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Formulas for the Calculation of Lift and Drag Exerted
to a Circular Cylinder due to the Flow Acceleration and
the Vortex Shedding Simulated by Discrete Vortices

Lee. Dong-Kee
Dept. of Naval Architecture and Ocean Engineering

(Abstract)

Formulas to calculate drag and lift exerted to a circular cylinder are derived for
use In connection with the discrete vortex analysis of vortex shedding from the
cylinder. The formulas are expressed in terms of the parameters concerned with
the vortices and are obtained by manipulating the extended Blasius theorem. Two
possibilities of the image system for a vortex outside the cylinder are covered
simultaneously, the difference between these being whether the image system
possesses a vortex at the center of the cylinder or not. In either case. the
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formulas are shown to have a new term containing the growth rates of the so-
called nascent vortices which has not been noticed so far.

a closed contour coinciding with the cylinder circumference

Notations
U time dependent uniform stream
a radius of the circular cylinder
X,y rectangular coordinates
z complex coordinate, z=x+iy
t time
i the imaginary unit
to imply image when used as a subscript
@ the complex velocity potential
r vortex strength (positive counterclockwise)
M the number of the shed discrete vortices
m the number of the nascent vortices
u,v x- and y-component of velocity respectively
P density of the fluid
D. L

1. Introduction

The two-dimensional vortex shedding
from a cylindrical body has been in
recent years quite successfully simulated
by the discrete vortex method. The
vorticity in the boundary layer and the
wake of the cylinder is represented by a
system of concentrated point vortices.
These vortices all created at the
neighbourhood of the cylinder surface
are convected as required by the flow
field and the
evolution of the typical vortex array in a
similar form to the The
rotational flow of viscous fluid is thus
modelled by the flow of ideal fluid with
embedded vortices.

in that way reveal

reality.

The staggered arrangement of the
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the drag and the lift. respectively, exerted to the cylinder

clusters of vortices exerts a drag of
fluctuating magnitude and a nearly
harmonically oscillating lift to the
cylinder. These forces may be evaluated
by the use of the extended Blasius
theorem”™ which is in turn an application
of the Bernoulli’s theorem. Sarpkaya™"”
applied this theorem to his discrete
vortex shedding from a circular cylinder
and obtained the formulas elegant and
convenient for use. Lee™ also considered
derivation of these formulas and showed
presence of the extra terms which do not
exist in Sarpkaya's ones.

The formulas have different appear-
ances depending on the form of the
associated velocity potential. The
velocity potential to describe the
hypothesized flow field has dual
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manifestations according to the authors
and still seems to stay at that stage.

2 .
¢(Z)=U(z+§—)-—21;ZI;( [log (z-2,) - log (z - 2) + log 2 ]

while many others, including Sarpkaya
himself in his later works, employed the
expression

2 .
¢(Z)=U(2+’§~)-5‘;Zrk [log (z-2,) - log (z- 2;) ]

The point of dispute is whether the
vortex should or should not be put at the
center of the cylinder to complete the
image system. Sarpkaya and Schoaff®
offer the reason for their choice of eq. (2)
rather than eq.(1) that ‘there are no
images at the center of the cylinder
because the vortices have been shed from

the cylinder and leave circulation

opposite to their own on the body . The

existence of the starting vortex and the
stopping vortex associated with the
sudden start and the subsequent sudden
stop of an aerofoil may justify this view.
On the other hand.
speculated by bringing the cylinder in
the flow field created by a vortex would

the situation

clearly support the validity of eq.(1).
the vortex being supposed to represent
one of those created at the boundary
layer.

However, it is not the purpose of the
present paper to clarify which expression
is logically legitimate although it may be
stated that the eq.(2) produced better
results in connection with the generated
flow fields in the author’s experience. It
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is the object of this paper to show that
whichever expression may be chosen the
growth rate of the so-called nascent
vortex plays a role in determining the
magnitude of the flow-induced forces.
This source of the force has never been
noticed so far and. in the author’s
opinion, the caleulations without inclus~
ion of the effect of these terms should
be necessarily modified.

2. Representation of the flow
field

2.1 Statements of the flow
situation

A circular cylinder of radius a is
introduced in an otherwise undisturbed
flow with its timedependent velocity U
(t) in the positive x-direction. The fluid
is assumed to be inviscid and the
strength of a vortex. once released into
the flow field. does not change. A
system of vortices are supposed to exist
outside the cylinder. typical one of
which is as shown in the Fig.1,



radius a

Fig. 1. vortices around the cylinder placed in a uniform time-dependent flow

The origin of the coordinate system is 2.2 The velocity

placed at the center of the cylinder.
The complex velocity potentials given

Both rectangular and polar coordinates
by eq.(1) and eq. (2) may be combined as

are used as convenient.

