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Abstract

Deep learning, one of the artificial intelligence technologies in the spotlight recently, has
offered promising results in numerous computer vision tasks. Within the advances of
convolutional neural networks (CNN), deep learning has been rapidly adopted in medical
imaging such as classification and detection of lesion patterns, automated segmentation of
organs, medical image reconstruction, etc. Extensive datasets with high-quality images and
their precise annotations are required for the traditional approaches with supervised learning
methods. However, constructing a high-quality dataset is challenging in the field of medicine.
Limited data access, unbalanced datasets, and expensive annotation processes could limit the
prediction power and induce biased results in deep learning models.

Amid the increasing need for high-quality medical image datasets, the emergence of
generative adversarial networks (GAN)' has provided a new breakthrough. GANs learn an
ability to generate new plausible samples from an existing dataset through an adversarial
process. GANs have demonstrated potentials in various tasks, including domain adaptation,
super-resolution, image-to-image translation, image style transfer, and anomaly detection.
Despite the promising results of GANSs, it has been less explored in the medical field. In this
study, we suggested several unsupervised methods using progressive growing of GANs
(PGGAN)® for potential applications in medical imaging, especially on chest X-ray (CXR)
images. We address the following tasks: (a) evaluating the fidelity of synthetic CXR images
generated from PGGAN, (b) generating synthetic CXR images with a desired pulmonary
disease pattern by disentangling semantic representations in the latent space of PGGAN
learned in (a), and (c) developing an anomaly detection system that identifies anomalous
patterns in CXR images with an unsupervised scheme using PGGAN. In the first topic of (a),
we proposed a 3-step method that utilized a deep learning-based classification network
(classifier). We compared the performances of two classifiers which have separately trained
on real and synthetic CXR images (step 1 and 2) and evaluated on the identical test dataset of
real CXR images in terms of a binary classification: normal or abnormal (step 3). We have
found that synthetic CXR images generated from PGGAN preserved radiologic informatics
as much as the real ones. In the second topic of (b), we explored and discovered semantic

representations of predefined pulmonary disease patterns in the latent space of PGGAN.



With a simple linear regression, we demonstrated that controllable generation of CXR
images with desired disease pattern is possible. The evaluation was performed qualitatively
and quantitatively, by a visual scoring from an expert radiologist with more than 20-year-
experience and by a metric using the classifier suggested in (a), respectively. In the third
topic of (c), we proposed an anomaly detection system based on CXR images with an
unsupervised method using PGGAN. We trained PGGAN with a normal CXR dataset to
identify anomaly CXR samples. Given a CXR image with abnormality from a real dataset,
we approximated the most analogous normal CXR image by optimizing a latent vector with
an iterative algorithm. In the evaluation, we have demonstrated that anomalous patterns in
CXR could sensitively be detected without the need for disease annotations.

This study has shown the potentials of GANs in developing unsupervised deep learning-
based applications in medical imaging. Each result of high-fidelity image synthesis,
controllable image synthesis (image manipulation), and anomaly detection on CXR images
can be exploited to address existing problems in supervised learning such as patient privacy,

unbalanced dataset, and expensive annotations in medical imaging.
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Abbreviations

CNN (Convolutional Neural Networks)

CXR (Chest X-Ray)

CAD (Computer Aided Diagnosis)

CT (Computed Tomography)

MRI (Magnetic Resonance Imaging)

GAN (Generative Adversarial Networks)

VAE (Variational Auto-Encoder)

AMC (Asan Medical Center)

SNUBH (Seoul National University Bundang Hospital)

PA (Postero-Anterior)

ROC (Receiver Operating characteristic)

AUROC (Area Under the Receiver Operating Characteristic)
DICOM (Digital Imaging and Communications in Medicine)
PNG (Portable Network Graphics)

IS (Inception Score)

FID (Fréchet Inception Distance)

P&R (Precision and Recall)

PPL (Perceptual Path Length)

Grad-CAM (Gradient-weighted Class Activation Mapping)
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Introduction

Background

Deep learning, a part of machine learning algorithms based on artificial neural networks, has
provided an unprecedented performance in various computer vision tasks. Especially, deep
learning with convolutional neural networks (CNN) has rose its popularity after the winning
to the famous challenge, ImageNet Large-Scale Visual Recognition Challenge in 2012, by
reducing the error rate by half in image classification task. The use of CNN has shown high
performances not only in image classification task but also in object detection, semantic
segmentation, image reconstruction, depth estimation, visual question answering, etc.

