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Abstract 

 
Uncertainty Quantification of GEKO Model Coefficients on 

Compressible Flows 

 
 

In the present work, supersonic flows over an axisymmetric base and 24-deg 

compression ramp are investigated using Generalized k-𝜔 (GEKO) model included in 

commercial package of ANSYS FLUENT. GEKO is a two-equation model, based on the 

𝑘 - 𝜔 formulation, and able to be tuned for a variety of flows. Compressibility correction 

is applied to a turbulence model to improve a pressure level along the base surface. 

Uncertainty Quantification analysis (UQ) is incorporated to quantify the uncertainty 

of the model coefficients and to calibrate the coefficients for the base and 24-deg 

compression ramp flow. Latin Hypercube Sampling (LHS) method is used for sampling 

input parameters which are independent as a uniform distribution. Metamodel is 

constructed by using ordinary least-squares (OLS) and least angle regression (LARS) and 

both algorithms are compared to assess fidelity of models. Affine Invariant Ensemble 

Algorithm (AIES) is selected to characterize the posterior via Markov Chain Monte Carlo 

sampling. 

Through Forward problem, the most influential coefficient among the coefficients of 

GEKO model is known. Calibrated model coefficients are obtained through Backward 

problem. The results obtained using the calibrated coefficients by UQ corresponding to 

each flow show better agreement against available experimental measurements than 

obtained using default coefficients.  

 

Keywords: Axisymmetric Base Flow, 24-deg Compression Ramp, Generalized 𝑘-

𝜔 model (GEKO), Polynomial Chaos Expansion (PCE), ordinary least-squares (OLS), 

Least Angle Regression (LARS), Uncertainty Quantification (UQ) 



1  

Chapter 1. Introduction 

 

1.1 Introduction 

 Controlling supersonic flows is challenging but crucial for many kinds of engineering 

problems, such as rockets, airplanes, missiles, projectiles. Hence, many researchers have 

experimentally or numerically studied flows including subsonic, transonic, supersonic, and 

even hypersonic speeds. An interesting and important phenomena of the high Reynolds 

number flows is shock-wave / boundary layer interaction (SWBLI). It occurs in a transonic, 

supersonic and hypersonic flight condition. Predicting SWBLI phenomena accurately is an 

important factor in the design of high-speed flight vehicles. On the exterior flow over the 

aircraft, SWBLI is able to cause loss of control, some peaks on surface thermal loading. In 

internal flows, it can enhance distortion and pressure losses, and even catastrophic events 

which are leading engine unstart. There are many supersonic cases such as a base flow, 

ramp, double cone, impinging shock, etc. Base flow and  compression ramp flow are 

investigated in this present work.  

 For the supersonic base flow, the main issue is drag. A supersonic body experiences 

major drag from skin friction drag, wave drag, and pressure drag. If the drag is able to be 

controlled, stability and control of vehicles can be more enhanced. Hence, the predicting 

base drag accurately is the crucial one of the various tasks about the supersonic flows over 

a cylindrical afterbody. As for an experiment of the supersonic base flow, Herrin and 

Dutton [1] experimented on a supersonic axisymmetric base flow at 𝑀∞=2.46. Many 

researchers have tried to analyze the supersonic base flow by using computational fluid 

dynamics (CFD). Forsythe et al. [2] used Reynolds-averaged Navier-Stokes (RANS) and 

Detached-Eddy Simulation (DES) with a compressibility correction to analyze the 

supersonic base flow. The simulation by Simon et al. [3] , Large-Eddy Simulation, Zonal 

Detached-Eddy Simulation (ZDES), DES and RANS have been used with different values 

of 𝐶𝐷𝐸𝑆. Kawai and Fujii [4] also used LES and RANS and showed an good agreement 

with experimental data. But DES and LES require massive runs to achieve reasonable 

results compared to RANS. That is a reason why RANS are widely used for an engineering 

area.  

 Tucker and Shyy [5], Papp and Ghia [6] used 𝑘-𝜀 models to simulate the compressible 

base flows. Just mentioned before, Forsythe et al. [2] and kawai and Fujii [4]  also used 
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Spalart-Allmaras (SA) model which is one of the RANS for the supersonic base flow. All 

of RANS models have failed to predict decent base pressure levels compared to experiment 

data. However, many researches have applied with compressibility correction have been 

investigated to improve the performances. Also various compressibility corrections have 

been studied and proposed. Tucker and Shyy [5] applied the compressibility correction to 

k-𝜀 model and showed a higher base pressure. Simon et al. [7] used Spalart-Allmaras model 

applied with several compressibility corrections and obtained  the averaged pressure 

coefficient which is closer to the experimental data than using the models not including the 

compressibility corrections. But they also mentioned that such corrections led to an 

overestimation of the reattachment length and an underestimation of the shear layer 

development. Some compressibility corrections are able to improve the physics prediction 

of such flows by lowering the turbulent eddy viscosity production. These fixes produce 

results in averaged base pressure levels that more closely match the experimental data [2, 

5, 6, 7] but variations along the base radius are enhanced. 

 However, all of the applications applied with compressibility correction could not 

always show satisfactory results for all types of compressible flows. For the compression 

ramp simulation, Wilcox [8] obtained the good agreement without introducing any 

compressibility modifications to the turbulence model  for Mach 2 flow past a backward-

facing step, Mach 3 compression corners and reflecting shocks, etc. Wilcox [8] also 

mentioned that, applying a dilatation-dissipation modification to the k equation improves 

compressible mixing-layer predictions [9] but it is omitted from the k equation for general 

applications because it has a detrimental effect on shock-separated-flow predictions. 

Another paper written by Wilcox [10] mentioned that the compressibility corrections cause 

a decrease in the effective von Kármán constant, which yields that unwanted decrease in 

skin friction. Rizzetta [11] also mentioned that the compressibility corrections such as the 

k - 𝜀  equations which account for dilatation-dissipation and/or pressure-dilatation 

fluctuation can degrade performance in near-wall regions of attached flows [13]. 

Gerolymos et al. [14] did not include direct compressibility effects and pressure-dilatation 

for compression ramp simulation. Hence, in this thesis, the compressibility correction is 

applied to turbulence models only for the axisymmetric base flow case.  
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Chapter 2. Numerical Methods 

 
In this chapter, the numerical method used in present work is explained. The current 

work incorporates Generalized 𝑘-𝜔 (GEKO), Baseline (BSL) 𝑘-𝜔, Shear-Stress Transport 

(SST) 𝑘-𝜔, Realizable 𝑘-𝜀 model in FLUENT [15]. 

2.1 Turbulence models 

2.1.1 Generalized 𝒌-𝝎 (GEKO) model 

 The characteristic of the GEKO model is that the model coefficients of the model 

are able to be controlled for tuning the model to various flow scenarios. In this present 

work, three model coefficients are considered for compressible flows. 

GEKO model formulation is following as : 

 𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕(𝜌𝑈𝑗𝑘)

𝜕𝑥𝑗
= 𝑃𝑘 − 𝐶𝜇𝜌𝑘𝜔 +

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] (2.1) 

 𝜕(𝜌𝜔)

𝜕𝑡
+

𝜕(𝜌𝑈𝑗𝜔)

𝜕𝑥𝑗
= 𝐶𝜔1𝐹1

𝜔

𝑘
𝑃𝑘 − 𝐶𝜔2𝐹2𝜌𝜔2 + 𝜌𝐹3𝐶𝐷 +

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜔
)

𝜕𝜔

𝜕𝑥𝑗
] (2.2) 

 
𝜇𝑡 = 𝜌𝜈𝑡 = 𝜌

𝑘

max⁡(𝜔, 𝑆/𝐶𝑅𝑒𝑎𝑙𝑖𝑧𝑒)
 (2.3) 

 
𝑃𝑘 = −𝜏𝑖𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
 (2.4) 

 
𝜏𝑖𝑗

𝐸𝑉 = −𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ = 𝜇𝑡2𝑆𝑖𝑗 −
2

3
𝜌𝑘𝛿𝑖𝑗 (2.5) 

 
𝐶𝐷 =

2

𝜎𝜔

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 (2.6) 

 
𝜏𝑖,𝑗 = 𝜏𝑖𝑗

𝐸𝑉 − 𝐶𝐶𝑂𝑅𝑁𝐸𝑅

1.2𝜇𝑡

max⁡ (0.3𝜔√0.5(𝑆2 + Ω2))
(𝑆𝑖𝑘Ω𝑘𝑗 − Ω𝑖𝑘𝑆𝑘𝑗) (2.7) 

where 

 𝑆𝑖𝑗 =
1

2
(
𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑗
) , Ω𝑖𝑗 =

1

2
(
𝜕𝑈𝑖

𝜕𝑥𝑗
−

𝜕𝑈𝑗

𝜕𝑥𝑗𝑖
) , 𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗 ⁡, Ω = √2Ω𝑖𝑗Ω𝑖𝑗 ⁡ (2.8) 

The coefficients of the GEKO model are implemented through the functions (𝐹1, 𝐹2, 𝐹3) 

which can be controlled to achieve different goals in a variety of parts of the computational 

domain. There are six parameters included, which are  : 
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⚫ CSEP 

- Main parameter for adjusting separation prediction for boundary layers. 

