction

follows.

Procedure AP_propagation(initiator, sender, receiver)

begin

if TID(receiver) does not have an entry in TWFG or
PB(initiator, sender, receiver) is not in TWFG[TID(receiver)]. PBS

then return;

remove PB(initiator, sender, receiver) from TWFG|TID(receiver)]. PBS;

TAW _contraction(initiator, receiver)
end;

When a lock-wait LW(waiter, waitee)
occurs, procedure LW_addition(waiter, waitee)
is called. The procedure first detects local
deadlocks and then detects global deadlocks
for cach TAW record that has an agent of
transaction TID(waiter) as its terminus. If
either TID(waiter) or TID(waitee) is aborted,

Procedure LW_addition(waiter, waitee)

begin

we do nothing more for the lock-wait.
Otherwise, after adding LW(waiter, waitee)
into the local TWFG, for every possible
antagonistic path extension and also for a new
antagonistic path made by the addition of the
lock-wait edge, TAW_propagation follows.

Deadlock_detection(TID{waitee), TID(waiter), victim_set);

if TID(waitee) &€ victim_set or TID(waiter) &< victim_set.

then return;

For each TAW(initiator, V, count) in TWFG[TID(waiter)]. TAWS do begin

Deadlock_detection(TID(waitee), initiator, victim_set);

if TID(waitee) & victim_set
then return

end;

add LW(waiter, waitee) into TWFG[TID(waiter)]. LWS.
For each TAW(initiator, V, count) in TWFG[TID(waiter)]. TAWS do

if V = waiter

then TAW_propagation(initiator, waitee);

if TWFG|[TID(wauitcr)]. global = TRUE

175 —



10 Young Chul Park - Yang Soo Park - Young Phil Cheung

then TAW_propagation(TID(waiter), waitee)

end;

When a lock-wait LW(waitcr, waitee) does pagate the effect of the destruction of some
not hold anymore, the following procedure antagonistic paths caused by the deletion of
LW_deletion(waiter, waitee) is called to the lock-wait edge.

delete LW(waiter, waitee) and also to pro-

Procedure LW_deletion(waiter, waitee)
begin
delete LW(waiter, waitee) from TWFG[TID(waiter)]. LWS.
For cach TAW(initiator, V, count) in TWFG[TID(waiter)]. TAWS do
if V = waiter
then TAW_contraction(initiator, waitee);
if TWEG[TID(waiter)]. global = TRUE
then TAW_contraction(TID(waiter), waitee)

end;

When a message-wait MW(sender, receiver) TAW _contraction(initiator, sender) follows.
occurs, procedure MW_addition(sender, We now add MW(sender, receiver) and then
receiver) is called. In the procedure, TWFG for each TAW(initiator, sender, count), send
[TID(scnder)). global is set as TRUE and if PB probe PB(initiator, sender, receiver) to the site
(initiator, receiver, sender) is in TWFG[TID of agent receiver.

(sender)]. PBS, the BP record is deleted and

Procedurc MW_addition(sender, receiver)
begin
TWFG|TID(sender)]. global = TRUE;
for each PBinitiator, V, W) in TWFG{TID(sender)]. PBS do
if V = receiver and W = sender
then begin
delete PB(initiator, V, W) from TWFG[TID(sender)]. PBS;
TAW _contraction(initiator, sender)
end;
add MW(sender, receiver) into TWFG[TID(scnder)]. MWS;
for each TAW(initiator, V, count) in TWFG[TID(sender)]. TAWS do
if V = sender
then send probe PB(initiator, sender, rcceiver) to the site of agent receiver

end;

— 176 —



Performance Analysis of Distributed Deadlock Detection and Resolution Algorithms based on a 11
Hybrid Wait-for Graph and Probe Generation Scheme

When a transaction process sender receives
a new request or an answer from its chort
reciver, a message-wait MW(sender,
receiver) does not hold anymore. In this case,
we simply delete MW(sender, receiver) from
TWFG|TID(sender)]. MWS and do nothing

else.

Example 2.1 Consider a snap shot of a
global TWFG in Figure 2.2. There are 3 sites
and 5 transactions. Among them Tt 77, and

Ts are global transactions.

S S:
.TVPO o) rTTTTT T T T PT;:P) ’ T7P4 ——d e .
”’
. Tlé])f TP — — TP )
Lo e 4

Figure 2.2 Snap shot of a global TWFG

At §, and §:, since there is not any
antagonistic lock-wait cdges, no TAWs are
constructed and thus no probes are generated.
At sitc s, there cxists one antagonistic lock-
wait edge LW(T7PsS:, TuP.S:). As a result of
LW addition and TAW propagation, TAW(T7,
T.P:S:, 1) is constructed and probe PB(T,
TsPuSs, ToPoS1) 1s sent Si. At site S/, upon
receiving the probe sent from Ss, as a result
of PB propagation and TAW propagation, the
probe is stored and TAW(Ty, TePsS:, 1) is
constructed in TWFG,. Note that TePaS,
cannot have a TAW record whose initiator is
TI7 since T7 is not antagonistic with Te.

