On nearly-countable compact space and locally nearly-compact

Park, Jong Yeoul*
Dept. of Basic studies

<Abstract>

In this paper we define nearly-countable compact space, its properties and locally nearly-compact space. In section 2, we consider the relation of nearly-compact space, almost countable compact space and countable compact space. In section 3 we study some properties of nearly-compact space and locally nearly-compact space.

Nearly-countable compact space와 locally nearly compact space에 관한 연구

박 **총** 약 기 초 **학** 과

(요 약)

본 논문에서는 nearly-countable compact space 를 정의하고 그들의 몇가지 성질과 locally nearly-compact space에 대하여 알아 보았다. 제 2 실에서는 nearly-countable compact space, almost-countable compact space, countable compact space 를 비교하고 제 3 질에서는 nearly compact space 를 이용한 locally nearly-compact space 에 대하여 조사하였다.

1. Introduction

A topological space (X, \mathcal{S}) is said to be nearly-countable compact if every countable open cover of X has a finite subcollection, the interiors of the closures of which cover X; a topological space (X, \mathcal{S}) is said to be locally nearly-compact (X, \mathcal{S}) is said to be locally nearly-compact (X, \mathcal{S}) is nearly-compact subset of X. The purpose of this note is some notation of nearly-countable compact space and locally nearly-compact space and mapping. A set X is called regularly open (X, \mathcal{S}) if it is the interior of its own closure or equivalently, if it is the interior of some closed set. A is called

regularly-closed (1), if it is the closure of its own interior or equivalently, if it is closure of some open set. Throughout, \overline{A} will denote the closure of a set A and $(A)^{\circ}$ will denote the interior of a set A.

II. Nearly-countable compact space

Definition 2.1. A space is said to be semi-regular if for each point x of the space and each open set U containg x, there is an open set V such that $x \in V \subset (V)^{\circ} \subset U$.

Theorem 2.1. A semi-regular and Lindelof space is a nearly-countable compact if and only if it is countable compact.

Proof. Let(X, \mathcal{T}) be a semi-regular nearly-

^{*}기 투학과강사

countable compact space, and $\mathscr{U}: \{U_\alpha: \alpha \in Z^+\}$ be any countable open cover of X. For each $x \in X$, there exists an $d_\alpha \in Z^+$ such that $x \in U_{dx}$. Since X is semi-regular, therefore there exists an open set G_x such that $x \in G_x \subset (\overline{G}_x)^\circ \subset U_{dx}$ X is nearly-countable compact there exists $\{G_x: x \in X\}$ such that $\bigcup \{(G_{x_1})^\circ: i=1, 2, \cdots, n\} \subset \bigcup \{U_{x_i}: i=1, 2, \cdots, n\}$. Thus $X = \bigcup \{\overline{(G_{x_i})^\circ}: i=1, 2, \cdots, n\} \subset \bigcup \{U_{x_i}: i=1, 2, \cdots, n\}$, Hence X is countable compact. The converse is obviously, the class of nearly-countable compact space contains the class of countable compact space.

Definition 2.2. A topological space (X, \mathcal{I}) is said to be almost-countable compact if every countable open cover of X has a finite subcellection, whose closure cover of X.

Definition 2.3. A space (X, \mathcal{T}) is said to be almost-regular (1), if for every point $x \subset X$ and each neighborhood U of $x \in X$, there exists a neighborhood V of X such that $V \subset V \subset (\bar{U})^{\circ}$.

Theorem 2.2. An almost-regular and Lindclof space is an almost-countable compact space if and only if it is nearly-countable compact.

Proof. Let $\mathscr{V} = \{U_\alpha : \alpha \in \mathbb{Z}^\perp\}$ be any regularly countable open cover of almost-tregular almost-countable compact.

For each $x{\in} X$, there exists an $\alpha_x{\in} Z^+$ such that $x{\in} \bigcup dx$. By almost-regularity there exists an open set V_x such that $x{\in} V_x{\subset} V_x{\subset} (U_{\alpha x})^\circ = U_{\alpha x}$. Let $V = \{V_x : x{\subset} X\}$ is an open cover of X which is an almost-countable compact space.

Therefore there exists a finite sub-family $\{V_{xi}: i=1, 2, \dots, n\}$ of V such that $\bigcup \{V_{\alpha x}: i=1, 2, \dots, n\} = X$. Thus $X \bigcup \{V_{\alpha x}: i=1, 2, \dots, n\} \subset \bigcup \{U_{\alpha xi}: i=1, 2, \dots, n\}$.

Hence X is nearly-countable compact. The converse is obvious.

Definition 2.4 A mapping is said to be almostcontinuous (1) if the inverse image of every regularly open set is open.

Theorem 2.3. The image of a countable compact space under an almost-continuous mapping is nearly-countable compact.

Proof. Let $f: X \to Y$ be an almost-continuous mapping of a countable compact space X onto a space Y. Let $V = \{V_\alpha : \alpha \in Z^+\}$ be a countable regularly open cover of Y.

