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{Abstract)

In this paper, we will introduce the relations between a stratifiable space and a monotonically

normal space and show some properties of monotonically normal space.
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1. Introduction

The property of monotone normality first
appears, without name, in Lemma 2.1 of C.R
Borges’ paper “On stratifiable spaces” [1]. In
[5], P.Zener named the property and announ-
ced results relating monotone normality to
metrizability and stratifiability. In this paper,
we will introduce the relations between a
stratifiable space and a monotonically normal
space and show some properties of monotonic-
ally normal space with more easy ways. The
concept of monotone normality is used to give
necessary condition for stratifiability of a
T;-s space to provide an easy proof of a me-

trization theorem.

1. Definitions.

Throughout this paper all spaces are assumed

to be at least T, and the set of natural
numbers is denoted by the letter N.

Definition 2.1, A space X is stratifiable if
to each closed set A of X one can assign a
sequence G1(A4), G.(A)....
X such that

@ 4= (1 6= Gl

(b) If ACB are closed subsets of X then

Gu(A)CG,(B) for each neN.
Definition 2.2. A space X is monotonically

of open subsets of

normal if there is a function D which assigns
to each ordered pair (H,K) of disjoint closed
subsets of X an open set D(H,K) such that
(a) HCD(H,K) cD(H,K)cX-K
(b) If (H’,K”) is a pair of disjoint closed
sets having HCH’” and KDK’ then D(H,
K)cD(H’,K").
The function D 1s called a monotone norm-
ality operator for X.
Definition 2.3. A space X is collectionwise:
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normal if for each discrete collection H={H,

a1} of closed subsets of X there 1s a
disjoint collection G={G,:a <= A} of open
subsets of X with the property that H,— G,

for each a = 1.

. Properties of monotonically
normal space

Theorem 3.1. Any stratifiable space is mon-
otonically normal.

Proof, Suppose X 1s a stratifiable space.
For each ordered pair (H, K) of disjoint closed

subsets of X, let

D(H,K)= | & [X G(K)—X—G.(H (H#H)).

If p=< H, then there exists an #< N such
that p &£ G,(K) and hence p = X -G.(K). Now
for each =N p =G, (H) < G,.(H), hence pez
X -G,(H) and p=X —G,(H). Since X —G,(H)
C X —-G.(H), p%_}?-:Gﬁ) for each .

Thus p &= D(H,K). Therefore, H D(H,K)
< D(H,K).

Let p = D(H,K) and suppose p < K, then p
= DK H). let g=D(K,H) N D(H,K) and
k.neN such that g& X —G.(K)~ X —G-(H)
and ¢g& X -Gi(H)-X~Gx(K). If k <=, then
G.(H)CG(H) implies =X -G(H) X —
G.(H)C X~G\(H). Thus g X —G,(H), we
have a contradiction. Similary for £>#, hence
we have D(H,K)cX—K. Therefore, H— D
(H,K)CD(H,K)c X—-K.

Finally let p=D(H, K), then there exists an
n =N such that p=X —G(K)~X —Gn(H).
On the other hand, if HCH’ and KDK’, then
G.(H)CG.(H"), G{K)DG4,(K”) for each n<
N. Thus p= X~G.(K) implies p=X ~G.(K")
for each n=N. X~-G.(H) X —G.(H) im-
phes X—G, (H')CX G.(H). Since p == X-G,
(H), p£ X-G.(H"). Hence peDH’, K.
Therefore, D(H,K)CD(H’, K*).

Theorem 3.2, Any
space 1s collectionwise normal.

Proof. Let X Le a monotonically normal
space and F={F,

monotonically normal

: a=.1} a discrete collection of

Hai-Gon

closed sets. Now well order by o, 1, cxa, -+ .

For each a#3, let G.,=D(F, F3)—D(Fz-
Fo) and G;=D(Fs, F,)—~D(F,, Fo).

Then GaN\Gs=D(F o F5)\D(Fs F.) 1 D(F 5,
FINDF,. Fo'

D(Fo FHND(Fs Fo)X N D(Fy,
Fgyr=4¢.

Thus G, and Gg are disjoint. By transfinite

Fo> N D(F.,

induction, we can get a collection Ga,, Gas, Gas,

- of mutually disjoint open sets.

Suppose that there exists an Y& F, such
that x < D(Fg, Fo). Then x=X - F, and hence
x & F,.. Thus we have a contradiction. Hence
F,CG.= D(F,,Fy)~D(Fs F,). Therefore, X
is collectionwise normal.

Theorem 3.3. Every subspace of a monotoni-
cally normal space 1s monotonically normal.

Proof. L.et X be a monotonically normal
space and A its subspace. Let D be 1 monotone
normality operator such that for each disjoint
closed subsets C and E D(C,E) N D(E,C)=¢.
For each disjoint closed sets H and K of A,
let D,(H, K):xL_JH[D({x},I?)ﬂA}. Clearly, D,

(H,K) is open and HCD,(H,K)C D(H,K).
Let p= D,(H,K) and suppose p =K. Then p
D (K,H)CA—H. Let ¢=D,(H,K)( DK,
H). Then ¢g= D, H,K) and ¢<= D.(K,H).
This imphes that there exists an ¥ = H such
that ¢ = D({x},K)NA and y= K such that
e=D{Hy}. HYN A Thus ¢g=DUx}, KDN D
({3}, H). So we have a contradiction. There-
fore, HC D(H,K)= D.(H,K) cCA-K. If H
CH’ and K DK’, then D,(H,K)-- U [D({x}
K)ﬂA]CJ [D({x}, K”)PA]CU D\{x} K)ﬂA]
=D.(H’, K’\. Hence D.(H, K)CDA(H’ K.
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