These promising results had led to a lot of attentions from medical domain. Deep learning-
based computer aided diagnosis (CAD) systems have been rapidly adapted as providing
complementary to physicians to improve diagnostic reliability. In chest X-ray images (CXR),
the most commonly used diagnostic imaging modality, studies have demonstrated that CNN-
based classification networks can achieve radiologist-level performances on lesion detection
of pulmonary diseases*®. Another study has shown combined performance of a radiologist
and CAD system outperformed a single radiologist, CAD only, and two readers’. Also,
applications to other famous modalities were developed and embedded in medical equipment
to help clinical practice such as automatic liver tumor segmentation in computed tomography
(CT) scans™ and a reconstruction of magnetic resonance imaging (MRI) scans>'%'2,

The rapid growth of deep learning applications has been driven by virtue of the accessibility
of enormous datasets, expanded computational power, and the development of deeper neural
networks. Supervised learning, the most widespread approach with discriminative models,
also requires a large number of data samples and their labels. High performances in the
above studies could be achieved in virtue of large, high-quality medial datasets with

61314 However, medical images are not always available in real

corresponding annotations
world settings. Data access to medical images is highly restricted by ethical considerations to
protect patient privacy. Also, the process of annotation is time-consuming, tedious, and
expensive as it requires an expertise in medical domain. Furthermore, data imbalance

problem often exists with different size of class samples, especially with a number of

common diseases and a paucity of rare ones. These low accessibility in medical datasets



hinder broad applications of deep learning techniques in medicine.

Generative model approach

A generative model can generate new plausible data samples. Generative models learn the
data distribution and estimate how likely a given sample is, while discriminative models
differentiate between data samples with different categories. The emergence of generative
adversarial networks (GAN)', by Ian Goodfellow in 2014, has marked a new era in deep
generative networks. GAN provided a new approach in constructing training datasets by
generating realistic synthetic images. GAN estimates implicit generative models with an
adversarial training of two networks: a generator and a discriminator. A generator creates
synthetic data similar to the input (the real one) and a discriminator distinguishes between
the real and synthetic data created from the generator. The two networks are trained
simultaneously through an adversarial process of which the generator is trained to maximize
the probability of a discriminator making mistakes. In the meanwhile, the generator
understands a distribution of training dataset and learns meaningful representations of the
dataset. The rationale behind GAN is to learn a nonlinear mapping from a randomly sampled
variable, i.e. latent vector, in the latent space to a specific output image. Instead of the
extensive sampling procedure for estimating the real data distribution, GAN chose to sample
from a simple distribution such as Gaussian distribution and then transform the latent vector
(or the random noise) using the nonlinear function such as neural networks. With this

mapping, GAN has an ability to generate new plausible images from existing dataset.

Evaluation metric for GAN generator

The objective measurement of GAN performance remains an open problem. There are
several metrics for evaluating the generator performance of GAN. The most intuitive method
would be a visual examination by human experts. Some studies'>'® had performed a visual
Turing test — a test that how well domain experts classify real and synthetic images in a blind
manner. Authors of these studies asserted that synthetic images generated by GAN is so
realistic that even domain experts could confuse. Although visual inspection is a simple and

natural way to evaluate, it has drawbacks. Domain experts may evaluate with biases and may



not notice subtle artifacts on pixel level. To overcome these subjectivities in measurement,
quantitative evaluation metrics were devised. To begin with, Inception Score (IS) was
proposed. The score seeks to incorporate the image quality and image diversity by using a
well-known classification network, Inception'’. Given a set of synthetic images, IS is
calculated from how likely an image belongs to a pre-defined category and how diverse the
categories that the images fall into. Fréchet Inception distance (FID), a kind of advanced
version of IS that utilizes the real images as well as synthetic ones, was proposed and used in
measuring performance of StyleGAN'®, Other methods such as precision and recall (P&R)"
and perceptual path length (PPL) were used in measuring performance of StyleGAN2%.
These methods take advantage of a pre-trained classification network such as Inception v3*!
and the feature vectors extracted by those networks. However, most pretrained networks
were trained on ImageNet”, whose feature extraction could be quite different in medical
images. Therefore, it is inadequate for medical domain to see generated synthetic images —

this method is inefficient and not quantitative — nor using ImageNet-pretrained network.

High-resolution Image synthesis
Image synthesis is the core capability of GAN showing compelling results in various

computer vision tasks**2°

without the need for label responses. Despite impressive results,
conventional GANs have inherent difficulty in training. This is partly explained by the fact
that optimizing the two components of GANs, generator and discriminator, have to be
optimized in parallel and are dependent on each other. While these issues are severe in the
generation of high resolution images. This appears to be intuitively possible since starting
with a high-resolution image makes the classification task of discriminator easier compared
when the generator generates a nearly accurate image from scratch. Thus, the task of the
discriminator is easy to be optimized, and it tends to dominate in the early training process,
therefore preventing successful training. The novel approach® was to start with a low-
resolution GAN and increasing image size step by step during training (hence the name
progressively growing GAN, PGGAN), thereby assisting the generator and stabilizing the

model. It was demonstrated the utility of this approach in the image synthesis of human faces

by generating a large number of high resolution (1024 x 1024 pixel). After the release of



