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On nearly-countable compact space and locally nearly-compact

Park, Jong Yeoul*

Dept. of Basic studies
{Abstract>

In this paper we define nearly-countable compact space, its propertics and locally nearly-compact
space. In sectisn 2, we consider the relation of nearly-compact space, almostcountable compact
space and countable compact space. In section 3 we study some properties of nearly-compact space
and locally nearly-compact space.
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regularly-closed (1), if it is the closure of its

I. Introduction own interior or equivalently, if 1t is closure of

some open set. Throughout, A will denote the

A topological space (X, %) is said to be closure of a set A and (4)° will denote the
nearly-countable compact if every countable interior of a set A.

open cover of X has a finite subcollection, the

interiors of the closures of which cover X; a

topological space (X, .77) is said to be locally

nearly-compact (2) 11 each point has an open

neighborhocd whose closure is nearly-compact

subset of X. The purpose of this note is some

notation of nearly-countable compact space and

I. Nearly-countable compaet space

Definition 2.1. A space is said to bes semi-
regular if for each point x of the space and
each open set U containg x, there is an open

set V such that xeVc (V) cU.
locally nearly-compact space and mapping. A Theorem 2. 1.

sel A is called regularly open (1) if 1t is the
mterior of its own closure or equivalently, if

A semi-regular and Lindelaf
space is a nearly-countable compact if and only
if it is countable compact.

1t 15 the interior of some closed set. A is called Proof. Let(X, 77) be a semi-regular nearly-
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2 On nearly-countable compact space and locally nearly-compact

countable compact space, and #.:{U,: ac=Z7}
be any countable open cover of X. For each
x=X, there exists an d,=Z+ such that 2&U .
Since X 1% semi-regular, therefore there existsan
open wet G, such that x=G,C(G)°ClUs X 13
nearly-countabls compact there exists {Cxe=X}
wuch that U {((Gy)°: =1, 2, - , n}=X. Thus
X=U{G) 1 1=1, 2, -, nm}cU{U,: {12

., n}, Hence X is countable compact. The
converse 15 obviously, the class of nearly-
countable compact space contains the class of
countable compact space.

Definition 2.2. A topological space (X, ~7)
18 said to be almost-countable compact if cvery
countable open cover of X has a finite subcellec-
tion, whose closure cover of X.

Definition 2.3. A space (X, .&7) is said to
be almost-regular (1), if for every point xCX
and each neighborhood U of x=X, there exists
a neighborhood V of X such that VveVa ) .

Theorem 2.2. An almost-regular and Lindcldf
space is an almost-countable compact space if
and only 1f 1t 15 nearly-countable compact.

Proof. Let¥ ={U,:a=Z"} bc any regularly
countable open cover of almes-tregular almost-
countable compact.

For each x=X, there exists an e, =Z" such
that x=Udx. By almost-regularity there exists
an cpen set V, such that x&V,cV,CU.)°=
U,. Let V={(V,:2#Z=X} is an open cover of X
which is an almost-countable compact space.

Therefore there exists a finite sub-family
{V,ii=1,2 - -, u} of V such that U{V,:

=1, 2, o , ny=X. Thus X U{V,.:i=1,2
...... s %}CU{UM, tp=1, 2, e, n}

Hence X 15 nearly-countable compact. The
converse 1s obvious,

Definition 2.4 A mapping is said to be almost-
continuous (1) if the inverse image of every
regularly open sct is open.

Theorem 2.3. The image of a countable
compact space under an almost-contimuous mapp-

g 15 nearly-countable compact.

Proof. Let f: X -+Y be an almost-continuous
mapping of a countable compact space X onto
a space Y. Lot V={V,:ae=Z*} bc o countable
regularly open cover of Y.

Thus?=F UVt «=ZF) is a countable open
cover of X, Smee X iy countoble compact,
therefore(?” has o fmite sub-cover of {f71(V,.):
i=1, 2, v, n)h, AV ri=1, 2, e , nf 15 a
finitz sub-cover of V. Hence YV 18 nearly coun-
table compact.

Theorem 2.4 An almost-continuous mage of
an almost-countable compact space 15 almost-
countable compact.

Proof. Let f: X—Y bo an almost-continunus
mapping o «4n almost-countable compact space
X onto Y and let {U,: «=Z7} be any regularly
countable open cover of Y. Then {/ WU, :
as=Z+t} 18 a countable open cover of X. Smce
X 15 almost-couniable compact, therefore it has
a fimte sub-family {f 1(Uu): t=1, 2, - -, n}
such that U/ (U, i=1, 2, - -, mt—X. f
[T U
Hence Y=U{T: =1, 2, «ooeee , #). Thus Y is

almost-countable compact.

bommg  almost coniinuous,

Diefinition 2.5. A mapping f: X--—Y 15 saud
to he strongly continuous (4) if fF(AYCSF(A) for
every subset of A of X.

Theorem 2.5. The mmage of an almost-count-
able compact space under a strongly continuous
mapping is countable compact.

Proof. Let f1 X—Y he a strongly continu-
ous mapping of an almost-countable compact
space X onto Y. Let V -{V,: aTZ*} be any
countable open cover of Y. Then #/={f 1(V,):
a=Z7} 15 a countable open cover of X, Bince
X 15 almost-countable compact space, therefore
there exists a finmte sub-family {f1(V.):z 1L,
2, -, #) of ¥ such that U![f V.0 i=1,
2, e, mb=X, de. U{fU(Vod 0=1, 2, o ,
n}=X as f 1s strongly continuous. Hence {V,.:
11, 2, s , #} is a finite sub-cover of V. Y
15 censcequently countable compact.
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. Locally nearly-compact space

Defipition 3.1. Let (X, &) he a topological
space. A subsot A of X s nearly-compact spacs
if and only if for any c¢over of A by vegularly
open sets, there exists a finite subcover.

