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Abstract 

Deep learning has been applied to various fields, showing remarkable performance 

improvement. However, when published studies are applied to subtasks derived from common 

tasks or different domains, the performance improvement is often not as significant as 

expected or declines. To solve these problems, two types of representation learning, a study 

that skillfully handles the features obtained from the model, have been actively studied: metric 

learning and self-supervised learning. 

In this study, two experiments were conducted to check how representation learning, especially 

metric learning and self-supervised learning, affects medical images using cephalogram: 

'orthodontic diagnosis with cephalogram' and 'the effect of self-supervised learning on 

orthodontic diagnosis'. 

In the first study, three orthodontic diagnoses were conducted: anteroposterior skeletal 

discrepancies (APSD: Class I, Class II, and Class III), vertical skeletal discrepancies (VSD: 

normo-divergent, hyper-divergent, and hypo-divergent), and vertical dental discrepancies 

(VDD: normal overbite, open bite, and deep bite). To avoid ‘the gray zone’ where individual 

diagnoses are overlapped, ArcFace was added to the existing model. Also, Group 

Normalization was used for stable training with small data instead of Batch Normalization. As 

a result, the proposed model has consistently shown good performance in internal validation 

and external validation. 

In the second study, pretext task was conducted using SimSiam, one of the self-supervised 

learning models, and downstream task was conducted in APSD. For comparison, randomly 

initialized weights and weights pre-trained on ImageNet dataset were used. As a result of the 

linear evaluation and fine tuning, SimSiam showed better performance in full and low data 

regimes and did not induce overfitting compared to training from Scratch and ImageNet. 

Both studies confirmed that metric learning and self-supervised learning in medical images 

could improve performance, extract discriminative features, and train models that are robust 

to data distribution and the number of data. In the future medical image artificial intelligence, 

research that incorporates representation learning should be conducted rather than simply 

evaluating performance by learning by model. 
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Introduction 

Backgrounds 

Among artificial intelligence (AI) technologies, deep learning has been applied to various 

fields, such as computer vision, natural language processing, reinforcement learning, 

recommendation system, and database, showing remarkable performance improvement. The 

performance of general tasks, such as classification, detection, segmentation, automatic 

summarization, machine translation, and question answering, seems to have been converged. 

Researches that have achieved 1-2% performance improvement by modifying specific parts 

of the existing algorithm are dominantly compared to studies that achieved a considerable 

performance improvement as in 2-3 years ago. 

However, when the same study is applied to subtasks derived from these tasks or different 

domains, the performance improvement is often not as significant as expected or declines. One 

of the various reasons to be the main thing is that the model structure implemented for general 

tasks is not suitable for subtasks or other domains. To solve this problem, two types of 

representation learning, a study that skillfully handles the features obtained from the model, 

have been actively studied: metric learning, which usually is based on the distance between 

each feature, and self-supervised learning, which is used to obtain data-specific features. These 

researches have in common that they cluster the given data into specific rules. After these 

processes, it has the advantage of improving performance and helping researchers visually 

check the feature distribution. 

These methods described above are essential elements in the medical domain. Unlike natural 

images, the information of the image can be decided from only a few pixels to most pixels of 

the image, the pixel intensity is distributed from 8 bits to 16 bits, and related prior or posterior 

is often complexly intertwined with the data. In collecting, the data distribution can also vary 

significantly due to various conditions, such as the specificity of the institute collected and the 

period collected. Therefore, it can be said that the research dealing with feature distribution is 

essential in the medical domain. 

 

Metric learning for discriminative features 

Metric learning, based on the distance between each feature, has been mainly used for face 
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recognition. Most metric learning studies, such as SphereFace [29], Additive Margin Softmax 

[30], and ArcFace [1], have been adapted softmax and used angle distance mainly on a 

hypersphere. Also, margin loss, which maximizes inter-class margin and minimizes intra-class 

variation, has been used in metric learning. For example, ArcFace [1] changes individual 

weights and embedding features in softmax to 1 by L2 normalization. Then, the product of the 

weights and features could be regarded as a radius of the hypersphere and softmax could be 

controlled by just an angle between the weights and features. Additionally, an additive angular 

margin penalty was added to the angle. Through these steps, the features could be induced to 

be more discriminative. 

These metric learning methods usually have yielded good performance in face recognition 

which has long-tail datasets, but they are difficult to optimize the model. The process of fine-

tuning hyperparameters and model architecture is needed to ensure stable training. 

 

Self-supervised learning 

Labeling data usually needs lots of time and cost. Strong label, such as bounding box for 

detection and pixel-level label for segmentation, requires more time and cost than weak label. 

Specialized fields, such as the medical domain, also require more time and cost because 

experts are needed. Researches about efficient usage of data have been presented to reduce 

this time and cost: ‘weakly-supervised learning’ that generates strong label using weak label 

only, ‘semi-supervised learning’ that trains the model with labeled data and unlabeled data, 

and ‘self-supervised learning’ that extracts data-specific features using unlabeled data only. 

Among them, self-supervised learning, which is used in this study, has been shown remarkable 

results. Self-supervised learning can be divided into two stages: ‘pretext task’ that is set to train 

the model to extract data-specific features and ‘downstream task’ that trains the model to apply 

real task and evaluates performance. 

Early pretext task researches were conducted to find semantic features without any label in the 

image, like Exemplar [34], Context Prediction [35], Jigsaw Puzzle [36], Colorization [37], and 

Rotation [38]. Starting with CPC ([39], [40]), contrastive learning, which trains the model for 

the instance discrimination using positive and negative pairs, has been introduced, such as 

MoCo ([41], [42], [43]), SimCLR ([44], [45]), and SwAV [46]. Also, the researches about 
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pixel-level contrastive tasks, such as DenseCL [47], PixPro [48], SCRL [49], VADeR [50], 

and DetCon [51], have been studied to effectively obtain improved performance of pixel-level 

prediction, like detection or segmentation. However, negative pairs in contrastive learning 

cause a large batch size for training the model. Recently, researches that do not use negative 

pairs, such as BYOL [52], SimSiam [53], and Barlow Twins [54], have been presented. 

For downstream task, four tasks usually have been used to evaluate the encoder trained by 

pretext task: linear evaluation, fine-tuning, transfer learning, and retrieval. Linear evaluation 

only trains the fully-connected layer with the backbone network fixed. Fine-tuning trains all 

networks, including the backbone network. Transfer learning in self-supervised learning is 

used to train other domains. For example, if the backbone network is trained with ImageNet 

dataset, it is tested in COCO dataset. Last, retrieval is used by calculating recall among 

clustering, such as K-Nearest Neighbor. 