PGGAN, significant improvements have been developed towards high-quality synthetic

images such as StyleGAN", and recently released StyleGAN2?,

Disentanglement of latent space

Well-trained generator of GAN can generate synthetic images with the encoded
representations (latent vectors). The latent space of the learned distribution can be compose
of multiple subspaces of semantic representations. The semantic representations of a training
dataset could be a structural features of pulmonary disease patterns such as texture, shape, or
the size of in CXR images. By using the features, we could build an understanding of how
the disease pattern initiates and how its size changes. However, the latent space of GAN is
likely to be entangled when learning a distributed representation of training datasets. Thus, a
disentangling the latent space is required to generate or manipulate synthetic images with
semantic control. By discovering the disentangled the semantic feature representations,
manipulation of synthetic images could be possible. Previous researches on disentangling
semantic feature representations in the latent space of GAN achieved a conditional

manipulation of a given synthetic image®*">?,

Unsupervised Anomaly Detection

Anomaly detection refers to the identification of rare items, events or observations which
raise suspicions by differing significantly from the majority of the data. Unsupervised
anomaly detection is another research area that has been actively explored with the rise of
generative models such as GAN and variational auto-encoder (VAE). The main concept is
that anomalous samples can be distinguishable in the latent space of GAN which trained
with normal samples only. By establishing a decision boundary that deviate from the normal
samples, the model can detect other possible anomalous samples has never seen before.
However, there exists an ill-posed problem in a mapping of GAN. To generate a synthetic
image closest to the given unseen sample, it is required to find a corresponding latent vector.
Unfortunately, GAN does not yield this reverse mapping automatically. One of the tractable
solutions to detour these inversion problem is to approximate the latent vector by an iterative

optimization algorithm. With this approach, unsupervised anomaly detection could provide



complementary information to radiologists in diagnostic procedures.

Objectives

This study was conducted toward GAN-based applications in medical imaging. Each task of
high-fidelity image synthesis, controllable image synthesis (image manipulation), and
anomaly detection on CXR images can be exploited to address existing problems in
supervised learning such as patient privacy, unbalanced dataset, and insufficient annotation

in medical datasets.

Methods

1. Datasets

We constructed three CXR datasets according to the following purposes. Two datasets were
collected to train GAN generators for the generation of synthetic CXR images. The other one
was collected to train a CNN classifier for feature learning of pulmonary disease patterns.
The Institutional review board for human investigations at Asan Medical Center (AMC) and
Seoul National University Bundang Hospital (SNUBH) approved the retrospective study
with a waiver of informed consent. The imaging data were de-identified in accordance with

the Health Insurance Portability and Accountability Act privacy rule.

1.1. GAN training dataset

We retrospectively collected 217,924 CXR scans from AMC between Jan 1, 2011 and Jun 30,
2016. The CXR scans had a size of about 2000 x 2000 pixels and were stored in 12-bit
digital imaging and communications in medicine (DICOM) format. Each of the scans had a
radiological report associated with it. First, diagnostic codes were used to identify whether
the case has any diseases. Then, each scan was divided into two image-level classes: normal
and abnormal. Of the 217,924 scans, 109,201 and 108,723 cases were labeled as normal and
abnormal, respectively. After the image-level labeling with normal/abnormal, i.e. weak
labeling, each of the CXR scans were then screened for the exclusion criteria: subjects under
the age of 19, scans not from GE manufacturer, i.e. the majority of X-ray equipment in AMC,

and scans not taken in a posteroanterior (PA) view. Additionally, normal scans with presence



of devices (e.g. catheter, pace maker, wire, etc.) were excluded using a simple CNN classifier.
In total, the dataset is consisted of 164,101 CXR scans, of which 72,938 are normal cases, of
which 91,163 are abnormal cases. Each cases were used for generating synthetic CXR
images with and without pulmonary abnormalities, respectively.

For the experiments of high-fidelity image synthesis and controllable image synthesis, a total
of 111,163 CXR images were used, of which 20,000 were normal cases subsampled from
72,938, of which 91,163 were abnormal cases. For the experiments of anomaly detection,
72,938 CXR images of normal cases were used. The CXR scans were converted into 8-bit
portable network graphics (PNG) format and 99th percentile normalization was conducted

for all converted images.

1.2. CNN classifier training dataset

The CXR images were collected from two medical centers, AMC, Seoul, South Korea, and
SNUBH, Bundang, South Korea. The dataset is consisted of 6,069 normal CXR scans and
3,417 CXR scans of the patients at AMC including 944, 550, 280, 1364, and 331 cases with
nodule[s], consolidation, interstitial opacity, pleural -effusion, and pneumothorax,
respectively. 1,035 normal CXR scans and 4,404 cases at SNUBH?® including 1189, 853,
1009, 998, and 944 cases with nodule[s], consolidation, interstitial opacity, pleural effusion,
and pneumothorax, respectively. One subject may have multiple abnormalities in a given
CXR. All CXR scans have mask annotations and confirmed by corresponding chest CT
images. In addition, abnormal cases with pleural effusion and pneumothorax were
determined by consensus of two thoracic radiologists with the corresponding chest CT
images.