Assume that Tol in S: requests a resource
that is hcld by TwP: in a conflicting lock
mode. Then the lock request is blocked and it
initiates LW addition procedure. Since the
lock-wait edge is antagonistic, according to
TAW propagation, TAW(Ty, TsP:S:, 1), TAW
[Tw TiP:S», 1) and TAW(T,, T-P.S:, 2) are
constructed, and probe PB(Ty, T:PsS:, T:PsS.)

is sent to Ss. At site Si, upon receiving the
probe sent from S, as a result of PB pro-
pagation and TAW propagation, the probe is
stored at TWFG;, TAW(T,, T-PsS;, 1) and
TAW(Ts, ToPsSs, 1) are constructed, and probe
PB(Ty, TsPsSs, TePuS1) is sent to Si.

At site Si, upon receiving the probe sent
trom S, as a result of PB propagation and
deadlock detection procedures, a deadlock is
declared, To is aborted and all PBs and TAWs
whose initiator is Te are removed from
TWFG. since the initiator of the probe is 7o,
there is a local path from LW(TvP:S:, TsP.:S2)
is dcleted, as a result of LW deletion and
TAW contraction, an antiprobe AP(Ts, T2P4S:,
T7PsS:) is sent (o S:. At site Ss, upon recciving
the antiprobe sent from S, as a result of PB
contraction and TAW contraction, the
corresponding PB is deleted, TAW(Ty, T7PsSs,
1) and TAW(T,, T.:PsSs, 1) are also deleted,
and antiprobe AP(Ty, TeP:Ss, TePsS1) is sent to

Si. At site Si, upon receiving the antiprobe

—177 —



12 Young Chul Park - Yang Soo Park + Young Phil Cheung

sent from Ss, since there is not the corres-
ponding PB record in TWFG,, the propa-

gation of antiprobe stops at this point. O

3. Extensions to the original
algorithm

While the algorithm described in Section 2
is guaranteed to detect all real global
deadlocks [15], like most distributed
deadlock detection algorithms it suffers from
the problem of false deadlock detection. Due
to the propagation delay of the antiprobe, the
information gathered at each site may not
reflect accurately the transaction wait-for
relationships. The unnecessary abortion of
transactons due to false deadlocks may
degrade the system performance and
increases the recovery costs. However,
avoiding all false deadlocks requires tracing
all the sits where the corresponding probes
went through as in [4], [21], and this process
contributes also substantially to the
deterioration in system performance.

Remember that a global deadlock is
detected when there is an antagonistic path
starting from a process of transaction 7; and
ending at a process of transaction 7), at site
S, suh that the latter receives a probe or
contains a TAW record whose initiator is 7.,
and in addition there is a path from some
process of T; to some process of 7; in the
local TWFG at Sr. A false deadlock could be
called only if the meantime this antagonistic
path has been broken but no corresponding
antiprobe has been received. The broken
links can be the result of local deadlock

resolution. If we were to choose the current
blocker strategy for victim selection in the
resolution of local deadlocks, then the
probability of broken links would be reduced.
However, due to considerations of fairness,
possibility of deadlock and increased
recovery costs, we do not take this approach
and opt to stay with the strategy of selecting
the youngest transaction in a deadlock cycle
as the victim for resolving local (and global)
deadlocks.

In order to reduce the probability of false
deadlocks we propose two extensions to the
original algorithm proposed in Section 2 that
perform additional validation procedures to
check the status of the global transactions
that may cause a global deadlock. We denote
the original algorithm based on the Hybrid
Wait-for graph as HW and the two extensions
using the Validation procedures as HWV1]
and HWV2 respectively. However, we
restrict transactions in HWV1 and HWV2 to
be processed sequentillay. In other words,
parallel exccution of global transactions are
not permitted. More specifically, an agent of
a transaction cannot proceed with its com-
putation after sending a request to an agent of
the transaction at remote site until the latter

sends response back to the former.