- Affects all flows : Increasing CSEP reduces eddy-viscosity leading to more 

sensitivity to adverse pressure gradients for boundary layers and to lower spreading 

rates for free shear flows. 

⚫ CNW 

- Affects mostly the inner part of wall boundary layers (no impact on free shear flows) 

- Increasing CNW leads to higher wall shear stress and wall heat transfer rates in non-

equilibrium flows. 

⚫ CMIX 

- Affects only free shear flows ( boundary layer shielded due to function 𝐹𝑏𝑙𝑒𝑛𝑑 

which is discussed later). 

- Increasing CMIX increases spreading rates of free shear flows. 

- For each value of CSEP an optimal value of CMIX exists, which maintains optimal 

free shear flow. This value is given by the correlation CMIX=CMixCor which is default. 

 𝐶𝑀𝑖𝑥𝐶𝑜𝑟 = 0.35𝑠𝑖𝑔𝑛(𝐶𝑆𝐸𝑃 − 1)√(|𝐶𝑆𝐸𝑃 − 1|) (2.9) 

⚫ CJET 

- Is active in a sub-model of CMIX (no impact when CMIX is equal to 0) 

- Affects mostly jet flows. Increasing CJET while CMIX is active, decreases spreading 

rate for jets. 

- Allows to adjust spreading rate of jet flows while maintaining spreading rate of 

mixing layer 

⚫ CCORNER 

- Non-linear stress-strain term to account for secondary flows in corners (e.g. wing-

body junctions etc.) 

⚫ CCURV 

- An existing model for curvature correction, which can be combined with the GEKO 

model 

  All coefficients can be accessed globally or locally by using User Defined Functions 

(UDFs) which is  allowing a global or zonal model optimization.  

 The coefficients CMIX and CJET are designed for free shear flows, whereas CSEP and 

CNW affect boundary layers. In order to avoid any influence of CMIX and CJET onto 
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boundary layers, a blending function is incorporated, which deactivates CMIX and CJET in 

the boundary layer. The blending function is given by : 

 

𝐿𝑇 =
√𝑘̃

𝐶𝜇𝜔
 (2.10) 

 𝑘̃ = max⁡(𝑘, 𝐶𝐹𝑏𝐿𝑎𝑚 ∙ 𝜔) (2.11) 

 
𝑥𝑏𝑙𝑒𝑛𝑑 = 𝐶𝐹𝑏𝑇𝑢𝑟𝑏

𝐿𝑇

𝑦
 (2.12) 

 𝐹𝐺𝐸𝐾𝑂 = tanh⁡(𝑥𝑏𝑙𝑒𝑛𝑑
4) (2.13) 

This function activates following the shear flow parameters : 

 𝐹𝐹𝑟𝑒𝑒 = 𝐶𝑀𝐼𝑋𝐹𝐽𝑒𝑡(𝐶𝐽𝐸𝑇)(1 − 𝐹𝐵𝑙𝑒𝑛𝑑) (2.14) 

 There are two important aspects to 𝐹𝐵𝑙𝑒𝑛𝑑⁡.  Firstly, the function 𝐹𝐵𝑙𝑒𝑛𝑑 = 1  inside 

boundary layers which means the function 𝐹𝐹𝑟𝑒𝑒  becomes equal ‘0’. Secondly, the 

parameter CJET is a sub-parameter of CMIX. As mentioned above, it only affects the 

simulation in case CMIX ≠ 0. The model coefficients should be in the range (Table 1). The 

min and max values of CMIX are only suggestions by [16]. There might be situations where 

values lower than min (0.5) or higher than max (1.0) can be appropriate for specific flows. 

n order to avoid negative effects on free mixing layers by changes in CSEP, however, a use 

of CMixCor  (Eq. 2.9) is recommended. 

Table 1. Model coefficients of GEKO model 

MIN  Parameter  MAX Default 

0.7 ≤ CSEP ≤ 2.5 1.75 

-2.0 ≤ CNW ≤ 2.0 0.50 

… 0.5 ≤ CMIX ≤ 1.0… 𝐶𝑀𝑖𝑥𝐶𝑜𝑟 

0.0 ≤ CJET ≤ 1.0 0.90 

0.0 ≤ CCORNER ≤ 1.5 1.00 

0.0 ≤ CCURV ≤ 1.5 1.00 
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2.1.2 Baseline (BSL) 𝒌-𝝎 model 

The baseline (BSL) 𝑘-𝜔 model is a two-equation, was developed by Menter [17] to 

effectively blend the accurate formulation of the k-𝜔 model in the near-wall region with 

the freestream independence of the k-𝜀 model in the far field. To achieve this, the k-𝜀 

model is converted into a k-𝜔 formulation by a blending function. The transport equations 

for the BSL k-𝜔 model are : 

where 

 

⁡𝛼 =
𝛼∞

𝛼∗
(

𝛼0 +
𝑅𝑒𝑡

𝑅𝜔

1 +
𝑅𝑒𝑡

𝑅𝜔

) , 𝜎𝑘 =
1

𝐹1

𝜎𝑘,1
+

(1 − 𝐹1)
𝜎𝑘,2

, 𝜎𝜔 =
1

𝐹1

𝜎𝜔,1
+ (1 − 𝐹1)/𝜎𝜔,2

 

𝛼∞ = 𝐹1𝛼∞,1 + (1 − 𝐹1)𝛼∞,2, 𝛼∞,1 =
𝛽𝑖,1

𝛽∞
∗

−
𝜅2

𝜎𝜔,1√𝛽∞
∗

, 𝛼∞,2 =
𝛽𝑖,2

𝛽∞
∗

−
𝜅2

𝜎𝜔,2√𝛽∞
∗

 

(2.17) 

From Eq. (2.15) 

 𝛽∗ = 𝛽𝑖
∗[1 + 𝜁∗𝐹(𝑀𝑡)] (2.18) 

 
𝛽𝑖

∗ = 𝛽∞
∗ (

4

15
+(𝑅𝑒𝑡/𝑅𝛽)

4

1+(𝑅𝑒𝑡/𝑅𝛽)
4 ), 𝜁∗ = 1.5, 𝑅𝛽 = 8, 𝛽∞

∗ = 0.09 (2.19) 

 
Ω𝑖𝑗 =

1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
) (2.20) 

 
𝛽 = 𝛽𝑖[1 −

𝛽𝑖
∗

𝛽𝑖
𝜁∗𝐹(𝑀𝑡)] (2.21) 

The turbulent eddy-viscosity is computed from : 

 𝜇𝑡 = 𝛼∗ 𝜌𝑘

𝜔
, ⁡𝛼∗ = 𝛼∞

∗ (
𝛼0

∗+𝑅𝑒𝑡/𝑅𝑘

1+𝑅𝑒𝑡/𝑅𝑘
) , 𝑅𝑒𝑡 =

𝜌𝑘

𝜇𝜔
, 𝑅𝑘 = 6, 𝛼0

∗ =
𝛽𝑖

3
 (2.22) 

 

𝐷

𝐷𝑡
(𝜌𝑘) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] − 𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅
𝜕𝑢𝑗

𝜕𝑥𝑖
− 𝜌𝛽∗𝑘𝜔 (2.15) 

 𝐷

𝐷𝑡
(𝜌𝜔) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜔
)
𝜕𝜔

𝜕𝑥𝑗
] −

𝛼𝛼∗

𝜈𝑡
𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅
𝜕𝑢𝑗

𝜕𝑥𝑖
− 𝜌𝛽𝜔2 + 2(1 − 𝐹1)𝜌

1

𝜔𝜎𝜔,2

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 (2.16) 
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where 

 𝛽𝑖 = 𝐹1𝛽𝑖,1 + (1 − 𝐹1)𝛽𝑖,2 (2.23) 

The blending function is : 

 
𝐹1 = 𝑡𝑎𝑛ℎ(𝛷1

4),𝛷1 = 𝑚𝑖𝑛 [𝑚𝑎𝑥 (
√𝑘

0.09𝜔𝑦
,
500𝜇

𝜌𝑦2𝜔
) ,

4𝜌𝑘

𝜎𝜔,2𝐷𝜔
+𝑦2

] (2.24) 

where 

 
𝐷𝜔

+ = 𝑚𝑎𝑥 [2𝜌
1

𝜎𝜔,2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−10] (2.25) 

If compressibility correction is applied, from Eq. (2.18) and Eq. (2.21) 

 
𝐹(𝑀𝑡) = {

⁡⁡⁡⁡⁡⁡⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑀𝑡 ≤ 𝑀𝑡0

𝑀𝑡
2 − 𝑀𝑡0

2 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑀𝑡 > 𝑀𝑡0
 (2.26) 

where 

 
𝑀𝑡

2 ≡⁡
𝑘

𝑎2
, 𝑀𝑡0 = 0.25, 𝑎 = √𝛾𝑅𝑇 (2.27) 

The model constants are given in [17]. 

2.1.3 Shear-Stress Transport (SST) 𝒌-𝝎 model 

 SST 𝑘 - 𝜔  turbulence model is one of the two-equation eddy viscosity models 

combining the characteristics of the 𝑘-𝜔 and 𝑘-𝜀 turbulence models. It has been widely 

used for flows such as adverse pressure gradient flows, airfoils, transonic shock waves and 

other external flows. Near wall boundaries, it behaves like a regular 𝑘-𝜔 model directly 

integrable to the wall. But its behavior changes to the 𝑘-𝜀 model in the free stream and 

shear layers. The full formulation of the model has been shown by Menter [17]. The 

following equations are the transport equations in Fluent with respect to Reynolds 

Averaged Navier-Stokes (RANS) equations. 