For the experiment of high-fidelity image synthesis and its evaluation, we divided all the
data into two categories of normal and abnormal. We considered five pulmonary abnormality
cases as abnormal in terms of binary classification. Therefore, there were 7,104 normal CXR
images from 7,104 healthy subjects and 10,234 abnormal CXR images from 7,821 patients
when counting multi-labeled cases. For the experiment of controllable image synthesis, on
the other hand, normal and the aforementioned five pulmonary disease abnormality cases

were used to deal with 6-class classification.
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Figure 1. A flowchart of dataset selection for GAN training

Table 1. Dataset compositions for GAN training for normal and abnormal CXR image synthesis.

] Sub-sampling[

20,000 scans

[ 111,163 scans

Abnormal training set

Diagnosis Normal CXR dataset Abnormal CXR dataset
Normal 72,938 20,000

Abnormal - 91,163

Total 72,938 111,163




Table 2. Dataset description of the AMC and SNUBH datasets.

Diagnosis Number of images
AMC* SNUBH** Total
Normal (NM) 6,069 1,035 7,104
Nodule (ND) 1,012 1,516 2,528
Consolidation (CS) 653 1,114 1,767
Abnormal | Interstitial Opacity (I0) 312 1,222 10,234 1,534
Pleural Effusion (PE) 1,599 1,302 2,901
Pneumothorax (PT) 421 1,083 1,504




2. Evaluating GAN generator

Our goal is to devise a method that can be used for quantitative comparison of GAN
generator performance and to validate its possible application in medical imaging. To this
end, our approach is to utilize CNN-based models to measure prediction performances. In
the evaluation, we compared the performances of each of two CNN classifiers which have

been trained on real and synthetic CXR dataset, respectively.

2.1. PGGAN training

To generate synthetic images, we utilized PGGAN?® due to its superior performance of
realistic image generation with a high-resolution quality. Training scheme of PGGAN is
shown in Figure 2. PGGAN learns to generate synthetic images starting from a low
resolution of 4x4 pixel to a high resolution of 1024x1024 pixels by growing image sizes
progressively. For PGGAN training, 20,000 normal CXRs and 91,163 abnormal CXRs were
used. The PGGAN training was done for 130 epochs and took around 12.2 days with two
Titan RTX GPUs.

Latent wector
1x512
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a ‘_1 r_‘ l‘ ‘-] m;:%wza
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Figure 2. Generation of high-quality CXRs using a progressively growing training scheme of PGGAN.



2.2. CNN classifier training.

For the training of a CNN classifier, we chose a network architecture of ResNet-50°* which
based on deep residual network (ResNet)** since it has a high performance, which has been
frequently used to solve a real-world classification problem. We modified the softmax layer
to a sigmoid layer in Resnet-50 to deal with binary classification; normal or abnormal. The
classifiers were trained using real and synthetic images, respectively, with the same strategy
including the identical architecture™ and hyperparameters. For fair comparison, the identical
number of images and ratio of normal and abnormal cases were used. We divided the CXR
dataset for CNN classifier training into three groups — train set (60% of the total dataset,
8,981 out of 14,925 subjects), validation set (20% of the total dataset, 2,972 out of 14,925
patients), test set (20% of the total dataset, 2,972 out of 14,925 patients). The detailed
number of images are stated in Figure 3. Finally, the evaluation was performed using the real

CXR images for both classifiers trained on real and synthetic dataset.

2.3. 3-step classification scheme.

We suggest the 3-step concept in the utilization of classification network. To begin with, a
classifier was trained using the real dataset with normal and abnormal CXR images. Then,
we created pseudo-labels for the PGGAN-generated images according to the classification
results of a classifier trained on real dataset, i.e. classifier (real). We set a likelihood
threshold to be above 0.7 and below 0.3 for labeling normal and abnormal samples,
respectively. Also, a classifier was trained using the synthetic dataset, i.e. classifier
(synthetic), containing normal and abnormal CXR images. Finally, a real test set was
evaluated and compared in the prediction using both classifiers (real and synthetic). For all

these three steps, sensitivity, specificity, and AUROC were calculated.

2.4. Evaluation of the fidelity of GAN generator

To compare performances of (1) classifier trained on real dataset on real test set, (2) classifier
trained on synthetic dataset on synthetic test set, (3) classifier trained on synthetic dataset,
we evaluated their area under the receiver operating characteristic curves (AUROCs). We

used AUROC comparison method® for statistical comparison, which is to evaluate how

10



significantly different two AUROC: are. Overall classification scheme is shown in Figure 3.

