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Abstract

Deep learning, one of the artificial intelligence technologies in the spotlight recently, has 

offered promising results in numerous computer vision tasks. Within the advances of 

convolutional neural networks (CNN), deep learning has been rapidly adopted in medical 

imaging such as classification and detection of lesion patterns, automated segmentation of 

organs, medical image reconstruction, etc. Extensive datasets with high-quality images and 

their precise annotations are required for the traditional approaches with supervised learning

methods. However, constructing a high-quality dataset is challenging in the field of medicine.

Limited data access, unbalanced datasets, and expensive annotation processes could limit the 

prediction power and induce biased results in deep learning models.

Amid the increasing need for high-quality medical image datasets, the emergence of 

generative adversarial networks (GAN)1 has provided a new breakthrough. GANs learn an 

ability to generate new plausible samples from an existing dataset through an adversarial 

process. GANs have demonstrated potentials in various tasks, including domain adaptation, 

super-resolution, image-to-image translation, image style transfer, and anomaly detection.

Despite the promising results of GANs, it has been less explored in the medical field. In this 

study, we suggested several unsupervised methods using progressive growing of GANs

(PGGAN)3 for potential applications in medical imaging, especially on chest X-ray (CXR) 

images. We address the following tasks: (a) evaluating the fidelity of synthetic CXR images 

generated from PGGAN, (b) generating synthetic CXR images with a desired pulmonary

disease pattern by disentangling semantic representations in the latent space of PGGAN 

learned in (a), and (c) developing an anomaly detection system that identifies anomalous

patterns in CXR images with an unsupervised scheme using PGGAN. In the first topic of (a), 

we proposed a 3-step method that utilized a deep learning-based classification network

(classifier). We compared the performances of two classifiers which have separately trained 

on real and synthetic CXR images (step 1 and 2) and evaluated on the identical test dataset of 

real CXR images in terms of a binary classification: normal or abnormal (step 3). We have 

found that synthetic CXR images generated from PGGAN preserved radiologic informatics

as much as the real ones. In the second topic of (b), we explored and discovered semantic 

representations of predefined pulmonary disease patterns in the latent space of PGGAN.
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With a simple linear regression, we demonstrated that controllable generation of CXR 

images with desired disease pattern is possible. The evaluation was performed qualitatively

and quantitatively, by a visual scoring from an expert radiologist with more than 20-year-

experience and by a metric using the classifier suggested in (a), respectively. In the third 

topic of (c), we proposed an anomaly detection system based on CXR images with an 

unsupervised method using PGGAN. We trained PGGAN with a normal CXR dataset to 

identify anomaly CXR samples. Given a CXR image with abnormality from a real dataset, 

we approximated the most analogous normal CXR image by optimizing a latent vector with 

an iterative algorithm. In the evaluation, we have demonstrated that anomalous patterns in 

CXR could sensitively be detected without the need for disease annotations.

This study has shown the potentials of GANs in developing unsupervised deep learning-

based applications in medical imaging. Each result of high-fidelity image synthesis, 

controllable image synthesis (image manipulation), and anomaly detection on CXR images

can be exploited to address existing problems in supervised learning such as patient privacy,

unbalanced dataset, and expensive annotations in medical imaging.
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Abbreviations

CNN (Convolutional Neural Networks)

CXR (Chest X-Ray)

CAD (Computer Aided Diagnosis)

CT (Computed Tomography)

MRI (Magnetic Resonance Imaging)

GAN (Generative Adversarial Networks)

VAE (Variational Auto-Encoder)

AMC (Asan Medical Center)

SNUBH (Seoul National University Bundang Hospital)

PA (Postero-Anterior)

ROC (Receiver Operating characteristic)

AUROC (Area Under the Receiver Operating Characteristic)

DICOM (Digital Imaging and Communications in Medicine)

PNG (Portable Network Graphics)

IS (Inception Score)

FID (Fréchet Inception Distance)

P&R (Precision and Recall)

PPL (Perceptual Path Length)

Grad-CAM (Gradient-weighted Class Activation Mapping)
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Introduction

Background

Deep learning, a part of machine learning algorithms based on artificial neural networks, has 

provided an unprecedented performance in various computer vision tasks. Especially, deep 

learning with convolutional neural networks (CNN) has rose its popularity after the winning

to the famous challenge, ImageNet Large-Scale Visual Recognition Challenge in 2012, by 

reducing the error rate by half in image classification task. The use of CNN has shown high 

performances not only in image classification task but also in object detection, semantic

segmentation, image reconstruction, depth estimation, visual question answering, etc.