 𝐷

𝐷𝑡
(𝜌𝑘) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] − 𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅
𝜕𝑢𝑗

𝜕𝑥𝑖
− 𝜌𝛽∗𝑘𝜔 (2.28) 
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 𝐷

𝐷𝑡
(𝜌𝜔) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜔
)

𝜕𝜔

𝜕𝑥𝑗
] −

𝛼𝛼∗

𝜈𝑡
𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅
𝜕𝑢𝑗

𝜕𝑥𝑖
− 𝜌𝛽𝜔2 + 2(1 − 𝐹1)𝜌

1

𝜔𝜎𝜔,2

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 (2.29) 

𝛼, 𝛼∗ are shown Eq. (2.17) and Eq. (2.22). The blending function 𝐹1 is the same as Eq. 

(2.24) above. 

The turbulent eddy-viscosity is computed from : 

 
𝜇𝑡 =

𝜌𝑘

𝜔
⁡

1

𝑚𝑎𝑥 [
1
𝛼∗ ,

𝑆𝐹2

𝛼1𝜔
]
, 𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗⁡⁡, 𝑆𝑖𝑗 =

1

2
(
𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑥𝑗
) (2.30) 

 
𝐹2 = 𝑡𝑎𝑛ℎ(𝛷2

2), 𝛷2 = 𝑚𝑎𝑥 [2
√𝑘

900𝜔𝑦
,
500𝜇

𝜌𝑦2𝜔
] (2.31) 

As for compressibility correction of SST model is applied in same manner as BSL model. 

The model constants are given in [17]. 

2.1.4 Realizable 𝒌-𝜺 model 

 The realizable 𝑘 - 𝜀  model contains an alternative formulation for the turbulent 

viscosity. A modified transport equation for the dissipation rate,  𝜀, has been derived from 

an exact equation for the transport of the mean-square vorticity fluctuation. The realizable 

𝑘 -𝜀  model proposed by Shih et al. [18] was intended to solve some deficiencies of 

traditional 𝑘 -𝜀  models. The following equation is the transport equation in Fluent in 

conjunction with RANS equations [15]. 

 𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑗
(𝜌𝑘𝑢𝑗) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] − 𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅
𝜕𝑢𝑗

𝜕𝑥𝑖
− 𝜌𝜀 (2.32) 

 𝜕

𝜕𝑡
(𝜌𝜀) +

𝜕

𝜕𝑥𝑗
(𝜌𝜀𝑢𝑗) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜀
)

𝜕𝜀

𝜕𝑥𝑗
] + 𝜌𝐶1𝑆𝜀 − 𝜌𝐶2

𝜀2

𝑘 + √𝜈𝜀
 (2.33) 

where 

 𝐶1 = 𝑚𝑎𝑥 [0.43,
𝜂

𝜂 + 5
] , 𝜂 = 𝑆

𝑘

𝜀
, 𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗 (2.34) 

The eddy-viscosity is computed from : 

 𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

𝜀
 (2.35) 
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𝐶𝜇 is no longer constant which is the difference from other traditional 𝑘-𝜀 models. It is 

computed from : 

 
𝐶𝜇 =

1

𝐴0 + 𝐴𝑆
𝑘𝑈∗

𝜀

 (2.36) 

where 

 
𝑈∗ ≡ √𝑆𝑖𝑗𝑆𝑖𝑗 + Ω̃𝑖𝑗Ω̃𝑖𝑗 (2.76) 

and 

 Ω̃𝑖𝑗 =⁡Ω𝑖𝑗 − 2𝜀𝑖𝑗𝑘𝜔𝑘, Ω𝑖𝑗 =⁡ Ω̅𝑖𝑗 − 𝜀𝑖𝑗𝑘𝜔𝑘 (2.38) 

where Ω̅𝑖𝑗 is the mean rate-of-rotation tensor viewed in a moving reference frame with the 

angular velocity 𝜔𝑘. The model constants 𝐴0 and 𝐴𝑆 are given by 

 𝐴0 = 4.04, 𝐴𝑆 = √6 cos𝜑 (2.39) 

where 

 
𝜑 =

1

3
cos−1(√6𝑊),𝑊 =

𝑆𝑖𝑗𝑆𝑗𝑘𝑆𝑘𝑖

𝑆̃3
, 𝑆̃ = √𝑆𝑖𝑗𝑆𝑖𝑗 , 𝑆𝑖𝑗 =

1

2
(
𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑥𝑗
) (2.40) 

On the other hand, the dilatation dissipation term was added to 𝑘 equation of 𝑘-𝜀 model 

Eq. (2.32). The term which was added is : 

 2𝜌𝜀𝑀𝑡
2 (2.41) 

where 

 

𝑀𝑡 = √
𝑘

𝑎2
 (2.42) 

The model constants are given in [15] 
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2.2 Discretization Schemes 

2.2.1 Third-Order MUSCL Scheme 

There are a lot of numerical schemes for the discretization of the convection-diffusion 

term in finite volume method (FVM). For example, central scheme, upwind scheme, hybrid 

scheme and QUICK are representative schemes. In the present work, third-order Monotone 

Upstream-Centered Schemes for Conservation Laws (MUSCL) scheme is used for the 

discretization. Firstly, the central-differencing scheme calculates the face value for a 

variable (𝜑𝑓) as follows : 

 
𝜑𝑓,𝐶𝐷 =

1

2
(𝜑0 + 𝜑1) +

1

2
(∇𝜑0 ∙ 𝑟0 + ∇𝜑1 ∙ 𝑟1) (2.43) 

where the indices 0 and 1 refer to the cells that share face 𝑓 , ∇𝜑
𝑟,0

 and ∇𝜑
𝑟,1

 are the 

reconstructed gradients at cells 0 and 1, respectively, and 𝑟 is the vector directed from the 

cell centroid toward the face centroid. In order to avoid unbounded solutions and non-

physical wiggles which can lead to stability problems for the numerical procedure by 

central-differencing schemes, a deferred correction is used for the central-differencing 

scheme. In Fluent, the face value is calculated as follows : 

 𝜑𝑓 = 𝜑𝑓,𝑈𝑃 + (𝜑𝑓,𝐶𝐷 − 𝜑𝑓,𝑈𝑃)  (2.44) 

where UP stands for upwind. The upwind part is treated implicitly while the difference 

between the central-difference and upwind values is treated explicitly. The third-order 

convection scheme was conceived from the original MUSCL [19] by blending a central 

differencing scheme and second-order upwind scheme as  

 𝜑𝑓 = 𝜃𝜑𝑓,𝐶𝐷 + (1 − 𝜃)𝜑𝑓,𝑆𝑂𝑈  (2.45) 

where 𝜑𝑓,𝐶𝐷  is defined in Eq. (2.43) and 𝜑𝑓,𝑆𝑂𝑈  is computed using the second-order 

upwind scheme as 

 𝜑𝑓,𝑆𝑂𝑈 = 𝜑 + ∇𝜑 ∙ 𝑟 (2.46) 

The MUSCL scheme has some advantages. For instance, unlike the QUICK scheme, which 
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is applicable to structured hex meshes only in Fluent, the MUSCL scheme is applicable to 

arbitrary meshes. Compared to the second-order upwind scheme, the third-order MUSCL 

has a potential to improve spatial accuracy for all types of meshes by reducing numerical 

diffusion, most significantly for complex three-dimensional flows, and it is available for 

all transport equations. 

2.2.2 Implicit Discretization Scheme 

There are two methods of discretization for the rate of change term. One is the Explicit 

method and the other is the Implicit method. Each method has advantages and 

disadvantages. First of all, Explicit scheme has the advantage to write code easily because 

of its simplicity.  

But it has a stability problem. Therefore the time step size is limited, which induces 

long computation time. If the higher dimension is considered, the more strict stability 

criteria are needed for satisfactory results. In addition to the stability problems, the time 

lag occurs at boundary conditions. 

Table 2. The advantages and disadvantages of the explicit scheme and implicit scheme 

 Advantages Disadvantages 

Explicit 

Scheme 

• Easy to write code compared to 

implicit scheme 

• Limited time step size due to a 

stability problem 

• If the higher dimension is 

considered, the more strict 

stability criteria are necessary 

• Time lag at boundary condition 

Implicit 

Scheme 

• Unconditionally stable • Difficult to write code 

• Require more time than explicit 

scheme for one time step 
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On the other hand, the Implicit scheme is unconditionally stable. This is a reason why 

it solves the matrix equation at every time step. It takes more time to solve the one time 

step than the explicit scheme takes. However, considering total computation time, the 

implicit scheme takes shorter than the explicit scheme, which means the solution converges 

with a large time step size. But if the time step size is too large, the truncation error 

contaminates the solution. Table.1 shows the advantages and disadvantages of the explicit 

scheme and implicit scheme. 