Step 1. Train on Real dataset Step 2. Train on Synthetic dataset

Real Dataset

Pseudo-
labeling

Abnormal

Classifier (Real) Classifier (Synthetic)

Step 3. Test on Real dataset

Figure 3. An overall classification scheme for evaluating performance of the GAN generator.

3. Disentanglement of the latent space in GAN

Our goal is to generate synthetic CXR images with desired pulmonary disease patterns.
Inspired by transparent latent space GAN (TL-GAN)®, we chose an approach of a direct
mapping between the latent vector z from GAN' and the numeric prediction output y from a
CNN pulmonary disease classifier*. An overview of the experimental setting is shown in
Figure 4. To discover the axes of the feature representations of pulmonary diseases in the
latent space of GAN'. First, we trained PGGAN on the weakly labeled dataset of 111,163
CXR images. We generated 30,000 synthetic CXR images from this network, then classified
by pulmonary disease using a multi-label CNN classifier*. Finally, we performed a linear

regression on the latent vector z of the synthetic CXR images and the output y from the CNN

11



classifier. The regression slopes for each disease class are considered as the axes of disease
patterns.

The evaluation was conducted qualitatively and quantitatively. To validate whether the
discovered axes are plausible, a visual scoring test was performed by an expert thoracic
radiologist. We additionally evaluated the likelihood of the synthetic CXR images with the
CNN classifier.

3.1. PGGAN training

The training procedure is identical to 2.1. PGGAN model was selected to implement to
generate synthetic CXR images since this model performed better in reconstructing both of a
global structure and fine details with a high-resolution quality among other GAN variant

models 313637

. PGGAN was intended to learn meaningful feature representations of
pulmonary disease patterns in each real CXR image during training. After training, a
generator network of PGGAN is capable of generating synthetic CXR images with random

disease patterns from a 512-dimensional variables of random noises, i.e. latent vector.

3.2. CNN classifier training

We utilized a multi-label CNN classifier with a high performance to obtain the pulmonary
disease classification outputs of the synthetic CXR images. The base model architecture is
Resnet-50 replaced the last softmax layer with six sigmoid layers to deal with CXR images
with multiple disease patterns to deal with a multi-label classification problem. The
particulars of altered architecture can be found in*. The classifier has an ability to detect and
classify five disease patterns—nodule[s], consolidation, interstitial opacity, pleural effusion,
and pneumothorax— simultaneously on CXR images. The generated 30,000 synthetic CXR
images were given to the classifier and classified with six classes (five disease patterns and
normal), whose outputs are numeric numbers between 0 and 5. A CNN classifier can be used
to predict pulmonary abnormalities in the randomly generated CXR images and classify into

six classes including normal and five classes of abnormal patterns.

12



3.3. Exclusion of synthetic images with multiple disease patterns

Before performing a linear regression, we excluded synthetic CXR images having multiple
disease patterns. We set a criteria; the highest likelihood output of disease pattern to be 0.9 or
above and the rest of other likelihood outputs to be 0.1 or below. In this case that we can
assume that there is a single disease pattern in the image. We selected the CXR images with

a single disease pattern using the 6-class CNN classifier.

3.4. Linear transformation

The feature representations of disease patterns could be encoded in latent vector of the
PGGAN. We performed a linear regression to discover a correlation among the samples by
disease pattern class. With the regression of the latent vectors and the classification outputs
of synthetic CXR images, disentangled feature axis of disease pattern could be discovered.
Also, if PGGAN is well trained, it generates synthetic images of a various diseases,
reflecting the incidence distribution of each disease pattern in the training dataset. To reduce
the natural bias on the regression result of derived from the data imbalance, we added
weights on the class with rare disease patterns in a proportion of the number of images each
class. After the linear regression, we explored the disentanglement by manipulating the given

image toward the regression slope.

3.5. Evaluation of manipulated synthetic images

Qualitative and quantitative evaluations were performed to evaluate the disentanglement.
With synthetic images that has been manipulated with an axis control, a visual scoring with
an expert radiologist was used. Additionally, the classification-based evaluation metric was

used suggested with a 3-step scheme.
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Figure 4. An overview of the experimental setting for disentangling the latent space of PGGAN and

manipulating the synthetic images.
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4. Anomaly detection system with GAN

Our goal is to explore the unsupervised anomaly detection scheme in CXR images. Our
method is inspired by anomaly detection with generative adversarial networks (AnoGANY,
which trains normal samples to identify anomalous samples. Given a real CXR image,
possibly with an anomalous patterns, an iterative algorithm with a residual loss was adapted
to obtain the closest normal image and its corresponding latent vector. In the evaluation, we
compared the performance of two systems trained with supervised and unsupervised manner.
Specifically, we compared the sensitivities of the classifier trained with a pre-defined disease
patterns and the proposed anomaly detection system. The classifier is identical to the one in

used 3.2.