These promising results had led to a lot of attentions from medical domain. Deep learning-

based computer aided diagnosis (CAD) systems have been rapidly adapted as providing 

complementary to physicians to improve diagnostic reliability. In chest X-ray images (CXR), 

the most commonly used diagnostic imaging modality, studies have demonstrated that CNN-

based classification networks can achieve radiologist-level performances on lesion detection 

of pulmonary diseases4-6. Another study has shown combined performance of a radiologist 

and CAD system outperformed a single radiologist, CAD only, and two readers7. Also, 

applications to other famous modalities were developed and embedded in medical equipment

to help clinical practice such as automatic liver tumor segmentation in computed tomography

(CT) scans8,9 and a reconstruction of magnetic resonance imaging (MRI) scans2,10-12.

The rapid growth of deep learning applications has been driven by virtue of the accessibility 

of enormous datasets, expanded computational power, and the development of deeper neural 

networks. Supervised learning, the most widespread approach with discriminative models,

also requires a large number of data samples and their labels. High performances in the 

above studies could be achieved in virtue of large, high-quality medial datasets with 

corresponding annotations6,13,14. However, medical images are not always available in real 

world settings. Data access to medical images is highly restricted by ethical considerations to

protect patient privacy. Also, the process of annotation is time-consuming, tedious, and 

expensive as it requires an expertise in medical domain. Furthermore, data imbalance 

problem often exists with different size of class samples, especially with a number of 

common diseases and a paucity of rare ones. These low accessibility in medical datasets 
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hinder broad applications of deep learning techniques in medicine.

Generative model approach

A generative model can generate new plausible data samples. Generative models learn the 

data distribution and estimate how likely a given sample is, while discriminative models 

differentiate between data samples with different categories. The emergence of generative 

adversarial networks (GAN)1, by Ian Goodfellow in 2014, has marked a new era in deep 

generative networks. GAN provided a new approach in constructing training datasets by

generating realistic synthetic images. GAN estimates implicit generative models with an 

adversarial training of two networks: a generator and a discriminator. A generator creates 

synthetic data similar to the input (the real one) and a discriminator distinguishes between

the real and synthetic data created from the generator. The two networks are trained 

simultaneously through an adversarial process of which the generator is trained to maximize

the probability of a discriminator making mistakes. In the meanwhile, the generator

understands a distribution of training dataset and learns meaningful representations of the 

dataset. The rationale behind GAN is to learn a nonlinear mapping from a randomly sampled 

variable, i.e. latent vector, in the latent space to a specific output image. Instead of the 

extensive sampling procedure for estimating the real data distribution, GAN chose to sample 

from a simple distribution such as Gaussian distribution and then transform the latent vector 

(or the random noise) using the nonlinear function such as neural networks. With this 

mapping, GAN has an ability to generate new plausible images from existing dataset.

Evaluation metric for GAN generator

The objective measurement of GAN performance remains an open problem. There are 

several metrics for evaluating the generator performance of GAN. The most intuitive method 

would be a visual examination by human experts. Some studies15,16 had performed a visual 

Turing test – a test that how well domain experts classify real and synthetic images in a blind 

manner. Authors of these studies asserted that synthetic images generated by GAN is so 

realistic that even domain experts could confuse. Although visual inspection is a simple and 

natural way to evaluate, it has drawbacks. Domain experts may evaluate with biases and may
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not notice subtle artifacts on pixel level. To overcome these subjectivities in measurement, 

quantitative evaluation metrics were devised. To begin with, Inception Score (IS) was

proposed. The score seeks to incorporate the image quality and image diversity by using a 

well-known classification network, Inception17. Given a set of synthetic images, IS is 

calculated from how likely an image belongs to a pre-defined category and how diverse the 

categories that the images fall into. Fréchet Inception distance (FID), a kind of advanced

version of IS that utilizes the real images as well as synthetic ones, was proposed and used in 

measuring performance of StyleGAN18. Other methods such as precision and recall (P&R)19

and perceptual path length (PPL) were used in measuring performance of StyleGAN220. 