2.2.3 Flux type 

 In order to compute the flux vector, flux-vector splitting scheme is used [20]. The 

scheme, is called Advection Upstream Splitting Method (AUSM), was introduced by Liou 

and Steffen [21]. Firstly, the AUSM scheme computes a cell interface Mach number based 

on the characteristic speeds from the neighboring cells. The interface Mach number is then 

used to determine the upwind extrapolation for the convection part of the inviscid fluxes. 

A separate Mach number splitting is used for the pressure terms. Generalized Mach 

number based convection and pressure splitting functions were proposed by Liou [22] and 

the new scheme was called AUSM+ which is used in this work. The AUSM+ scheme has 

several desirable properties providing exact resolution of contact and shock discontinuities, 

preserving positivity of scalar quantities, and free of oscillations at stationary and moving 

shocks [23]. The AUSM+ scheme avoids using an explicit artificial dissipation, by 

proposing a numerical flux of the form : 

 𝐹 = 𝑚𝑓𝜑 + 𝑝𝑖 (2.47) 

𝑚𝑓 is the mass flux through the interface, which is computed using the fourth order 

polynomial functions of the left and right side of the interface Mach numbers.  
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Chapter 3. Theorical Background for Uncertainty Quantification 

3.1 The Definition of Uncertainty Quantification 

The uncertainty quantification is the mathematical method that deals with quantitative 

characterization and the reduction of uncertainties in applications. Uncertainty 

quantification is used for robust design/optimization, model validation, and certification 

for high-risk decisions.   

Uncertainty means that there is not certain value for a specific parameter because of 

the physical variation of the value and the lack of accuracy in calculation and measurement. 

There are two categories to classify the type of uncertainty. The one is aleatory uncertainty 

and the other one is epistemic uncertainty. Aleatory uncertainty is induced by natural 

variabilities in the real system. Therefore it is impossible to be reduced or eliminated. For 

examples of aleatory uncertainty, there are material properties, noise, etc. Epistemic 

uncertainty is induced by the lack of knowledge of physics and it is caused by the modeling 

hypothesis. Hence, it is possible to be reduced or eliminated. For instance, there are 

turbulence models, boundary conditions etc.  

Research incorporating UQ has been investigated by many researchers. Huan at el. [24] 

conducted global sensitivity analysis to identify influential input parameters, which are 

inflow, fuel inflow, and wall boundary condition, and turbulence model parameters in 

scramjet computations by using UQ. Also, estimation of model error concerning models of 

different fidelity was investigated. Burt and Josyula [25] considered aleatory and epistemic 

uncertainties in sensitivity analysis/uncertainty quantification calculations. Global 

sensitivity analysis and uncertainty quantification are integrated with a direct simulation 

which is Monte Carlo gas flow simulation code for a hypersonic double-cone flow. 

In this thesis, entire process of UQ is conducted by UQLab framework [26] using 

MATLAB [27]. 

 

3.2 Polynomial Chaos Expansions 

 The Polynomial chaos expansions (PCE) is non-intrusive method to determine 

propagation of uncertainty in dynamic system when there is probabilistic uncertainty in the 

system parameters. It allows one to represent a random output as a polynomial series in the 

input variables. The generic problem can be described like below : 
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 𝑦 = 𝑓(𝑥) (3.1) 

𝑓  is the computational model and in the present research, it is the Navier-Stokes 

equation. 𝑥 is the input parameter. 𝑦 is the output referred to Quantity of interest (QOI). 

As input parameter 𝑥 is a random variable, the equation is modified like below : 

 

 𝑌 = 𝑓(𝑋) (3.2) 

 

𝑌 and 𝑋 are expressed as random variables. If the assumption that the output random 

variable has finite variance is applied, the Eq. (3.2) is modified as follow : 

 

 𝑌 = ∑ 𝛼𝑛(𝑋)Ψ𝑛(𝜉𝑗)

∞

𝑛=0

⁡⁡⁡𝑗 = 0, 1, 2,⋯ , 𝑃 (3.3) 

 

Where 𝛼𝑛(𝑋)  are the polynomial chaos coefficients and Ψ𝑛  is an element of an 

orthogonal family. This correspondences between the random variable distribution and 

orthogonal polynomial family are shown in Table.2.  

 

Table 3. Classical families of orthogonal polynomials 

 

Type of variable Distribution 
Orthogonal 

polynomials 
Hilbertian basis Ψ𝑛(𝜉) 

Uniform 

𝑈(−1,1) 

1(𝜉)

2
 Legendre 𝑃𝑛(𝜉) 𝑃𝑛(𝜉) / √

1

2𝑛+1
 

Gaussian 

𝐺(0,1) 

1

√2𝜋
𝑒−𝜉2 2⁄  Hermite 𝐻𝑛(𝜉) 𝐻𝑛(𝜉) / √𝑛! 

Gamma 

Γ(𝑎, 𝜆 = 1) 
𝑥𝑎𝑒−𝜉 Laguerre 𝐿𝑛

𝑎 (𝜉) 𝐿𝑛
𝑎 (𝜉) / √

Γ(𝑛+𝑎+1)

𝑛!
 

Beta 

𝐵(𝑎, 𝑏) 
1(𝜉)

(1 − 𝜉)𝑎(1 + 𝜉)𝑏

𝐵(𝑎)𝐵(𝑏)
 Jacobi  𝐽𝑛

𝑎,𝑏(𝜉) 𝐽𝑛
𝑎,𝑏(𝜉) / 𝔍𝑎,𝑏,𝑛 
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𝜉 are a vector of random variables representing the system’s uncertainties. the random 

variable 𝜉  is randomly sampled in accordance with its statistical distribution equation 

above represents a system of 𝑃 + 1 equations in 𝑃 + 1 unknowns. As a system of linear 

equations, the Eq. (3.3) can be solved for the 𝛼𝑛. A linear system can be obtained as follow : 

 

 

[
 
 
 
 

Ψ0(𝜉0) Ψ0(𝜉0)

Ψ0(𝜉1) Ψ0(𝜉1)

…
…

Ψ𝑃(𝜉0)

Ψ𝑃(𝜉1)
⋮ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋮ ⋱ ⋮

Ψ0(𝜉𝑃−1)

Ψ0(𝜉𝑃)
Ψ1(𝜉𝑃−1)

Ψ1(𝜉𝑃)

…
…

Ψ𝑃(𝜉𝑃−1)

Ψ𝑃(𝜉𝑃) ]
 
 
 
 

[
 
 
 
 

𝛼0

𝛼1

⋮
𝛼𝑃−1
𝛼𝑃 ]

 
 
 
 

=

[
 
 
 
 

𝑌1

𝑌2

⋮
𝑌𝑃−1

𝑌𝑃 ]
 
 
 
 

 (3.4) 

 

If the more than 𝑃 + 1  samples are chosen, then the over-determined system of 

equations should be solved using the least square method. 

The maximum number of terms, 𝑃 + 1, may be computed from the formula 

 𝑃 + 1 =
(𝑝 + 𝑛)!

𝑝! 𝑛!
 (3.5) 

where 𝑝 is the order of the polynomial set used for the chaos. If the order from Eq. 

(3.5) is decided, it means the number of coefficients is also decided, which should be 

calculated. This is calculated by two methods. One of the methods is called “projection 

method” and another one is least-square minimization method. In this current work, least-

square minimization method which has an advantage that an arbitrary number of points can 

be used to calculate the coefficients, as long as they are a representative sample of the 

random input vector, is adopted. Least-square minimization is a method that minimize a 

truncation error. Truncated PCE and a residual are expressed as : 

 𝑌 = ℳ(𝑿) = ∑ 𝑦𝑗Ψ𝑗(𝑿)

𝑃−1

𝑗=0

+ 𝜀𝑃 ≡ 𝒚𝑇Ψ(𝑿) + 𝜀𝑃 (3.6) 

where P-1 = order of PCE,  𝜀𝑃 is the truncation error, 𝒚𝛼 = {𝑦0, … , 𝑦𝑃−1}
𝑇  is a vector 

containing the coefficients and Ψ(𝑥)= {Ψ0(𝑥),… ,Ψ𝑃−1(𝑥)}
𝑇 is the matrix that assembles 

the values of all the orthonormal polynomials in 𝑿. The least-square minimization can be 

as : 

 𝒚̂ = argmin 𝔼 [(𝒚𝑇Ψ(𝑿) − ℳ(𝑿))
2
] (3.7) 
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Eq. (3.7) is solved by ordinary least-squares (OLS). The ordinary least-square solution of 

Eq. (3.7) is: 

 𝒚̂ = (𝐀𝑇𝐀)−1𝐀𝑇𝒴 (3.8) 

where  

 𝐴𝑖𝑗 = Ψ𝑗(𝑥
(𝑖))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 1,… , 𝑛⁡⁡⁡⁡; ⁡⁡⁡𝑗 = 0,… , 𝑃 − 1 (3.9) 

𝒴 is the model responses corresponding to input random vector.  