 

Objectives 

In this study, two experiments were conducted to check how representation learning, especially 

metric learning and self-supervised learning, affects medical images using cephalogram: 

'orthodontic diagnosis with cephalogram' and 'the effect of self-supervised learning on 

orthodontic diagnosis'.  

In the first study, three orthodontic diagnoses were conducted: anteroposterior skeletal 

discrepancies (APSD: Class I, Class II, and Class III), vertical skeletal discrepancies (VSD: 

normo-divergent, hyper-divergent, and hypo-divergent), and vertical dental discrepancies 

(VDD: normal overbite, open bite, and deep bite). All of the diagnoses can be classified using 

the cephalometric parameters obtained from the cephalometric landmarks, and 'the gray zone' 

between individual diagnoses was formed due to the continuous parameters. Also, there are 

there was a class imbalance problem due to the data collected from 10 dental institutes. To 

solve these problems, ArcFace [1], which induces discriminative features, was added to the 

existing model. In addition, Group Normalization [2], which shows good performance 

regardless of batch size, was used instead of Batch Normalization [3] for small batch training 

to use a small number of training data effectively. As a result, the proposed model has 

consistently shown good performance in internal validation and external validation. 
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In the second study, pretext task was conducted using SimSiam [5], one of the self-supervised 

learning models, and downstream task was conducted in APSD. For comparison, randomly 

initialized weights and weights pre-trained on ImageNet dataset were used. As a result of the 

linear evaluation and fine-tuning, SimSiam showed better performance in full and low data 

regimes and did not induce overfitting compared to training from weights pre-trained on 

ImageNet dataset. 

Both studies confirmed that metric learning and self-supervised learning in medical images 

could improve performance, extract discriminative features, and train models that are robust 

to data distribution and the number of data. Therefore, in the future medical image AI, research 

that incorporates representation learning should be conducted rather than simply evaluating 

performance by learning by model. 

 

Orthodontic Diagnosis using Metric Learning  

1. Dataset 

1.1. Data description 

Figure 1 shows the flowchart of a dataset and experimental setup. The cephalogram dataset 

for orthodontic diagnosis from 10 the Department of Orthodontics in 10 multi-centers, 

including Seoul National University Hospital (SNUDH), Kooalldam Dental Hospital (KADH), 

Ajou University Dental Hospital (AJUDH), Asan Medical Center (AMC), Chonnam National 

University Dental Hospital (CNUDH), Chosun University Dental Hospital (CSUDH), Ewha 

University Medical Center (EUMC), Kyung Hee University Dental Hospital (KHUDH), 

Kyungpook National University Dental Hospital (KNUDH), and Wonkwang University 

Dental Hospital (WKUDH) in South Korea was constructed. The data of Korean adult patients 

who underwent orthodontic treatment and/or orthognathic surgery between 2013 and 2020, 

except patients who were in childhood and adolescent period and had mixed dentition, was 

collected. All datasets were strictly anonymized before utilized. Table 1 shows the information 

on the product, radiation exposure condition, sensor, and image condition of the cephalometric 

radiograph system in each center, which showed a diversity of conditions. 
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Figure 1. Flowchart of dataset and experimental setup. 
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Table 1. Information on the product, radiation exposure condition, sensor, and image condition of the cephalometric radiograph system in 10 multi-

centers. 

 SNUDH KADH AJUDH AMC CNUDH CSUDH EUMC KHUDH KNUDH WKUDH 

Product 

Company Asahi Vatech Planmeca Carestream 
Instrumentariu

m 
Planmeca Asahi Asahi Asahi Planmeca 

Model 
CX-90SP-

II 
Uni3D NC Proline XC CS9300 

OrthoCeph OC 

100 
Proline XC 

Ortho stage 
(Auto III N 

CM) 

CX-90SP 
CX-90SP-

II 
Promax 

Radiation 

exposure 
condition 

Kvp 76 kVp 85 kVp 68 kVp 80 kVp 85 kVp 80 kVp 75 kVp 70 kVp 70 kVp 
Female 72 kVp, 

Male 74 kVp 

mA 80 mA 10mA 7 mA 12 mA 12 mA 12 mA 15 mA 15 mA 80 mA 10 mA 

sec 0.32 sec 0.9 sec 2.3 sec 0.63 sec 1.6 sec 1.8 sec 1 sec 0.3–0.35 sec 0.32 sec 1.87 sec 

Sensor 

image sensor 
Cassette (CR 

system) 
CCD sensor CCD sensor CCD sensor 

Cassette (CR 

system) 

Cassette (CR 

system) 

Cassette 

(CR system) 

Cassette (CR 

system) 

Cassette (CR 

system) 

CCD 

sensor 

sensor size 
10 x 12 

(inch) 
30 x 25 (cm) 

10.6 x 8.85 

(inch) 
30 x 30 (cm) 10 x 12 (inch) 8 x 10 (inch) 8 x 12 (inch) 

10 x 12 

(inch) 

11 x 14 

(inch) 
27 x 30 (cm) 

Image 

Image size 
(pixel x 

pixel) 

2000 x 2510 

/ 

2010 x 1670 

2360 x 1880 1039 x 1200 
2045 x 2272 / 

1012 x 2020 
2500 x 2048 

2392 x 1792 

/ 

various 

2510 x 2000 2500 x 2048 

1950 x 2460 

/ 

2108 x 1752 

1818 x 2272 

Actual 
resolution 

(mm/pixel) 

0.150 / 0.100 0.110 0.250 0.132 / 0.145 0.115 0.100 0.100 0.110 0.100 0.132 

Lateral cephalogram 

images used in this study 
(number) 

1,129 864 22 21 20 30 26 23 19 20 
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1.2. Diagnosis criteria description 

For the orthodontic diagnosis, three orthodontic diagnoses were used: anteroposterior skeletal 

discrepancies (APSD: Class I, Class II, and Class III), vertical skeletal discrepancies (VSD: 

normo-divergent, hyper-divergent, and hypo-divergent), and vertical dental discrepancies 

(VDD: normal overbite, open bite, and deep bite). The cephalometric parameters, which can 

be obtained through cephalometric landmarks, were used to classify each diagnosis: A point-

Nasion-B point angle (ANB) [6] for APSD, Frankfort mandibular plane angle (FMA) [7] and 

Jarabak's posterior/anterior facial height ratio (FHR) [8] for VSD, and overbite for VDD. A 

single orthodontic specialist detected the cephalometric landmarks, such as A point, Nasion, B 

point, Orbitale, Porion, Gonion, Menton, Sella, Mandible 1 crown, Mandible 6 distal, Maxilla 

1 crown, and Mandible 6 crown and calculated these cephalometric parameters using the V-

Ceph 8.0 program (Osstem, Seoul, Korea). After these processes, the specialist reexamined 

the calculated parameters by his opinion. 