3.1 Deadlock Detection with HWV1

The basic idea behind the validation
procedure is to revalidate each received
message to insurc that it is not stale and to
check the status of global transactions that
causes a potential global deadlock. We say
that a global transaction at a given site is in

— 178 —



Performance Analysis of Distributed Deadlock Detection and Resolution Algorithms based on a 13
Hybrid Wait-for Graph and Probe Generation Scheme

intersite-waiting state at that site if either
some agent of the transaction is in message-
waiting state or there is an antagonistic path,
in the local TWFG of the site, that starts from
an agent of the transaction to an agent of
another transaction that isin message-waiting
state. Thus, it is clear that a local site can
eliminate those potential global deadlocks
caused by global transactions that are not in
intersite-waiting state at that site, In addition,
to facilitate the validation of messages a
global block count is associated with every
transaction. The global block count of a
transaction, denoted by gbc, gives the
number of times that the transaction has been
blocked for lock requests. Each entry in the
TWFG contains also its gbc value; in
addition the gbc is also included in the TAW
records, probes and antiprobes. Thus these
records and messages have now the
following formats: TAW(initiator, terminus,
count, ghc), PB(initiator, sender, receiver,
gbc) and AP(initiator, sender, receiver, gbc),
where ghc is the global block count of
transaction initiator.

Each transaction is given a global block
count of zero when it first enters the system.
Each time an agent of the transaction is
denied a lock request, its gbe is increased by
one. When an agent of a transaction requests
a resourcc at other site, its gbc is sent
together with its request to that site, and it
becomes the initial value for the gbc of its
cohort at that site. Similarly, when a response
to a request is sent an updated ghe value is
included in the answer. For example, assume
that transaction 7, is first created at site S:.
Then the global block count of 7' at site Si is

initialized to 0. If T requests a resource that
is currently held by T: with a conflicting lock
mode, T: is blocked and its global block
count is increased by 1. Later, it obtains the
resource and wants to request another
resource Sa It would send its global block
count together with its request to S.. An agent
of T: with a global block count of 1 will be
created at Sa. If the agent cannot obtain the
resource immediately, the request is blocked
and its global block count is increased to 2.
When the agent returns the result to S, the
updated global block count is also returned to
S:. From then on, 7 would proceed with its
global block count of 2.

In addition to request initiation and

response, the gbc information of a transaction
and that of PB and TAW records need to be
updated whenever probes and antiprobes are
received and when TAW_propagation and
TAW_contraction occur.
Definition 3.1 Let the largest one among
global block count values associated with a
global transaction T: at a site be ghc' . A
global block count value gbc associated with
Ti is a stale one at the site if one of the
following is true: (1) ghc<ghc’. (2) ghc =
gbc’ , T has an agent at the site and 7. is not
in intersite-waiting at the site.

Upon receiving probe PB(initiator, sender,
receiver, ghc) or antiprobe AP(initiator,
sender, receiver, gbc), if initiator has an entry
in TWFG and gbc < TWFG[initiator]. gbc,
then gbe is declared stale and the message is
discarded. However, if initiator has an cntry
in the local TWFG and gbc » TWFG
[initiator]. gbc, then TWFG[initiator]. gbe is
replaced by gbe. In the case of receiving a

—179 —



14 Young Chul Park - Yang Soo Park - Young Phil Cheung

probe, if probe record PB(initiator, sender,
receiver, gbc' )is in the local TWFG and
gbc < gbe, PB(initiator, sender, receiver,
gbc’ ) is replaced by PB(initiator, sender,
receiver, gbc) and TAW_propagation
(initiator, receiver, gbc) follows. In the case
of receiving an antiprobe, corresponding
probe record is deleted from the local TWFG
and TAW_contraction(initiator, receiver, ghc)
follows.

Upon adding or deleting lock-wait edge Lw
(waiter, waitce), for each TAW record TAW
(initiator, V, count, gbc") in TWFG|TID
(waiter)]. TAWS if initiator has an entry in
TWEG and gbe’ < TWFGinitiator]. gbe, then
the TAW record is a stale one and it is not
considered for global deadlock detection (in the
case of LW _addition) and TAW_contraction (in
the case of LW_deletion). Procedures
MW _addition(sender, receiver) and
MW _deletion(sender, receiver) are the same
as in the vanilla algorithm HW.

In procedure TAW _propagation(initiator,
terminus, ghc) if TAW(initiator, terminus,
count, gbc’) is in the local TWFG, the
following three cases nced to be checked: (1)
if gbc = gbc' then increase count by 1 and
return. (2) if gbc < gbc’ then return. (3) if
ghc > gbc’ then replace TAW (initiator,
terminus, count, gbc ) by TAW(initiator,
terminus, 1, ghc) and propagate this new
TAW record down to every lock-wait edge
(by calling TAW_propagation) and message-
wait edge (by sending probes) that are
outgoing from terminus.

In procedure TAW _contraction(initiator,
terminus, gbe) if TAW(initiaor, terminus,

count, ghe' ) is in the local TWFG, the
following three cases need to be checked: )
if ghe = gbc’ and count>1 then decrease
count by 1 and return. (2) if gbe < gbc then
return. (3) if gbc = gbc' and count =1 or gbe
> gbc' then delete thc TAW record and
propagate the deletion down to every lock-
wait edge.(by calling TAW_contraction) and
message-wait edge (by sending antiprobes)
that are outgoing from terminus.

