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ABSTRACT 

In a class of nonlinear systems that is susceptible to both matched and mismatched 

disturbances, the working performance can be greatly influenced and deteriorated if these 

disturbances are not considered in controller design. While matched disturbances enter the 

system in the same channel as the control input, mismatched disturbances act in a different 

channel and are more difficult to deal with. This work proposes a finite-time disturbance 

observer-based terminal sliding mode control for a class of nonlinear systems subject to both 

matched and mismatched disturbances. 

The proposed control algorithm is first developed to stabilizing a class of second-order 

nonlinear systems subject to both matched and mismatched disturbances. This scheme employs 

a nonlinear finite-time disturbance observer to estimate mismatched disturbances fast and 

accurately. The result obtained from the observer is then utilized in the controller design to 

suppress the influence of the mismatched disturbances. To overcome the nonlinear 

characteristics, unmodeled dynamics, parameter uncertainties and matched disturbances, a 

terminal sliding mode control scheme is applied for its finite-time convergence and robustness 

against disturbances. The structure of a chattering-free full-order terminal sliding mode control 

is used to design the control algorithm to alleviate chattering and singularity phenomena in the 

control signal. Later in this dissertation, the proposed control algorithm is extended to the nth-

order nonlinear systems. Also, besides stabilizing, the control algorithm is modified and then 

utilized to address the problem of tracking control. Stability analyses are provided after the 

mathematical formulation to support the controller design. 

Four different study cases are carried out to verify the effectiveness of the proposed 

control algorithm. The first numerical simulation is given to assess and discuss the performance 

of the proposed controller theoretically. The second simulation study on controlling an electro 

hydrostatic actuator system partly reflects the practicality of the proposed controller. In the first 

two simulation studies, the proposed control algorithm is compared with a conventional 

terminal sliding mode control and an extended-state-observer-based sliding mode control for 

better performance evaluation. The third study is a task of controlling a bidirectional DC-DC 

converter, in which the proposed controller is used to suppress the influence of disturbances 

and produce a desired output voltage value. The final study is carried out in an experimental 
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setup, where the proposed control algorithm was implemented to solve the problem of 

displacement tracking control for an electro hydrostatic actuator system. PID controller is also 

employed in this case study for comparison. Throughout the studies, the proposed control 

algorithm has proved its effectiveness in stabilizing and tracking control for different systems 

that exhibit both matched and mismatched disturbances. However, more rigorous experiments 

should be conducted to validate the superiority over other control algorithms. 
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Chapter 1 

INTRODUCTION 

1.1 Background 

Sliding mode control (SMC), as one of the most popular control algorithms, possesses 

several desirable characteristics such as design simplicity, ease of implementation and 

robustness to external disturbances, model uncertainties and parameter variations. Thus, SMC 

has been receiving a tremendous amount of attention and is widely found in diverse practical 

applications including robotics [1-6], electrical and mechanical systems [7-12] and aerospace 

engineering [13-17]. Nonetheless, the conventional SMC still exhibits several drawbacks, 

namely chattering, asymptotic convergence and being susceptible to mismatched disturbances. 

Chattering phenomena occur in the conventional SMC owing to the use of a switching 

function, which leads to high oscillations in the control signal [18]. Enormous efforts have been 

made in the literature to attenuate this problem including boundary layer [19], second and 

higher-order SMC [20-22], low-pass filtering [23, 24] and disturbance observer [25]. Another 

problem found in the conventional SMC is that system states can only asymptotically converge 

to the equilibrium point. On the other hand, terminal sliding mode control (TSMC) can drive 

system states both to the sliding mode surface and to the equilibrium point in finite-time [26]. 

Although the conventional TSMC inherits the robustness characteristic from its predecessor, it 

still suffers from the chattering phenomenon and is prone to the singularity problem as the 

control signal instantly jumps to infinity. A mass of studies devoted to solving this problem, to 

name just a few, can be referred to [27-29]. Recently, a chattering-free full-order TSMC is 

developed in [30], which satisfactorily resolves both chattering and singularity problems 

mentioned above. 

A rather less common problem that SMC faces is mismatched disturbances, which act in a 

different channel with the control input. Examples in which mismatched disturbances exist are 

MAGLEV suspension systems, permanent magnet synchronous motor systems and flight 

control systems [31]. Various methods that contribute to tackling this problem are integral 

SMC [32-34] and adaptive SMC [35-37]. However, it is well known that the integral action 

might produce several undesirable effects such as large overshoot and long settling time to the 

control system. Also, the nominal performance is normally sacrificed for robustness against 
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disturbances in these methods. Disturbance observer-based SMC, on the other hand, is a more 

promising approach to deal with mismatched disturbances [31, 38-42]. In [38], a nonlinear 

disturbance observer is introduced to develop a new sliding mode surface in an attempt to 

attenuate the mismatched disturbance. However, the mismatched disturbance considered in this 

work must be constant instead of time-varying, which is a very restrictive constraint as the 

disturbance can continuously change over time in practical applications. In other words, unless 

the mismatched disturbance is time-invariant, the algorithm [38] fails to stabilize the control 

system. Besides, the nonlinear disturbance observer utilized in [38] is proved to be 

exponentially stable only in case of slowly time-varying mismatched disturbances [43]. A 

remedy for this constant restriction on the mismatched disturbance formulation is provided in 

[39]. There, the proposed extended disturbance observer can estimate nonlinear and time-

varying mismatched disturbances. However, the problem of being Lyapunov stable without 

convergence remains, thus limits the potential of the control algorithm. Another effort to 

stabilize nonlinear systems can be referred to [41], where mismatched disturbances are 

estimated and then suppressed by an extended-state-observer based sliding mode control. Both 

matched and mismatched disturbances are considered in this paper. Nonetheless, the estimation 

errors and the system state can only reach and vary in a small region around the equilibrium 

point, indicating that the observer and the closed-loop system are only of Lyapunov stable 

without convergence. Consequently, the mismatched disturbance cannot be estimated precisely, 

and the system state cannot be stabilized in finite time. 

Motivated by previous works, to accurately estimate and eventually counter the effect of 

mismatched disturbances for a class of nonlinear systems, a new design of disturbance 

observer-based TSMC is introduced in this paper. The finite-time disturbance observer 

employed in this work can be easily found in the literature. There, an arbitrary-order exact 

robust differentiator developed in [21] forms a basis for the development of this observer, 

which has been employed by a large number of researchers in various applications. Some of 

the works are mentioned as follows. In [44], a continuous terminal sliding mode control is 

integrated with a finite-time disturbance observer to tackle the tracking control problem of 

robotic manipulators. The composite controller is introduced with finite-time convergence 

property in the presence of disturbances and with nominal control performance recovery ability 

in the absence of disturbances. Also, the control law is shown to be continuous and free from 

chattering. In [45], the influence of mismatched disturbances on a class of nonlinear systems 

is attenuated by a continuous nonsingular terminal sliding mode control based on a finite-time 
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disturbance observer. The property of nominal performance recovery and chattering 

attenuation of this control algorithm is verified in a simulation example of a Permanent magnet 

Synchronous Motor (PMSM). The same disturbance observer is employed in [46] to solve to 

problem of airgap control of a MAGnetic LEViation (MAGLEV) suspension vehicle in the 

presence of both matched and mismatched disturbances. There, a new dynamic sliding surface 

is developed by incorporating the information of the estimates of disturbances and their 

derivatives. Another application of this disturbance observer can be found in [31], where the 

authors integrate it with a nonsingular terminal sliding mode surface to control a DC-DC buck 

converter. Simulation and experiments on the converter have proved that the proposed control 

algorithm provides good disturbance rejection ability in the presence of matched and 

mismatched disturbances. These references have convincingly demonstrated the effectiveness 

of the high-order disturbance observer-based controllers in estimating and suppressing the 

influences of matched and mismatched disturbances in different nonlinear dynamic systems. 

Major features of the proposed control algorithm include the following points. First, 

mismatched disturbances are rapidly estimated with great precision by a nonlinear finite-time 

disturbance observer. Second, a new terminal sliding mode surface developed based on the 

disturbance estimation results enhances the robustness against external disturbances, 

uncertainties and unmodeled dynamics of the control system. Third, the utilization of a 

chattering-free full-order terminal sliding mode surface structure in design effectively 

suppresses chattering and singularity phenomena in the control signal. Fourth, Lyapunov 

stability analysis, which is given alongside the design step, theoretically increases the reliability 

of the proposed control scheme. Besides, comparative simulation and experimental studies 

including a numerical example and the application to an Electro Hydrostatic Actuator (EHA) 

system and a bidirectional DC-DC converter are provided to demonstrate the performance and 

effectiveness of the proposed algorithm. Finally, although the control algorithm is developed 

for a class of nonlinear second-order systems, the obtained results can be extended to the nth-

order form. 

1.2 Problem statement 

Consider a typical class of second-order nonlinear systems subject to both matched and 

mismatched disturbances as follows [41]: 
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 1

2 2

1

, ,

x t x t d t

x t f x t g x t u t d t

y t x t

= +


= + +


=

 (1) 

where  1 2,
T

x x x= is the system state and assumed to be available, ( ),f x t  and ( ), 0g x t   are 

two known smooth nonlinear functions, ( )u t  is the control input, ( )y t  is the system output, 

and ( ) , 1, 2id t i =  are the time-varying mismatched and matched disturbances of the system. 

Assumption 1: Both mismatched and matched disturbances ( ) , 1, 2id t i =  , as well as their 

derivatives, are bounded and satisfy: 

 ( ) ( ), , 1,2i i i id t d t i   =  (2) 

where ( )0 and 0, 1,2i i i   =  are positive constants. This assumption is reasonably 

realistic due to the physical limitation of machinery in practical applications. 

This work aims to design a disturbance observer-based terminal sliding mode controller to 

drive the system state ( )1x t  to the origin in finite-time in the presence of matched and 

mismatched disturbances. From this line, where the context is sufficiently explicit, the 

arguments of a function might be omitted for brevity. 

For the system (1), the chattering-free full-order TSMC developed in [30] is derived as 

below. First, a new terminal sliding mode surface is introduced with the form: 

 ( ) ( )2 1

2 2 2 2 1 1 1sign signs x c x x c x x
 

= + +  (3) 

Then, the control law is designed accordingly as: 

 ( )( )1 , eq nu g x t u u−= +  (4) 

where equ  denotes the equivalent control and nu  denotes the switching term. While equ  is 

designed as 

 ( ) ( ) ( )2 1

2 2 2 1 1 1, sign signequ f x t c x x c x x
 

= − − −  (5) 

nu  is defined and filtered by the following method. 

 n nu Tu v+ =  (6) 

 ( ) ( )2 signTv k s = − + +  (7) 

where   is a positive constant, 0T  , Tk  is chosen satisfying 2Tk T , ic  and i  ( )1,2i =  
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are positive constants. ic can be selected to ensure that the polynomial 2

2 1p c p c+ +  is Hurwitz, 

and i  can be determined to satisfy [30, 47]: 

 

( ) ( )

2
1

2

2

2

, 1 ,1 , 0,1






    


= −

 =  − 

 (8) 

By substituting the system (1) and the control law (4) and (5) into the sliding surface (3), one 

can obtain: 

 

( ) ( )

( ) ( ) ( ) ( ) ( )

( )

2 1

2 1

2 2 2 2 1 1 1

2 2 2 2 1 1 1

2

sign sign

, , sign sign

n

s x c x x c x x

f x t g x t u d t c x x c x x

d t u

 

 

= + +

= + + + +

= +  (9) 

Consider a candidate Lyapunov function of the form: ( ) 21

2
V s s= . It is proved in [48] that 

( ) 2nu t   and this statement is depicted here for better understanding. Initially, ( )0 0nu t = =  

is taken, i.e. ( )  2 20 ,nu   − . Then, nu  is proved that it cannot leave  2 2, − . Recall that 

2 2d  , 2 2d   in (2) and 2Tk T  in the first line after (7). Denote 2 Tk  = + + . Due 

to 2ns u d= +  in (9), (6) can be rewritten as 

 ( ) ( )2sign signn n nu Tu s u d + = − = − +  (10) 

If 2nu  , then 2 0nu T+  , ( ) ( )2sign sign 1n nu d u+ = = . It can be obtained from (10) that: 

 0n nu Tu = − −   

In the same way, if 2nu  − , then ( ) ( )2sign sign 1n nu d u+ = = − . It can be obtained from (10) 

that: 

0n nu Tu = − +   

Thus, the inequality 0n nu u   holds outside of  2 2, − , and nu  cannot leave  2 2, − , i.e. 