There is a way to evaluate the error of constructed PCE, which is called the leave-one-

out (LOO) cross-validation error. The leave-one-out cross-validation error ( 𝜖𝐿𝑂𝑂)  is 

designed to overcome over-fitting limitation by using cross-validation. When the least-

square minimization is used for calculating the coefficients, the formulation to calculate 

𝜖𝐿𝑂𝑂 is : 

 𝜖𝐿𝑂𝑂 = ∑(
ℳ(𝑥(𝑖)) − ℳ𝑃𝐶(𝑥(𝑖))

1 − ℎ𝑖
)

2𝑁

𝑖=1

⁡⁡/ ⁡⁡⁡∑(ℳ(𝑥(𝑖)) − 𝜇̂𝑌)
2

𝑁

𝑖=1

 (3.10) 

where ℎ𝑖 is the 𝑖𝑡ℎ component of the vector, which is given like below: 

 𝒉 = diag(𝐀(𝐀𝑻𝐀)−1𝐀𝑻) (3.11) 

And A  is the experimental matrix in Eq. (3.9). ℳ(𝑥(𝑖))  is the model response and 

ℳ𝑃𝐶(𝑥(𝑖)) is the PCE result. 𝜇̂𝑌 means the mean of the model response. 

If a relationship between model responses and input parameters requires high-order, 

OLS could have too many terms, which means that it needs quite many input parameters 

depending on Eq. (3.5). In order to overcome this issue, in this thesis, least angle regression 

(LARS) which is starting from a small candidate polynomial basis, is used. Also, the results 

obtained by OLS and LARS are compared each other. 

 

3.3 Sampling Method 

Latin Hypercube Sampling (LHS) method is the one of the sampling method and it is 

proposed by McKay et al. [28]. LHS is developed to improve the computational efficiency 
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and the global accuracy of approximation. The key to this method is stratification of the 

input probability distribution. Stratification divides the cumulative curve into equal interval. 

A sample is then randomly taken from each interval or “stratification”.  

Hosder et al. [29] investigated the effects on the results by the number of collocation 

points in a systematic way through the introduction of a parameter, the oversampling rate 

𝑛𝑝 defined below. 

 𝑛𝑝 =
𝑡ℎ𝑒⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑃 + 1
 (3.12) 

Oversampling rate 𝑛𝑝 = 2  yields a better approximation to the statistic at each 

polynomial degree.  

 

3.4 Surrogate Model 

Deterministic solver is being gradually substituted by stochastic modelling to account 

for the inevitable uncertainty in physical phenomena and measurements. However, 

applying stochastic modeling is not an efficient way because it costs a lot of time. Surrogate 

modeling can offset the increased costs of stochastic modeling by substituting the 

expensive-to-evaluate computational models with inexpensive-to-evaluate surrogates. 

Also, QOIs prediction, QOIs distribution and sensitive analysis are able to be investigated 

through the surrogate model. 

In this thesis, PCE which is a powerful metamodeling technique, is used to construct 

a surrogate model. PCE used for the current work is constructed based on the simulation 

results over compressible flows. The robustness of the surrogate model which is 

corresponding to the PCE order is evaluated by 𝜖𝐿𝑂𝑂. QOIs prediction and QOI distribution 

which are specified in this thesis can be known by using surrogate model. Also, which input 

parameter is dominant, is able to be studied through the surrogate model. 

 

3.5 Bayesian Inference 

As mentioned above, the normal way that input parameters are computed in a 

computational model to get the outputs is the forward problem. On the contrary, inverse 

problem is the process to get unknown parameters that cannot be measured directly are 
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estimated based on experiment data, which is indirectly associated with the parameters 

through a computational model. Inverse problem, because instead of propagating 

information about input variables through a computational model (Forward problem), the 

goal is to propagate information about the observations backwards to obtain insight on the 

model inputs. This inverse problem is able to obtain some results through the Bayesian 

inference which is based on bayes theorem. Formulation of bayes theorem is : 

 𝜋(𝜃|𝑥) =
𝜋(𝑥|𝜃)𝜋(𝜃)

𝜋(𝑥)
 (3.13) 

where 𝜋(𝜃)  is the prior distribution about the input parameters. This could be set up 

heuristically or could be set up through a predetermined tendency. 𝜋(𝑥|𝜃) is the likelihood. 

Likelihood measures the suitable statistical model with respect to given data that consider 

observation and prior distribution. 𝜋(𝑥) is a factor to normalize the right-hand side. As a 

result of this, posterior distribution is finally calculated. 

 

3.6 Likelihood 

Based on likelihood mentioned above, in case of independent observations given, the 

likelihood function is modeled as follows : 

 ℒ: 𝜃 → ℒ(𝜃; 𝜒) ≝ ∏𝜋(𝑥𝑘|𝜃)

𝑛

𝑘=1

 (3.14) 

 𝜋(𝜃|𝜒) =
ℒ(𝜃; 𝜒)𝜋(𝜃)

𝑍
 (3.15) 

 ℒ(𝑥; 𝕪) = ∏
1

√(2𝜋)𝑁𝑜𝑢𝑡𝑑𝑒𝑡(∑)

𝑁
𝑖=1 𝑒𝑥𝑝 (−

1

2
(𝒴𝑖 − ℳ(𝑥))

𝑇
∑−1(𝒴𝑖 − ℳ(𝑥))) (3.16) 

If the independent observations are used, the likelihood function is expressed as a form 

of multiplication Eq. (3.14). In Eq. (3.16), 𝒴𝑖  means observations and ℳ  is a 

computational forward model and 𝑥 is a set of input parameters. This discrepancy term ∑ 

represents the effects of measurement error which is obtained from experimental references 

[1, 30-34]. 
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3.7 Markov Chain Monte Carlo (MCMC) 

Posterior distribution does not have a analytic solution in practice. One option spread 

widely to solve inverse problems relies upon MCMC simulations. MCMC simulation is 

like the states of the sample space where prior distribution is defined are linked like a chain. 

Markov chains can be uniquely defined by their transition probability 𝒦(𝑥(𝑡+1)|𝑥(𝑡)) from 

the step 𝑥(𝑡) of the chain at iteration 𝑡 to the step 𝑥(𝑡+1) at the subsequent iteration 𝑡 + 1. 

Then, the posterior is the invariant distribution of the Markov chain if the specified 

transition probability fulfils the  detailed balance condition :  

 𝜋(𝑥(𝑡)|𝒴)⁡𝒦(𝑥(𝑡+1)|𝑥(𝑡)) = 𝜋(𝑥(𝑡+1)|𝒴)⁡𝒦(𝑥(𝑡)|𝑥(𝑡+1)) (3.17) 

The samples suggested based on the equation (3.17) are accepted or rejected. It is decided 

by an acceptance probability and there are various methods to decide. A representative 

method is called metropolis-hastings algorithm (MH), an expression of it is following as :  

 𝛼(𝑥(⋆), 𝑥(𝑡)) = min {1,
𝜋(𝑥(⋆)|𝒴)𝑝(𝑥(𝑡)|𝑥(⋆))

𝜋(𝑥(𝑡)|𝒴)𝑝(𝑥(⋆)|𝑥(𝑡))
} (3.18) 

At iteration 𝑡  from the current point 𝑥(𝑡) , one then draws a candidate point 𝑥(⋆)  from a 

proposal distribution 𝑝(𝑥(⋆)|𝑥(𝑡)). After that, if 𝑥(𝑡+1) = 𝑥(⋆), the candidate is accepted. Or 

else the candidate is rejected. (𝑥(𝑡+1) = 𝑥(𝑡))  

If a correlation shown in the posterior distribution is strong between parameters, most 

of the MCMC algorithms result in poor convergence and so much tuning is needed to solve 

this issue. To overcome this, in this present work, Affine invariant ensemble algorithm 

(AIES) is adopted and performs 1500 steps and 300 parallel chains. The first half of the 

sample points generated by all chains are removed as burn-in. And then, post-processing 

is performed after burn-in. 
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Chapter 4. Deterministic Simulations 

4.1 Geometry 

The base geometry is selected from Forsythe [2]. A cylinder diameter is 63.5 mm. The 

cylinder of length is set to 8R, where R is the base radius. This cylinder of length was 

determined to match the experimental momentum thickness [2]. The outflow is located 

10R downstream, while the far-field boundary is at 4.15R from the axis of symmetry. 

In case of the 24-deg compression ramp,  the geometry is adopted from Gerolymos et 

al. [14]. In order to simulate efficiently, the computational profile is computed on the inlet 

boundary condition which is explained in details at a boundary condition section. No-slip 

wall is placed on the top and bottom. The upper wall is located 0.2 m away from the bottom 

wall of the downstream section. The inlet is far off 0.2 m from the beginning of the 24-deg 

ramp which is 0.15 m long. Various frames were used in the compression ramp 

experimental setups [30, 31] for the profile measurements. The details of frames and 

specific locations where experimental data were measured are well explained in [14, 30, 

31].  

4.2 Mesh 

Structured grid is generated by using Pointwise [35]. To resolve the turbulent boundary 

layer near the wall and satisfy the wall unit (y+) within 1.0 which is averaged in the 

computational domain, the first cell height is set to 1e-6 (m). The total number of cells were 

180,000 (600×300) with respect to the compression ramp case, while 37,370 cells (100×75 

on the length of cylinder, 149×205 on the downstream from the base) were generated for 

the base case.   The grid system adopted in the present simulation is shown in Fig. 1 and 

Fig. 2.  
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Fig. 1. Axisymmetric base flow computational grid, Closeup view of grid (bottom) 

 

  

Fig. 2. 24-deg compression ramp computational grid (left), Closeup view of gird (right) 
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4.3 Boundary Conditions 

In case of the compression ramp flow, at the upstream inlet boundary of the 

computational domain, profiles for all dependent variables such as k, 𝜀  and ⁡𝜔  were 

specified. The profiles were obtained from a 2-D channel simulation. Supersonic inflow 

condition 𝑀∞=2.85 was computed at the inlet boundary (𝑅𝑒∞= 63× 106  𝑚−1). Wall 

temperature was fixed to 𝑇𝑤 =258.8 K in accordance with measurements [30, 32]. 