These methods take advantage of a pre-trained classification network such as Inception v321

and the feature vectors extracted by those networks. However, most pretrained networks

were trained on ImageNet22, whose feature extraction could be quite different in medical 

images. Therefore, it is inadequate for medical domain to see generated synthetic images –

this method is inefficient and not quantitative – nor using ImageNet-pretrained network. 

High-resolution Image synthesis

Image synthesis is the core capability of GAN showing compelling results in various 

computer vision tasks24-26 without the need for label responses. Despite impressive results, 

conventional GANs have inherent difficulty in training. This is partly explained by the fact 

that optimizing the two components of GANs, generator and discriminator, have to be 

optimized in parallel and are dependent on each other. While these issues are severe in the 

generation of high resolution images. This appears to be intuitively possible since starting 

with a high-resolution image makes the classification task of discriminator easier compared 

when the generator generates a nearly accurate image from scratch. Thus, the task of the 

discriminator is easy to be optimized, and it tends to dominate in the early training process, 

therefore preventing successful training. The novel approach23 was to start with a low-

resolution GAN and increasing image size step by step during training (hence the name 

progressively growing GAN, PGGAN), thereby assisting the generator and stabilizing the 

model. It was demonstrated the utility of this approach in the image synthesis of human faces 

by generating a large number of high resolution (1024 × 1024 pixel). After the release of 
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PGGAN, significant improvements have been developed towards high-quality synthetic

images such as StyleGAN18, and recently released StyleGAN220.

Disentanglement of latent space

Well-trained generator of GAN can generate synthetic images with the encoded

representations (latent vectors). The latent space of the learned distribution can be compose 

of multiple subspaces of semantic representations. The semantic representations of a training

dataset could be a structural features of pulmonary disease patterns such as texture, shape, or 

the size of in CXR images. By using the features, we could build an understanding of how 

the disease pattern initiates and how its size changes. However, the latent space of GAN is 

likely to be entangled when learning a distributed representation of training datasets. Thus, a 

disentangling the latent space is required to generate or manipulate synthetic images with 

semantic control. By discovering the disentangled the semantic feature representations, 

manipulation of synthetic images could be possible. Previous researches on disentangling 

semantic feature representations in the latent space of GAN achieved a conditional 

manipulation of a given synthetic image25,27-32.

Unsupervised Anomaly Detection

Anomaly detection refers to the identification of rare items, events or observations which 

raise suspicions by differing significantly from the majority of the data. Unsupervised

anomaly detection is another research area that has been actively explored with the rise of 

generative models such as GAN and variational auto-encoder (VAE). The main concept is 

that anomalous samples can be distinguishable in the latent space of GAN which trained 

with normal samples only. By establishing a decision boundary that deviate from the normal 

samples, the model can detect other possible anomalous samples has never seen before.

However, there exists an ill-posed problem in a mapping of GAN. To generate a synthetic 

image closest to the given unseen sample, it is required to find a corresponding latent vector. 

Unfortunately, GAN does not yield this reverse mapping automatically. One of the tractable 

solutions to detour these inversion problem is to approximate the latent vector by an iterative

optimization algorithm. With this approach, unsupervised anomaly detection could provide
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complementary information to radiologists in diagnostic procedures.

Objectives

This study was conducted toward GAN-based applications in medical imaging. Each task of 

high-fidelity image synthesis, controllable image synthesis (image manipulation), and 

anomaly detection on CXR images can be exploited to address existing problems in 

supervised learning such as patient privacy, unbalanced dataset, and insufficient annotation 

in medical datasets.

Methods

1. Datasets

We constructed three CXR datasets according to the following purposes. Two datasets were

collected to train GAN generators for the generation of synthetic CXR images. The other one

was collected to train a CNN classifier for feature learning of pulmonary disease patterns. 

The Institutional review board for human investigations at Asan Medical Center (AMC) and 

Seoul National University Bundang Hospital (SNUBH) approved the retrospective study 

with a waiver of informed consent. The imaging data were de-identified in accordance with 

the Health Insurance Portability and Accountability Act privacy rule.

