On the space with monotone normality operators

Je. Hai-Gon
Dept. of Mathematics
(Received December 30, 1981)

(Abstract)

In this paper, we will introduce the relations between a stratifiable space and a monotonically normal space and show some properties of monotonically normal space.

Monotone normality operator 를 갖는 공간에 관하여

〈요 약〉

Monotonically normal space 와 stratifiable space 사이의 관계 및 monotonically normal space 의 몇가지 성질을 연구함.

1. Introduction

The property of monotone normality first appears, without name, in Lemma 2.1 of C.R Borges' paper "On stratifiable spaces" [1]. In [5], P.Zener named the property and announced results relating monotone normality to metrizability and stratifiability. In this paper, we will introduce the relations between a stratifiable space and a monotonically normal space and show some properties of monotonically normal space with more easy ways. The concept of monotone normality is used to give necessary condition for stratifiability of a T_1 -s space to provide an easy proof of a metrization theorem.

II. Definitions.

Throughout this paper all spaces are assumed

to be at least T_1 and the set of natural numbers is denoted by the letter N.

Definition 2.1. A space X is stratifiable if to each closed set A of X one can assign a sequence $G_1(A)$, $G_2(A)$,... of open subsets of X such that

(a)
$$A = \bigcap_{n=1}^{\infty} G_n(A) = \bigcap_{n=1}^{\infty} \overline{G_n(A)}$$

(b) If $A \subset B$ are closed subsets of X then $G_n(A) \subset G_n(B)$ for each $n \in N$.

Definition 2.2. A space X is monotonically normal if there is a function D which assigns to each ordered pair (H,K) of disjoint closed subsets of X an open set D(H,K) such that

- (a) $H \subset D(H,K) \subset \overline{D(H,K)} \subset X K$
- (b) If (H', K') is a pair of disjoint closed sets having $H \subset H'$ and $K \supset K'$ then $D(H, K) \subset D(H', K')$.

The function D is called a monotone normality operator for X.

Definition 2.3. A space X is collectionwise:

2 Je. Hai-Gon

normal if for each discrete collection $H = \{H_{\alpha} : \alpha \in A\}$ of closed subsets of X there is a disjoint collection $G = \{G_{\alpha} : \alpha \in A\}$ of open subsets of X with the property that $H_{\alpha} \subset G_{\alpha}$ for each $\alpha \in A$.

II. Properties of monotonically normal space

Theorem 3.1. Any stratifiable space is monotonically normal.

Proof. Suppose X is a stratifiable space. For each ordered pair (H,K) of disjoint closed subsets of X, let

$$D(H,K) = \bigcup_{i=1}^{\infty} [X - \overline{G_n(K)} - \overline{X - \overline{G_n(H)}}].$$

If $p \in H$, then there exists an $n \in N$ such that $p \notin \overline{G_n(K)}$ and hence $p \in X - \overline{G_n(K)}$. Now for each $n \in N$ $p \in G_n(H) \subset \overline{G_n(H)}$, hence $p \notin X - \overline{G_n(H)}$ and $p \in X - \overline{G_n(H)}$. Since $X - \overline{G_n(H)} \subset X - \overline{G_n(H)}$, $p \in X - \overline{G_n(H)}$ for each n.

Thus $p \in D(H, K)$. Therefore, $H \subset D(H, K)$ $\subset \overline{D(H, K)}$.

Let $p \in \overline{D(H,K)}$ and suppose $p \in K$, then $p \in \overline{D(K,H)}$. Let $q \in D(K,H) \cap D(H,K)$ and $k,n \in N$ such that $q \in X - \overline{G_n(K)} - \overline{X - G_n(H)}$ and $q \in X - \overline{G_k(H)} - \overline{X - G_k(K)}$. If k < n, then $G_n(H) \subset G_k(H)$ implies $q \in X - \overline{G_k(H)} \subset X - \overline{G_n(H)} \subset X - \overline{G_n(H)} \subset X - \overline{G_n(H)}$. Thus $q \in X - \overline{G_n(H)}$, we have a contradiction. Similarly for k > n, hence we have $\overline{D(H,K)} \subset X - K$. Therefore, $H \subset D$ $(H,K) \subset \overline{D(H,K)} \subset X - K$.