Extrapolation was applied at the downstream outlet boundary which was set to pressure 

outlet boundary condition.  

On axisymmetric base flow, the experimental conditions of the axisymmetric base of 

Herrin and Dutton [1] were matched in this computation. Freestream conditions of 

𝑀∞=2.46 and a unit Reynolds number of 45× 106 per meter were computed at the inlet 

boundary. Adiabatic wall condition was used on the wall and the extrapolation was applied 

at the pressure outlet boundary as well. Fig. 3 shows the boundary conditions of each case. 

 

 

 

Fig. 3 Boundary Conditions (Base flow : up, Ramp flow : bottom) 
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4.4 Results 

4.4.1 Grid test 

The grid test obtained by the GEKO model, is investigated by using tiny, coarse, 

medium, fine and extra fine mesh which are shown in Table 4, Table 5, Fig. 3 and Fig. 5. 

To evaluate the grid test, in this thesis, Reattachment Point (RP) and Pressure Coefficient 

on the base (𝐶𝑃𝑏𝑎𝑠𝑒
) are used for axisymmetric base flow. On 24deg compression ramp, 

Reattachment Point (RP) and Separation Point (SP) are used. These are quantities of 

interest (QOIs) which are not only for the way to determine the grid test but also for UQ. 

To clarify 𝐶𝑃𝑏𝑎𝑠𝑒  which is defined as Eq. (4.1), area-weighted average of the static pressure 

across the base surface is extracted to determine an average base pressure coefficient. RP 

and SP are determined based on wall shear stress data. 

 𝐶𝑃𝑏𝑎𝑠𝑒
=

2[(𝑃𝑏𝑎𝑠𝑒 − 𝑃∞) − 1]

𝛾𝑀∞
2

 (4.1) 

Grid convergence index (GCI) was devised by Roache [36, 37]  to provide a measure 

of the computation’s accuracy. There are several improved GCI methods. Modified GCI 

method from Roache’s GCI [38, 39] was introduced in the ASME guideline [40]. The other 

one developed by Eça and Hoekstra [41] is called simplified least-square version GCI 

estimation method (SLS-GCI). In this work, total two GCI methods are used. One was 

introduced in the ASME guideline (Mod-ASME) and the other one is developed by Eça et 

al. [42] (SLS-GCI). Results obtained by GCI consist of 3 components to explain grid 

independency. First, extrapolation values which mean an estimate of the value of the each 

QOI at zero grid spacing, are shown (Table 8). Second, UG is a measure of the computed 

value is away from the value of the asymptotic numerical value. It is estimated by the root 

mean square function with respect to the local GCI of 𝑢𝑔, which means local values [42]. 

It is determined by using fine grids among 3 grids (e.g. coarse and medium among tiny, 

coarse and medium grid). It indicates an error band on how far the solution is from the 

asymptotic value. It also indicates how much the solution would change with a further 

refinement of the grid. Thus, a small value indicates that the computation is within the 

asymptotic range. Hence, 𝑈𝑔 indicates that the grids are reasonably generated if its value 

is close to zero (Table 6). Third, 𝑈𝑒 which is calculated only in SLS-GCI presents the local 

error of estimation, which means the difference between numerical and estimated results 
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(Table 7). 

Table 4. Grid independence test (Axisymmetric base flow) 

 

 Tiny Coarse Medium Fine Extra fine 

Number of cells 9,186 18,512 37,370 75,180 151,533 

RP (m) 0.10181 0.10389 0.10549 0.10565 0.10575 

Cpbase -0.11263 -0.11006 -0.10867 -0.10807 -0.10789 

Table 5. Grid independence test (24-deg compression ramp) 

 

 Tiny Coarse Medium Fine Extra fine 

Number of cells 45,000 90,100 180,000 358,700 720,000 

RP (m) 0.062708 0.06395 0.064796 0.065475 0.065787 

SP -0.09465 -0.09808 -0.1007 -0.10292 -0.10411 

 

  

Fig. 4. Grid sensitivity test for base flow 

Pressure distribution (left), Centerline velocity (right) 
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Fig. 5. Grid sensitivity test for compression ramp flow 

Nondimensional pressure distribution (left), Skin friction coefficient distribution (right) 

Table 6. GCI 𝑈𝑔 values 

𝑈𝑔 
Mod_ASME SLS-GCI 

(1,2,3) (2,3,4) (3,4,5) (1,3,5) (1,2,3) (2,3,4) (3,4,5) (1,3,5) 

R 

A 

M 

P 

RP 2.544E-03 2.051E-03 3.291E-04 9.910E-04 8.569E-04 6.242E-04 4.147E-04 2.458E-04 

SP 7.887E-03 6.705E-03 3.545E-03 3.409E-03 2.467E-03 1.977E-03 1.416E-03 7.447E-04 

B 

A 

S 

E 

RP 4.716E-03 5.177E-05 2.967E-04 2.436E-05 1.467E-03 7.552E-04 1.044E-04 3.321E-04 

𝐶𝑃𝑏𝑎𝑠𝑒
 4.101E-03 5.819E-04 9.525E-05 2.422E-04 1.607E-03 8.202E-04 3.278E-04 3.871E-04 

Table 7. GCI 𝑈𝑒 values 

𝑈𝑒 
SLS-GCI 

(1,2,3) (2,3,4) (3,4,5) (1,3,5) 

R 

A 

M 

P 

RP 1.813E-03 1.315E-03 8.783E-04 1.876E-03 

SP 5.221E-03 4.166E-03 3.000E-03 5.681E-03 

B 

A 

S 

E 

RP 3.150E-03 1.619E-03 2.236E-04 2.611E-03 

𝐶𝑃𝑏𝑎𝑠𝑒
 3.453E-03 1.758E-03 7.022E-04 3.042E-03 
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Table 8. Extrapolation values from GCI 

 
Mod_ASME SLS-GCI Grid test 

(1,2,3) (2,3,4) (3,4,5) (1,3,5) (1,2,3) (2,3,4) (3,4,5) (1,3,5) Medium mesh 

R 

A 

M 

P 

RP (m) 
0.0656 

(1.309) 

0.0662 

(2.102) 
0.0661 

(1.936) 
0.0661 

(2.039) 
0.0654 

(0.957) 
0.0659 

(1.705) 
0.0661 

(2.055) 
0.0658 

(1.557) 
0.0648 

SP (m) 
-0.1033 

(2.611) 
-0.1052 

(4.423) 
-0.1053 

(4.558) 
-0.1052 

(4.514) 
-0.1024 

(1.699) 
-0.1042 

(3.515) 
-0.1052 

(4.491) 
-0.1040 

(3.258) 
-0.1007 

B 

A 

S 

E 

RP (m) 
0.1071 

(1.490) 
0.1057 

(0.166) 
0.1058 

(0.339) 
0.1058 

(0.263) 
0.1065 

(0.957) 
0.1064 

(0.896) 
0.1058 

(0.318) 
0.1063 

(0.731) 
0.1055 

Cpbase 
-0.1073 

(1.258) 
-0.1076 

(0.984) 
-0.1078 

(0.792) 
-0.1077 

(0.900) 
-0.1074 

(1.153) 
-0.1074 

(1.182) 
-0.1076 

(0.995) 
-0.1075 

(1.073) 
-0.1087 

 Table 8, Fig. 6 show extrapolation values from GCI with respect to the QOIs. The 

values inside a bracket in Table 8 mean the error (%) between each extrapolation value and 

result of medium mesh. Combination (1,3,5) has the biggest spacing ratio but difference 

  

  

Fig. 6. Extrapolation values from GCI w.r.t QOIs. Base flow(a, b), Compression ramp flow(c, d) 

Red (Mod_ASME), Blue (SLS-GCI), filled triangle (1,2,3), circle (2,3,4), square (3,4,5), empty triangle (1,3,5) 
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from the result of medium mesh is less than 5 % (Max 4.5%). Hence, the medium mesh is 

selected for a computational domain.  

4.4.2 Base Flow 

 In case of the base flow, the velocity profile was obtained 1 mm upstream of the base 

corner. Fig. 7 shows that the velocity profiles are compared with the profile obtained from 

the experiment. Whether compressibility correction is used or not, the profiles of all 

models appear in a similar shape. Overall, all models predicted the boundary-layer profile 

reasonably well under the current mesh.  

Fig. 8 shows pressure distributions along the base surface. The base pressure 

distributions obtained without the compressibility correction are quite lower compared to 

the experiment data [1]. On the other hand, the models that the compressibility correction 

was included show higher base pressure distributions but appear with enhanced variations 

along the base surface. Qualitative flat pressure distribution along the base surface is not 

predicted at all, when it comes to RANS models [2-7]. The reverse flow near the wake axis 

stagnates at the center of the base surface where the relatively high pressure appears (see 

Fig. 8, 10)  

Fig. 9 shows static pressure after the base. Both contours are obtained from GEKO 

model but upper one is the result with compressibility correction and bottom one is the 

result without compressibility correction. It clearly shows that the pressure of GEKO-CC 

 

Fig. 7. Velocity profiles at 1 mm upstream from base edge. 

around a centerline is higher than GEKO model, which is why the models with 
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compressibility correction show higher pressure than the models without the correction. 