1.1. GAN training dataset

We retrospectively collected 217,924 CXR scans from AMC between Jan 1, 2011 and Jun 30,

2016. The CXR scans had a size of about 2000 x 2000 pixels and were stored in 12-bit 

digital imaging and communications in medicine (DICOM) format. Each of the scans had a

radiological report associated with it. First, diagnostic codes were used to identify whether 

the case has any diseases. Then, each scan was divided into two image-level classes: normal 

and abnormal. Of the 217,924 scans, 109,201 and 108,723 cases were labeled as normal and 

abnormal, respectively. After the image-level labeling with normal/abnormal, i.e. weak 

labeling, each of the CXR scans were then screened for the exclusion criteria: subjects under 

the age of 19, scans not from GE manufacturer, i.e. the majority of X-ray equipment in AMC,

and scans not taken in a posteroanterior (PA) view. Additionally, normal scans with presence
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of devices (e.g. catheter, pace maker, wire, etc.) were excluded using a simple CNN classifier.

In total, the dataset is consisted of 164,101 CXR scans, of which 72,938 are normal cases, of 

which 91,163 are abnormal cases. Each cases were used for generating synthetic CXR 

images with and without pulmonary abnormalities, respectively.

For the experiments of high-fidelity image synthesis and controllable image synthesis, a total 

of 111,163 CXR images were used, of which 20,000 were normal cases subsampled from 

72,938, of which 91,163 were abnormal cases. For the experiments of anomaly detection, 

72,938 CXR images of normal cases were used. The CXR scans were converted into 8-bit 

portable network graphics (PNG) format and 99th percentile normalization was conducted 

for all converted images.

1.2. CNN classifier training dataset

The CXR images were collected from two medical centers, AMC, Seoul, South Korea, and 

SNUBH, Bundang, South Korea. The dataset is consisted of 6,069 normal CXR scans and 

3,417 CXR scans of the patients at AMC including 944, 550, 280, 1364, and 331 cases with 

nodule[s], consolidation, interstitial opacity, pleural effusion, and pneumothorax, 

respectively. 1,035 normal CXR scans and 4,404 cases at SNUBH33 including 1189, 853, 

1009, 998, and 944 cases with nodule[s], consolidation, interstitial opacity, pleural effusion, 

and pneumothorax, respectively. One subject may have multiple abnormalities in a given 

CXR. All CXR scans have mask annotations and confirmed by corresponding chest CT 

images. In addition, abnormal cases with pleural effusion and pneumothorax were 

determined by consensus of two thoracic radiologists with the corresponding chest CT 

images.

For the experiment of high-fidelity image synthesis and its evaluation, we divided all the 

data into two categories of normal and abnormal. We considered five pulmonary abnormality 

cases as abnormal in terms of binary classification. Therefore, there were 7,104 normal CXR 

images from 7,104 healthy subjects and 10,234 abnormal CXR images from 7,821 patients

when counting multi-labeled cases. For the experiment of controllable image synthesis, on 

the other hand, normal and the aforementioned five pulmonary disease abnormality cases 

were used to deal with 6-class classification.
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Figure 1. A flowchart of dataset selection for GAN training

Table 1. Dataset compositions for GAN training for normal and abnormal CXR  image synthesis.

Diagnosis Normal CXR dataset Abnormal CXR dataset

Normal 72,938 20,000

Abnormal - 91,163

Total 72,938 111,163
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Table 2. Dataset description of the AMC and SNUBH datasets.

Diagnosis Number of images

AMC* SNUBH** Total

Normal (NM) 6,069 1,035 7,104

Abnormal

Nodule (ND) 1,012 1,516

10,234

2,528

Consolidation (CS) 653 1,114 1,767

Interstitial Opacity (IO) 312 1,222 1,534

Pleural Effusion (PE) 1,599 1,302 2,901

Pneumothorax (PT) 421 1,083 1,504
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2. Evaluating GAN generator

Our goal is to devise a method that can be used for quantitative comparison of GAN 

generator performance and to validate its possible application in medical imaging. To this 

end, our approach is to utilize CNN-based models to measure prediction performances. In 

the evaluation, we compared the performances of each of two CNN classifiers which have

been trained on real and synthetic CXR dataset, respectively.

2.1. PGGAN training

To generate synthetic images, we utilized PGGAN23 due to its superior performance of 

realistic image generation with a high-resolution quality. Training scheme of PGGAN is 

shown in Figure 2. PGGAN learns to generate synthetic images starting from a low 

resolution of 4x4 pixel to a high resolution of 1024x1024 pixels by growing image sizes 

progressively. For PGGAN training, 20,000 normal CXRs and 91,163 abnormal CXRs were 

used. The PGGAN training was done for 130 epochs and took around 12.2 days with two 

Titan RTX GPUs. 