Y ] Mt}
¢(z)=U([)(z+%)~ ;-Z Iy log(z-z,)-log(z-zy)+Alogz] (3)
=]

{ 1. for eq. (1)

where k=
0, for eq.(2).

The velocity at an arbitrary point vortex is then given by

not coinciding with the position of a

, dg
- = —
dz
iy 1 1 N (4)
a” 1
U=y LN e v 2
U( 23) by é} G Tt )

Py

If the velocity at the position of a it is to be calculated from

vortex. say the m-th. is in question.

U = iV = 0 (2) - 1V (2)

A Alf) X
a” { 1 1 (5
=U@-4y. L Z y - L 5)
( z?-” ) 2 1= k (Zm L Emc o Iy )
k Fm
i 1 A
A h (4
21t " ( Zm - Z,’,” Zm )
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2.3 The image vortices Its strength is. according to the
theorem. given by
The image vortices to satisfy the

boundary condition of zero normal Iy =-T,
velocity are.as is well known, specified
by Milne-thomson's circle theorem. zj 3. Derivation of the force
in the eq.(3).(4) and (5) represents the formulas
position of the image of the k-th vortex
and is related to the position of the k-th 3.1. The extended Blasius
vortex z, by theorem
e aZ/Ek (6) The extended Blasius theorem™ takes

the following form in the present case
D-iL:iipj( (d—(p)zdzwpij( 7 dz (7)
2 I dz at Is
Denote the first and the second term as follows to consider them separately

oo 1. dp 2
Dy ily=yin (5EYa ()

Dy+il,=- zp— j' Qdz (9)

with D =D +D,, L=L +L, (10)

3.1.1. The first integral(Di—iL1) of singularities outside the cylinder. the
first integral may, from the Cauchy-
Noticing that there are a finite number Goursat theorem. by evaluated by

D-tL-—rp[§ ad )dz-Zj' (dz)d] an

where Co  a closed contour of large radius enclosing the cylinder

and all the shed vortices

Cr + aclosed contour of small radius enclosing the k-th vortex only.
On the circle of large radius Co. taking the following relation
k- %
L 1 ' (12)
z -z, z -2z z-2)
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in eq.(4) into consideration, the integrand has the property
; iur
((di)z:Uz-x = Lo as ld —
z (13)
where F): = Z I
and therefore application of the Cauchy integral formula yields
dop 2 ZAUI‘E
Y dz = 2m (- M
Tcz C&? ) (14)
= 2)\UI"Z
On the other hand. at any point on vortex. the integrand can be written
the small circle enclosing the J-th as follows
2
do 2 T,
dz 4% (z- 21)2
i r 2 ) M
i { a { 1 1 A
7oz WA g ka (723, 777, * )
k1 ] . N
i .
"ﬂr/('z-z” + )]+ HE) (15)
where H(z):an analytic function on brackets coincides with that for the
and within the circle ¢; enclosing the velocity of the I-th vortex given by
I-th vortex. eq.(5). as z approaches z,. Thus we
Note that the expression within the obtain
dp 2 .
ff‘ (E) dz = 2 (up-ivy) (16)
Cy
Then. collecting the results in eq. (14) and in eq.(16), we have
M
Dy- il = ip[ \UT - Z Ty (- ivy) ] (17)
k=]
3.1.2. The second integral(D,+ily) Inserting eq.(3) into eq.(9), we have

the following expression
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Dy +ily = -ip 5 :f (UG @+%)
.

. My
l
" om L [log(z-2,) - log(z-2,)+Alogz]}dz (18)
In the process of derivation with as many as the number of the
respect to time, it is to be noted that nascent vortices, that is