Thus $\mathscr{C} = \{f^{-1}(V_{\alpha}): \alpha \in \mathbb{Z}^+\}$ is a countable open cover of X. Since X is countable compact, therefore \mathscr{C} has a finite sub-cover of $\{f^{-1}(V_{\alpha i}): i=1, 2, \dots, n\}$, $\{V_{\alpha i}: i=1, 2, \dots, n\}$ is a finite sub-cover of V. Hence Y is nearly countable compact.

Theorem 2.4 An almost-continuous image of an almost-countable compact space is almost-countable compact.

Proof. Let $f\colon X\longrightarrow Y$ be an almost-continuous mapping of an almost-countable compact space X onto Y and let $\{U_\alpha\colon \alpha \Subset Z^+\}$ be any regularly countable open cover of Y. Then $\{f^{-1}(U_\alpha):\alpha \Subset Z^+\}$ is a countable open cover of X. Since X is almost-countable compact, therefore it has a finite sub-family $\{f^{-1}(U_{\alpha t}):\ t=1,\ 2,\ \cdots,\ n\}$ such that $\bigcup\{f^{-1}(U_{\alpha t}):\ i=1,\ 2,\ \cdots,\ n\}-X$. f being almost continuous, $f^{-1}(\overline{U_\alpha})\subseteq f^{-1}(\overline{U_\alpha})$. Hence $Y=\bigcup\{\overline{U_{\alpha t}}:\ t=1,\ 2,\ \cdots,\ n\}$. Thus Y is almost-countable compact.

Definition 2.5. A mapping $f: X - \longrightarrow Y$ is said to be strongly continuous (4) if $f(\overline{A}) \subset f(A)$ for every subset of A of X.

Theorem 2.5. The image of an almost-countable compact space under a strongly continuous mapping is countable compact.

Proof. Let $f\colon X\longrightarrow Y$ be a strongly continuous mapping of an almost-countable compact space X onto Y. Let $V:\{V_\alpha\colon \alpha\subset Z^+\}$ be any countable open cover of Y. Then $\mathscr{U}=\{f^{-1}(V_\alpha)\colon \alpha\subset Z^+\}$ is a countable open cover of X. Since X is almost-countable compact space, therefore there exists a finite sub-family $\{f^{-1}(V_{\alpha i})\colon i=1,2,\ldots,n\}$ of \mathscr{U} such that $\bigcup\{f^{-1}(\overline{V}_{\alpha i})\colon i=1,2,\ldots,n\}=X$, i.e. $\bigcup\{f^{-1}(V_{\alpha i})\colon i=1,2,\ldots,n\}=X$ as f is strongly continuous. Hence $\{V_{\alpha i}\colon i=1,2,\ldots,n\}$ is a finite sub-cover of Y. Y is consequently countable compact.

II. Locally nearly-compact space

Definition 3.1. Let (X, \mathcal{F}) be a topological space. A subset A of X is nearly-compact space if and only if for any cover of A by regularly open sets, there exists a finite subcover.

Theorem 3 1. A regularly closed subset of nearly-compact space is itself nearly-compact space.

Proof. Let C be nearly-compact space, B regularly closed and $B \subseteq C$. Let Q be a regularly open cover of B. Then $\mathcal{O} \cup \{X - B\}$ is a regularly open cover of C so there exists a finite subcollection of \mathcal{O} , say $\{O_i: i=1, 2, \cdots, n\}$ such that $C \subseteq (X - B) \cup \{O_i: i=1, 2, \cdots, n\}$. It follows that $B \subseteq \bigcup \{O_i: i=1, 2, \cdots, n\}$ so by Lemma 3.1. B is nearly-compact space.

Theorem 3.2. Let (X, \mathcal{T}) be a topological space. A subset B of X is nearly-compact space and O a regularly open set contained in B. Then B-O is nearly-compact space.

Proof. Let \mathcal{O} be a regularly open cover of $B \cdot O$, $\mathcal{O} \cup \{O\}$ is a regularly open cover of B. Therefore, there exists a finite subcollection $\{O_i: i=1,2,\cdots,n\}$ such that $B \subseteq O(U\{O_i: i=1,2,\cdots,n\})$ which implies B - O(I) is nearly-compact space.

Theorem 3.3. In a Hausdorff space (X, \checkmark) , let B be nearly-compact space. For any x in B and any regularly open set A such that $x \in A$ $\subset B$, there is an open set V such that $x \in V \subset V \subset A$.

Proof. Let $x \subseteq B$ and A any regularly open set such that $x \subseteq A \subseteq B$. For each $y \in B - A$, there exists neighborhood $G_{x'}$ and H, such that $G_{x'} \cap H_y = \phi$. Furthermore, we can assume each $G_{x'} \subseteq A$.