As a golden standard, all of the cephalograms were classified into the three diagnosis groups 

by the specialist as follows: (1) For classification of APSD, the ANB value was defined within 

one standard deviation (SD) from the ethnic norm and sex as skeletal Class I; over one SD as 

skeletal Class II; and under one SD as skeletal Class III. (2) For classification of VSD, FMA 

and FHR were combined for training of the VSD. First, the FMA and FHR values were 

normalized by using the SD values. Second, the FHR values were flipped due to an opposite 

sign compared to the FMA values. Third, the values of FMA and flipped FHR were added 

because each is regarded as having equal weights. Fourth, the mean and SD value was obtained 

to classify into three groups. Then, the values were defined within one SD from the mean as a 

normo-divergent; over one SD as a hyper-divergent; and under one SD as a hypo-divergent. 

And (3) For classification of VDD, the overbite value was defined between 0 mm and 3 mm 

as a normal overbite, over 3 mm as a deep bite, and under 0 mm as an open bite. Table 2 shows 

classification criteria for the APSD, VSD, and VDD for orthodontic analysis. [9] 
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Table 2. Classification criteria for the anteroposterior skeletal discrepancy (APSD), vertical 

skeletal discrepancy (VSD), and vertical dental discrepancy (VDD) for orthodontic analysis. 

Sex 

APSD VSD VDD 

ANB FMA FHR overbite 

Mean SD Mean SD Mean SD Mean SD 

Femal

e 
2.4 1.8 24.2 4.6 65 9 

1.5 1.5 

Male 1.78 2.02 26.78 1.79 66.37 5.07 

 

 

2. Model Architecture 

In this study, there are three key points to perform orthodontic diagnosis: backbone network, 

metric learning for discriminative features, and normalization layer. 

 

2.1. Backbone network 

Many backbone networks had achieved the state-of-the-art in ImageNet datasets. The early 

models, such as LeNet [10], AlexNet [11], VGG [12], Inception [13], ResNet [14], DenseNet 

[15], and SENet [16], were made by generalizing particular network instantiations and design 

principles and applying them to numerous settings. Recently, the models based on neural 

architecture search (NAS) ([17], [18]) have shown better performance than earlier's, but there 

are no network design principles. EfficientNet [19], based on NAS and adjusted using 

compound scaling, has shown good performance and suggested optimized network design 

using model scaling. RegNet [20], which quantified the quality of a design space by sampling 

a set of models from that design space and characterizing the resulting model error distribution, 

has also shown state-of-the-art performance and presented a new network design paradigm. 

To select the most effective backbone network, some backbone networks were trained, not 

including RegNet, with pre-trained weights for ImageNet dataset and default settings. As a 

result, DenseNet-169 [15] was determined as our backbone network because it showed the 

best performance with our datasets. 
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2.2. Metric learning for discriminative features 

As shown in Figure 2, all datasets for orthodontic diagnosis have overlapping parts near the 

red lines pointing to each diagnosis criteria. It means these parts are challenging to clarify in 

two parts. In this study, ArcFace [1] was added to the last convolutional layer of the backbone 

in parallel with softmax layer during training to overcome this problem. For stable training, 

dropout and regularization were excluded, unlike [1]. After training, ArcFace head was 

removed and inference was implemented using only softmax layer like basic classifiers using 

the backbones. 

 

 

 

Figure 2. The cephalometric parameters’ distribution of the APSD, VSD, and VDD per each 

dataset. Red lines in the APSD and VSD indicate one SD of the normal classes addressed in 

Table 2. Red lines in the VDD indicate the boundary values, which were 0 mm and 3 mm. 
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2.3. Normalization layer 

Large batch size is usually used to obtain an accurate estimate of the gradient and finish 

training in a few hours. However, large batch training needs high computation cost and can 

cause low generalization performance when small size dataset is used. [21] and [22] said that 

using small batch size in training can improve training stability and generalization 

performance. 

Batch Normalization (BN) [3], which is known to relieve internal covariance shift through 

batch-wise normalization and re-normalization and is usually used in almost backbone 

network, causes inaccurate batch statistics estimation with small batch size. Because of this 

issue, Group Normalization (GN) [2], which has consistent performance regardless of batch 

size, was presented.  

In this study, small batch training regime was used to utilize small size dataset and improve 

training stability and generalization performance, and GN was used for this regime instead of 

BN. 

 

2.4. Summary 

Figure 3 shows that the model was set according to each state. Because the criterion of APSD 

and VSD is affected by patient’s sex, the model which diagnoses APSD or VSD was 

concatenated with a one-hot vector of sex after global average pooling (GAP) layer and the 

model of VDD was not. 

 

 

 



11 

Figure 3. Diagrams of the model architecture. (a) During training, ArcFace head was added to 

the last convolutional layer of the backbone in parallel with softmax layer. (b) After training, 

ArcFace head was removed and inference was implemented using only softmax layer. 

 

 

3. Experiments 

3.1. Data augmentation 

Many studies have used data augmentation techniques to solve the lack of data numbers in the 

real world. The techniques can expand the variance of data, making the model robust even 

when data is scarce. In addition to basic techniques such as rotation, crop, and flip, advanced 

techniques such as AutoAugment [23], RandAugment [24], and CTAugment [25] have 

recently been used for natural images. However, detailed techniques should be considered 

when the dataset is in the medical domain. In this study, the augmentation techniques which 

preserve essential features of cephalograms were used. Affine transformations, such as rotation, 

cropping, and shifting, were performed while maintaining the aspect ratio of each image. 

Especially, cropping which preserves orthodontic landmarks was used. The techniques that 

change the pixel level of cephalograms, such as contrast limited adaptive histogram 

equalization, gamma correction, and gaussian noise, were applied after the affine 

transformations. 

 

3.2. Experimental details 

This orthodontic diagnosis study was progressed with two questions: “Does metric learning 

really show better performance and have more discriminative features than other backbone 

networks?” and “Does metric learning show better performance in other tasks and external 

validation?”. 