Finally let $p \in D(H, K)$, then there exists an $n \in N$ such that $p \in X - \overline{G_n(K)} - \overline{X} - \overline{G_n(H)}$. On the other hand, if $H \subset H'$ and $K \supset K'$, then $G_n(H) \subset G_n(H')$, $G_n(K) \supset G_n(K')$ for each $n \in N$. Thus $p \in X - \overline{G_n(K)}$ implies $p \in X - \overline{G_n(K')}$ for each $n \in N$. $X - G_n(H') \subset X - \overline{G_n(H)}$ implies $\overline{X} - \overline{G_n(H')} \subset X - \overline{G_n(H)}$. Since $p \notin \overline{X} - \overline{G_n(H')} \subset \overline{X} - \overline{G_n(H')}$. Hence $p \in D(H', K')$. Therefore, $D(H, K) \subset D(H', K')$.

Theorem 3.2. Any monotonically normal space is collectionwise normal.

Proof. Let X be a monotonically normal space and $F = \{F_{\alpha} : \alpha \subseteq I\}$ a discrete collection of

closed sets. Now well order by $\alpha_0, \alpha_1, \alpha_2, \cdots$.

For each $\alpha \neq \beta$, let $G_{\alpha} = D(F_{\alpha}, F_{\beta}) - D(F_{\beta} - \overline{F_{\alpha}})$ and $G_{\beta} = D(F_{\beta}, F_{\alpha}) - \overline{D(F_{\alpha}, F_{\beta})}$.

Then $G_{\alpha} \cap G_{\beta} = D(F_{\alpha}, F_{\beta}) \cap D(\overline{F_{\beta}}, \overline{F_{\alpha}})^{\circ} \cap D(F_{\beta}, F_{\alpha}) \cap D(\overline{F_{\alpha}, F_{\beta}})^{\circ} \subset$

 $D(F_{\alpha}, F_{\beta}) \cap D(F_{\beta}, F_{\alpha})^{\epsilon} \cap D(F_{\beta}, F_{\alpha}) \cap D(F_{\alpha}, F_{\beta})^{\epsilon} = \phi.$

Thus G_{α} and G_{β} are disjoint. By transfinite induction, we can get a collection G_{α_0} , G_{α_1} , G_{α_2} , ... of mutually disjoint open sets.

Suppose that there exists an $x \in F_{\alpha}$ such that $x \in \overline{D(F_{\beta}, F_{\alpha})}$. Then $x \in X - F_{\alpha}$ and hence $x \notin F_{\alpha}$. Thus we have a contradiction. Hence $F_{\alpha} \subset G_{\alpha} = D(F_{\alpha}, F_{\beta}) - \overline{D(F_{\beta}, F_{\alpha})}$. Therefore, X is collectionwise normal.

Theorem 3.3. Every subspace of a monotonically normal space is monotonically normal.

Proof. Let X be a monotonically normal space and A its subspace. Let D be a monotone normality operator such that for each disjoint closed subsets C and E $D(C, E) \cap D(E, C) = \phi$. For each disjoint closed sets H and K of A, let $D_A(H,K) = \bigcup_{x \in H} [D(\{x\},\overline{K}) \cap A]$. Clearly, D_A (H,K) is open and $H\subset D_A(H,K)\subset \overline{D_A(H,K)}$. Let $p \in D_A(\overline{H}, K)$ and suppose $p \in K$. Then p $\in D_A(K,H) \subset A-H$. Let $q \in D_A(H,K) \cap D_A(K,K)$ H). Then $q \in D_A(H, K)$ and $q \in D_A(K, H)$. This implies that there exists an $x \subseteq H$ such that $q \in D(\{x\}, \overline{K}) \cap A$ and $y \in K$ such that $q \in D(\{y\}, \overline{H}) \cap A$. Thus $q \in D(\{x\}, K) \cap D$ $(\{y\}, \widetilde{H})$. So we have a contradiction. Therefore, $H \subset D_4(H,K) \subset \overline{D_4(H,K)} \subset A-K$. If H $\subset H'$ and $K \supset K'$, then $D_A(H,K) = \bigcup_{x \in B} [D(\{x\}, X]]$ $[K] \cap A] \subset \bigcup_{x \in H} [D(\{x\}, K') \cap A] \subset \bigcup_{x \in H} [D(\{x\}, K') \cap A]$ $=D_4(H',K')$. Hence $D_4(H,K)\subset D_A(H',K')$.

Bibliography

- C.R. Borges, On stratifiable spaces, Pacific J. Math. 17(1966).
- 2. J.Ceder, Some generalizations of metric spaces, Pacific J. Math. 11(1961).

- 3. G. Creede, Concerning semistratifiable spaces, Pacific J. Math. 32(1970).
- 4. M. Henry, Stratifiable spaces, semistratifiable spaces and their relation through mappings, Pacific J. Math. 37(1971).
- 5. P.L. Zenor, Monotonically normal spaces, Trans. Amer. Math. 178 (1973)
- D.R. Traylor, A note on metrization of Moore spaces, Proc. Amer. Math. 14 (1963).