4.1. PGGAN training

The training procedure is identical to 2.1 and 3.1 but with normal CXR images to generate
synthetic CXR images without any abnormality. A total of 72,938 weakly labeled normal
cases were used. The data selection and curation criteria is identical to the PGGAN training

for abnormal cases.

4.2. Approximating the latent vector

To approximate the most similar synthetic image that can be generated by a generator of
PGGAN, an optimization technique using a residual loss was used. With a certain iteration
number, two images of unseen and approximated images were acquired. By subtracting two
images, the difference map in a pixel-level can be calculated. By setting the residual
difference map as a loss function to be minimized, the generator is able to discover the
matching latent vector in the latent space. As a residual difference score, we utilized mean

pairwise squared error.
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Results

1. Evaluation of image fidelity of PGGAN-generated data

Performance of classifier (real) on real test set had AUROC 0.9830, sensitivity 93.4%,
specificity 93.3%. Also, performance of classifier (synthetic) on synthetic test set was
AUROC 0.9673, sensitivity 90.8%, and specificity 90.5%. Finally, the performance of the
classifier (synthetic) on the real test set was AUROC 0.8810, sensitivity 85.1%, and
specificity 81.6%. AUROC comparison between two classifiers (real and synthetic) on the
real test set showed there was no statistical difference between them (p<0.0001). Results
have demonstrated that the performance gap between classifiers trained on PGGAN-
generated data and real data was negligible in the abnormality classification of CXR images.

Confusion matrices of three experiments are shown in Table 3, Table 4, Table 5, respectively.

Table 3. A confusion matric of a classifier (real) on real test set.

Classifier (real) on real test set Ground truth Total
Normal Abnormal
Normal 1,312 92 1,404
Predicted
Abnormal 109 1,540 1,549
Total 1,321 1,632 3,053

Table 4. A confusion matrix of a classifier (synthetic) on synthetic test set.

Ground truth
Classifier (synthetic) on synthetic test set Total
Normal Abnormal
Normal 1,264 128 1,392
Predicted
Abnormal 157 1,504 1,661
Total 1,421 1,632 3,053

Table 5. A confusion matrix of a classifier (synthetic) on real test set.

Ground truth
Classifier (synthetic) on real test set Total
Normal Abnormal
Normal 1,095 191 1,286
Predicted
Abnormal 326 1,441 1,767
Total 1,421 1,632 3,053
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Figure 7. A result of the ROC curve with AUROC score using a classifier (real) on real test set.

Figure 8. A result of the ROC curve with AUROC score using a classifier (synthetic) on synthetic test

set.

Figure 9. A result of the ROC curve with AUROC score using a classifier (synthetic) on real test set.
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2. Disentangled pulmonary representations in PGGAN

Linear regression was performed on 8,683, 478, 484, 215, 2235 synthetic CXR images
classified as normal, nodule[s], consolidation, interstitial opacity, and pleural effusion using
the 6-class classifier. The synthetic CXR images classified as pneumothorax were found to
be none. We observed that three feature representations of pulmonary disease patterns of
consolidation, interstitial opacity, and pleural effusion were discovered among the
aforementioned five disease classes in latent space of PGGAN. We then manipulated CXR
images starting from normal synthetic image to abnormal with desired pulmonary disease
patterns. Figure 10. shows the continuous changes on pulmonary regions with abnormalities
when manipulating images by moving along the discovered axes of (a) consolidation, (b)
interstitial opacity, and (c) pleural effusion. In Figure 10, each of the first column of (a), (b),
and (c) represents the conditional image synthesis and the second column represents the
corresponding activation maps when predicting using a 6-class CNN classifier. For the
quality evaluation, we performed a visual Turing test with a board-certified radiologist with
20+ years of experience. The generated images on the axis of consolidation, interstitial
opacity, and pleural effusion were scored from normal to severe, moderate and moderate
stages, respectively. For the quantity evaluation, the likelihood of each disease evaluated by
the CNN classifier increased from 0 to 0.97, 0.89, 0.99, respectively. We observed that both
of the visual scoring of the severity of disease patterns and the likelihood of each pulmonary

disease pattern class increased according to the intensity of manipulation.
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3. Anomaly detection with PGGAN