For the first question, a small dataset (n=905) was constructed from nine hospitals (SNUDH, 

AJUDH, AMC, CNUDH, CSUDH, EUMC, KHUDH, KNUDH, and WKUDH). The dataset 

which belongs to the whole dataset described below was divided for training (n=580), 

validation (n=146), and test (n=179). Figure 4 shows the distribution of this small dataset. To 

evaluate our proposed method, the first experiment was implemented to compare the 
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performance of three options: DenseNet-169, DenseNet-169 + GN, and DenseNet-169 + GN 

+ ArcFace. The evaluation was conducted for diagnosing APSD only, and the environment 

was as described below except for 5-fold cross-validation. 

For the second question, as shown in Table 3, 1,993 lateral cephalogram images from two 

hospitals (SNUDH and KADH) were used for trainset (n=1,522) and internal testset (n=471), 

and 181 images from eight other hospitals (AJUDH, AMC, CNUDH, CSUDH, EUMC, 

KHUDH, KNUDH, and WKUDH) were used as the external testset. 

The image size was set to 224 x 224, which was the default setting of DenseNet-169, and the 

number of groups of GN was 2. ArcFace head was set to the default settings of [1] except for 

dropout and regularization for training stability. 5-fold cross-validation was used in the trainset 

and each result was described as the mean and SD. Training for APSD, VSD, and VDD was 

performed with a golden standard determined by a single orthodontic specialist and not the 

cephalometric parameters, including ANB, FMA, FHR, and overbite. The training condition 

was the fixed seed and 4 batch size during 100 epochs. The learning rate was 0.0001 with 

warm-up for the first 5 epochs and decay at 50 epochs by multiplying it by 0.1. Cross-entropy 

was used as an objective function. 

After training was completed, one-step classification was performed with the internal testset 

and external testset set to validate the performance of the constructed model. The results for 

the internal testset and external testset were compared with golden standard diagnosis data. 

First, our proposed model was evaluated to be suitable for this orthodontic diagnosis task in 

4.1. Then, the model was evaluated in an extended environment, which consisted of the whole 

dataset, other orthodontic diagnoses (VSD and VDD), and internal and external evaluation in 

4.2, 4.3, and 4.4. 
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Figure 4. Distribution of small dataset to evaluate our proposed model. (a) gender (female and 

male) and (b) the label of APSD (Class II, Class I, and Class III). 
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Table 3. Distribution of classification groups in each diagnosis for human golden standard in trainset, internal testset, and external testset. 

 
Training set Internal test set External test set sum 

SNUDH KADH sum SNUDH KADH sum AJUDH AMC EUMC CNUDH CSUDH KHUDH KNUDH WKUDH sum 
Int + Ext 

test sets 
Total 

APSD 

Class I 238 323 
561 

(36.9%) 
122 40 

162 

(34.4%) 
8 6 5 4 7 11 7 2 

50 

(27.6%) 

212 

(32.5%) 

773 

(35.6%) 

Class II 183 263 
446 

(29.3%) 
112 44 

156 

(33.1%) 
8 8 11 8 13 4 4 6 

62 

(34.3%) 

218 

(33.4%) 

664 

(30.5%) 

Class III 359 156 
515 

(33.8%) 
115 38 

153 

(32.5%) 
6 7 10 8 10 8 8 12 

69 

(38.1%) 

222 

(34.0%) 

737 

(33.9%) 

Sum 780 742 1,522 349 122 471 22 21 26 20 30 23 19 20 181 652 2,174 

VSD 

Normo-

divergent 
331 389 

720 

(47.3%) 
146 50 

196 

(41.6%) 
10 6 7 9 17 10 7 7 

73 

(40.3%) 

270 

(41.4%) 

989 

(45.5%) 

Hyper-divergent 314 241 
555 

(36.5%) 
135 40 

175 

(37.2%) 
5 9 12 6 3 7 8 6 

56 

(30.9%) 

231 

(35.4%) 

786 

(36.2%) 

Hypo-divergent 135 112 
247 

(16.2%) 
68 32 

100 

(21.2%) 
7 6 7 5 10 6 4 7 

52 

(28.7%) 

151 

(23.2%) 

399 

(18.4%) 

Sum 780 742 1,522 349 122 471 22 21 26 20 30 23 19 20 181 652 2,174 

VDD 

Normal overbite 440 493 
933 

(61.3%) 
196 53 

249 

(52.9%) 
11 11 10 8 9 10 10 10 

79 

(43.6%) 

328 

(50.3%) 

1,261 

(58.0%) 

Open bite 209 194 
403 

(26.5%) 
99 41 

140 

(29.7%) 
4 7 9 5 9 8 4 5 

51 

(28.2%) 

191 

(29.3%) 

594 

(27.3%) 

Deep bite 131 55 
186 

(12.2%) 
54 28 

82 

(17.4%) 
7 3 7 7 12 5 5 5 

51 

(28.2%) 

133 

(20.4%) 

319 

(14.7%) 

Sum 780 742 1,522 349 122 471 22 21 26 20 30 23 19 20 181 652 2,174 
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3.3. Analysis methods 

Three methods were used to analyze experimental results: Receiver Operating Characteristic 

(ROC) analysis [31], t-Stochastic Neighbor Embedding (t-SNE) [32], and Gradient-weighted 

Class Activation Mapping (Grad-CAM) [33]. 

ROC curve is created by plotting the true positive rate (TPR, sensitivity) against the false 

positive rate (FPR, 1-specificity) at various threshold settings and shows the ability of a binary 

classifier when its discrimination threshold is varied. ROC analysis is related to cost/benefit 

analysis of decision making and provides tools to select optimal models through ROC curve. 

In this study, ROC analysis was used to evaluate the performance of our model using accuracy, 

area under the curve (AUC), sensitivity, and specificity. To calculate the sensitivity and 

specificity, we assumed binary classification tasks for each diagnosis. For example, APSD can 

be classified as one of three cases, such as Class I and the others (Class II and Class III), Class 

II and the others (Class I and Class III), and Class III and the others (Class I and Class II). 

Then, sensitivity and specificity for each case were calculated. Because 5-fold cross-validation 

was used in this study, the ROC curves of five models were obtained and applied using the 

mean and SD at each specificity. 

t-SNE is a technique that visualizes high-dimensional data by giving each datapoint a location 

in a two or three-dimensional map. t-SNE uses a Student-t distribution to compute the 

similarity between two points in the low-dimensional space. In this study, t-SNE was used to 

check the feature distribution of trainset, internal testset, and external testset after GAP layer. 

For each diagnosis of APSD, VSD, and VDD, the labels of ground truth and prediction were 

set to check the distribution per each dataset. 