Local deadlock detection is done exactly
the same as in the algorithm HW. For global
deadlock detection, a validation procedure is
applid to climinate (some) false deadlocks. If
the global deadlock detection procedure is
initiated by transaction initiator , with ghc'
as its global block count, of a probe or a TAW
record and initiator’ is not in inter-site
waiting state, then the potential global
deadlock is a false deadlock. Otherwise, we
proceed to resolve the global deadlock as in
the algorithm HW. Once a potential deadlock
is found to be a false deadlock, all PBs and

TAWSs whose initiator is initigtor’ and at the

same time whose global block count is less

than or equal to ghc' are deleted from the
local TWFG. In this process, some antiprobes
might be sent owing to the deletion of TAW

records.

Example 3.1 Consider a snap shot of a
global TWFG in Figure 3.1 at time &
assuming that the gbe value of T+ at sitc S is
0; the gbc value of T at site S is 0; and LW
(ToP:S>, TsPaS2) and LW(T7PsSs, ToP.S5) are
the last added lock-wait cdges at S: and S:
respectively. At site S., as a result of LW
addition and TAW propagation, probe PB(T5,

— 180 —



Performance Analysis of Distributed Deadlock Detection and Resolution Algorithms based on a 15

Hybrid Wait-for Graph and Probe Generation Scheme

T:P.S, T:PsSs, 1) is sent to Ss. At site Ss, a
result of LW addition and TAW propagation,
probe PB(T7 TuPsSs, TaPsS;, 1) is sent to Su.
At site 8s, upon receiving the probe sent from
Sz, as a result of PB propaation and TAW
propagation, probe PB(Ts, TsPsSs, TsPsS1, 1) is

sent to Si. At site S, upon receiving those two
probes sent from Ss, as a result of PB propa-
gation and TAW propagation, TsPsS: contains
PB(T7, ToPsSs TsPoS:, 1) PB(Ts, ToPsSs,
TuPsS1, 1), TAW(T5, TsPsS;, 1) amd TAW(T;,
TsPoSs, 1)

S Sz M
) A EE—— wToP: j) J N S— —
T.Ps
TsPs _ TsP: - o T1P5 ToPs

Figure 3.1 Global TWFG at time #

At time £, assume that T: in S: requests a
resource that is held by 7: in a conflicting
lock mode as shown in Figure 3.2. This
results in a local deadlock at S; and so the

youngest transaction in the cycle, i.e. Tz, is

aborted. The abortion of 7: makes the lock-
wait ¢dge LW(TWP:S,, TiPsS2) to be deleted.
As a result of LW deletion and TAW con-
traction, antiprobe AP(Ts, T?PsSz, T7PsSs, 1) is
sent to S.

3 RY; S Ss
Tm ———————————— - Tof, TP+ SR A __‘-"T;)S_—
T-Ps
o /
/
¥
| 73»[" u TsP: — - TiP; TePs

Figure 3.2 Global TWFG at time ¢

At time £, ToP; at site S: finishes its job and
the result is sent back to S, with a global
block count having a valuc of 1. After that
TaPs at S: requests a resource that is held by
TsPs in a conflicting lock mode. The resulting
configuration is shown in Figure 3.3.
Algorithm HW declares a global deadlock,

even through this is a false deadlock. The
problem occurs since it does not check the
status of the initiator(7v in the above case)
before declaration of global deadlocks. In
HWV1 algorithm however, since T at S1 is
not in intersite-waiting, the global block
count 1 in TAW(T., T:PsS,, 1, 1) becomes a

— 181 —



16

stale one. According to this, a global dead-

Young Chul Park - Yang Soo Park - Young Phil Cheung

1) and TAW(T5, TePsS1, 1, 1) are deleted from

lock is not declared but PB(7:, TsPsSs, TePaS:, TWEG..
S S:
[ ToPy -} - 1-=-ToP; TPy - -
T2P5
ToP T:P;
A

Figure 3.3 Global TWFG at time t;

At time t, assume that TvPaS: requests a
resource that is being currently held by T7Ps
at site Sy and that this request arrives before
the antiprobe AP(Ts, T/PsS:; T:PsSs, 1). A

cohort ToP2S: is created and a lock-wait edge
LW(T.P:Ss, T:PsSs) is added into TWFGs. In
the local TWFG the gbc of 7o becomes 2.
This situation is illustrated in Figure 3.4,

Figure 3.4 A global deadlock at S;

As a result of LW addition and TAW
propagation, the TAW record of T:PsSs is
replaced by TAW(Ts, T-PsSs, 1, 2), the TAW
record of T.P.S: is replaced by TAW(T,
T.PsSs, 1, 2) and probe PB(15, TiP.Ss, ToPaSi,
2) is sent to S Note that there is no need to
send antiprobe AP(Ty, TuPsSs, TuPuSi, 1), since
the updated global block count field in the
probe conveys the same message. Upon
receiving the probe at S, a global deadlock is
declared ant T is aborted. When the anti-
probe AP(Ty, T+PsS; T-PsSs;, 1) sent from S:

arrives at Ss, that message is neglected since
its global block count is less than TWFG;[Ts].
ghc. D