Figure 2. Generation of high-quality CXRs using a progressively growing training scheme of PGGAN.
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2.2. CNN classifier training.

For the training of a CNN classifier, we chose a network architecture of ResNet-5033 which 

based on deep residual network (ResNet)34 since it has a high performance, which has been 

frequently used to solve a real-world classification problem. We modified the softmax layer 

to a sigmoid layer in Resnet-50 to deal with binary classification; normal or abnormal. The 

classifiers were trained using real and synthetic images, respectively, with the same strategy

including the identical architecture33 and hyperparameters. For fair comparison, the identical

number of images and ratio of normal and abnormal cases were used. We divided the CXR 

dataset for CNN classifier training into three groups – train set (60% of the total dataset, 

8,981 out of 14,925 subjects), validation set (20% of the total dataset, 2,972 out of 14,925 

patients), test set (20% of the total dataset, 2,972 out of 14,925 patients). The detailed 

number of images are stated in Figure 3. Finally, the evaluation was performed using the real 

CXR images for both classifiers trained on real and synthetic dataset.

2.3. 3-step classification scheme.

We suggest the 3-step concept in the utilization of classification network. To begin with, a 

classifier was trained using the real dataset with normal and abnormal CXR images. Then, 

we created pseudo-labels for the PGGAN-generated images according to the classification 

results of a classifier trained on real dataset, i.e. classifier (real). We set a likelihood 

threshold to be above 0.7 and below 0.3 for labeling normal and abnormal samples, 

respectively. Also, a classifier was trained using the synthetic dataset, i.e. classifier 

(synthetic), containing normal and abnormal CXR images. Finally, a real test set was 

evaluated and compared in the prediction using both classifiers (real and synthetic). For all 

these three steps, sensitivity, specificity, and AUROC were calculated. 

2.4. Evaluation of the fidelity of GAN generator

To compare performances of (1) classifier trained on real dataset on real test set, (2) classifier

trained on synthetic dataset on synthetic test set, (3) classifier trained on synthetic dataset, 

we evaluated their area under the receiver operating characteristic curves (AUROCs). We

used AUROC comparison method35 for statistical comparison, which is to evaluate how 
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significantly different two AUROCs are. Overall classification scheme is shown in Figure 3.

Figure 3. An overall classification scheme for evaluating performance of the GAN generator.

3. Disentanglement of the latent space in GAN

Our goal is to generate synthetic CXR images with desired pulmonary disease patterns. 

Inspired by transparent latent space GAN (TL-GAN)28, we chose an approach of a direct 

mapping between the latent vector z from GAN1 and the numeric prediction output y from a 

CNN pulmonary disease classifier4. An overview of the experimental setting is shown in 

Figure 4. To discover the axes of the feature representations of pulmonary diseases in the 

latent space of GAN1. First, we trained PGGAN on the weakly labeled dataset of 111,163 

CXR images. We generated 30,000 synthetic CXR images from this network, then classified 

by pulmonary disease using a multi-label CNN classifier4. Finally, we performed a linear 

regression on the latent vector z of the synthetic CXR images and the output y from the CNN
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classifier. The regression slopes for each disease class are considered as the axes of disease

patterns. 

The evaluation was conducted qualitatively and quantitatively. To validate whether the 

discovered axes are plausible, a visual scoring test was performed by an expert thoracic 

radiologist. We additionally evaluated the likelihood of the synthetic CXR images with the 

CNN classifier.

3.1. PGGAN training

The training procedure is identical to 2.1. PGGAN model was selected to implement to

generate synthetic CXR images since this model performed better in reconstructing both of a 

global structure and fine details with a high-resolution quality among other GAN variant

models 31,36,37. PGGAN was intended to learn meaningful feature representations of 

pulmonary disease patterns in each real CXR image during training. After training, a 

generator network of PGGAN is capable of generating synthetic CXR images with random 

disease patterns from a 512-dimensional variables of random noises, i.e. latent vector.