Grad-CAM is a technique for producing visual explanations which uses the gradients of any 

target concept, flowing into the final convolutional layer to obtain a coarse localization map 

focusing important regions in the image for predicting the concept. In this study, Grad-CAM 

was used to confirm the regions where our model mainly focused on diagnosing APSD, VSD, 

and VDD. 
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4. Results 

4.1. Evaluation of our proposed model 

Figure 5 and Table 4 show that our proposed model (DenseNet-169 + GN + ArcFace) has 

better performance than other models (DenseNet-169 and DenseNet-169 + GN). Also, Figure 

6 shows that our proposed model generates more discriminative features than others through 

the results of t-SNE. Through this sub-experiment, we could know that our proposed model, 

DenseNet-169 + GN + ArcFace, was optimized at orthodontic diagnosis task. 

 

 

Figure 5. The results of the ROC curve with AUC per class of each model. (a) Class I, (b) 

Class II, and (c) Class III. 

 

 

 

Figure 6. The results of t-SNE of the small dataset about each model. (a) DenseNet-169, (b) 

DenseNet-169 + GN, and (c) DenseNet-169 + GN + ArcFace. 
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Table 4. Accuracy, AUC, sensitivity, and specificity of each model in the first experiment. 

 

DenseNet-169 DenseNet-169 + GN 
DenseNet-169 + GN + 

ArcFace 

Class I Class II Class III Class I Class II Class III Class I Class II Class III 

Accuracy 0.8268 0.9162 0.9106 0.8547 0.9274 0.9274 0.8939 0.9330 0.9609 

AUC 0.9064 0.9576 0.9712 0.9302 0.9735 0.9660 0.9453 0.9856 0.9884 

Sensitivity 0.7586 0.8571 0.8472 0.8448 0.8571 0.8611 0.8103 0.9388 0.9306 

Specificity 0.8512 0.9462 0.9533 0.8595 0.9538 0.9720 0.9338 0.9308 0.9813 

 

 

4.2. The accuracy and AUC in ROC analysis 

Figure 7 and Figure 8 show the ROC curve in the internal testset and external testset for 

diagnosis of the APSD, VSD, and VDD, respectively. Table 5 shows the performance of our 

model in the internal testset and external testset using the binary ROC analysis. 

 

4.2.1. The accuracy and AUC of the internal testset in ROC analysis 

In APSD, Class III was highest (0.9372 and 0.9807), followed by Class II (0.8972 and 0.9533) 

and Class I (0.8488 and 0.9212). In VSD, hypo-divergent was highest (0.9346 and 0.9824), 

followed by hyper-divergent (0.9019 and 0.9730) and normo-divergent (0.8365 and 0.9186). 

In VDD, open bite was highest (0.8730 and 0.9475), followed by deep bite (0.8637 and 0.9286) 

and normal overbite (0.7376 and 0.8177). 

In APSD and VSD, the total accuracy reached nearly 0.9 (0.8944 and 0.8910) and the total 

AUC exceeded 0.95 (0.9517 and 0.9580). However, VDD showed a relatively lower total 

accuracy (0.8248) and the total AUC (0.8979) than APSD and VSD. 

 

4.2.2. The accuracy and AUC of the external testset in ROC analysis 

In APSD, Class III was highest (0.9252 and 0.9930), followed by Class II (0.8796 and 0.9601) 

and Class I (0.8320 and 0.9042). In VDD, open bite was highest (0.8917 and 0.9626), followed 

by deep bite (0.8586 and 0.9238) and normal overbite (0.7591 and 0.8359). However, VSD 
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showed a different pattern between the accuracy and AUC. Although the accuracy was highest 

for hypo-divergent (0.9094), followed by hyper-divergent (0.9061) and normo-divergent 

(0.8309), the AUC was highest for hyper-divergent (0.9730), followed by hypo-divergent 

(0.9684) and normo-divergent (0.9157). 

In APSD and VSD, total accuracy reached nearly 0.9 (0.8880 and 0.8821) and total AUC 

exceeded 0.95 (0.9524 and 0.9523). However, VDD showed a relatively lower total accuracy 

(0.8365) and total AUC (0.9074) than APSD and VSD. 

 

4.2.3. Comparison of the AUC values between the internal testset and external 

testset in the binary ROC analysis 

In APSD and VSD, Class III and open bite showed the highest AUC compared to other 

classifications (0.9807 and 0.9903 in the internal testset, 0.9475 and 0.9626 in the external 

testset). However, the VSD showed a different pattern. The internal testset showed the highest 

AUC for hypo-divergent pattern (0.9824), while the external testset showed the highest AUC 

for hyper-divergent pattern (0.9730). However, the difference in the AUC values was less than 

0.01. 

 

 

 

Figure 7. The results of the ROC curve in the internal testset from two hospitals for diagnosis 

of the APSD, VSD, and VDD. 
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Figure 8. The results of the ROC curve in the external testset from other eight hospitals for 

diagnosis of the APSD, VSD, and VDD. 
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Table 5. Performance of our model for the diagnosis of the APSD, VSD, and VDD in the internal test set and external test set using the binary ROC 

analysis. 

 

Accuracy AUC Sensitivity Specificity 

Internal test 

set 
External test set Internal test set External test set Internal test set External test set 

Internal test 

set 
External test set 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

APSD 

Class I 0.8488 0.0103 0.8320 0.0230 0.9212 0.0038 0.9042 0.0195 0.7938 0.0328 0.7840 0.0297 0.8764 0.0186 0.8504 0.0273 

Class II 0.8972 0.0057 0.8796 0.0153 0.9533 0.0026 0.9601 0.0067 0.8192 0.0334 0.7226 0.0515 0.9359 0.0161 0.9613 0.0046 

Class III 0.9372 0.0063 0.9525 0.0108 0.9807 0.0025 0.9930 0.0023 0.9111 0.0225 0.9652 0.0079 0.9497 0.0086 0.9446 0.0160 

Mean 0.8944 0.0368 0.8880 0.0518 0.9517 0.0245 0.9524 0.0382 0.8414 0.0571 0.8239 0.1076 0.9206 0.0345 0.9188 0.0516 

VSD 

Normo-

divergent 
0.8365 0.0082 0.8309 0.0267 0.9186 0.0046 0.9157 0.0151 0.8235 0.0279 0.7699 0.0416 0.8458 0.0122 0.8722 0.0178 

Hyper-

divergent 
0.9019 0.0035 0.9061 0.0203 0.9730 0.0047 0.9730 0.0047 0.8149 0.0273 0.9143 0.0293 0.9534 0.0190 0.9024 0.0360 