2nu   is kept for any 0t  . 

Due to 2nu  , which is proved in the above step, accordingly, ( ) ( )2 2 2nd t Tu t T +  +  are 

kept for any 0t  . Differentiate the Lyapunov function ( )V s , it follows that: 
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( )

( )( )

( )

( )( )
( ) ( )( )

2

2

2

2 2

2 2 2 2

n

n n n

n

n T

n T

ss s d u

s d u Tu Tu

s d v Tu

d Tu k s

d Tu T k T s

s

 

   



= +

= + + −

= + −

 − − + +

= − − + − − −

 −  (11) 

The inequality (11) indicates that the system states will reach the sliding surface 0s =  in finite 

time. Once the desired sliding mode 0s =  is established, the dynamics of the system can be 

expressed as 

 
( )

( ) ( )2 1

1 2 1

2 2 2 2 1 1 1sign sign

x x d t

x c x x c x x
 

= +


= − −

 (12) 

In case there are no mismatched disturbances, (12) will become: 

 
( ) ( )2 1

1 2

2 2 2 2 1 1 1sign sign

x x

x c x x c x x
 

=


= − −

 (13) 

From (13), if ic  and , 1, 2i i =  are chosen as below (7) and as in (8), respectively, then the 

system states will converge to the equilibrium in finite time [47, 49]. However, in case 

mismatched disturbances exist, based on the equation set (12), one can obtain the below 

relationship: 

 ( ) ( )2 1

1 2 1 1 1 1 1 1 1 1sign signx c x d x d c x x d
 

+ − − + =  (14) 

It is clear from the above equation that despite the control effort, the mismatched disturbance 

still exists in the system dynamics. Thus, the resulted system state is strongly affected by the 

mismatched disturbance. In other words, even though the system state can be attracted to the 

sliding surface in finite-time, it cannot converge to the equilibrium point owing to the presence 

of the time-varying mismatched disturbance. This is the reason why the chattering-free TSMC 

developed in [30] can cope with matched disturbances yet fail to overcome the influence of 

mismatched disturbances. 

1.3 Research Objectives and Outline 

The research objectives are listed as follows. 
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• Design a disturbance-observer-based terminal sliding mode control for the task of 

stabilizing a class of second-order nonlinear systems subject to both matched and 

mismatched disturbances. 

• Extend the obtained results to stabilize a class of nth-order nonlinear systems. 

• Modify the proposed control algorithm to solve the problem of tracking control for a 

class of nth-order nonlinear systems. 

• Verify the effectiveness of the proposed algorithm via numerical simulations and 

experimental setup. 

The dissertation consists of five chapters, which are organized as follows. 

Chapter 1 gives a detailed introduction to the research. One of the main concerns is the 

existence of mismatched disturbances in a class of nonlinear systems. The other concern is the 

problem that a conventional chattering-free full-order terminal sliding mode control is faced 

with as dealing with mismatched disturbances in such type of nonlinear systems. This draws 

out the motivation for this research. 

In Chapter 2, the solution to the problem is delivered in two steps. Step 1 introduces the 

nonlinear finite-time disturbance observer to accurately estimate the mismatched disturbances 

existing in the system. Step 2 presents the design of a disturbance-observer-based terminal 

sliding mode control, which utilizes the disturbance estimation result to suppress the influence 

of the mismatched disturbances. This chapter also introduces the chattering-free full-order 

structure that alleviates the problem of chattering and singularity in conventional terminal 

sliding mode control. The mathematical formulation is followed by a stability analysis to 

support the design. 

In Chapter 3, the designed control algorithm for second-order systems is extended for the 

nth-order systems including the generalization of the system, the disturbance observer and the 

terminal sliding mode controller. This chapter continues extending the proposed control 

algorithm to address the problem of tracking control. 

In Chapter 4, four different case studies are introduced to verify the effectiveness of the 

proposed control algorithm. The first numerical simulation is given to help assess and discuss 

the performance of the proposed control algorithm theoretically. The second simulation on 

stabilizing an electro hydrostatic actuator partly reflects the practicality of the proposed 

controller. The third study on voltage control a bidirectional DC-DC converter proves that the 

proposed control algorithm can be applied for different kinds of system. This study also 

introduces a new control-oriented modeling approach for a bidirectional DC-DC converter so 
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that it is more convenient to apply nonlinear control algorithms. The fourth study provides 

experimental validation for the proposed control algorithm as it is employed to control the 

displacement of an electro hydrostatic actuator system. 

Chapter 5 provides conclusions and future work. 
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Chapter 2 

DISTURBANCE-OBSERVER-BASED TERMINAL 

SLIDING MODE CONTROL DESIGN FOR A 

CLASS OF SECOND-ORDER NONLINEAR 

SYSTEMS 

In this section, a new chattering-free full-order terminal sliding mode control powered by a 

nonlinear disturbance observer is proposed for the system (1). First, the disturbance observer 

is employed to estimate the mismatched disturbance followed by a finite-time convergence 

analysis. After that, a new terminal sliding surface and a control law are developed to ensure 

that the system state will converge to the origin in finite time. 

2.1 Nonlinear Finite-time Disturbance Observer Design 

The objective of this section is to employ a finite-time disturbance observer to estimate the 

time-varying mismatched disturbance existing in (1). Based on the research on globally 

convergent differentiators in [50], a nonlinear disturbance observer is designed as follows. 

 

( ) ( )

( ) ( )

( ) ( )

1 1 2

2 31 3

1 1 1 1 1 1 1 1 1 2

2 2

1 21 2

2 2 2 1 2 1 2 2 1 3

3 3 3 2 3 3 2

sign

sign

sign

z v x

v L z x z x z x z

z v

v L z v z v z v z

z L z v z v

 

 

 

 = +


= − − − − − +


=


= − − − − − +
 = − − − −

 (15) 

where 1 1
ˆz x= , 2 1

ˆz d= , 3 1

ˆ
z d= , and 0L  , ( ), 0 1,2,3i i i   = . 

Assumption 2: The time-varying mismatched disturbance ( )1d t  is assumed to be second-

order differentiable and has a Lipschitz constant L . 

Theorem 1: Given that the disturbance observer is designed as (15), if the design parameters 

are properly selected, the following results are achieved in finite-time. 

 1 1 2 1 3 1, ,z x z d z d= = =  (16) 

Proof. For the disturbance observer (15), define the estimation errors as follows. 
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 3 11 1 2 1
1 2 3, ,

z dz x z d

L L L
  

−− −
= = =   (17) 

By taking the derivative of 1 , 2  and 3 , one can obtain the observer error dynamics: 

 

( )

( ) ( )

( ) ( )

2 3

1 1 1 1 1 1 2

1 2

2 2 2 1 2 1 2 2 1 3

3 3 3 2 3 3 2 1

sign

sign

1
sign d

L

      

         

      

 = − − +

 = − − − − − +



= − − − − −


 (18) 

Then, according to Theorem 3.1, Lemma B.1 and their proofs in [50], the estimation errors 

(18) will converge to zero in finite-time, indicating that the nonlinear disturbance observer can 

accurately estimate the system state ( )1x t , the time-varying mismatched disturbance ( )1d t  

and its derivative ( )1d t . This completes the proof of Theorem 1. 

Remark 1: Viewers are strongly encouraged to read the works [21, 50, 51] and the 

references therein to further understand the rigorous stability analysis of the disturbance 

observer as well as how to properly choose its design parameters. It is noted in these above 

references that the observer design parameters,  ( ), 1,2,3i i i  = , are chosen recursively in 

such a way that  ,i i  provide for the convergence of the observer with the Lipschitz constant 

L  indicated in Assumption 2. It is also mentioned by the authors that these parameters can be 

easily changed since it is not very sensitive to their values. The tradeoff is as follows: generally, 

the greater the parameters, the faster convergence of the disturbance observer yet higher 

sensitivity to input noises and the sampling step and larger peaking phenomenon in the control 

signal if the initial values of the system states and those of the observer states are different. 

Thus, in the case of different initial values, a tradeoff could be made to ensure fast convergence 

yet acceptable peaking phenomenon. 

2.2 Disturbance Observer-based Chattering-free Full-order Terminal Sliding 

Mode Control Design 

In this section, based on the disturbance estimation, a new sliding surface is proposed, then 

accordingly a new control law is designed to drive the system state to the equilibrium point in 

finite time. Motivated by the work on chattering-free full-order SMC in [30], this work can 

also be considered as an extension to the control strategies developed in [41] and [30]. 

A new disturbance observer (DOB)-based terminal sliding mode surface for the system (1) 

is proposed as: 
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 ( ) ( )2 1

2 2 2 2 2 2 1 1 1 3sign signx c x z x z c x x z
 

 = + + + + +  (19) 

where 2 1
ˆz d= , 3 1

ˆ
z d=  obtained from the disturbance observer, ic  and i  ( )1,2i =  are positive 

constants. ic  are chosen to guarantee that the polynomial 2

2 1p c p c+ +  is Hurwitz, and i  are 

determined as same as in (8). 

Theorem 2: Given the sliding surface (19), if the control law is developed as 

 ( )( )1 , eq nu g x t u u−= +  (20) 

with the equivalent control 

 ( ) ( ) ( )2 1

2 2 2 2 2 1 1 1 3, sign signequ f x t c x z x z c x x z
 

= − − + + − −  (21) 

and the switching term is filtered for chattering attenuation as 

 n nu Tu v+ =  (22) 

 ( ) ( )2 signTv k  = − + +  (23) 

where , ,TT k   are defined as same as below (7), then the system (1) will reach the sliding 

mode surface 0 =  in finite-time, and the system state ( )1x t  will converge to the origin in 

finite-time also. 