To compare the performance of disease detection on CXR scans with that of AnoGAN model
and that of preexisting supervised anomaly detection with convolutional neural net (CNN)
model. Our approach to validate the detection performance is by a visual scoring by an
expert radiologist. Given an unseen CXR image, AnoGAN will provide the most similar case
with some differences. Ideally, the difference map with the highest gap with be localized as
representing anomaly patterns, since the anomalous region could not possibly be learned in
the training of normal samples. Material and methods. Using a modified AnoGAN model,
PGGAN-trained generator yields corresponding synthetic normal images for given query
images by minimizing mean squared error between the query and the synthetic images. Test
set consisted of 100 CXR scans to validate and compare the models. The 100 examinations
were composed of 12 classes as follows: nodule (n=8), calcification (n=9), consolidation
(n=6), interstitial opacity (n=9), atelectasis (n=9), mediastinal widening (n=6), pleural
effusion (n=8), pneumothorax (n=9), rib fracture (n=10), pneumomediastinum (n=10),
subcutaneous emphysema (n=6), and pneumoperitoneum (n=10). AnoGAN model and 6-
class CNN model (6-class: normal, nodule, consolidation, interstitial opacity, pleural effusion,
and pneumothorax) were used for disease detection of the images. For these 100 query
images, AnoGAN model generated normal fake image most similar to that image and then
detected disease by subtraction of two images. After the test set, one board certified
cardiothoracic radiologist reviewed the images to evaluate the model performance. Results
of 100 CXR scans, 90 diseases were detected using AnoGAN model as follows: Nodule
100.0% (8/8), calcification 100.0% (9/9), consolidation 100.0% (6/6), interstitial opacity
100.0% (9/9), atelectasis 88.9% (8/9), mediastinal widening 83.3% (5/6), pleural effusion
87.5% (7/8), pneumothorax 100.0% (8/9), rib fracture 80.0% (8/10), pneumomediastinum
60.0% (6/10), subcutaneous emphysema 83.3% (5/6), and pneumoperitoneum 100.0%
(10/10). The 6-class CNN model detected 37 of 40 diseases for trained classes (92.5%)
whereas that detected only 14 of 60 disease for untrained classes (23.3%). Overall detection
rate was higher in AnoGAN model than that of 6-class CAD model (90.0% vs. 51.0%, p <
0.001).
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Table 6. Results of AnoGAN with a various disease samples with the metric of sensitivity

Index Diagnosis Number of Subjects  Num of Subjects Sensitivity
Detected by AnoGAN
1 Nodule* 8 8 100.0%
2 Calcification 9 9 100.0%
3 Consolidation™® 6 6 100.0%
4 Interstitial opacity™* 9 9 100.0%
5 Atelectasis 9 8 88.9%
6 Mediastinal widening 6 5 83.3%
7 Pleural effusion* 8 7 87.5%
8 Pneumothorax* 9 8 88.9%
9 Rib fracture 10 8 80.0%
10 Pneumomediastinum 10 6 60.0%
11 Subcutaneous emphysema 6 5 83.3%
12 Pneumoperitoneum 10 10 100.0%
Total 100 90 90.0%
Discussion

Medical image synthesis

Questions have been raised as to whether the utilization of GAN-generated synthetic images
in medical imaging is acceptable. Although many researches have been conducted based on
GAN-based augmentation in medical domain'®***2 the metric of validating whether GAN-
generated synthetic images have enough information was less explored. Our study focused
on measuring how well the GAN generator generates synthetic CXR images towards the use
of those in downstream tasks, especially classification. The experimental results have shown
that a CNN classifier trained on PGGAN-derived synthetic dataset has only slight superiority
in performance compared to the one trained on real CXR dataset. One possible interpretation
of the results could be that GAN-generated CXR images are so realistic that even a classifier
trained on synthetic dataset can learn anatomical variations with pulmonary abnormalities
comparable to the one with real dataset. For better explanations, we additionally analyzed
what regions of a given CXR image influenced the CNN classifier the most when predicting.

Figure 11. represents Gradient-weighted Class Activation Mapping (Grad-CAM)* results of
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the classifiers trained on real and synthetic datasets on testing. The first row represents a
sample of normal case (left) and the second row represents a sample of pneumothorax case
with ground truth annotation (left). The second and third columns represent the respective
Grad-CAM results (center and right) when tested on the classifiers trained on real and
synthetic datasets. In both cases, the activated regions from each classifier have anatomical
consistency. These visual explanations can be a strong indication of radiological information

preserved in GAN-generated CXR images.
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Figure 11. A Visualization of Grad-CAM results on false negative and false positive cases.

We derived a quantitative measure of image fidelity by exploiting a CNN-based
classification network trained on PGGAN-generated synthetic images. By using AUROC
comparison, we implemented a metric that has statistical validations. This has benefits
compared to visual scoring test, IS, FID, PPL which does not have any statistical validations.
Additionally, unlike FID, which uses an ImageNet-pretrained network, we can utilize the
semantic features trained on the medical domain; these will measure the anatomical fidelity

instead of general features of natural images.