Hypo-divergent 0.9346 0.0098 0.9094 0.0164 0.9824 0.0015 0.9684 0.0026 0.9000 0.0394 0.8000 0.0661 0.9445 0.0127 0.9535 0.0110 

Mean 0.8910 0.0413 0.8821 0.0410 0.9580 0.0283 0.9523 0.0273 0.8461 0.0478 0.8280 0.0757 0.9146 0.0505 0.9094 0.0398 

VDD 

Normal 

overbite 
0.7376 0.0291 0.7591 0.0230 0.8177 0.0166 0.8359 0.0152 0.6530 0.0956 0.6582 0.0664 0.8288 0.0441 0.8373 0.0557 

Open bite 0.8730 0.0130 0.8917 0.0139 0.9475 0.0053 0.9626 0.0074 0.8371 0.0366 0.8275 0.0611 0.8882 0.0304 0.9262 0.0228 

Deep bite 0.8637 0.0270 0.8586 0.0127 0.9286 0.0099 0.9238 0.0055 0.8000 0.1100 0.8196 0.0836 0.8781 0.0530 0.8723 0.0457 

Mean 0.8248 0.0654 0.8365 0.0584 0.8979 0.0582 0.9074 0.0538 0.7634 0.1111 0.7684 0.1006 0.8651 0.0468 0.8786 0.0535 
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4.3. t-SNE of the APSD, VSD, and VDD per dataset 

In Figure 9, the ground truth in the trainset, internal testset, and external testset showed that 

dots with different colors mixed irregularly in the classification cutoff areas between the 

normal group (Class I in the APSD, normo-divergent in the VSD, and normal overbite in the 

VDD) and the other two groups (Class II and III in the APSD, hyper-divergent and hypo-

divergent in the VSD, and open bite and deep bite in the VDD). 

However, the AI prediction did not show an overlapped area between the normal group and 

the other two groups in the trainset, internal testset, and external testset. Therefore, it indicated 

that our model succeeded in creating a well-separation between the three classification groups 

for each diagnosis, resulting in the consistent classification of the three groups. 
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Figure 9. The results of t-SNE in the APSD, VSD, and VDD per each dataset. The labels of 

ground truth (GT) and prediction (PD) were set to check their distribution. 
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4.4. Grad-CAM for each diagnosis 

In Figure 10, heatmaps showed differences in the location and size of the focus areas according 

to the three classification groups for each diagnosis. It indicated that our model could 

effectively use the information in the lateral cephalogram images. 

 

 

 

Figure 10. The results of Grad-CAM for the APSD, VSD, and VDD. 

 

 

5. Discussions 

The present study has some meaningful outcomes as follows: (1) Despite the different quality 

of lateral cephalograms from diverse condition of cephalometric radiograph system in 10 

multi-centers (Table 1), clinically acceptable accuracy of diagnosis for APSD, VSD, and VDD 

was obtained; and (2) Since it was possible to give diagnosis for APSD, VSD, and VDD only 

with the input of lateral cephalograms, our model can be regarded as a general-purpose one-

step orthodontic diagnosis model. 

 

5.1. Clinical meaning of the comparison results between the internal and external 
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testsets in binary ROC analysis 

In the results of binary ROC analysis, the amounts of difference in the mean AUC values 

between internal and external testsets were less than 0.01 (APSD, Δ=0.0007; VSD, Δ=-0.0057; 

VDD, Δ=0.0095) in Table 5. Since these amounts of difference in the AUC values for APSD, 

VSD, and VDD in binary ROC analysis were almost insignificant, the reliability of our model 

was well validated in the external testset. Our model can be regarded as a reliable general-

purpose one-step orthodontic diagnosis model. 

 

5.2. Difference in the AUC values of Class II and Class III groups in APSD and hyper- 

and hypo-divergent groups in VSD in binary ROC analysis 

The hypo-divergent group showed a higher AUC score than the hyper-divergent group in the 

internal testset; while the hyper-divergent group showed the highest value for the AUC than 

the hypo-divergent group in the external testset (0.9824 vs. 0.9730 in the internal testset; 

0.9684 vs. 0.9730 in the external testset) in Table 5. However, the Class III group showed 

higher AUC values than the Class II group both internal and external testsets (0.9807 vs. 

0.9533 in the internal testset; 0.9930 vs. 0.9601 in the external testset) in Table 5. The reason 

might be a difference in the location and size of the focus areas in the diagnosis of VSD and 

APSD (i.e., relatively larger difference between Class II and Class III groups compared to 

those between the hyper-divergent and hypo-divergent groups in Figure 9). Further studies are 

necessary to investigate the reason why the Class III group showed a higher AUC score than 

the Class II group. 

 

5.3. Summary 

Through this study, our proposed model with metric learning has shown better performance 

than other baselines and consistent performance in three types of diagnosis using data with 

various qualities from multi-centers. The reason of these results is that discriminative features 

could be obtained due to training with metric learning, ArcFace, and sharp dividing lines 

between these diagnoses could be formed. 

However, a question of whether data consisting of continuous variables, such as ANB, FMA, 

FHR, and overbite, should be clearly divided still remains in orthodontic diagnosis, as various 
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variables must be considered in addition to those used in this study. To effectively use a narrow 

range of label data and obtain meaningful features, new methods using unlabeled data or small 

labeled data, such as self-supervised learning and semi-supervised learning, should be studied. 

 

Application of Self-Supervised Learning to Orthodontic Diagnosis 

1. Dataset 

The dataset, which is defined in orthodontic diagnosis task from 10 multi-centers (n=2,174), 

was used for labeled dataset. In addition, a dataset from KAD (n=15,833) was used for 

unlabeled dataset. Likewise, all of the unlabeled data were strictly anonymized before utilized.  

 

2. Model Architecture 

2.1. Self-supervised learning architecture to obtain data-specific features 

Most architectures for pretext task shows good performance when they are trained with large 

batch size regime in large datasets, such as ImageNet, JFT-300M, and Instagram-1B dataset. 

In this study, however, there was a relatively small dataset with about 18K samples and large 

batch size could not be used due to poor generalization. Because of this problem, SimSiam 

[53], which has simple Siamese architecture and shows good performance even with small 

batch size, was used for pretext task with DenseNet-121 [15] for a backbone network. 

 

2.2. Model settings for downstream task 

In this study, linear evaluation and fine-tuning were used to evaluate our backbone network 

trained with SimSiam (SimSiam). Also, stress tests using different ratios of training data, such 

as 25%, 50%, 75%, and 100%, were conducted to evaluate how the data ratios affect models’ 

performance.  As a control, the backbone networks with pre-trained weights on ImageNet 

dataset (ImageNet) and randomly initialized weights (Scratch) were used to compare their 

performance. 