Proof. By substituting the expression of ( )2x t  in (1) and the control law (20), (21) into the 

sliding surface (19), one can derive the following equality: 

 

( ) ( )

( ) ( ) ( ) ( ) ( )

( )

2 1

2 1

2 2 2 2 2 2 1 1 1 3

2 2 2 2 2 2 1 1 1 3

2

sign sign

, , sign sign

n

x c x z x z c x x z

f x t g x t u d t c x z x z c x x z

d t u

 

 

 = + + + + +

= + + + + + + +  

= +  (24) 

Consider a candidate Lyapunov function as ( ) 21

2
V  = . Differentiating the Lyapunov 

function ( )V   and following the same procedure in (11) yields: 

 

( )

( )2 n

V

d t u

 



 

=

 = + 

 −  (25) 

which implies that the system will arrive at the sliding surface 0 =  in finite time. Once the 

desired sliding mode occurs, combining system (1) and sliding surface (19), one can obtain: 
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( ) ( )2 1

1 2 1

2 2 2 2 2 2 1 1 1 3sign sign

x x d

x c x z x z c x x z
 

= +


= − + + − −

 (26) 

From the equation set (26), the following relationship can be established: 

 

( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

2 1

2 1

2 1

1 2 1

2 2 2 2 2 1 1 1 3 1

2 1 1 2 1 1 2 1 1 1 3 1

2 1 2 1 1 2 1 1 1 1 3 1

sign sign

sign sign

sign sign

x x d

c x z x z c x x z d

c x d z x d z c x x z d

c x z d x z d c x x z d

 

 

 

= +

 = − + + − − +
 

= − − + − + − − +

= − + − + − − − −  (27) 

According to Theorem 1, 2 1z d=  and 3 1z d=  are achieved in finite time by the disturbance 

observer. Thus, the equation (27) becomes: 

 ( ) ( )2 1

1 2 1 1 1 1 1sign signx c x x c x x
 

= − −  (28) 

Let 1 1w x= , 2 1w x= , the dynamic equation (28) can be transformed into 

 
1 2

2

w w

w u

=


=
 (29) 

where ( ) ( )2 1

2 2 2 1 1 1sign signu c w w c w w
 

= − − , and ic , i  ( )1,2i =  are designed as same as 

below equation (19) and equation (8). Then, according to Proposition 8.1 and its proof in 

[47], it can be concluded that the origin is a globally finite-time-stable equilibrium for the 

system (29), indicating that the state ( )1x t  of the system (1) will eventually converge to zero 

in finite time. This completes the proof for Theorem 2. 

Remark 2: As stated in [30], the control signal (22) acts in the same manner as a low-pass 

filter, where T =  can be interpreted as the bandwidth of the filter. The non-smooth switching 

function nu  is therefore smoothened to prevent the chattering phenomena from happening if 

the design parameters are properly chosen. Also, being a full-order sliding mode surface, it 

allows deriving the corresponding control law without differentiating the term ( )signi

ic


  , 

thus avoiding singularity. 

Remark 3: It should be mentioned that the siding surface (19) includes the ‘acceleration’ 

signal ( )2x t , which can be obtained through differentiating the ‘velocity’ signal ( )2x t . 

Nonetheless, this action is sensitive to noises and thus can degrade system performance.  Notice 

that the proposed control law only utilizes the sign of the sliding surface   instead of its value. 
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Based on this observation, the same idea suggested in [30] is depicted here to avoid the use of 

the ‘acceleration’ signal. Thus, ( )sign   can be alternatively determined as follows. 

 ( ) ( ) ( )( )sign sign h t h t = − −  (30) 

where ( )h t  is defined as: 

 
( ) ( )

( ) ( )( )2 1

0

2 2 2 2 2 2 1 1 1 3
0

sign sign

t

t

h t t dt

x c x z x z c x x z dt
 

=

= + + + + +




 (31) 

and   is chosen to be the fundamental sampling time. 

Alternatively, the nonlinear disturbance observer structure can be applied again to meet this 

need and is presented below. 

 

( ) ( )

( ) ( )

( ) ( )

4 4 3

2 31 3

4 4 2 4 2 4 2 4 4 2 5

5 5

1 21 2

5 5 2 5 4 5 4 5 5 4 6

6 6 2 6 5 6 6 5

sign

sign

sign

z v x

v L z x z x z x z

z v

v L z v z v z v z

z L z v z v

 

 

 

 = +


= − − − − − +


=


= − − − − − +
 = − − − −

 (32) 

where ( ) ( )3 , ,x f x t g x t u= + , 4 2
ˆz x= , 5 2

ˆz d= , 6 2

ˆ
z d= . Since the disturbance observer is 

proved to be finite-time convergent, after a transient period, 4 2
ˆz x=  can be regarded as the 

‘acceleration’ signal. Besides, the matched disturbance ( )2d t  can be accurately estimated for 

further use such as reducing the switching gain in the control signal (23), thus decreasing the 

chance chattering phenomena will occur. However, the use of another disturbance observer 

will increase the computational burden, which might represent a disadvantage in practical 

applications. 

Remark 4: As the mismatched disturbance is absent from the control system, if the initial 

values of the observer states are selected as ( ) ( )1 0 1 0z t x t= , ( ) ( )2 0 3 0 0z t z t= =  then it is 

derived from the observer formulation and observer error dynamics that 

( ) ( ) ( )1 2 3 0t t t  = = =  and ( ) ( )1 2 0v t v t= = . In this case, the sliding surface (19) and the 

control law (20) will reduced to those of the conventional TSMC. This indicates the nominal 

control performance preservation capability of the proposed controller. 
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Chapter 3 

GENERALIZATION TO THE NTH-ORDER 

NONLINEAR SYSTEMS. 

3.1 Towards the Problem of Stabilization 

Consider a class of nonlinear nth-order systems of the form: 

 
( )

( ) ( ) ( )

1 , 1, 2,..., 1

, ,

i i i

n n

x x d t i n

x f x t g x t u d t

+= + = −


= + +

 (33) 

where ( )1,2,...,ix i n=  are the system states and assumed to be available, ( ),f x t  and 

( ), 0g x t   are two known smooth nonlinear functions, u  is the control input, 

( )1,2,..., 1id i n= −  and nd  are respectively the mismatched disturbances and matched 

disturbance of the system. Similar to Assumption 1, it is assumed that the disturbances and 

their derivatives are bounded. 

 ( ) ( ), , 1,2,...,i i i id t d t i n   =  (34) 

The major objective in this section is to design a control algorithm such that the system state 

( )1x t  will converge to the equilibrium in finite time. 

To accurately estimate the mismatched disturbances existing in the system, an nth-order 

disturbance observer can be developed as follows. 

 

( )

( )

( ) ( ) ( )( )

( )

1 1 1 1 1 2 1

2 2 2 2 1 3

1 1 1

1,2,..., 1
...

i i i i i i i i

i i i i i i

nin i n i n i

z v x z x z x

z v z v z
i n

z z v







+ +

+ + +

= + = − + +


= = − +
= −


 = −


 (35) 

where ji  are the nonlinear functions of the form: 

 ( ) ( ) ( ) ( )
( ) ( ) ( )

1 21 2
sign , 1,2,..., 1

n j n jn j

ji ji i jis L s s s j n  
− + − +− +

= − − = +  (36) 

and 1
ˆ

i iz x= , 2
ˆ

i iz d= , 3

ˆ
i iz d= ,…, ( )

( )1

1

n

in i
z d

−

+
= , 0iL  , , 0ji ji   , 1,2,..., 1j n= + , 

1,2,..., 1i n= − . 
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Then, a chattering-free full-order TSMC for nth-order systems can be developed based on the 

disturbance observer as follows. 

 ( )( ) ( )1

1 1 12
sign signkn

n k k k zk
x c c x x

 
   

=
= + + +  (37) 

where ( ) ( )1 1 2 2 1
...k k k k k

x z z z
− −

= + + + + , ( ) ( ) ( )3 1 4 2 1 1
...z n n n

z z z
− − +

= + + . kc  and k  are positive 

constants such that the polynomial ( )1

12

nn k

kk
p c p c−

=
+ +  is Hurwitz and the following 

equation set is satisfied [30, 47]: 

 

1

1
1

1

, 1

, 2,..., 2
2

k k
k

k k

n

k n n

 

 


 
+

−

+

= =



= =   −

 (38) 

where 1 1n + = , n = , ( )1 ,1  − , ( )0,1  . 

Theorem 3: Given the surface (37), if the control law is developed as 

 ( )( )1 , eq nu g x t u u−= +  (39) 

where equ  denotes the equivalent control and is defined as 

 ( ) ( )( ) ( )1

1 1 12
, sign signkn

eq k k k zk
u f x t c c x x

 
  

=
= − − − −  (40) 

and nu  denotes the switching term and is defined and filtered as 

 
( ) ( )sign

n n

n T

u Tu v

v k  

+ =


= − + +
 (41) 

where 0T   and Tk  are chosen to satisfy ( )T nk T ,   is a positive constant, then the 

system (33) will reach the surface 0 =  in finite time, and the system state ( )1x t  will also 

converge to the equilibrium in finite time. 

Proof. Substituting the system (33) and the control law from (40) to (41) into the sliding 

surface (37) yields: 

 

( )( ) ( )

( ) ( )( ) ( )

1

1

1 1 12

1 1 12

sign sign

sign sign

k

k

n

n k k k zk

n

n k k k zk

n n

x c c x x

f gu d c c x x

d u

 

 

   

  

=

=

= + + +

= + + + + +

= +




 (42) 

Consider a candidate Lyapunov function ( ) 2 2V  = . Differentiating this Lyapunov 

function and following the same procedure in (11) yields: 
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( )

( )n n

V

d t u

 



 

=

 = + 

 −  (43) 

This implies that the system states will arrive at the sliding surface 0 =  in finite time. Once 

the sliding mode occurs, one can combine the system dynamics (33) and sliding surface (37) 

to obtain: 

 
( )( ) ( )1

1

1 1 12

, 1,2,..., 1

sign signk

i i i

n

n k k k zk

x x d i n

x c c x x
 

  

+

=

= + = −



= − − − 
 (44) 

Based on the above equation set, the following relationship can be established: 

 
( )

( )( ) ( )
( ) ( )

1

1 2

1 1 1 1 1 2 2 12
sign sign ...k

n n n
n

k k k z n nk
x c c x x d d d d

 
  

− −

− −=
= − − − + + + + +  (45) 

where: 

 

( )( ) ( )

( ) ( )( )

( ) ( ) ( ) ( )( )

( )

( ) ( )

( )

( ) ( )

1

1

1

1 1 12

1 12 1 2 1

1 1 11 1 2 2 1 1 2 2

1 1 1

1 2 1 2

1 1 1 1 1 12 1

sign sign

... sign ...

... sign ...

...

sign

... ... sign ..

k

n

n

n

n

k k kk

n n n n nn n

n n nn n n n

n n n n

n n n n

c c x x

c x z z x z z

c x z z x z z

c x x

c x d d z z x d

 









 

−

=

− −

− − −− − − −

− − − −

− −

− −

= − + + + + + +

− + + + + + +

−

= − − − − + + + − −



( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

1

1

1 1 2 1

2 3 2 3

1 1 1 2 1 1 21 1 2 2 1 1 2 2

1 1 1

. ...

... ... sign ... ...

...

sign

n

n n n

n n n n

n n nn n n n

d z z

c x d d z z x d d z z

c x x





−

− −

− − − −

− − −− − − −

 
− + + + 

 

 
− − − − + + + − − − + + + 

 

−
 

and 

 

( ) ( )

( ) ( ) ( )

( ) ( )

( )( ) ( )( )
( ) ( )

( )

1 2

1 2 2 1

1 2

2 1 2 2 13 1 4 2 1 1

2 1

1 2 2 2 13 1 4 2 1 1

...