3.2 Deadlock detection with HWV2

When a potential global deadlock is
declared, validity of a global block count can
be checked one more time to further reduce
the possibility of false deadlocks without
causing too much overhead. In HWV2 al-
gorithm, global block counts, TAW, PB, AP

—182 —



Performance Analysis of Distributed Deadlock Detection and Resolution Algorithms based on a 17
Hybrid Wait-for Graph and Probe Generation Scheme

informations are processed exactly the same
as in the HWV1 algorithm. When a potential
global deadlock is found at sitc S. by a probe
or TAW record whose initiator is T« and
whose global block count is gbc, gbc is
checked first whether it is a false one or not.
If it is a false one, the found deadlock is a
false deadlock, and so all PB and TAW infor-
mations whose initiator is Tx and whose
global block count is less than or equal to
gbc are deleted from §.. Otherwise, we do the
following If Ti does not have any message-
wait edge, we declare a global deadlock and
do the corresponding deadlock resolution
operations. However, when 7 has a message-
wait edge, say MW(TP:S,, TiP,Ss), one more
validation checking of gbc is done as
follows:

(1) A validation request messagc CHECK
(TP, TP.S., gbc) is sent to S..

(2) At S, upon receiving a validation request
message CHECK(TP.S,, TP,Ss, gbc),
two validation checks are performed.
Onc is checking whether gbe is a stale
one or not and the other is checking
whether there exists a message-wait edge
MW(T\P,S, TP:S;) in TWFG{T.]. MWS.
If cither gbc is a stale one or there exists
the message-wait cdge, the validation
fails and a negative response NEG(7%,
TWFG(Ti].gbc) is sent to sitc S.. Other-
wise, a positive respond POS(Ty, gbce) is
sent 1o site S..

(3) At S, upon receiving a positive response
POS(T., gbc), all PB and TAW infor-
mations whose initiator is T: are deleted
from TWFGr and Tx is aborted. However,

upon receiving a negative response NEG

(T, gbc' ), if gbc’ is less than or equal to
TWFG.[T.]. ghc, nothing is doen. Otherwise,
all PB and TAW informations whose
initiator is 7x and whose global block

count is less than ghc' are deleted from
TWFG, and TWFG/{T\]. gbc is replaced

by gbc’.

Example 3.2 Consider again the situation of
Example 3.1 at time #:. Assume that the lock-
wait LW(TsPsS:, ToPaS:) occurs before ToP:S:
sends the result to ToPaS:. That is, ToPoS: is
still message-waiting for ToP:S:. In the case
of the HWV1 algorithm, a global deadlock is
declared and 7o is aborted unnecessarily. In
HWV2 algorithm however, a validation
request message CHECK(ToPaS:, ToP:Sz, 1) is
sent to S. At S: upon receiving the
validation request message, the validation
fails and a negative response NEG(Ts, 1) is
sent to S since MW(ToP:S:, ToPoS: ) exists in
TWFG2[T5]. MWS. At S;, upon receiving the
negative response from S: nothing needs to
be done since its global block count 1 is the
same as TWFG1[7s].gbc. In this case, even

though two more messages are required to be

sent, a false global deadlock is prevented. D

4, Performance Analysis

All three algorithms presented in the previous
section were evaluated using a simulation based
on a closed queucing model[15]. The simul-
ation model is similar to the one used in [1]
with a few extensions added for modeling the
distributed system concepts. Our simulation
program was implemented in CSIM[18], a

— 183 —



18 Young Chul Park - Yang Soo Park - Young Phil Cheung

process-oriented discrete-event simulation
package based on the programming language
C. In order to simplify the simulation we made
the following assumptions: (1) only exclusive
locks and sharcd locks are allowed, (2) each
site can have at most one agent for each global
transaction, (3) all data items have the same
granularity level and have the equal probability
of request, and (4) the Concurrency Control
Unit (CC) of cach site supervises the
transaction scheduling, maintains the local
TWFG and lock table and performs the
deadlock detection and resolution procedure.
Initially, all transactions are generated at
their originating sites and are put into their
local Ready-Queues. A transaction then
enters different phases depending upon the
type of requests it issues, A transaction T
leaves the Ready-Queue either to wait at the
CC queue if it requests a local data item, or
to wait at the Communication Manager (CM)
queuc if it issues a remote access request. If
T requested the CC services, it will wait in
the CC queue until the CC unit is available
and then issue its first (next) request. If the
request is granted, T releases the CC unit and
enters the data accessing phase. If the
requested data item is held by another
transaction having a conflicting lock mode,
T: is added to the waiting queuc of the
requested data item and releases the CC unit
which consequently checks the local TWFG
for possible local or global deadlocks. If a
transaction is selected as a victim to resolve
some deadlocks, it is aborted. An aborted
local transaction will be restarted after a
preset restart-wait time and put into the back
of the Ready-Queuc to start over agin. If the
victim is a global transaction, diffcrent