Theorem 3 1. A regularly closed subset of
nearly-compact space is itsclf nearly-compact
spacs.

Proof. Let C be nearly-compact space, B
regularly closed and Bc=C. Let Q be a regularly
open cover of B, Then &/ {X—Bl1sa regularly

open cover of C 85 there exists o fimita subco-

lection of 7, <ay (0,: i=1, 2. ---, n} such
that CC(X—B)YU [0,:4—1,2, vveeee , n}. It follows
that BU{0,: =1, 2, «oeee ., #} 82 by Lemma

3.1, B 15 nearly-compact space.

Theorem 3.2, Let (X, 77) be a topalogical
space. A subset B of X 1s nearly-compact space
and O a regularly open s2t contamed in B
Then B—0O is nearly-compact space.

Proof. Let & be a regularly open cover of
B -0, #J{0} 15 4 regularly op:n cover of B.
Therefore, there exists a fimite subenllection
10, 1=1,2, <o .it} such that BCO U{0,: :=1,
2,++ -, u} which iriplics B -0 1s nearly-compact
spdce.

Theorem 3.3, In o Hausdorff spacs (X, Y7,
let B bes nearly-compact space. FFor any x in B
and any regularly opun sst A such that x=A
CB, there is an epen sot ¥ such that s=Vc
VA

Proof. Let *CB and A any regularly open
s:t such thal x&ACB. For cach ye=B -4,
there exists neighborhood G and H, such thal
G.'NHA, ¢ Furtheimore, we can assume cach
Gy A

The collection {H,: y=B— A} 18 an open cover
of the set B—A4 which by Theorem 3.2, is
nearly-compact space. Thercfore, Lhere cxists
a fintte subcollection {H,, 1 /=1,2, +ems .z} such
that B—ACU{(H,)°:¢ 1,2, - «, u}=H. Lot
G= NG 1=1,2,+ ,u}, It then follows that

GNH—¢ so, sinee G and H are open, GNH=
¢ Also, since B 1s closed and GCACR, G<B.
Therefore, B—ACBNHCB~G which unplics
GCA. Clearly then ¥=GGCA as specified,

Lemma 3.2, A finite unjon of ssts nearly-
compact space 1s nearly-compact space.

Proof. Let B=U{B,: t1=1, 2, «ee .
cach B, is nearly-compact. Let ¢ e any open

i} where

cover of B, Then ¢ covers B, for esach i,
Therefore, there exists a finite subeollection

{04 7=1,2, cres ,ht b such that BxCU{(ﬁ,’)”:
JoLZ -, mb It follows that BCU{(0,)°:
J L2 -, £l 2, e . nb,

Theorem 3.4. The follywing cmditions are
equivalent in Hausdorff space.

(a) X is locally nearly-compact.

(b) For cach x in X and each necighborhood
U of x, there 1 an open szt V such that V is
nearly-compact space and xa=V V@),

(c) For each x 1n X and each necighbarhnod
U of x,
nearly-compaci space such that x=VCVcU.

(d) Tor each sct € ncarly-compact spacc and

regularly open UDC, thore is an op=n ¥V which

there 1s a regularly opcn szt Vois

is ncarly-compact spac: and C—VCVeU.

Proof. (a) mophes (b). Theore is an opzn sot
W with xCWcCW and W 15 nearly-compact
gpaca. The sct (UNW)® is regularly open and
is contained in W. By Thenom 3.3, thore exists
an open st ¥ such that =V UNWH° ()",
The sa2t V is regularly closed and contained m
W so by Theorem 3.1, V 13 nzarly-compact
apace.

(b)>(c) 18 clearly.

(e)=>(d). For each ¢=C, [ind an opan V,
such that V. is nearly-compaci spaee and V,.CU.

Since C is nearly-comnpact spacz, thore exists o

finite subcollection {V.:z=1, 2, - , n} such
that CCU{V.)%: 1=1, 2, -, #}=V. Sinco
V=U{V,: =1, 2, -, nt. 7 is the finite

union of sets nearly-compact space s by Lemma
3.2, V 18 nearly-compact space. Clearly CcVe
vcu.
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(d)=>(a). A point is certainly nearly-compact
spac Let X be U in (d).

Then for any x in X, the corresponding V
in (d) 1s the neighborhood which is nearly-
compacl spac=.

Theorem 3.5, If B has an open neighborhoad
U whose closure 15 nearly-compact Then B also
has a rcgulatly open neighborhood V' which
closure is nearly-compact with UcvVcl.

Proof. If BCU and U is nearly-compact the
By —(T) =U. Therefore (U)° is the
desized neighborhood ddesired.

Theorem 3.6. A semi-regular space is a locally
nearly-compact space iff it is locally compact
space.

Procf. Let (X, ¥7) be a semi-regular locally
neariy-compact space, x=X and V is a semi-
regular basic open set about x.

By Theorem 3.3 and 3.4, there is a regularly
open neighborhood U of x with xsUCUCY
and U is nearly-compacl space.

Sinec X is semi-regular space. Hence U is
ccmpact. It follows that (x, .¥7) is locally

compact.
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