... ...

...

n n

z n n

n n

n n nn n n

n n

n n nn n n

d d d d

z z z z d d d d

d z d z d z d z


− −

− −

− −

− −− − +

− −

− −− − +

− + + + + +

= − − − − − + + + + +

   
= − + − − + − + −   

   

 

Applying Theorem 1, the disturbance observer developed in the previous section ensures that 
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1i iz x= , 2i iz d= , 3i iz d= ,…, 
( )

( )1

1

n

in i
z d

−

+
= , 1,2,..., 1i n= −  happen in finite time. Thus, Eq. 

(45) becomes: 

 
( ) ( ) ( ) ( ) ( )

( )
1

1

1 1 2 2

1 1 1 1 1 1 1 1 1sign sign ... sign

n nn n n n n

n nx c x x c x x c x x

 


−− − − −

−

   
= − − − −   

   
 (46) 

Let 1 1w x= , 2 1w x= ,…, 
( )2

1 1

n

nw x
−

− = , 
( )1

1

n

nw x
−

= , the dynamic equation (46) can be transformed 

into: 

 

1 2

1

...

n n

n

w w

w w

w u

−

=




=
 =

 (47) 

where ( ) ( ) ( )1 1

1 1 1 1 1 1sign sign ... signn n

n n n n n nu c w w c w w c w w
  −

− − −= − − − − , and ic , i  

( )1,2,...,i n=  are designed as same as below (37) and as (38), respectively. Then, according 

to Proposition 8.1 and its proof in [47], it can be concluded that the origin is a globally finite-

time stable equilibrium for the system (47), indicating that the system state ( )1x t  will 

eventually converge to zero infinite time. This completes the proof for Theorem 3. 

3.2 Towards the Problem of Tracking Control 

Reconsider the class of nonlinear nth-order systems of the form: 

 
( )

( ) ( ) ( )

1 , 1, 2,..., 1

, ,

i i i

n n

x x d t i n

x f x t g x t u d t

+= + = −


= + +

 (48) 

where ( )1,2,...,ix i n=  are the system states and assumed to be available, ( ),f x t  and 

( ), 0g x t   are two known smooth nonlinear functions, u  is the control input, 

( )1,2,..., 1id i n= −  and nd  are respectively the mismatched disturbances and matched 

disturbance of the system. Similar to Assumption 1, it is assumed that the disturbances and 

their derivatives are bounded. 

 ( ) ( ), , 1,2,...,i i i id t d t i n   =  (49) 

The primary objective of the algorithm is to ensure that the system state ( )1x t  tracks a 

reference signal ( )r t  accurately and quickly. Thus, by establishing tracking errors as 
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( )

( )

1

, 1,2,..., 1
i

i i

n

n n

e x r i n

e x r

−
= − = −


 = −

 (50) 

one can obtain the following error dynamics: 

 

( ) ( )
( )

1 , 1,2,..., 1

, ,

i i i

n

n n

e e d i n

e f x t g x t u d r

+= + = −



= + + −

 (51) 

Next, a chattering-free full-order TSMC based on disturbance observer is developed as follows. 

First, the nth-order finite-time disturbance observer developed in the previous section is 

restated here for clearer illustration. 

 

( )

( )

( ) ( ) ( )( )

( )

1 1 1 1 1 2 1

2 2 2 2 1 3

1 1 1

1,2,..., 1
...

i i i i i i i i

i i i i i i

nin i n i n i

z v x z x z x

z v z v z
i n

z z v







+ +

+ + +

= + = − + +


= = − +
= −


 = −


 (52) 

where ji  are the functions of the following form: 

 ( ) ( ) ( ) ( )
( ) ( ) ( )

1 21 2
sign , 1,2,..., 1

n j n jn j

ji ji i jis L s s s j n  
− + − +− +

= − − = +  (53) 

and 1
ˆ

i iz x= , 2
ˆ

i iz d= , 3

ˆ
i iz d= ,…, ( )

( )1

1

n

in i
z d

−

+
= , 0iL  , , 0ji ji   , 1,2,..., 1j n= + , 

1,2,..., 1i n= − . 

Then a chattering-free full-order terminal sliding mode surface can be designed as 

 ( )( ) ( )1

1 1 12
sign signkn

n k k k zk
e c c e e

 
   

=
= + + +  (54) 

where ( ) ( )1 1 2 2 1
...k k k k k

e z z z
− −

= + + + + , ( ) ( ) ( )3 1 4 2 1 1
...z n n n

z z z
− − +

= + + + . kc  and k  are positive 

constants such that the polynomial ( )1

12

nn k

kk
p c p c−

=
+ +  is Hurwitz and the following set of 

equations is satisfied [30, 47]: 

 

1

1
1

1

, 1

, 2,..., 2
2

k k
k

k k

n

k n n

 

 


 
+

−

+

= =



= =   −

 (55) 

where 1 1n + = , n = , ( )1 ,1  − , ( )0,1  . 

Theorem 4: Given the sliding surface (54), if the control law is developed as 
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 ( )( )1 , eq nu g x t u u−= +  (56) 

with the equivalent control equ  is defined as 

 ( )
( )

( )( ) ( )1

1 1 12
, sign signk

n
n

eq k k k zk
u f x t r c c e e

 
  

=
= − + − − −  (57) 

and the switching term nu  is defined and filtered for chattering attenuation as 

 
( ) ( )sign

n n

n T

u Tu v

v k  

+ =


= − + +
 (58) 

where 0T   and Tk  are chosen to satisfy ( )T nk T ,   is a positive constant, then the system 

(48) will reach the surface 0 =  in finite-time, and the state error ( )1e t  will converge to the 

origin in finite-time. This also indicates that the system state ( )1x t  will accurately track the 

reference ( )r t . 

Proof. By substituting the error dynamics (51) and the control law from (56) to (57) into the 

sliding surface (54), one can derive the following equality: 

 

( )( ) ( )

( )

( )( ) ( )

1

1

1 1 12

1 1 12

sign sign

sign sign

k

k

n

n k k k zk

n
n

n k k k zk

n n

e c c e e

f gu d r c c e e

d u

 

 

   

  

=

=

= + + +

 
= + + − + + + 
 

= +





 (59) 

Now consider a candidate Lyapunov function ( ) 2 2V  = , differentiate this Lyapunov 

function, and follow the same procedure in (11) yields: 

 

( )

( )n n

V

d t u

 



 

=

 = + 

 −  (60) 

which implies that the system will arrive at the sliding surface 0 =  in finite time. Once the 

desired sliding mode occurs, combining the error dynamics (51) and sliding surface (54) yields: 

 
( )( ) ( )1

1

1 1 12

, 1,2,..., 1

sign signk

i i i

n

n k k k zk

e e d i n

e c c e e
 

  

+

=

= + = −



= − − − 
 (61) 

From the above equation set, the following relationship can be established: 
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( )

( )( ) ( )
( ) ( )

1

1 2

1 1 1 1 1 2 2 12
sign sign ...k
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k k k z n nk
e c c e e d d d d
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− −=
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where 
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sign

n

n n n

n n n n

n n nn n n n

d z z

c e d d z z e d d z z

c e e





−

− −

− − − −
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 
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 

 
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and 
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( ) ( ) ( )

( ) ( )

( )( ) ( )( )
( ) ( )
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1 2

1 2 2 1

1 2

2 1 2 2 13 1 4 2 1 1

2 1

1 2 2 2 13 1 4 2 1 1

...
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...
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d d d d
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− −− − +

− −
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= − − − − − + + + + +

   
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Whereas, following Theorem 1, the disturbance observer developed in the previous section 

ensures that 1i iz x= , 2i iz d= , 3i iz d= ,…, 
( )

( )1

1

n

in i
z d

−

+
= , 1,2,..., 1i n= −  occur in finite time. 

Thus, Eq. (62) now becomes: 

 
( ) ( ) ( ) ( ) ( )

( )
1

1

1 1 2 2

1 1 1 1 1 1 1 1 1sign sign ... sign

n nn n n n n

n ne c e e c e e c e e

 


−− − − −

−

   
= − − − −   

   
 (63) 

Let 1 1w e= , 2 1w e= ,…, 
( )1

1 1

n

nw e
−

− = , 
( )

1

n

nw e= , the dynamic equation (63) can be transformed 

into: 
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1 2

1

...

n n

n

w w

w w

w u

−

=




=
 =

 (64) 

where ( ) ( ) ( )1 1

1 1 1 2 2 1 1 1sign sign ... signn n

n n n n n nu c w w c w w c w w
  −

− − − − −= − − − − , and ic , i  

( )1,2,...,i n=  are designed as same as below (54) and as (55), respectively. Then, according 

to Proposition 8.1 and its proof in [47], it can be concluded that the origin is a globally finite-

time stable equilibrium for the system (64), indicating that the state error ( )1e t  will eventually 

converge to zero in finite time. This completes the proof for Theorem 4.
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Chapter 4 

SIMULATIONS AND EXPERIMENTS 

In this section, three simulation studies and a brief experiment are provided to verify the 

effectiveness of the control algorithm. Whilst a numerical example is given to assess and 

discuss the performance of the proposed controller theoretically, the task of controlling an 

electro hydrostatic actuator system and a bidirectional DC-DC converter partly reflects the 

practicality of the suggested control algorithm. These simulations are conducted in the 

MATLAB-Simulink environment, wherein the fixed-step ODE4 (Runge-Kutta) is chosen to be 

the solver. The sampling time is determined separately for each case study, and other settings 

remain as default. 

4.1 Case Study 1: Numerical Example 

To demonstrate the effectiveness of the proposed control algorithm, the succeeding 

nonlinear second-order system, which is subject to time-varying mismatched and matched 

disturbances, is considered for simulation. 

 
( )

( )1

1 2 1

2 1 2 22
x

x x d t

x x x e u d t

 = +


= − − + + +

 (65) 

Here, the initial system state is selected as  1, 1
T

x = − . The mismatched and matched 

disturbances are defined as ( ) ( ) ( )1 1 0.3cos 2 sind t t t= + −  and ( ) ( )2 sin 2d t t= , respectively. 

The mismatched disturbance is selected different from the reference [41] in terms that as time 

increases and the system state ( )1x t  reaches its steady-state value, the mismatched disturbance 

is still time-varying in a much larger bounded region instead of gradually converging to a 

constant as in reference [41]. This is an important factor in proving the superiority of the 

proposed control algorithm over other strategies being considered and will be illustrated by 

simulation results. 

For comparison purpose, the chattering-free full-order TSMC approach [30], denoted by 

TSMC, the extended-state-observer-based chattering free SMC [41], denoted by ESOSMC, 

and the proposed control algorithm, denoted as DOBTSMC, are employed. It should be noted 
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that both the DOBTSMC and the ESOSMC stem from the TSMC. Hence, an analogy is drawn 

here to demonstrate the superiority of the proposed algorithm. 

Briefly, the ESOSMC proposed in [41] is constructed of a nonlinear extended-state-observer 

(ESO) and an ESO-based SMC. The ESO is designed based on the hyperbolic tangent function 

of the form: 

 
( )

( )( )
1 2 1 1 1 2

2 2 1 1tanh

a x x

a b x

 =  −  − +

 = −  −

 (66) 

where 1 1̂x = , 2 1d̂ = , ( ) ( ) ( )tanh e e e e −  − = − + , 0ia  , 1,2i = , 0b  . The new 

sliding mode surface integrated with the ESO is developed as: 

 ( )2 2 2 2 1 1 2s x c x c x= + +  + +   (67) 

where , 1, 2ic i =  are chosen in the same manner as in previous sections. 