 

3. Experiments 

3.1. Experimental details for pretext task 

Our SimSiam architecture was set to the default setting of [53]. Batch normalization was 
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applied to all convolutions of projection and prediction, not to prediction output. The 

dimension of the projection was 2048, the bottleneck dimension of the prediction was 512, 

and the output dimension was 2048. 

In self-supervised learning, for data augmentation, random cropping, random flipping, color 

jittering, and gaussian blurring, which were usually used in SimCLR, are mainly used. 

However, since color jittering cannot be used in medical images, histogram equalization was 

used instead of color jittering and gaussian noise was added to increase the variance of the 

pixel distribution. Batch size was 64 for 100 epochs, Adam optimizer was used, and learning 

rate was 0.01 without warm-up and learning rate decay.  

 

3.2. Experimental details for downstream task 

Like pretext task, histogram equalization, gaussian blurring, and gaussian noise were used for 

data augmentation. For orthodontic diagnosis, only a specific area of the cephalogram is used 

and this area can be calculated by cephalometric landmarks set in 1.2. For this reason, random 

cropping was applied while maintaining this area and random flipping was excluded. Batch 

size was 4 for 50 epochs, Adam optimizer was used, and learning rate was 0.0001 without 

warm-up and learning rate decay. Cross-entropy was used as an objective function. 

 

4. Results 

4.1. Pretext task for pretrained weights optimized our cephalometric dataset 

Figure 11 shows the results of pretext task using SimSiam. In Figure 11 (a), the training loss 

of SimSiam with our backbone network, DenseNet-121, converged to the optimal loss as the 

learning progressed. Figure 11 (b) shows that the SD of the projection outputs was distributed 

nearby the square root of the dimension of the projection. 
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Figure 11. The results of pretext task using SimSiam. (a) training loss and (b) the SD of the 

projection outputs. 

 

 

4.2. Downstream task to our cephalometric dataset using pre-trained weights 

Figure 12 shows the results of validation accuracy comparison of models with weights of 

SimSiam, ImageNet, and Scratch and models trained with frozen encoder or not for different 

dataset ratios. Since the training of the backbone network with frozen randomly initialized 

weights did not progress at all, the result of this case was not included in our results. 

As shown in Figure 12, the models which were trained with pre-trained weights of SimSiam 

(fine-tuning) showed better accuracy (0.7862, 0.8125, and 0.8618) than ImageNet (0.7730, 

0.8026, and 0.8454) and Scratch (0.6020, 0.7796, and 0.7796) when the dataset ratios were 

25%, 50%, and 100%, respectively. However, when the dataset ratio was 75%, ImageNet 

showed better accuracy (0.8520) than SimSiam (0.8289) and Scratch (0.8191). In 50% and 

75%, epochs of the best performance of ImageNet were 9 and 11, respectively. In contrast, 

epochs of the best performance of SimSiam were more than 25 epoch in all dataset regimes. 

When the backbone network was trained with frozen pre-trained weights (linear evaluation), 

SimSiam showed better accuracy (0.4046, 0.4375, 0.4638, and 0.4605) and ImageNet (0.3882, 

0.4342, 0.4539, and 0.4079). 

 

 



28 

 

Figure 12. The results of validation accuracy comparison of models with weights of SimSiam, 

ImageNet, and Scratch and models trained with frozen encoder or not for different dataset 

ratios. (a) 25%, (b) 50%, (c) 75%, and (d) 100%. 

 

5. Discussions 

5.1. Discussion for pretext task using SimSiam 

In Figure 11, the training loss converged to the optimal loss as the learning progressed and the 

SD of projection outputs was distributed nearby the square root of the dimension of the 

projection. If the projection outputs have a zero-mean isotropic Gaussian distribution, the SD 

of the L2-normalized projection outputs is , which d is the dimension of the projection. For 

these results, it can be known that our SimSiam was trained to extract data-specific features 

without collapsing. 
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5.2. Discussion for downstream task 

Figure 12 shows the results of validation accuracy comparison of models with weights of 

SimSiam, ImageNet, and Scratch and models trained with frozen encoder (linear evaluation) 

or not (fine-tuning) for different dataset ratios. In linear evaluation, SimSiam showed better 

performance than ImageNet in all of data ratios. It means that SimSiam trained with 18K 

cephalograms only was more optimized to APSD than ImageNet, which have been regarded 

as well-initialized weights to extract good features of images because it was trained 1.2M large 

natural image dataset. In other words, ImageNet could not overcome the difference between 

the natural images and the medical images and the difference between instance discrimination 

and orthodontic diagnosis. 

In fine-tuning, most ratio cases showed that SimSiam had better performance than ImageNet 

and Scratch, except 75%. However, in the 50% and 75% cases, the best performances of 

ImageNet were in the early stages of training and it seemed to be overfitting soon. It means 

that ImageNet can be an initialization point that can cause overfitting and should be used 

carefully. 

 

5.3. Summary 

Through this study, it was shown that even relatively smaller datasets than ImageNet can be 

used to train well-trained models. However, SimSiam architecture cannot be regarded as 

optimal architecture of pretext task for orthodontic diagnosis due to comparison results with 

ImageNet. Data augmentation, which is mainly used to obtain distinguishable features 

between positive pairs for instance discrimination, including SimSiam, cannot be a useful tool 

for non-instance discrimination, such as detection, segmentation, or tasks solving own problem. 

Especially, most tasks in the medical domain usually include various priors, like both skeletal 

deformity and spatial information have to be considered for orthodontic diagnosis 

simultaneously. Therefore, task-specific pretext task, which can extract intrinsic features for 

the task needs to be solved, like [47], [48], [49], [50], [51], should be considered delicately. 

 

Conclusion 

In this research, two studies were conducted to evaluate representation learning, especially 
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metric learning and self-supervised learning, in the medical domain. In the first study, metric 

learning was used to predict orthodontic diagnosis, resulting in improved performance and 

discriminative features of each data sample. In the second study, self-supervised learning was 

used to set pre-trained weights optimized for orthodontic diagnosis task, improving 

performance even in low data regimes. As can be seen from these results, research that 

incorporates representation learning should be considered rather than simply evaluating 

performance by learning by model.  
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Abstract (with Korean) 

인공지능 기술 중 딥러닝은 컴퓨터비전 뿐만 아니라 자연어 처리, 강화 학습, 추천 시스

템, 데이터 베이스 등 다양한 분야에 적용되어 눈에 띄는 성능 향상을 보이고 있다. 현

재 분류 (classification), 검출 (detection), 분할 (segmentation), 자동 요약 (automatic 

summarization), 기계 번역 (machine translation), 질의 응답 (question answering) 등 큰 범

위의 테스크들은 어느 정도 성능이 수렴된 것처럼 보인다. 실제로 2-3년 전처럼 큰 폭

의 성능 향상을 이루는 연구들보다 기존의 알고리즘의 특정 부분을 개선하여 1-2%의 

성능 향상을 이뤄낸 연구들이 주를 이루고 있다. 