Also, expansion fan and reattachment shock are observed. GEKO-CC model predicts 

slightly delayed high pressure region and reattachment shock than GEKO model. 

One of the QOIs for axisymmetric base flow is the shear layer reattachment point. Fig. 

10 shows the axial velocity along the axis. It is clearly shown that results from the models 

without compressibility correction match well the experiment data, when it comes to the 

reattachment point. If a smaller recirculation region as the models without compressibility 

 

Fig. 8. Pressure distributions along base radius 

 

Fig. 9. Static pressure contour (GEKO-CC : up, GEKO : down) 
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correction predict is predicted, it causes the flow to turn sharply behind the base, leading 

to a more enhanced expansion wave, and the reduction in pressure. Small separation 

regions, therefore, cause larger pressure drag than large separated regions cause [2]. 

Models applied with compressibility correction overpredicted the peak reverse velocity 

more than measured data near the base surface. They overpredict not only the reattachment 

point but also the reverse velocity. When the reverse flow is overpredicted, the flow is more 

accelerated outward along the base radius, which can cause the pressure to decrease. This 

is a typical issue that RANS models cannot predict a flat pressure distribution along the 

base surface because of the large turbulent eddy viscosity [4]. 

 

Fig. 10. Centerline velocity 

  

Fig. 11. Mach number (left) and turbulent viscosity ratio (right) contour 
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Mach number and turbulent viscosity ratio are shown in Fig. 11. Upper part of the 

figure is GEKO-CC and It is clearly seen that GEKO-CC model predicts RP further off 

than GEKO model from the base. As mentioned in introduction, compressibility correction 

reduces turbulent eddy viscosity, which can lead to higher pressure levels, but also it 

increases the reattachment length. Thus, the size/length of recirculation region behind the 

base is influenced depending on overpredicting or underpredicting the turbulent eddy 

viscosity. This factor can also be controlled by CSEP coefficient of GEKO model, and it is 

indirectly indicated through turbulent viscosity ratio contour (Fig. 11) that how big 

influence CSEP has. The facts depending on applying compressibility correction or not, 

about overpredicted and/or underpredicted the reattachment point, have also been shown 

by many researchers [2-7]. 

4.4.3 24-deg Compression Ramp 

 For 24-deg compression ramp case, the inlet profile including all dependent variables 

is computed at inlet. Boundary layer thickness (𝛿 ), displacement thickness (𝛿∗ ) and 

momentum thickness (𝜃) of the results obtained from the models (BSL, SST, Realizable 

model) are shown in Table 9. The profiles are extracted at a position where the profile 

were measured in the experiment [31]. SST model predict relatively lower 𝛿 than other 

models do. 

Fig. 12 shows nondimensional pressure distributions along bottom surface of the 

computational domain in 24deg compression ramp. To compare computational results, 

experiment data obtained from [30, 33, 34] were used. (The experiment data was found in 

Table 9. Boundary layer thickness 

Unit (mm) 

Model 𝛿 𝛿∗ 𝜃 

BSL 22.555 6.017 1.497 

SST 18.835 5.774 1.342 

Realizable 21.581 5.272 1.280 

EXP 21.082 6.020 1.143 



31  

 [34], but exact source is not given. [14]) The result of GEKO model is quite similar 

with the result obtained from SST model as indicated [16]. Both models show 

overpredicted the length of the reversed flow region, which means that a separation shock 

occurs too early. The models under-predicted even lower pressure compared to the 

experiment data after the corner. BSL and Realizable model performed the best results in 

the pressure distribution. The initial pressure rise of the results obtained from both models 

matches the measured rise. This means that the separation shock predicted from numerical 

flowfields occurs in the same location as the experimental flowfields. 

 

Fig. 12. Nondimensional pressure distribution along the bottom surface 

 

Fig. 13. Skin friction coefficient distribution along the bottom surface 
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Fig. 13 shows the skin friction on the bottom surface of the compression ramp domain. 

As mentioned before, it is apparently seen that GEKO and SST model overpredicted 

separation length. Also, GEKO and SST model predicted quite low skin friction in the 

relaxation region and more delayed reattachment point than measured. In contrast with 

GEKO and SST model, again, BSL and Realizable model show a better agreement, when 

it comes to the separation shock, separation point, and skin friction distribution after the 

reattachment point. BSL and Realizable model predicted the point that skin friction is 

started decreasing, which means the separation shock location is predicted quite well. 

Looking at it more closely, the BSL model predicted slightly closer the separation shock 

location than the Realizable model did but the Realizable model predicted the separation 

point, which is a little bit closer to the experimental data. As for the reattachment point, all 

models failed to predict the reattachment point perfectly. Having said that, however, the 

BSL and Realizable model predicted the reattachment point much closer than the GEKO 

and SST model did, which means that the BSL and Realizable model predicted much 

shorter separation length. 

 

Fig. 14. Mach number contour over 24-deg compression ramp 
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Mach number contour and static pressure are shown in Fig. 14 and Fig. 15 respectively. 

In Mach number contour (Fig. 14), all models predict separation shock and reattachment 

shock, but GEKO and SST model predict a way bigger separation bubble than BSL and 

Realizable model as seen above Fig. 12 and Fig. 13. Also, the GEKO and SST model under-

predict pressure compared to the Realizable and BSL model in the relaxation region. (Fig. 

14 and Fig. 15) 

 

 

 

 

 

Fig. 15. Static pressure contour over 24-deg compression ramp 
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Chapter 5. Uncertainty Quantification for Compressible Flows 

5.1 gPCE results 

The uncertainty quantification is conducted for axisymmetric base flow and the 24-deg 

compression ramp flow. The several random variables are considered in this present work. 

The input random variables are CSEP, CNW and CJET, which are the model coefficients of 

GEKO model. The probability distribution of each input random variable is assumed as a 

uniform distribution. A variation range of each input variable follows Table 1. The sample 

points are taken using LHS. The number of total samples can be set if the order of 

polynomial chaos and oversampling rate are set.  

In this work, for axisymmetric base flow, 𝜖𝐿𝑂𝑂 for axisymmetric base flow is quite 

higher than 24-deg compression ramp flow. 𝜖𝐿𝑂𝑂 for axisymmetric base flow was higher 

than 1, but 𝜖𝐿𝑂𝑂 of 24-deg compression ramp flow was lower than 0.1 at the same order 

and the number of data. Hence, it is investigated that which one is influential factor having 

an effect on 𝜖𝐿𝑂𝑂 between the order and the oversampling rate for the base flow. Table 10 

shows the result.  On the left side of the Table 10, it presents the number of samples 

required corresponding to the order and oversampling rate. 

Table 10. the number of sample (left), 𝜖𝐿𝑂𝑂 (right) 

 𝑃 : order of polynomial chaos, 𝑛𝑝 : oversampling rate 

# of 

sample 

𝑝  

2nd 3rd 4th 5th 6th 

𝑛𝑝 

2 20 40 70 112 168 

3 30 60 105 168  

4 40 80 140   

6 60 120    

8 80     

 

… 

Cpbase
 

(RP) 

𝑝  

2nd 3rd 4th 5th 6th 

𝑛𝑝 

2 
1.530 

(2.071)  

2.662 

(3.416)  

4.282 

(6.273)  

3.167  

(3.861) 

3.627  

(5.308) 

3 
0.485 

(0.624)  

0.896  

(1.191) 

0.541  

(0.722) 

0.660  

(0.847) 
 

4 
0.324  

(0.456) 

0.439  

(0.572) 

0.313  

(0.431) 
  

6 
0.294  

(0.410) 

0.257  

(0.335) 
   

8 
0.267 

(0.357)  
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On the right side of Table 10, it shows 𝜖𝐿𝑂𝑂 with respect to 𝐶𝑝𝑏𝑎𝑠𝑒
 and RP. 𝜖𝐿𝑂𝑂 decreases 

only when the oversampling ratio increases, which means that not increasing the order, 

increasing the oversampling rate can be a better choice if the number of data is limited or 

computational cost is expensive. 

For Forward problem, 𝑛𝑝 was set to 2 as Schaefer et al. [43] and 𝑝 was decided based 

on QOIs distribution (See Eq 3.12). Fig. 16 shows the distributions regarding to 𝐶𝑃𝑏𝑎𝑠𝑒
 and 

RP corresponding to p. All distributions look quite similar each other. In order to decide 

specific order for the surrogate model and Bayesian inference, 5th order is selected for the 

base flow. In case of ramp flow, 3rd order is chosen due to the limited data. 