The design control parameters are specifically selected to be the same for all control 

algorithms as 1 6c = , 2 5c = , 0.1T = , ( )2 10Tk + + = . Apart from that, for the TSMC and 

the DOBTSMC, follow (8), ( )1, 2i i =  are designed as 1 3 7 = , 2 3 5 = . For the 

mismatched disturbance observers, ESO parameters are selected as 1 50a = , 2 35a =  and 

50b = ; and DOB parameters are chosen as 2L = , 1 6 = , 2 11 = , 3 6 = , 1 18 = , 2 6 = , 

3 1 = . 

 

Figure 1. Response trajectories of state 1x . 
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Figure 2. Response trajectories of state 2x . 

 

Figure 3. Response trajectories of control signal. 

 

Figure 4. Trajectory of the mismatched disturbance. 



25 
 

The system state ( )1x t  delivered by all control algorithms is shown in Figure 1. It 

demonstrates conclusively that the TSMC fails to stabilize the system state ( )1x t , which is 

predicted by theoretical analysis in the problem statement section. Therefore, the TSMC signals 

are suppressed in the succeeding figures for better visualization of the other two algorithms. 

Also, it is evident from Figure 1 that the response state ( )1x t  controlled by the ESOSMC is 

only able to reach and then vary in a small-bounded region of  0.03, 0.03−  around the 

equilibrium without converging to it. On the other hand, faster and finite-time convergence is 

seen for the DOBTSMC with the accuracy is around 4 9e− . This result proves the superior 

property of the proposed algorithm over the ESOSMC method. 

It can be interpreted from the system (65) that to stabilize the system state ( )1x t  to the 

equilibrium point for the cases of TSMC and DOBTSMC or at least to the vicinity of the 

equilibrium point for the case of ESOSMC, the following inequality must be fulfilled: 

 1 2 1x x d = +   (68) 

where   is a sufficiently small positive number and can represent the performance indicator 

for evaluation. Inequality (68) indicates that for the sake of stability, ( )2x t  must counteract 

the time-varying effect caused by the mismatched disturbance ( )1d t . Consequently, ( )2x t  and 

( )1d t  should be symmetric about the time axis. This statement can be observed by comparing 

the trajectory shape of the state ( )2x t  in Figure 2 to that of the mismatched disturbance ( )1d t  

in Figure 4. It also explains why the system state ( )1x t  but not ( )2x t converges to the 

equilibrium. 

The illustration of control signals generated by the ESOSMC and the DOBTSMC are shown 

in Figure 3. Both the ESOSMC and the DOBTSMC algorithm exhibit a smooth control signal 

without chattering effects. However, a much greater peaking effect at the beginning is seen for 

the ESOSMC compared with the DOBTSMC. Reducing observer gains of the ESOSMC can 

be a solution to alleviate the severity of this phenomenon. Nevertheless, at the same time, this 

action will produce a larger disturbance estimation error, thus deteriorate the overall 

performance. In contrast, the DOBTSMC exhibits satisfactory performance without a serious 

peaking phenomenon in the control signal. This further proves that the proposed algorithm is 

more effective in dealing with time-varying mismatched disturbances than the ESOSMC. 

Closely looking at Figure 3, an abnormal surge exists in the control signal of the proposed 
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algorithm during the transient period before the system state ( )1x t  reaches its steady-state 

value. This phenomenon occurs because of the use of an absolute value function in the 

controller design. Since the absolute value function is continuous but of piecewise linearity at 

zero, whenever the argument of the absolute function changes its sign, nonlinearity will happen, 

and the corresponding surge will appear. 

 

Figure 5. Response trajectories of disturbance estimation error. 

Figure 4 depicts the mismatched disturbance trajectory, which is nonlinear and time-varying 

throughout the simulation period. Whereas, the mismatched disturbance estimation errors of 

both ESOSMC and DOBTSMC depicted in Figure 5 shows an agreement with the statement 

discussed on the system state ( )1x t  in Figure 1. While finite-time convergence is seen for the 

DOBTSMC, the ESOSMC can only reach the Lyapunov stable state. This clearly indicates that 

the proposed control algorithm outperforms the ESOSMC in disturbance estimation and 

attenuation. 

 

Figure 6. Sliding mode surface trajectory delivered by the proposed controller. 
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Figure 6 depicts the trajectory of the sliding surface produced by the proposed control 

algorithm. Except for some abnormal surges occurring in the transition period due to the 

piecewise linearity of the absolute value functions used in the controller design, the sliding 

mode surface appears to converge to the equilibrium almost right after start, which contributes 

to the fast response of the controller. 

To demonstrate the effectiveness of the low-pass-filter like approach in alleviating the 

chattering phenomenon, a comparison is drawn out as follows. Two switching control term is 

utilized for comparison, including the original switching control term 1nu : 

 ( )1 signnu s= −  (69) 

and the filtered switching control term 2nu : 

 
( )

2 2

sign

n nu Tu v

v s

+ =


= −
 (70) 

where s  is the sliding mode surface, 0.1T =  is the bandwidth of the filter, and 10 =  is the 

design switching control parameter. Other aspects of the simulation study are kept to be the 

same. The comparison result is presented in Figure 7 below. 

 

Figure 7. Effectiveness of the lowpass-filter-like approach in sliding surface (a) and control 

signal (b). 

It is clear from Figure 1 that the lowpass-filter-like approach (70) has significantly 

suppressed the chattering phenomenon in both the control signal and the sliding surface. The 

control command signal is smooth except for some abnormal surges appearing in the transition 

period, which is caused by the piecewise linearity of the absolute value functions utilized in 

the controller design. 
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Figure 8. Influence of design parameters on observer performance. 

To illustrate the influence of different design parameter values on the performance of the 

disturbance observer, three simulations are conducted with different values of the Lipschitz 

constant 1,3,5L = . The simulations are carried out in a measurement noise environment with 

a mean of 0  and a variance of 5 3e− , and the sampling time is set to be  0.01 sst =  for 

practicality. Also, the initial value of the observer state and that of the system state are indicated 

to be different from each other, ( ) ( )1 21
ˆ 0 0 0.5d z= = , ( )1 0 1x = . The result obtained is shown 

in Figure 8, which strongly agrees with the statement noted in Remark 1. Specifically, it is 

evident from Figure 8 that ( )1L =  gives the longest convergence time, the smallest peaking 

phenomenon and is least susceptible to noise. Whereas ( )5L =  takes the shortest amount of 

time for the estimation error to converge to zero but at the same time produces the largest 

peaking phenomenon and is most susceptible to noise. The most appropriate value is ( )3L = , 

which represents a tradeoff between convergence time and sensitivity to noise and different 

initial values in tuning the observer parameters. Thus, it is concluded here that the greater 

Lipschitz constant L  selection, the faster convergence of the disturbance observer yet more 

sensitive to noise and larger peaking phenomenon in the transition period as the initial value of 

the disturbance observer and that of the system are different. 

Finally, to demonstrate the characteristic of nominal control performance preservation, a 

case study has been conducted with the conventional TSMC and the proposed DOBTSMC. In 

this study, almost all parameters are left to be the same as before except that the mismatched 
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disturbance disturbs the control system only after  5 st = . The simulation result is shown in 

Figure 9 below. 

 

Figure 9. Nominal performance preservation capability of the proposed controller. 

It is noticeable that the system state trajectory of the conventional TSMC and that of the 

proposed control algorithm are identical before  5 st =  and only start to diverge after that. 

This implies that the disturbance observer does not spoil the nominal control performance of 

the control system as the disturbance is absent, which is illustrative of Remark 4. 

In summary, this section uses a numerical example to verify the effectiveness of the 

proposed control algorithm as it is compared with other controllers. The numerical study also 

helps investigate several characteristics of the proposed controller, namely the ability to 

estimate and suppress disturbances, chattering attenuation and nominal control performance. 

Also, this section illustrates the importance of control design parameter in the condition of 

measurement noise and large sampling time. 

4.2 Case Study 2: Stabilizing an Electro Hydrostatic Actuator System in 

Simulation 

The finite-time DOB-based chattering-free full-order TSMC developed previously is 

applied to stabilize an electro hydrostatic actuator (EHA) system in this section. 
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Figure 10. Schematic diagram of the EHA system. 

Table 1. Major components in the considered EHA system 

No. Device  No. Device 

1 Hydraulic cylinder  5 Directional valve 

2 Relief valves  6 Pilot check valve 

3 Reservoir  7 Hydraulic pump 

4.1 
Check valves 

 8 AC motor 

4.2  9 AC motor driver 

The EHA studied in this section is illustrated in Figure 10 and its components are listed in 

Table 1. In the hydraulic circuit, cylinder (1) is driven by the valve system and the hydraulic 

pump (7), which is actuated by the AC motor (8). The flow discrepancy between the bore- and 

rod- chamber is automatically compensated by the check valve (4.1) and (4.2) with the support 

of the pilot-operated directional valve (5). In cooperation with two check valves (6), the 

hydraulic pump regulates the fluid flow inside the hydraulic circuit, thus controlling the 

movement of the cylinder. 

Parameters of the EHA system to be used for mathematical modeling are defined as in Table 

2 below.  
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Table 2. List of parameters used to model the EHA system. 

Symbol Quantity and Unit 

x  Displacement of the cylinder. [m] 

1 2,P P  Pressures inside the cylinder chambers. [Pa]  

1 2,A A  Bore- and rod- side areas of the cylinder. 2[m ]  

m  Relative mass of the motion system. [kg]  

10 20,V V  Initial volumes of chamber 1 and 2. 3[m ]  

1 10 1tV V A x= +  Active volume of chamber 1. 3[m ]  

2 20 2tV V A x= −  Active volume of chamber 2. 3[m ]  

e  Effective bulk modulus of the fluid. [Pa]  

LiC  Internal leakage coefficient. ( )3[m sPa ]  

D  Displacement of the pump. 
3[m rad]  

drK  Control gain of the motor driver. ( )[rad sV ]  

V  Volumetric efficiency of the pump. 

u  Driving voltage of the motor driver. [V]  

1 2 2 3, , ,b b    Positive constants in the system model. 

2  Lumped disturbance in force dynamics. [N]  

31 32,   Lumped disturbances in pressure dynamics. [N s]  

Referred to [52], the dynamic model of the EHA system studied here consists of force 

dynamics and pressure dynamics as follows. 

The force dynamics of the actuator is expressed as 

 1 1 2 2 2Frmx P A P A f = − + +  (71) 

where Frf  denotes a lumped friction force [53, 54] and is approximated as a differential 

function of the form: 

 

( )

( )
2

2

1 2 tanh

1
tanh

1

Fr

x

x

f b x b x

e
x

e





−

−

= − −

 −

=
+

 (72) 

and 2  represents a force disturbance that might include external forces and unmodeled force 

dynamics. 