하지만 이런 테스크들에 기반하여 파생된 세부 테스크 또는 다른 도메인에 동일한 연

구가 적용되었을 때 성능 향상은 기대만큼 크지 않거나 오히려 하락하는 경우가 많다. 

대표적인 원인으로 큰 테스크를 목표로 구현된 모델 구조가 세부 테스크나 다른 도메

인에는 적합하지 않은 경우가 될 수 있고, 주어진 데이터 분포가 달라지는 경우도 될 수 

있다. 이를 해결하기위해 최근에는 단순히 모델 구조와 알고리즘으로 해결하는 연구가 

아닌, 모델로부터 얻은 특징을 잘 처리해내는 연구인 표현 학습 (representation learning) 

이 활발하게 연구되고 있다. 

표현 학습에는 얼굴 인식에서 많이 사용되는 거리 학습 (metric learning)과 데이터의 본

질적인 특징을 얻기 위한 자기 지도 학습 (self-supervised learning) 등 다양한 연구 분야

가 존재한다. 이 연구들의 공통점은 주어진 데이터 간의 특정한 규칙을 이용해 군집화

를 하는 과정으로 학습하는 것이다. 이 과정을 거치고 나면 성능 개선은 물론, 연구자가 

데이터의 분포를 시각적으로 확인할 수 있도록 도와준다는 장점이 있다. 

위에서 설명한 방법들은 의료 영상을 이용한 인공지능 연구에서 꼭 필요한 요소들이다. 

일반 영상과 달리 영상의 정보를 결정하는 부분이 단 몇 픽셀부터 영상 대부분의 픽셀

까지 크기의 다양성이 존재하고, 화소 강도도 8bit에서 16bit로 다양하게 분포되어 있

으며, 연관된 사전 정보 (prior)나 사후 정보 (posterior)가 주어진 데이터와 복잡하게 얽

힌 경우가 많다. 그리고 데이터를 수집하는 과정에서 수집된 기관의 특이성, 수집된 기

간 등 다양한 조건에 의해 데이터의 분포가 천차만별로 달라질 수 있다. 이러한 환경속

에서 의료 데이터의 분포와 데이터 특징의 분포를 다루는 연구는 필수라고 할 수 있다. 

이 연구에서는 cephalogram을 이용하여 거리 학습과 자기 지도 학습이 의료 영상에 어

떤 영향을 미치는지 확인하기위해 ‘cephalogram을 이용한 교정 진단’과 ‘자기 지도 학

습이 교정 진단에 미치는 영향’, 이 두 가지 실험을 진행했다.  
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먼저 ‘cephalogram을 이용한 교정 진단’ 연구에서는 전후 골격 불일치 (anteroposterior 

skeletal discrepancies, APSD: Class I, Class II, and Class III), 수직 골격 불일치 (vertical 

skeletal discrepancies, VSD: normo-divergent, hyper-divergent, and hypo-divergent), 수직 치

아 불일치 (vertical dental discrepancies, VDD: normal overbite, open bite, and deep bite) 총 

3가지 진단 예측을 진행한다. 모든 진단은 두부 계측 랜드마크 (cephalometric landmark)

를 기준으로 계산된 계측치를 기준으로 분류될 수 있다. 따라서 개별 진단 사이의 기준 

영역 (gray zone)에서 잘 구분하는 것이 이 연구의 핵심이다. 또한, 데이터를 수집한 10

개의 기관 모두 수술 중심 기관이기 때문에 수술과 관련이 깊은 레이블의 데이터가 많

았다. 이를 위해 거리 학습 모델 중 ArcFace를 기존 모델에 추가하여 분별력있는 특징

을 유도하도록 했다. 또한, 적은 수의 학습 데이터를 효과적으로 사용하기위해 작은 배

치 사이즈로 학습을 진행했고, 작은 배치 사이즈에 좋은 성능을 보이는 Group 

Normalization을 Batch Normalization 대신 사용했다. 그 결과, 전체 데이터로 전후 골격 

불일치 진단을 위한 학습을 진행했을 때, 제안된 모델이 다른 모델보다 좋은 성능을 보

였다. 또한, 2개 기관의 데이터로 전체 진단에 대해 학습을 진행했을 때 학습에 사용된 

2개 기관 데이터로 이루어진 테스트셋으로 진행된 internal validation과 나머지 8개 기

관 데이터로 이루어진 테스트셋으로 진행된 external validation에서 거의 동등한 성능을 

얻을 수 있었다. 

두 번째 ‘자기 지도 학습이 교정 진단에 미치는 영향’ 연구에서는 자기 지도 학습 모델 

중 SimSiam을 cephalogram으로 사전 학습을 진행하고, 전후 골격 불일치 진단에 대해 

추가 학습을 진행했다. 비교를 위해 임의로 초기화된 가중치와 ImageNet 데이터셋으로 

사전 학습된 모델의 가중치를 사용하여 전후 골격 불일치 진단에 대해 학습을 진행했

다. 그 결과, 가중치를 모두 고정한 선형 평가 (linear evaluation)와 모델 전체를 재학습하

는 미세 조정 (fine-tuning)을 진행했을 때 SimSiam으로 만든 가중치를 사용한 경우가 

ImageNet 데이터셋으로 만든 가중치와 임의로 초기화된 가중치를 사용한 경우보다 전

체 또는 적은 데이터 환경에서 좋은 성능을 보였고 과적합을 유발하지 않았다. 

두 연구를 통해 의료 영상에서 거리 학습과 자기 지도 학습을 이용하면 성능 개선은 물

론, 분별력있는 특징을 추출하고 데이터 분포와 데이터 수에 강인한 모델을 학습할 수 

있음을 확인할 수 있었다. 앞으로 진행될 의료 영상 인공지능에서도 단순히 모델별로 

학습하여 성능을 평가하는 것이 아닌, 표현 학습이 수반된 연구가 진행되어야 할 것이

다.  
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