actions will be taken. Assume that the
abortion is occurred at site S, and the aborted
transaction is 7. If T: has been originatied at
S,, abort messages will be sent to al of its

accessing sites, Otherwise, 70’ s agent at S, is

aborted and an abort message is sent to 7, s

originating site,

Each site contains a fixed number of data
items and allows 100 processes as its
maximum degree of multiprogramming. An
important parameter that we varied in our
simulation studics is the GlobalRatio, which is
the percentage of non-local agents allowed at
each site. For example, if the GlobalRatio js 0.
2, then the maximum number of non-local
agents allowed at each site is 20. Transactions,
i.e., agents are waiting in the Read-Queue if
the current number of global agents in the CC
queuce reached the maximum allowed. Each
local transaction makes at least 1 and at most
6 requests. Each global transaction accesses at
least two different sites and makes 2 to 6
requests when the system contains 3 or 5 sites
and at most 10 requests when the system
contains 10 sites. Each transaction uses a
random number generator to decide the
number of requests, lock modes and the site to
access. Each simulation run will terminate
after a preset simulation time (6000
simulation time units), We compare the
average value of overall throughput, global
throughput, global abortion rates, the overall
recovery cost and the global recovery cost
under different number of sites and
GlobalRatios. The throughput is the number
of transactions committed per simulation run.
The global abortion rate is mcasured as the
number of global aborts per committed global

— 184 —



Performance Analysis of Distributed Deadlock Detection and Resolution Algorithms based on a 19
Hybrid Wait-for Graph and Probe Generation Scheme

transac-tions for each simulation run. Global
throughput is the number of committed global
transactions per simulation run.

We now procced to analyze the simulation
results for the vanilla algorithm HW and the
variants with validation procedures, HWV1
and HWV2. Figure 4.1 shows the percetage
of false deadlocks declared by the vanilla
algorithm HW for 5 sites when we varied the

traﬁsactions. The false global deadlocks
reported here are only those that can be
verified as such in the HWV1 and HWV2
algorithms. Thus, the actual number of false
deadlocks maybe larger. As expected, the
probability of false deadlocks is low when
the global transactions make only a few
requests and increases superlinearly with the

maximum number of requests per global

maximum number of requests per global transaction,
min-max global reg/trans. false deadlock found total global abort %
2.4 ! 495 0.2%
2-6 15 Co7s8 | 1.9%
28 43 897 4.7%
210 119 946 | 12.6% |

Figure 4.1 False global deadlocks found in simulation runs

Figure 4.2 shows the number of overall
committed transactions produced by these
three algorithms under different GlobalRatio
values, It indicates that the throughput is
largely influcnced by GlobalRatio. When
GlobalRatio is low, the overall throughput is
high and vice versa. This is because global
transactions access non-local data items and
nced more time to complete their requests. As
a consequence, the average data holding time
is also increased, i.e. a transcation has to wait
longer for its blocked request to be granted.
This means a longer average transaction
response time and thereforc a poorer
throughput for a system that has a large
amount of global transactions. Besides, global
transactions are more likely to be aborted
because of global deadlocks especially when

the data contention is very high (as in our

simulation model).

Figure 4.3 shows the number of committed
global transactions for these three algorithms,
It shows that there is not much diffcrence on
throughput when GlobalRatio is low although
two validation algorithms use more system
resources for the validation routine. However,
the global throughput of the HWV?2 algorithm
is 21.6% less than that of the vanilla algorithm
HW when GlobalRatio cquals to 1.0. This is
not a surprise. The HWV1 algorithm only
checkstransaction status locally. Its validation
routine can be efficiently executed without
using much system resources. On the other
hand, thc validation routine of the HWV2
algorithm not only checks locally but also
checks the transaction status of the other site.
Although its validation routine reduces the

chance of false global deadlocks, it also

— 180 —



20

delays detection of real global deadlocks and
increases data item holding time and the
average transaction response time. Thus the
throughput of the HWV2 algorithm is also

Young Chul Park - Yang Soo Park - Young Phil Cheung

significantly reduced. Figure 4.4 shows the
response time of the three algorithms when
GlobalRatio is 1.0.