the number of vortices increases by

M@E+A) =M@ + m (19)
This assertion comes from the fact parameter. Then., when manipulated
that the interval of the time step of from the definition of a derivative, the
introducing vortices is an arbitrary following expression is finally obtained
M nodr ‘
D, + iL, = erazpiu— -ip Ty (y + vy) +ip ——"li(l M) ae (20)
dt V ! ! dt "k
where re?s denotes the position of 3.2. The force formulas
the k-th nascent vortex and (u;+ivy)
the velocity of the image of the k-th Collecting eq.(17) and eq.(20)
vortex. The details of the derivation are together. we obtain the formulas for the
shown in the Appendix, drag and the lift as follows
dU M .m drk
_ 2 dU ) . g4 i
D = 2m“p o P Z T, (v, - vy) paz 7 1 o A)sing, , (21)
= =y
M o, dry, a
L=p T, (u, - uy - MUY + pa — (1 - 7= - M)cosf, . (22)
i dt ¥k i
The term dl,/dt represents the growth depend on the principle of determining
rate of the nascent vortices and should the strength of the nascent vortices.
Frequently., the strength of the since the normal component of velocity
nascent vortices is determined so that is everywhere zero on the cylinder
the tangential component of velocity surface on account of the use of the
vanishes at the point on the cylinder image vortices, the following system of
surface and directly below the nascent m simultaneous equations can be set up
vortex. If this principle is employed. for m unknown I' s,
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2i0 i 1 1 A
a aly o L - .
U-e - o2 Ol 7y o, ) i()[]
=l ae " -z, ae " -z, ae "
M
i i 1 A g
"5 Ty [ 0 o I ,,61]—0, (23)
£ ae " -rpe’ ae M. E R ae
Tk
for ] =1.2...., m.
In the matrix notation. this system of simultaneous equations becomes
Alu=® (24)
-1
or r',=CB, withC = A
i 1 1 A
where A[k - 2 ( i(),,[ ff)“, ) i0 (12 i * m”,)! (25)
ae - l"k(:‘ * ae o — ¢ nk ae
Pk
2i0 - 1 1 A
20
B = UM - ) -5 N [— - — + 1,
2n o i i,
woae " -z () ae -z, (1) ae "
for k1 = 12,..m. (26)
Then the strength of the I-th nascent vortex is
"
Ty = ; Cy By (27
And the growth rate of the nascent vortex is given by
ar, B M ] dn, (o8)
dt " Lt K d
It is to be noted that the matrix A so far been neglected. Obviously.

is indepent of time ¢ and so is the
matrix C.

4. Conclusion
The terms containing the growth

rate of the nascent vortices in the
present force formulas are what have

inclusion of the effect of these terms
would bring about not negligible
consequences on the values of 1ift and
drag estimated without it.

Sarpkaya's force formulas™® do have
terms containing the rate of change of
vortex strengths. But this should be
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interpreted as the rate of change of
vortex strengths of those vortices
already released into the flow field. In
other words, it is concerned with the
decay of vortex strengths. The vorticity
shed into a viscous fluid decays with
time and hence it may well be justified
to incorporate a decaying mechanism
into the present way of modelling the
real vortex shedding process by the
discrete vortices embedded in an ideal
fluid. However, this means introduction
of another arbitrary parameter for the
decaying rate into the method. which
makes the present author to state that
it.is preferrable to manage the method
to work without such parameter.

The formulas naturally depend on
which of eq.(1) or eq.(2) is used for
the velocity potential. The difference
is wrapped up in the parameter .
The decision of which expression is
more appropriate to describe the flow
field is not the topic of the present
investigation but. rather. it may be
suggested that the present force
formulas contain some implicative
ingredients to deserve consultation in
the process of making such decision.
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10
Appendix
A.1. The time derivative of eq.(18)

Keeping in mind the fact that the positions of vortices are changing and that

the number of vortices should increase by the number of nascent vortices m

. the
derivation may proceed as follows

L . d (12
Dy 4 ily= - ,pzfc Wwoe+ 5
M)

) 5‘; Z T, (log [z-2,(D] - log[z-2,(1)] + Mogz) ] dz

U @
= -zp~a7 i (z + S ) dz

Mam
P
v AHOA[ f{ Z T, (log [z-2,(t+AD] - Mogz )
Z (log [z- 2, (1) ] - Mlogz) } dz

dz;,
= 2npa I_ﬁz fzzk —dz

dr
P 1w
t o & ﬁ‘(; [log(z - z;,;) - Mogz]dz

M mnoogr i
AU _ ) % 4 io,
= 2npa »{F.lpz I_‘k(u,-k+zvik)+lp2—dt (1-}\'7;;)(16 "

dz;,

where u;, + iv,, = ——  complex velocity of the image of the k-th vortex
ik ik dt

i6 L .
Zjg = )—”— PAC position of the image of the k-th nascent vortex
w

The final expression is what is denoted as eq.(20). The details of the integration of
the logarithmic function in the above deribvation follows.

A.2. Integration of the logarithmic function

Since a complex logarithmic function is multi-valued. it is necessary to consider a

particular branch taking the branch cut at the radial line emanating through the
position of the relevant vortex. Then
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j’c [log (z-z,,)-Mlogz] dz

ael (0,*+2Tf)
[@E-zy)log(z-2,4) - (z-2,,)-h(zlogz-2)] i,
ae *

[(ae - zg Y (log r (6) + i (0) + 2kyd) - (aef - z;)

0=6 +2n
nk

“Mae® (loga + i6 + 2m) - ad®))

8=8,

i i9
. ‘ , "
2mi(ae " - z,) - Nmae

io
2m(1 - & --Fyae
ik
where k, . k, ; arbitrary integer constants

ie (81

in which the polar representation r(¢) e = z - Zp,, has been introduced at the

intermediate step and zj, = (a* / 1) e’ is substituted at the final stage.