 Total 168 samples for base flow and 60 samples for ramp flow are used to analyze which 

model closure coefficient is dominant in each flow. Table 11 shows Sobol indices of 

closure coefficients for QOIs of each compressible flow. The largest contributors to 

uncertainty in each flow case are typed in bold (Closure coefficients with Sobol indices of 

less than 3.0⁡× 10−3 were not considered as being significant [43]). Even though the same 

numbers of samples are used for OLS and LARS, LARS shows higher 𝑝 and lower 𝜖𝐿𝑂𝑂 

than OLS. It is apparently seen that CSEP is the most dominant closure coefficient compared 

to others. The next dominant closure coefficient is CNW that affects wall shear stress. Sobol 

indices of CNW in case of ramp flow are relatively a little bit higher than the case of base 

flow. This could be presumed to be affected by the fact that the SWBLI phenomena 

occurred on the surface of the compression ramp. CJET has not much contribution to both 

flow cases as other closure coefficients have. 

  

Fig. 16. 𝐶𝑃𝑏𝑎𝑠𝑒
 and RP histogram according to order of polynomial chaos 
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Table 11. 𝒑, 𝝐𝑳𝑶𝑶 and Sobol indices of GEKO closure coefficients for QOIs 

  QOIs 𝑝 𝝐𝑳𝑶𝑶 CSEP CNW CJET 

Base 

OLS 
𝐶𝑃𝑏𝑎𝑠𝑒

 5 6.60 × 10−1 8.63⁡× 𝟏𝟎−𝟏 6.34 × 𝟏𝟎−𝟐 5.61 × 10−3 

RP 5 8.47 × 10−1 8.23 × 𝟏𝟎−𝟏 7.66 × 𝟏𝟎−𝟐 9.38 × 10−3 

LARS 
𝐶𝑃𝑏𝑎𝑠𝑒

 10 2.59 × 10−2 9.37 × 𝟏𝟎−𝟏 4.53 × 𝟏𝟎−𝟐 2.17 × 10−3 

RP 14 3.03 × 10−2 9.20 × 𝟏𝟎−𝟏 6.07 × 𝟏𝟎−𝟐 5.35 × 10−3 

Ramp 

OLS 
SP 3 8.22 × 10−3 9.76 × 𝟏𝟎−𝟏 2.21 × 10−2 5.00 × 10−5 

RP 3 4.43 × 10−2 8.59 × 𝟏𝟎−𝟏 1.31 × 𝟏𝟎−𝟏 1.21 × 10−3 

LARS 
SP 5 1.67 × 10−4 9.72 × 𝟏𝟎−𝟏 2.60 × 10−2 5.00 × 10−6 

RP 5 1.54⁡× 10−3 8.41 × 𝟏𝟎−𝟏 1.50 × 𝟏𝟎−𝟏 1.30 × 10−5 

 

5.2 Bayesian inference 

 In this thesis, for Bayesian inference, the results obtained by using OLS and LARS 

are compared. One major advantage of LARS is that users can set the range of orders of 

polynomial chaos and LARS can give the users a specific order having minimum 𝜖𝐿𝑂𝑂, 

despite data shortage compared to OLS. Correlated model coefficients through a process 

of backward problem are shown in Table 12. At the same QOI, the model coefficients 

between OLS and LARS appeared to be similar values to each other. The posterior 

distributions of all coefficients does not present similar distributions depending on which 

algorithm (OLS, LARS) is used but they have a similar distribution tendency to each other 

according to the same QOI. (Fig. 17 – Fig. 20). 

Table 12. Correlated model coefficients corresponding QOIs 

  QOIs CSEP CNW CJET 

Base 

OLS 
𝐶𝑃𝑏𝑎𝑠𝑒

 2.290 -0.684 0.329 

RP 0.723 1.790 0.765 

LARS 
𝐶𝑃𝑏𝑎𝑠𝑒

 2.203 -0.621 0.500 

RP 0.828 0.894 0.408 

Ramp 

OLS 
SP 0.854 0.610 0.456 

RP 0.713 1.508 0.554 

LARS 
SP 0.857 0.487 0.499 

RP 0.724 1.252 0.266 
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Fig. 17. Posterior distribution for 𝐶𝑃𝑏𝑎𝑠𝑒
 and RP from OLS 

  

Fig. 18. Posterior distribution for 𝐶𝑃𝑏𝑎𝑠𝑒
 and RP from LARS 

  

Fig. 19. Posterior distribution for SP and RP from OLS 



38  

  

Fig. 20. Posterior distribution for SP and RP from LARS 

 Those coefficients in Table 12 were computed in the deterministic solver (GEKO 

model) and the results are shown in Fig. 21 and Fig. 22. Fig. 21 shows the pressure 

distribution along the base surface and the discrepancy is clearly seen between the target 

QOIs. The pressure distribution of calibrated models for 𝐶𝑃𝑏𝑎𝑠𝑒
 presents higher pressure 

than calibrated for RP and also shows more curved distribution. Fig. 21 also shows axial 

velocity along the centerline. The calibrated models for RP predict closer RP than 

calibrated models for 𝐶𝑃𝑏𝑎𝑠𝑒
 and overpredict the peak reverse velocity, which causes lower 

pressure leading to increased variation in pressure along the base surface.  

 In Fig. 22, the calibrated models for RP predict so closely to experimental data but 

underpredict the shock separation position. The calibrated models for SP show a good 

agreement with SP of experimental data. However they fail to predict RP. Table 13 and 14 

present the results of calibrated models. Error (%) which is in the blank shows the 

discrepancy with respect to each QOI between CFD results and experimental data. Overall, 

all calibrated models clearly show what they are calibrated for. Also, the calibrated models 

by OLS and LARS show very similar results, which was indicated because the calibrated 

model coefficients are not much different. As mentioned in Chap. 3, if computational cost 

becomes too expensive, LARS drawing reasonable outputs by using less data sets than 

OLS requires would be a more useful and efficient choice. 
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Fig. 21. Pressure distribution (left) and centerline velocity (right) 

  

Fig. 22. Nondimensional pressure (left) and skin friction coefficient (right) distribution 

 

Table 13. Value and error of QOIs corresponding to each calibrated model (Base flow)  

Value (m) 

 

(Error %) 

Model Calibrated model 

GEKO OLS-𝐶𝑃𝑏𝑎𝑠𝑒
 OLS-RP LARS-𝐶𝑃𝑏𝑎𝑠𝑒

 LARS-RP 

Base 

RP 
3.322 

(25.376) 

3.333 

(25.787) 

2.849 

(7.518) 

3.341 

(26.086) 

3.116 

(17.589) 

𝐶𝑃𝑏𝑎𝑠𝑒
 

-0.109 

(6.550) 

-0.106 

(3.978) 

-0.123 

(20.968) 

-0.106 

(4.124) 

-0.115 

(12.533) 
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Table 14. Value and error of QOIs corresponding to each calibrated model (Ramp flow) 

Value (m) 

 

(Error %) 

Model Calibrated model 

GEKO OLS-SP OLS-RP LARS-SP LARS-RP 

Ramp 

SP 
-0.101 

(214.881) 

-0.031 

(3.081) 

-0.021 

(33.821) 

-0.032 

(1.350) 

-0.022 

(30.724) 

RP 
0.065 

(587.710) 

0.022 

(134.371) 

0.014 

(45.362) 

0.023 

(140.417) 

0.015 

(56.179) 
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Chapter 6. Conclusion 

6.1 Conclusions 

In the present work, GEKO, 𝑘 -𝜔  BSL, 𝑘 -𝜔  SST and 𝑘 -𝜀  Realizable model were 

adopted to investigate their ability to predict crucial factors for compressible flows. Those 

4 models performed the supersonic flow over the axisymmetric base and the 24deg 

compression ramp flow. For the axisymmetric base flow, compressibility correction aided 

the models to predict a even closer level of pressure along the base surface than the models 

without any correction. However, using compressibility correction caused increasing the 

radial variation of the pressure due to the increased centerline velocity, which also causes 

the shear layer reattachment point predicted farther. 

As for the compression ramp flow which in the compressibility correction was not 

applied, GEKO and SST model overpredicted the separation shock point, the separation 

length and point, and even reattachment point. Also both models underpredicted the 

pressure and the skin friction in the relaxation region. On the contrary, BSL and Realizable 

model predicted those well.  

Uncertainty Quantification was applied to quantify the coefficients of GEKO model, 

which are able to be tuned. LHS method was used for sampling input variables assumed a 

uniform distribution. Regarding each compressible flow studied in this thesis, which model 

coefficient is dominant, was investigated through the process of the Forward problem. 

Coefficient CSEP was the most influential coefficient to the compressible flows. Using 

surrogate model which was constructed by OLS and LARS, likelihood function and 

MCMC were calculated. And then each calibrated model coefficient for specific QOIs was 

able to be known through the posterior distribution of random variables. Calibrated model 

coefficients through Bayesian inference for each QOI were computed in the deterministic 

solver, and the results clearly showed what QOIs they were calibrated for. Based on 

calibrated model coefficients, when CSEP increases, for axisymmetric base flow, it led to 

higher pressure levels and overpredicted RP. When it comes to 24deg compression ramp 

flow, it led to overpredicting the separation length and lower skin friction in the relaxation 

region.  

While the results obtained by GEKO model using calibrated coefficients cannot 

perfectly match the experimental data, it is apparent that the application of UQ enables 

more accurate computation of supersonic flows. 
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6.2 Future works 

 The further works are needed to identify uncertainty of GEKO model closure 

coefficients regarding 24-deg compression ramp flow. More data will be added to analyze 

QOIs distribution corresponding the order of polynomial chaos. 
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