Leveraging the high-fidelity image synthesis, we moved forward the controllable image
synthesis in the medical domain. Our study aimed at CXR image synthesis with desired
pulmonary disease patterns by disentangling the latent space of PGGAN. Visual scoring of
our results has demonstrated that the control of CXR images with a specific pulmonary
abnormality was plausible as well as moving towards the axis represent the severity of the
disease patterns. In addition, we adapted our suggested evaluation metric for validating the
manipulated CXR images with pulmonary abnormalities. The results have shown that visual
scoring and the confidence score of a softmax output have an agreement in terms of disease

severity.
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Figure 12. Examples of synthetic image manipulation using disentangled feature axes.

Despite the controversy, GAN-generated synthetic images are still beneficial in downstream
tasks in medical imaging in the following three viewpoints. First, patient privacy can be
resolved when constructing datasets. Second, GAN-generated synthetic images can be useful

to improve the generalizability of deep learning models, as the training of deep learning
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models heavily relies on the quality and quantity of dataset. However, existing data
augmentation techniques are manually designed, e.g. rotation, flipping, color jittering, and
can not cover the whole variation of the data. GANs can allow us to sample the training data
distribution which offers more flexibility in augmenting the training data as shown in Figure
13. PGGAN is able to generate high resolution realistic images with unprecedented level of
details. This could be readily applied to CXR dataset to generate images with pulmonary
abnormalities that has insufficient number of cases. Third, another potential of GANs will be

in synthesizing uncommon cases. Through conditional image synthesis with disentangling

the latent space, many issues driven from imbalanced dataset or rare cases can be detoured.

Figure 13. Examples of normal (top) and abnormal (bottom) cases of PGGAN-generated CXR images.

In short, our study concerning medical image synthesis suggested two points: (1) PGGAN
can generate high-fidelity CXR images preserving radiologic information so that can be
utilized for possible applications in medical imaging and (2) the disentanglement of PGGAN
enabled CXR image synthesis with control of pulmonary disease features. Not only our
method and result imply GAN can generate realistic images on image information level
which can be used in data augmentation, anomaly detection, and other various fields, but
also show performance of GAN can be measured with classifier with statistical manner.

Alongside many promising results of GANSs, there are limitations in our study. First,

although our evaluation metric for GAN generator is practically useful, there is still in need
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of confirmation of medical experts to be applicable to diagnostic assistance in clinical
settings. Second, the feature axes of nodule and pneumothorax were not discovered, which

needs more exploration in the latent space of PGGAN.

Unsupervised Anomaly Detection

Unsupervised anomaly detection has drawn many attentions with the rise of GAN-based
applications. Our study is to explore the anomaly detection system in CXR images with
high-quality image synthesis using PGGAN. Figure 14. and Figure 15. show each result of
unsupervised and supervised methods in detecting pulmonary abnormal patterns. In Figure
14. when unseen data with abnormality is given, the unsupervised anomaly detection system
can detect and localize the region of interest in positive residual difference map. Our study
suggested that the unsupervised scheme of anomaly detection has potentials with unseen data
with rare disease patterns, which could not sensitively be detected with a supervised scheme.
By highlighting possible anomalous regions in CXR images, physicians or radiologists could
use this system as a complementary or a second opinion in diagnosis. However, there are
several weaknesses of this system. The optimization process is relatively time-consuming
compared to the supervised system since it requires an iterative algorithm. Also, false
positive maps should be handled. In Figure 15., false positive maps are found when the
unseen data without abnormality is given. The false positive region makes difficult to
recognize anomalous patterns in lung regions and set a threshold to differentiate between
normal and abnormal. Although PGGAN can generate high-quality data and optimization
method can successfully discover the matching latent vector, additional post processing is

required to obtain accurate locations or boundaries.
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Figure 14. A visual comparison of the prediction results of abnormal case using unsupervised and

supervised methods in anomaly detection.
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Figure 15. A visual comparison of the prediction results of normal case using unsupervised and

supervised methods in anomaly detection.

Conclusion

In this study, we have explored GANs, especially PGGAN, in the task of the evaluation of
the GAN generator, control of image synthesis, and anomaly detection on CXR images. We
suggested an unsupervised method that uses GANs and CNN classifiers for CXR image

generation and its quantitative evaluation. Additionally, we suggested an unsupervised
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anomaly detection in CXR images using GANs with an iterative optimization. Results have

demonstrated that PGGAN-generated synthetic CXR images can be utilized for downstream

tasks such as data augmentation. Furthermore, disentanglement of the latent space of

PGGAN can be exploited to generate insufficient data with rare disease patterns. Lastly,

detection of pulmonary abnormalities in CXR images was feasible in an unsupervised

manner without the need for data unusual or rare patterns. Our method has shown the

potential of utilizing GANs in various applications in medical imaging, bypassing patient

privacy, data imbalance, and data deficiency issues.
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