Governed by the continuity law [55], the pressure dynamics of the actuator are: 
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( )( )

( )( )

1 1 1 1 2 1 31

2 2 2 1 2 2 32

t e V dr Li cv

t e V dr Li cv

V P DK u A x C P P Q

V P DK u A x C P P Q

  

  

 = − − − − +


= − + + − + +

 (73) 

where 1cvQ  and 2cvQ  are respectively the flow in the check valve (4.1) and (4.2) and described 

as 

 

( ) ( )

( ) ( )

( ) ( )3

1 1 2

2 1 2

1

sm

sm

sm 1

cv

cv

Q x A A x

Q x A A x

e


−
− 

= − − −
 = −


 = +
 (74) 

By defining the system state as   ( )1 2 3 1 1 2 2, , , ,
TT

x x x x x PA P A m= −    and combining (71) to 

(74), the total dynamic system can be expressed in a state-space form as follows. 

 

1 2

2 3 1

3 2

x x

x x d

x f g u d

=


= +
 = + +

 (75) 

where the dynamic functions are specifically defined as 
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  

  
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 
  
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  



= +


 
= − − + + − 

 

 (76) 

Information about disturbances existing in the system can be interpreted from the equation 

set (75) and (76) as follows. While 1d  represents a mismatched disturbance, 2d  is a matched 

one. The mismatched disturbance consists of the ratios of lumped friction Frf  and 2 , the 

summation of external forces and unmodeled force dynamics, to the relative mass of the motion 

system m . Whereas the matched disturbance includes the ratios of internal leakages and 

pressure disturbances to m . It is assumed that these disturbances satisfy Assumption 1 and 

Assumption 2. 

Using (35), to estimate the mismatched disturbance 1d , a finite-time disturbance observer 

can be designed as follows. 
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( ) ( )
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












 (77) 

where 12 2
ˆz x= , 22 1

ˆz d= , 32 1

ˆ
z d= , 42 1

ˆ
z d= , and 2 0L  , ( )2 2, 0 1,..., 4j j j   = . 

A chattering-free full-order TSMC for the EHA system can be then designed based on (37) 

as: 

 ( ) ( ) ( )3 2 1

3 3 3 22 3 22 2 2 2 1 1 1 32sign sign signx c x z x z c x x c x x z
  

 = + + + + + +  (78) 

where ic ( )1,2,3i =  are positive constants satisfying the polynomial 3 2

3 2 1p c p c p c+ + +  is 

Hurwitz, and ( )1,2,3i i =  are chosen as (38). Accordingly, the control law is developed with 

the form: 

 ( )1

eq nu g u u−= +  (79) 

where the equivalent control equ  is designed as 

 ( ) ( ) ( )3 2 1

3 3 22 3 22 2 2 2 1 1 1 32sign sign signequ f c x z x z c x x c x x z
  

= − − + + − − −  (80) 

and the switching term nu  is defined as the same as in (22) and (23). 

The nominal values of the system parameters were determined as in Table 3 [56]. 
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Table 3. Nominal Value of the EHA System Parameters. 

Parameter Unit Nominal (+ variance) Value 

m  [kg]  ( )9.32 0.46+  

1A  2[m ]  ( )3 31.9635 10 0.0982 10− − +   

2A  2[m ]  ( )3 31.2566 10 0.0628 10− − +   

10V  3[m ]  ( )4 44.375 10 0.219 10− − +   

20V  3[m ]  ( )4 42.88 10 0.144 10− − +   

e  [Pa]  85.34 10  

drK  [rad/(sV)]  10  

1 VD D  3[m /rad]  ( )7 75.83 10 0.29 10− − +   

LiC  3[m /(sPa)]  151.51 10−  

1b  [Ns/m]  258  

2b  [N]  532  

2   10  

3   ( )15 0.75+  

The cylinder stroke length is 0.3[ ]m , thus the working range of the actuator is set to be 

1 [ 0.15, 0.15][ ]x m − . The pressure threshold of the relief valve is set to be 150[bar] , meaning 

that 5

1 2, [0, 150 10 ][Pa]P P   . To make the control task challenging and to examine the 

effectiveness of control algorithms, both matched and mismatched disturbances are 

deliberately assumed to be time-varying throughout the simulation period. Specifically, the 

force disturbance 2  and the pressure disturbances 31 32,   are selected to be dependent on both 

time and system state as follows. ( )( )2 1 21000 0.2 0.5 sinx x t = − + + + , 

( )( )31 21000 0.1 3 sinx t = − + + , and ( )( )32 2500 0.2 2sinx t = + + . Also, for practicality, 

measurement noise and parameter uncertainty are added into the simulation. Specifically, the 

position and pressure measurements are subject to noises with a mean of 0  and a covariance 

of       0.0005 m ,3500 Pa ,3500 Pa ( 0.5%  of nominal values). Parameters used to design 

the controller are of nominal value. Whereas those parameters used to model the EHA system 

include variance ( 5%  of nominal values), which are indicated in Table 3. The sampling time 

is set to be  1 ms . 

In this section, TSMC and the proposed DOBTSMC are compared to verify the 

effectiveness of the proposed controller. Some control parameters are chosen to be the same 
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for both control algorithms, namely 1 318c = , 2 500c = , 3 270c = , 0.1T = , and 

( )2 3000Tk  = + + = , ( )1,2,3i i =  are designed as 1 1 7 = , 2 1 5 = , 2 1 3 = , 

following (38). For mismatched disturbance observation, the proposed DOB parameters are 

chosen as 2 500L = , 12 30 = , 22 55 = , 32 30 = , 42 5 = , 12 36 = , 22 18 = , 32 6 = , 

42 1 = . 

 

Figure 11. Response position trajectories in case of same (a) and different (b) control 

parameters. 

 

Figure 12. Response velocity trajectories of EHA system. 

The position and velocity responses of the EHA system are shown in Figure 11 and Figure 

12. While Figure 11 presents the position trajectory of all control algorithms, Figure 12 depicts 

the velocity trajectory of the ESOSMC and the DOBTSMC. Clearly seen in Figure 11a, under 

the same-control-parameter design condition, the TSMC is unable to stabilize the EHA system, 

which is subject to both mismatched and matched disturbances. Whereas the proposed control 

algorithm can achieve a high accuracy of  0.4 mm . Hence, the TSMC control parameters 
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need to be reselected for better comparison. The design parameters of DOBTSMC are kept to 

be the same, while those parameters of the TSMC are altered as: 1 3816c = , 2 6000c = , and 

3 270c = . The result is then shown in Figure 11b. Clearly, even though the performance of 

TSMC has been significantly improved after increasing control parameters, the closed-loop 

dynamics is still affected by the mismatched disturbance. In other words, TSMC cannot 

suppress the influence of mismatched disturbances. This demonstrates the superiority of the 

proposed controller over the conventional one. Figure 12 shows that while the DOBTSMC can 

drive the system velocity to a bounded region of  4 mm s  around the equilibrium point, a 

serious chattering phenomenon is seen for the TSMC. This can be explained as large control 

design parameters amplify the measurement noise and degrade the control performance. 

Besides, no overshoot and relatively fast response are seen for the proposed control algorithm. 

 

Figure 13. Response nominal acceleration trajectories of the EHA system. 

 

Figure 14. Response control signals of the EHA system. 
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Figure 15. Mismatched disturbance existing in the EHA system. 

 

Figure 16. Mismatched disturbance estimation errors of the proposed controller. 

 

Figure 17. Response chamber pressures for the DOBTSMC case. 
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One can observe that the response nominal acceleration signal 3x  seen in Figure 13 is 

opposite in patterns with the mismatched disturbance 1d  in Figure 15 to stabilize the system 

states 1,2x , which agrees with the previous numerical study. However, severe chattering effects 

exist in the TSMC case for the same large-control-design-parameter reason discussed above. 

Under the condition of measurement noise and parameter uncertainty, the control effort 

generated by the proposed controller suffers a chattering phenomenon with a magnitude of 

 0.4 V , which is shown in Figure 14. 

Figure 16 illustrates the performance of the proposed control algorithm in estimating 

mismatched disturbances. The accuracy it delivers is around ( )21[ m s ] 1% , thus 

contributing to the higher performance in system stabilization. That said, there is a chattering 

phenomenon existing in the disturbance estimation due to measurement noise. This 

downgrades the disturbance estimation performance and consequently the performance of the 

control system as a whole. Finally, Figure 17 records the response pressures in the EHA system 

for the DOBTSMC case. 

In summary, this section partly reflects the effectiveness of the proposed control algorithm 

in practice as it is employed to stabilize an EHA system, which is subject to both time-varying 

mismatched and matched disturbances. This simulation study also takes into account the 

negative impact of measurement noise and parameter uncertainty to verify the robustness of 

the proposed control algorithm. Overall, the mismatched disturbance is accurately estimated, 

and the estimation result is used to suppress the undesired influence on the control system. The 

proposed controller delivers a satisfactory control performance. 
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4.3 Case Study 3: Voltage Control for Bidirectional DC-DC Converter 

LR L
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LV

1V

2V

Li
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− −
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oi
1D

2D

1Q

2Q
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2Gate 3R

 

Figure 18. Circuit diagram of a bidirectional DC-DC converter. 

Based on [57], the circuit description and modeling of a typical PWM-based bidirectional 

DC-DC converter are presented as follows. The bidirectional DC-DC converter structure is 

shown in Figure 18, where HV  and LV  represent the high-side and low-side dc voltage source, 

respectively. The inductor current Li , input current pi , and output current oi  can flow in both 

directions. Resistor 1R  represents either high-side source internal resistance in charging and 

discharging modes or load in boost resistive load application. Similarly, resistor 2R represents 

either low-side source internal resistance for both charging and discharging modes or load in 

buck resistive load application. Resistor 3R  represents the resistive load that can vary during 

operation. Capacitor HC  and LC indicate the high-side and low-side capacitor, respectively. 

Two active switches, 1Q  and 2Q , are controlled by a complementary gating control signal 

1Gate  and 2Gate  separately. LR  and dsonR  represents the inductor parasitic resistance and the 

MOSFET turn-on resistance, respectively. Thus, there are three energy storage components 

including input capacitor HC , output capacitor LC , and inductor L . 

With this configuration, the derived power plant can be utilized for battery charging and 

discharging modes or buck/ boost resistive load applications, since all these cases can employ 

the same equivalent circuit. 

Control-Oriented Modeling the Bidirectional DC-DC Converter 
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Since the two active switches, 1Q  and 2Q  are controlled complementarily, no matter which 

operating modes, either battery charging or discharging, there are always two states, state 1: 

1Q  ON - 2Q  OFF or state 2: 1Q  OFF - 2Q  ON. 

The first state 1, 1Q  ON - 2Q  OFF, is shown in Figure 19 below. 

LRdsonR L

LCHC

2R
1R

HV LV

1V 2V

Li

+ +

− −

pi oi

3R

 

Figure 19. Equivalent circuit diagram of the state 1: 1Q  ON - 2Q  OFF 

There are three energy storage components including inductor current Li , high-side 

capacitor voltage 1V , and low-side capacitor voltage 2V . The governing equation for inductor 

voltage across the inductor L  and the capacitor currents through the two capacitors are given 

as follows. 

 

1 2

1
1

1

2 2
2

2 3

L L eq

H
H L

L
L L

Li i R V V

V V
C V i

R

V V V
C V i

R R

 = − + −


− = − −



−
 = − −


 (81) 

where eq dson LR R R= +  represents the equivalent resistance of dsonR  and LR  since they are 

placed in series. 

At the second state, 1Q  OFF -  2Q  ON, the converter equivalent circuit can be illustrated in 

Figure 20 below. 
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Figure 20. Equivalent circuit diagram of state 2: 1Q  OFF -  2Q  ON. 