Number of sites 3 S5 10 ]
GlobalRatio | 02 | 05 | 1.0 | 02 | 05 | 1.0 | 02 | 05 | 1.0
| HW 8408 | 6342 | 4666 | 10427 | 7659 | 5500 | 13130 | 9002 | 3251 |
HWVI 8048 | 6237 | 5309 | 10543 | 7513 | 5309 | 15694 | 9327 | 3256
| HWV2 8715 | 5944 | 3924 | 10049 | 6245 | 4419 | 14704 | 6834 | 2625
Figure 4.2 Comparison of the overall throughput

Number of sites 3 5 ' 10

Global Ratio 0.2 0.5 1.0 l 0.2 0.5 1.0 0.2 0.5 1.0
HW TsSse 1225 | 4666 | 464 | 815 | 5500 | 127 | 232 | 3251
HWV1 562 | 1188 | 5300 | 461 | 781 | 5309 | 165 | 248 | 3256 |
| HWV2 526 | 1145 (3924 | 426 | 763 | 4419 | 160 | 233 | 2625

Figure 4.3 Comparison of the throughput for global transactions

‘Number of sites 3 5 ’ 10
HW 20.39 1761 | 2933
HWV1 20.42 1851 2932

| HWV2 24.97 232 4610 |

Figure 4.4 Comparison of the average transaction response time

The advantages of these two validation
algorithms are the low global abortion rate
and the low recovery cost for aborted global
transactions. The average recovery cost for
aborted global transactions and the global
abortion rate of the three algorithms are
illustrated in Figure 4.5 and Figure 4.6

respectively. As expected, the original

algorithm has the highest global abortion
rates and the highest recovery cost for
aborted global transactions. The HWV1
algorithm performs slightly better than the
vanilla algorithm HW does. The HWV2
algorithm produces the best results in all
cases especially when GlobalRatio is low

and there are more sites in the system.

— 186 —



Performance Analysis of Distributed Deadlock Detection and Resolution Algorithms based on a 21
Hybrid Wait-for Graph and Probe Generation Scheme
Number of sites 3 5 10 _
GlobalRatio | 02 | 05 | 1.0 | 02 | 05 | 10 | 02 | 05 | 10
HW 134 | 738 | 1517 329 870 1389 | 575 1378 2632
HwV1 171 666 | 1493 342 890 1327 590 1309 | 2435
| HWV2 146 | 627 | 1393 | 258 | 829 | 1077 | 433 | 1015 | 2060

Figure 4.5 Comparison of the recovery costs for global transactions

Number of sites 3 5 ’ 10

HW 0254 0364 1.265
HWV1 0277 0370 1.125
HWV2 0.220 0340 0.941

Figure 4.6 Comparison of the average abortion rates

Based on those cxperimental results we
draw the following conclusions:

(1) When the ratio of global transactions is
small and they make only few global
requests the chance of false deadlock is
rare. Consequently, the vanilla algorithm
HW is the best choice since it minimizes
the response time and all other system
metrics are fairly close to those of the
HWV1 and HWV2 algorithms.

(2) In the cnvironment of the sequential
transaction processing and when the rate
of global transactions arc considerable,
the HWV1 algorithm can always be used
to reduce the chance of false global
deadlocks while still maintaining a good
throughput.

(3) For systems that give higher priority to
global transactions or are sensitive to
abortion of global transactions, the
HWV2 algorithm would be a good

choice.

5. Conclusion

We proposed a new distributed deadlock
detection and resolution algorithm that
allows for parallel execution of transactions
at multiple sites and for the possiblity of
multiple lock modes. Local deadlocks are
dected by a regular cycle detection procedure
in the augmented local TWFGs, while global
deadlocks are detected by sending probes and
antiprobes which enable us to construct a
condensed global TWFG at each site. Probes
and antiprobes are only sent from global
transactions with higher priorities to
transactions with lower priorities and they
indicate that a transaction with a higher
priority transitively waits for another one
with a lower priority.

In order to reduce the probability of false
deadlocks, we presented two extensions to
our original algorithm which can be used in
an environment of sequential transaction

processing. These extensions associate a

— 187 —



22 Young Chul Park  Yang Soo Park  Young Phil Cheung

global block count with ¢ach transaction, in
order to keep track of the number of times a
given global ransaction has been blocked.
This information is then used in a validation
procedure which decides whether a given
received probe or transitive-antagonistic wait
is stale or not. We analyzed and compared
the preformarce of the three deadlock
detection algorithms in terms of throughput,
response time, abortion rate and recovery
costs. We are currently working on extending
the vanilla algorithm HW for periodic
deadlock detection and resolution.

References

1. R.Agrawal, M.J.Carey and L.W.McVoy,

“The performance of Alternative Strate-
gies for Dealing with Deadlocks in Data-
base Management Systems,” JEEE Trans.
Software Eng., Vol.SE-13, No.12, pp.
1348-1363, December 1987.