The collection $\{H_y\colon y{\in}B{\cdots}A\}$ is an open cover of the set $B{-}A$ which by Theorem 3.2, is nearly-compact space. Therefore, there exists a finite subcollection $\{H_y\colon i{=}1,2,\cdots,n\}$ such that $B{-}A{\subset}\bigcup\{(\overline{H_{yi}})^\circ\colon i=1,2,\cdots,n\}{=}H$. Let $G{=}\bigcap\{G_x^{y_i}\colon i{=}1,2,\cdots,n\}$. It then follows that

 $G \cap H - \phi$ so, since G and H are open, $\overline{G} \cap H = \phi$. Also, since B is closed and $G \subset A \subset B$, $\overline{G} \subset B$. Therefore, $B - A \subset B \cap H \subset B - \overline{G}$ which implies $\overline{G} \subset A$. Clearly then $x \in G \subset G \subset A$ as specified.

Lemma 3.2. A finite union of sets nearly-compact space is nearly-compact space.

Proof. Let $B=\bigcup\{B_i\colon i=1,\ 2,\ \cdots\dots,\ n\}$ where each B_i is nearly-compact. Let $\mathcal O$ be any open cover of B. Then $\mathcal O$ covers B_i for each i. Therefore, there exists a finite subcollection $\{O_j!\colon j=1,2,\cdots\dots,m_i\}$ such that $B_i\subset U\{(\overline{O}_j!)^\circ\colon j=1,2,\cdots,m_i\}$. It follows that $B\subset U\{(\overline{O}_j!)^\circ\colon j=1,2,\cdots,m_i;\ i=1,\ 2,\cdots,n_i\}$.

Theorem 3.4. The following conditions are equivalent in Hausdorff space.

- (a) X is locally nearly-compact.
- (b) For each x in X and each neighborhood U of x, there is an open set V such that V is nearly-compact space and $x \in V \subset \bar{V} \subset (\overline{U})^{\circ}$.
- (c) For each x in X and each neighborhood U of x, there is a regularly open sat V is nearly-compact space such that $x \equiv V \subset \overline{V} \subset U$.
- (d) For each set C nearly-compact space and regularly open $U \supset C$, there is an open V which is nearly-compact space and $C \subset V \subset V \subset U$.

Proof. (a) implies (b). There is an open set W with $x \subseteq W \subseteq \overline{W}$ and \overline{W} is nearly-compact space. The set $(U \cap \overline{W})^\circ$ is regularly open and is contained in W. By Thenem 3.3, there exists an open set V such that $x \equiv V \subseteq (\overline{U \cap W})^\circ \subseteq (\overline{U})^\circ$. The set V is regularly closed and contained in \overline{W} so by Theorem 3.1, V is nearly-compact space.

(b)⇒(c) is clearly.

(c) \Rightarrow (d). For each $c \in C$, find an open V_c such that V_c is nearly-compact space and $V_c \subset U$. Since C is nearly-compact space, there exists a finite subcollection $\{V_{ci}: i=1, 2, \dots, n\}$ such that $C \subset \bigcup \{V_{ci}\}^o: i=1, 2, \dots, n\} = V$. Since $V = \bigcup \{V_{ci}: i=1, 2, \dots, n\}$. V is the finite union of sets nearly-compact space so by Lemma 3.2, V is nearly-compact space. Clearly $C \subset V \subset V \subset V \subset U$.

 $(d) \Rightarrow (a)$. A point is certainly nearly-compact space. Let X be U in (d).

Then for any x in X, the corresponding V in (d) is the neighborhood which is nearly-compact space.

Theorem 3.5. If B has an open neighborhood U whose closure is nearly-compact Then B also has a regularly open neighborhood V which closure is nearly-compact with $U \subset V \subset U$.

Proof. If $B \subset U$ and \overline{U} is nearly-compact the $B \subset (U)^{\circ} \subset (\overline{U})^{\circ} = \overline{U}$. Therefore $(\overline{U})^{\circ}$ is the desired neighborhood ddesired.

Theorem 3.6. A semi-regular space is a locally nearly-compact space iff it is locally compact space.

Proof. Let (X, \mathscr{S}) be a semi-regular locally nearly-compact space, $x \in X$ and V is a semi-regular basic open set about x.

By Theorem 3.3 and 3.4, there is a regularly open neighborhood U of x with $x \in U \subset \bar{U} \subset V$ and \bar{U} is nearly-compact space.

Since X is semi-regular space. Hence U is compact. It follows that (x, \mathcal{S}) is locally compact.

References

- SINGAL M. K. and ASHA SINGAL, Almost-continuous mapping, Yokohama Math. J. 16 (1968), 63-73. MR 41*6182.
- 2. LARRY. HERRINGTON, Properties of nearly-compact spaces, 1974.
- J. DUGUNDJI, Topology, Allyn, and Eacon, Boston, Mass., 1966. MR 33*1824.
- LEVINE, N., Strong continuity in topological spaces Amer., Math Monthly, 67(1960), 269.