The governing equation set for this state is given by: 

 

2

1
1

1

2 2
2

2 3

L L eq

H
H

L
L L

Li i R V

V V
C V

R

V V V
C V i

R R

 = − −


− = −



−
 = − −


 (82) 

where, again, eq dson LR R R= +  represents the equivalent resistance of dsonR  and LR . 

Based on the equation set (81) and (82), an average system model is derived as below. 

 

1 2

1
1

1

2 2
2

2 3

L L eq

H
H L

L
L L

Li i R V V

V V
C V i

R

V V V
C V i

R R





 = − + −


− = − −



−
 = − −


 (83) 

where  0,1  denotes the input duty cycle taken as the control signal of PWM. 

Although this circuit configuration offers different operating modes such as battery charging 

and discharging or resistive load applications, this section will only present the case of voltage 

control at the low side. Its objective is to demonstrate the effectiveness of the proposed control 

algorithm developed in the previous section. Other cases, which are important for applications 

such as in an electric vehicle, are left for future work. 

In this scenario, let 2V  be the controlled output. Three disturbances that exist in the system 

from the controlling point of view are presented as follows. 

1) Perturbation in duty cycle:    = +  

2) Load resistance variation:  ( )3 3 3 3R R R R= + −  
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3) Low-side voltage uncertainty:  
L L LV V V= +  

Here,   denotes the nominal input duty cycle,   denotes the perturbation in the duty cycle, 

3R  represents the nominal load resistance, 
LV  denotes the nominal low-side voltage, and LV  

represents the uncertainty in the low-side voltage. 

Let 1 2 rx e V V= = − , where rV  denotes the desired output voltage. The system model can be 

rewritten as follows. 

 

( )1 2 2

2

2 2 2

2 3 2 3 3 2

2 1

1 1

1 1 1 1 1 1 1 1 1

L L

L L

L L

L L L L L

x e V i V V
C R C

i V V V V
C C R R R C C R R R C

x d

= = = − −

   
= − + + − − +    

   

= +  (84) 

where ( )( ) ( )2 2 2 3 21 1L L L L Lx i C V C R R V R C= − + +  represents the second system state, and 

( )( ) ( )1 2 3 3 21 1L L Ld V C R R V R C= − − +  denotes the first disturbance of the system. 

Differentiating 2x  yields: 
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 
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 
 (85) 

This expression can be further reduced to: 

 2 2x f u d= + +  (86) 

where: 
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 (87) 

In the above equation set, f  is interpreted as the system dynamics, 2d  represents the second 

disturbance of the system, and u  represents the virtual control input, from which the actual 

command duty cycle can be calculated as: 

 
1 2 3

1 1 1
1L eq rLC u R V

V R R


   
= + + +     

   

 (88) 

By combining (84) and (86), one can obtain the following canonical form: 

 
1 2 1

2 2

x x d

x f u d

= +


= + +
 (89) 

Thus, the problem of voltage tracking control for a bidirectional DC-DC converter now is 

transformed into the problem of stabilizing a second-order nonlinear system. The canonical 

format is more convenient for nonlinear control algorithm applications than the original 

governing equations. In this system, 1d  enters the system in a different channel from the control 

input u . Thus, 1d  can be interpreted as a mismatched disturbance. Whereas, 2d  represents a 

matched one. 

The primary objective here is to force the system state 1x  to converge to the equilibrium 

quickly and accurately. To achieve this objective, the disturbance observer-based TSMC 

developed in the previous section is applied as follows. First, the finite-time disturbance 

observer is designed as: 

 

( )

( )

( )

11 11 2 11 11 1 21 2

21 21 21 21 11 31

31 31 31 21

z v x z x z x

z v z v z

z z v







= + = − + +


= = − +


= −

 (90) 

where 1j  are the functions: 
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 ( ) ( ) ( ) ( )
( ) ( )

3 41 4

1 1 1 1sign
j jj

j j js L s s s  
− −−

= − −  (91) 

and 11 1̂z x= , 21 1
ˆz d= , 31 1

ˆ
z d= , 1 0L  , 1 1, 0j j   , 1,2,3j = . Next, a chattering-free full-

order TSMC can be employed as: 

 ( ) ( )2 1

2 2 2 21 2 21 1 1 1 31sign signx c x z x z c x x z
 

 = + + + + +  (92) 

where 1c , 2c  are selected positive constants such that the polynomial 2

2 1p c p c+ +  is Hurwitz.

1  and 2  are chosen according to the following manner: 
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    






=  − 



= −

 

The virtual control input u  is then designed based on the sliding surface as: 

 eq nu u u= +  (93) 

where equ  denotes the equivalent control signal with the form of: 

 ( ) ( )2 1

2 2 21 2 21 1 1 1 31sign signequ f c x z x z c x x z
 

= − − + + − −  (94) 

and nu  represents the switching term being defined and filtered as: 

 
( ) ( )2 sign

n n

T

u Tu v

v k  

+ =


= − + +
 (95) 

where the design parameters , ,TT k   are defined as the same as below (7). The actual 

command duty cycle fed into the system is then calculated using (88). 

 

Figure 21. MATLAB-Simscape modeling of the system. 
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The simulation is conducted in the MATLAB-Simscape environment. The system is 

modeled as in Figure 21, wherein the simulation sampling time is set to be  1e-6 s , and the 

solver is selected to be the fixed-step ODE4 (Runge-Kutta). The battery is selected with the 

nominal voltage of  12 V , a capacity of  5.4 Ah , 50%  State-Of-Charge (SOC), which gives 

around  12.8 V  of initial voltage, and an internal resistance of  0.022222  . Other settings 

are left as default. The system parameters are selected based on [31] and shown in Table 4 

below. 

Table 4. Nominal Values of the Bidirectional Converter Parameters 

Parameter Unit Value 

HV  [V]  24  

LV  [V]  12  

HC  [F]  1000 6e−  

LC  [F]  1000 6e−  

L  [H]  4.7 3e−  

eq L dsonR R R= +  [Ω]  0.03 8.7 3e+ −  

1R  [Ω]  0.03  

2R  [Ω]  0.022222  

3R  [Ω]  3  

   ( )0.01sin 200 t  

In this simulation study, to make the controlling task challenging, the resistance disturbance 

in the resistor 3R  is set to be load-step resistance that changes from  3   to  6   after 

 0.5t s= . The perturbation in the duty cycle is set to be an ac signal of 100Hz  with a 

magnitude of 0.01 . The desired output voltage is set to be  14 VrV = . 

The design parameters of the disturbance observer are selected as: 1 1 5L e= , 11 120 = , 

21 640 = , 31 20 = , 11 6 = , 21 32 = , 31 1 = . For the TSMC, the control parameters are 

chosen as: 1 1.5e5c = , 2 0.5e5c = , 2 1 3 = , ( )1 2 22 1 5  = − = . To verify the 

effectiveness of the chattering alleviation method, the simulation study is first conducted using 

the unfiltered term ( )nu sign = −  and later compared with the results obtained by using the 

low-pass filter like method as in (95), where 50T = , and ( )2 5e7Tk  = + + = . 

Simulation Results 
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The simulation results are shown in Figure 22 to Figure 26. 

 

Figure 22. Output voltage response (a) and voltage tracking error (b) of the converter. 

Figure 22 presents the output voltage response of the converter using the proposed controller. 

On the one hand, Figure 22a shows that the time of convergence is about  0.12 s  as the 

resistive load is  3  . At  0.5t s= , this resistive load increases to  6  , and it takes 

approximately  0.03 s for the system to reach the state of stabilization. This indicates that the 

proposed control algorithm possesses a fast response characteristic. On the other hand, Figure 

22b demonstrates that the steady-state tracking error is about  6 5 Ve− , which is around 

0.00043%  the desired value. This indicates that the proposed controller achieves high 

accuracy tracking performance. Also, no overshoot is seen in the voltage response. 

 

Figure 23. Inductor current response of the converter. 
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Figure 24. Duty cycle response of the converter: Original and Filtered. 

Inductor current response is illustrated in Figure 23, in which the current value appears to 

decrease over time. This happens because the internal resistance of the battery gradually 

increases during charging. The branch voltage difference,  r BATV V V 14 12.8 1.2 V = − = − =  

will be divided by the small battery internal resistance,  BAT 2 0.022222R R= =  , to create 

such a high branch current value and consequently contribute to the high inductor current seen 

in Figure 23. The duty cycle trajectories before and after filtering are shown in Figure 24, which 

illustrates the severe chattering phenomenon of the signum function. To alleviate this chattering 

effect, the lowpass-filter like method (95) is applied. However, the chattering effect still exists 

in the duty cycle trajectory with a magnitude of around 0.025 , indicating that the control 

system has not reached the level of chattering-free. This problem can be explained as follows. 

The small-value of components ( L  and LC ) that appear in the denominator of a fraction in 

system modeling and large-value control parameters used in controller design lead to the 

amplification of the chattering effect that exists in any part of the control system. This means 

unless the control system is chattering-free in every part, the control signal can never be free 

from chattering even though the switching control term has been filtered. 
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Figure 25. Mismatched disturbance (a) and its estimation error (b). 

Figure 25 shows the mismatched disturbance existing in the system and the estimation error 

delivered by the disturbance observer. Clearly from Figure 25a, the mismatched disturbance is 

time-varying, not constant, meaning that its derivative will not diminish even when the system 

reaches the steady-state condition. The mismatched disturbance is of large value, 

 4.1 4 4.9 4e e , which implies a large observer design parameter requirement. Whereas, 

Figure 25b demonstrates the effectiveness of the proposed disturbance observer with an 

estimation error of  0.08 0.000178% . Although high accuracy is seen in the performance 

of the observer, it still exhibits a chattering phenomenon. This subsequently contributes to the 

chattering effect seen in the control signal. 

 

Figure 26. Matched disturbance (a) and its derivative (b) existing in the system. 
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Figure 26 presents the matched disturbance and its derivative existing in the system. Restate 

the formula of the switching parameter as follows. ( )2 Tk  = + + , where 0  , 2 2d  , 

and 2Tk T , 2 2d  , 50T = . The signals illustrated in Figure 26 and these above 

expressions explain why the magnitude of the control parameter, ( )2 5e7Tk  = + + =  was 

set to be large to overcome the influence of matched disturbances. This figure could have been 

larger if the equivalent control law equ  were not modified as follows. As the matched 

disturbance 2d  relates to the mismatched disturbance 1d  by the following relationship (87): 

 2 1 1

2 3

1 1 1 1

L L

d d V
C R R LC


 

= − + +  
 

 (96) 

the equivalent control equ  (94) can be modified to lift the burden on the switching control 

term nu  as: 

 ( ) ( )2 1

2 2 21 2 21 1 1 1 31 22sign signequ f c x z x z c x x z z
 

= − − + + − − −  (97) 

where: 

 22 2 1 21

2 3 2 3

1 1 1 1 1 1ˆ ˆ

L L

z d d z
C R R C R R

   
= = − + = − +   

   
 (98). 