2. KM.Chandy and J.Misra, “A Distributed
Algorithm for Detecting Resource Dead-
locks in Distributed Systems,” in ACM
Symposium on Principles of Distributed
Computing, pp.157-164, 1982,

3. A.K.Choudhary, “Cost of Distributed Dead-
lock Detection: A Performance Study,” in
Proc. Sixth Int. Conf. on Data Engineer-
ing, pp.174-181, February 1990.

4. AN.Choudhary W.H.Kohler, J.A.Stankovic,
and D.Towsley, “A Modified Priority Based
Probe Algorithm for Distributed Deadlock
Detection and Resolution,” IEEE Trans.
Software Eng., Vol.SE-15, No.1, pp.10-17,

January 1989.

5. A K. Elmagarmid A P.Sheth, and M.T.Liu,
“Deadlock Detection Algorithms in
Distributed Database Systems,” in Proc.
Second Int. Conf. on Data Engineering,
pPp-556-564, February 1986.

6. V.D.Gligor and S.H.Shattuck, “On Dead-
lock Detection in Distributed Systems,”
IEEE Trans. Software Eng., Vol.SE-6, No.
5, pp.435-439, September 1980.

7. L.H.Hass and C.Mohan, “A Distributed
Deadlock Detection Algorithm for a
Resource-Based System,” Rep.RJ3765,
IBM Research Lab., San Jose, California,
January 1983.

8. G.S.Ho and C.V. Ramamoorthy, “Protocols
for Deadlock Detection in Distributed
Database Systems,” IEEE Trans. Software
Eng., Vol.SE-8, No.6, pp.554-557,
November 1982.

9. B.G.Lindsay, L.H.Haas, C.Mohan, P.F.
Wilms, and R.A. Yost, “Computation and
Communication in R*: A Distributed
Database Manager,” ACM Trans. Com-
puter Systems, Vol. 2, No.1, pp.24-38,
Feb. 1984.

10 L.Manteiman, “The birth of OSI TP: A

new way to link OLTP networks,” Data
Communications, November 1989.

11. D.A. Menasce and R.R. Muntz, “Locking
and Deadlock Detection in Distributed
Databases, IEEE Trans. Software Eng.,
Vol. SE-5, No.3, pp.195-202, May 1979.

12. R. Obermarck, “The Distributed Dead-

lock Detection Algorith,” ACM Trans.
Database Systems, Vol.7, No.2, pp.197-

— 188 —



13.

14.

15.

16.

17.

Performance Analysis of Distributed Deadlock Detection and Resolution Algorithms based on a 23
Hybrid Wait-for Graph and Probe Generation Scheme

208, June 1982,

Y.C.Park and P.Scheuermann, “A Dead-
lock Detection and Resolution Algorithm

For Sequential Transaction Processing

with Multiple Lock Modes,” in Proc.
15th Int. Computer Software and Applic-
ations Conf., pp.70-77, September 1991.

Y.C.Park, P.Scheuermann, and S.H.Lec,

“A Periodic Deadlock Detection and
Resolution Algorithm with a New Graph
Model for Sequential Transaction

Processing,” in Proc. 8the Int. Conf. on
Data Engineering, pp.202-209, February
1992.

Y.C.Park, P.Scheuermann, and H.L.Tung,

“Distributed Deadlock Detection with
Hybrid Watit-for Graphs and Anti-Probe

Validation,” Technical Report, University
of Ulsan, Korea, 1993,

M.Roesler and W.A. Burkhard, “Dead-
lock Resolution and Semantic Lock
Models in Object-Oriented Distributed

Systems, in Proc. 1988 ACM-SIGMOD
Int. Conf. on Management of Data, pp.
361-370, Junc 1988.

M.Roesler and W.A Burkhard, “Resolution
of Deadlocks in Object-Oriented Distributed

18.

19,

20.

21.

22,

— 189 —

Systems,” IEEE Ttrans. Computer, Vol.
38, No.8, pp.1212-1224, August 1989,
H.Schwetman, “CSIM User s Guide,”
MCC Technical Report, ACT-126-90,
March, 1990.

M.K. Sinha and N.Natarjan, “A Priority
Based Distributed Deadlock Detection
Algorithm” IEEE Trans. Software Eng.,
Vol.SE-11, No.1, pp.67-80, January
1985.

M.Stonebraker, “Concurrency Control
and Consitency of Multiple Copies of
Data in Distributed INGRES,” IEEE
Trans. Software Eng., Vol.SE-5, No.3,
pp.188-194, May 1979.

K. Sugihara, T.Kikuno, N.Yoshida, and
M.Ogata, “A Distributed Algorithm for
Deadlock Detection and Resolution,” in
Proc. Fourth Int. Conf. on Distributed
Computing Systems, pp.169-176, 1984,
X/Open Company Ltd, “Interim Reference
Model for Distributed Transaction pro-
cessing,” Transaction Processing Working
Group, X/Open Company Limited, July
1989.