In summary, this section introduces a new method of control-oriented modeling a 

bidirectional DC-DC converter to the canonical form so that it is more convenient for applying 

model-based nonlinear control algorithms. This method also considers and isolates three types 

of different disturbances and then organizes them into two more general types, namely matched 

and mismatched disturbances. However, the existence of the multiplication, LC , in the 

denominator of the virtual control input u  (87) forces the virtual control magnitude u  to be 

large. Consequently, the control parameters must be also high to produce such a large virtual 

control signal. Thus, it is more difficult to tune the control parameters properly. Large control 

parameters also amplify the undesired chattering phenomenon in the control system and makes 

it seem impossible to reach the state of chattering-free. On the bright side, this section 

demonstrates that the proposed control algorithm can deliver fast and accurate tracking 

performance to the bidirectional DC-DC converter, which is subject to both matched and 

mismatched disturbances. Nonetheless, the practicality of the proposed controller must be 

evaluated via rigorous experiments. Also, different working modes such as buck/boost 
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switching should be considered to fully assess the performance and robustness of the proposed 

controller. 

4.4 Case study 4: Experimental Validation on an Electro Hydrostatic Actuator 

(EHA) System 

This section aims to evaluate the effectiveness of the proposed control algorithm in 

controlling the displacement of an EHA system via an experimental setup. The information of 

the system including system description, basic working principle, mathematical modeling and 

system parameters can be found in Section 4.2. The total dynamic system is restated here for 

later use. The system states are defined as: 

   1 1 2 2
1 2 3, , , ,

T
T P A P A

x x x x x
m

− 
=  
 

 (99) 

where x  and x  represent the displacement and velocity of the system. 1P  and 2P  are pressures 

inside the cylinder chambers. 1A  and 2A  are the bore-side and rod-side areas of the cylinder. 

m  is the relative mass of the motion system. Differentiating the system states yields the total 

dynamic system as follows. 

 

1 2

2 3 1

3 2

x x

x x d

x f g u d
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

= +
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 (100) 

wherein the dynamic functions are defined as: 
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
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 (101) 

Parameter description can be found in Table 2. In (100), the disturbance 1d  exists in a 

different channel from the control input u , thus it is a mismatched disturbance. Whereas, the 

disturbance 2d  is a matched one. To estimate the mismatched disturbance 1d , a finite-time 

disturbance observer can be designed based on (52) as follows. 
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 (102) 

where 12 2
ˆz x= , 22 1

ˆz d= , 32 1

ˆ
z d= , 42 1

ˆ
z d= , and 2 0L  , ( )2 2, 0 1,..., 4j j j   = . Toward the 

problem of position tracking control, a chattering-free full-order TSMC surface can be then 

designed as below. 

 ( ) ( ) ( )3 2 1

3 3 3 22 3 22 2 2 2 1 1 1 32sign sign signe c e z e z c e e c e e z
  

 = + + + + + +  (103) 

where ( )1,2,3ic i =  are positive constants satisfying the polynomial 3 2

3 2 1p c p c p c+ + +  is 

Hurwitz; ( )1,2,3i i =  are chosen following (55) such that: 
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 (104) 

Also, 1 1e x r= − , 2 2e x r= − , 3 3e x r= −  are the system errors with r  is the desired position 

trajectory. These above system errors establish the following equation set: 

 

1 2

2 3 1

3 2

e e

e e d

e f r gu d

=


= +
 = − + +

 (105) 

Based on the sliding surface (103), a control law is developed with the form of: 

 ( )1

eq nu g u u−= +  (106) 

where equ  denotes the equivalent control signal and is defined as: 

 ( ) ( ) ( )3 2 1

3 3 22 3 22 2 2 2 1 1 1 32sign sign signequ f r c e z e z c e e c e e z
  

= − + − + + − − −  (107) 

and the switching term nu  is designed and filtered as follows. 



52 
 

 
( ) ( )2 sign

n n

T

u Tu v

v k  

+ =


= − + +
 (108) 

The nominal value of system parameters can be found in Table 3 in Section 4.2. The deviations 

of real system parameters from their nominal values can be added to the disturbances 1,2d . 

The testing system consists of the studied model and a control data acquisition system. The 

system apparatus is shown in Figure 27. A load module was installed on the opposite side of 

the control system. Adjusting manually the cracking pressures of the relief valves can vary the 

loading condition. It is worth mentioning that the external load created by the opposite 

hydraulic system introduces highly nonlinear characteristics into the system. These nonlinear 

characteristics attribute to not only the displacement and velocity of the actuator but also to the 

cracking pressures of the loading relief valves as well as the different areas at the bore side and 

rod side of the cylinders. The control data acquisition system includes an Advantech Industrial 

Computer (Core i5-4570 3.2 GHz 4CPUs), a data acquisition card (PCI-6221), an encoder 

reader (PCI-QUAD 04) and a sensor system. Displacement of the actuator and working 

pressures of the system are recorded by a linear encoder (WTB5-500 MM) and pressure 

transducers (DS-230), respectively. The external force is measured using a load cell (YC60-

2T) and an indicator. The designed controller is implemented in the computer using the real-

time window target toolbox of MATLAB with a sampling time of 5ms. 

 

Figure 27. Photograph of the experimental apparatus. 

The control gains and estimation gains are selected as follows. For the TSMC controller, 

1 44c = , 2 24c = , 3 24c = , 1 1 3 = , 2 3 7 = , 3 3 5 = , 0.1T = , and ( )2 144Tk  = + + = . 
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For the disturbance observer, 2 500L = , 12 12 = , 22 9 = , 32 6 = , 42 3 = , 12 48 = , 

22 44 = , 32 24 = , 42 12 = . 

To verify the effectiveness of the proposed control algorithm, the popular PID controller is 

selected for comparison purpose. The reason PID is chosen lies in the fact that PID is an 

effective error-based control algorithm and simple to interpret and implement. Thus, PID is 

commonly found in enormous applications. If being well-tuned, PID can provide relatively 

satisfactory results for the control system. In this experiment, the PID gains are manually tuned 

to be KP 795= , KI 270= , and KD 30=  using the trial-and-error method. 

The experiment is carried out with a reference input of a sinusoidal signal, 

( )50sin mmr t= . After applying the two control algorithms, the experimental results are 

plotted in Figure 28 to Figure 31. 

 

Figure 28. Position tracking errors of PID and the proposed controller. 

Figure 28 illustrates the position tracking errors of PID and the proposed control algorithm 

on the target system. The error delivered by PID reaches and then varies in a small bounded 

region around the equilibrium without actually converging to it. Despite the high nonlinearity 

of the target system, PID can produce a relatively good control error in the range of 

( )2mm 4% . Even though the PID controller can achieve higher accuracy if higher gains are 

set, its position tracking error is expected to never converge to zero because PID is a linear type 

of controller. Also, large PID gains might drive the control performance to pass its limitations 

and the system stability might be vulnerable over a wide range of operations [52]. Whereas, 

much higher accuracy is seen for the proposed controller, ( )0.02mm 0.04% . To achieve 

this result, the system mismatched disturbance is well observed and subsequently compensated 
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by the controller, which is shown in Figure 30. Abnormal surges are seen as the cylinder change 

its moving direction. This can be explained due to the mechanical failure of the structure and 

the lagging effects in the sensing system. 

 

Figure 29. Control input trajectory of PID and the proposed control algorithm. 

The control input trajectories of the two considered controllers are presented in Figure 29. 

It can be observed that smaller control efforts are seen in the proposed controller. However, 

the chattering phenomenon still exists in the proposed control signal, which indicates a 

shortcoming in practical applications. 

 

Figure 30. External force and its estimation using the proposed disturbance observer. 
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Figure 31. Working pressures of cylinder chambers. 

Figure 30 demonstrates the performance of the proposed disturbance observer. The fact that 

there are failures at only one side of the external load trajectory might lie in the asymmetric 

structure of the single-rod cylinder, where the areas of the two chambers are different from 

each other. Figure 31 records the working pressure inside two chambers. The discrepancy in 

the area of the two chambers explains the difference in magnitude of the two pressure. Since 

2 1A A , 2P  must be larger than 1P  to produce the same output force, for instance. 

In this section, the effectiveness of the proposed controller was evaluated in dealing with 

the problem of position tracking control for an EHA system. The proposed control algorithm 

was compared with the PID controller, which is an error-based controller and widely found in 

the industry. Much higher precision in position tracking is achieved by the proposed controller 

owing to both the relatively accurate estimation of mismatched disturbance and the robustness 

of the sliding mode control. However, the proposed control algorithm still exhibits an undesired 

chattering phenomenon in its control signal, which might prevent it from being popular in 

practice.
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Chapter 5 

CONCLUSION AND FUTURE WORK 

5.1 Summary 

This dissertation introduces a new control algorithm for a class of nonlinear systems subject 

to both matched and mismatched disturbances. To suppress the nonlinearity and to overcome 

the negative effects of disturbances on the system, a disturbance-observer-based chattering-

free full-order terminal sliding mode control is proposed, developed and investigated. 

Mathematical modeling, controller design, stability analysis, simulation, and experiment are 

given to support and validate the effectiveness of the proposed control algorithm. The 

following conclusions are drawn from the work. 

(1) The nonlinear finite-time disturbance observer is developed based on the research on 

globally convergent differentiators in the literature. Using the information of system states, the 

disturbance observer is expected to estimate the mismatched disturbance and its derivatives in 

finite time. A set of observer parameters needs to be tuned to reach the level of high accuracy. 

Generally, the greater the value of observer parameters, the faster convergence of estimation 

errors, yet the larger peaking phenomena at the beginning if the initial values of the system 

states and those of the observer are different. Thus, in the case of different initial values, a 

tradeoff should be made to ensure fast convergence yet acceptable peaking phenomena. 

(2) The influences of nonlinear dynamics and matched disturbances are overcome by the 

robustness of a terminal sliding mode control design. To alleviate the chattering phenomenon, 

the switching control signal is defined and filtered in the same way as a low-pass filter. Also, 

the structure of full-order terminal sliding mode is employed so that the equivalent control 

signal can be derived without producing terms that could lead to singularity in some specific 

cases. 

(3) Although the proposed control algorithm is first designed to address the problem of 

stabilization for a class of nonlinear second-order systems, it is then extended for the nth-order 

systems. Later, the proposed controller is also modified to tackle the problem of tracking 

control. 

(4) Although in the studies, the proposed control has demonstrated its effectiveness in 

controlling different target systems, more rigorous studies should be carried out in future work 

for better evaluation. Specifically, in the task of controlling a bidirectional DC-DC converter, 
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the converter is control-oriented modeled so that it is more convenient to apply nonlinear 

control algorithms. However, this approach leads to a disadvantage as the virtual control signal 

is required to be large, subsequently, large control parameters are selected to produce such a 

control signal. Large control parameters make it more difficult for the tuning process. Whereas, 

in the study of position control for an electro hydrostatic actuator, although it is conducted in 

an experiment, different working scenarios should be added to the scheme. Also, the effect of 

the asymmetric cylinders on the system performance should be carefully studied. 

5.2 Future work 

(1) Throughout the study, the system states were assumed to be available to be collected. 

However, there are various cases in practice where only one system state such as displacement 

is available. Thus, one of the future works could focus on developing a high-performance 

finite-time extended-state disturbance observer to estimate both disturbances and remaining 

states of the system. Thus, more effectively control can be achieved. 

(2) To carefully evaluate the effectiveness of the proposed control algorithm in solving the 

problem of controlling the bidirectional DC-DC converter, it should be tested in different 

working modes. These scenarios might include buck-boost switching or load changes. Also, 

not only simulations but also experiments should be conducted for better assessment. 
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