3.2. CNN classifier training

We utilized a multi-label CNN classifier with a high performance to obtain the pulmonary

disease classification outputs of the synthetic CXR images. The base model architecture is

Resnet-50 replaced the last softmax layer with six sigmoid layers to deal with CXR images 

with multiple disease patterns to deal with a multi-label classification problem. The 

particulars of altered architecture can be found in4. The classifier has an ability to detect and 

classify five disease patterns—nodule[s], consolidation, interstitial opacity, pleural effusion, 

and pneumothorax— simultaneously on CXR images. The generated 30,000 synthetic CXR 

images were given to the classifier and classified with six classes (five disease patterns and 

normal), whose outputs are numeric numbers between 0 and 5. A CNN classifier can be used

to predict pulmonary abnormalities in the randomly generated CXR images and classify into 

six classes including normal and five classes of abnormal patterns.
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3.3. Exclusion of synthetic images with multiple disease patterns

Before performing a linear regression, we excluded synthetic CXR images having multiple 

disease patterns. We set a criteria; the highest likelihood output of disease pattern to be 0.9 or 

above and the rest of other likelihood outputs to be 0.1 or below. In this case that we can 

assume that there is a single disease pattern in the image. We selected the CXR images with 

a single disease pattern using the 6-class CNN classifier.

3.4. Linear transformation

The feature representations of disease patterns could be encoded in latent vector of the 

PGGAN. We performed a linear regression to discover a correlation among the samples by 

disease pattern class. With the regression of the latent vectors and the classification outputs 

of synthetic CXR images, disentangled feature axis of disease pattern could be discovered. 

Also, if PGGAN is well trained, it generates synthetic images of a various diseases, 

reflecting the incidence distribution of each disease pattern in the training dataset. To reduce 

the natural bias on the regression result of derived from the data imbalance, we added

weights on the class with rare disease patterns in a proportion of the number of images each 

class. After the linear regression, we explored the disentanglement by manipulating the given 

image toward the regression slope.

3.5. Evaluation of manipulated synthetic images

Qualitative and quantitative evaluations were performed to evaluate the disentanglement. 

With synthetic images that has been manipulated with an axis control, a visual scoring with 

an expert radiologist was used. Additionally, the classification-based evaluation metric was 

used suggested with a 3-step scheme.
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Figure 4. An overview of the experimental setting for disentangling the latent space of PGGAN and 

manipulating the synthetic images.

Figure 5. Dataset tree for classifying the generated synthetic images.
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4. Anomaly detection system with GAN

Our goal is to explore the unsupervised anomaly detection scheme in CXR images. Our 

method is inspired by anomaly detection with generative adversarial networks (AnoGAN)2, 

which trains normal samples to identify anomalous samples. Given a real CXR image, 

possibly with an anomalous patterns, an iterative algorithm with a residual loss was adapted 

to obtain the closest normal image and its corresponding latent vector. In the evaluation, we 

compared the performance of two systems trained with supervised and unsupervised manner. 

Specifically, we compared the sensitivities of the classifier trained with a pre-defined disease 

patterns and the proposed anomaly detection system. The classifier is identical to the one in 

used 3.2.

4.1. PGGAN training

The training procedure is identical to 2.1 and 3.1 but with normal CXR images to generate 

synthetic CXR images without any abnormality. A total of 72,938 weakly labeled normal 

cases were used. The data selection and curation criteria is identical to the PGGAN training 

for abnormal cases. 

4.2. Approximating the latent vector

To approximate the most similar synthetic image that can be generated by a generator of 

PGGAN, an optimization technique using a residual loss was used. With a certain iteration 

number, two images of unseen and approximated images were acquired. By subtracting two 

images, the difference map in a pixel-level can be calculated. By setting the residual 

difference map as a loss function to be minimized, the generator is able to discover the 

matching latent vector in the latent space. As a residual difference score, we utilized mean 

pairwise squared error.
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Figure 6. An overview of the experimental setting for detecting anomalous patterns in synthetic CXR 

images. 
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Results

1. Evaluation of image fidelity of PGGAN-generated data

Performance of classifier (real) on real test set had AUROC 0.9830, sensitivity 93.4%, 

specificity 93.3%. Also, performance of classifier (synthetic) on synthetic test set was 

AUROC 0.9673, sensitivity 90.8%, and specificity 90.5%. Finally, the performance of the

classifier (synthetic) on the real test set was AUROC 0.8810, sensitivity 85.1%, and 

specificity 81.6%. AUROC comparison between two classifiers (real and synthetic) on the 

real test set showed there was no statistical difference between them (p<0.0001). Results 

have demonstrated that the performance gap between classifiers trained on PGGAN-

generated data and real data was negligible in the abnormality classification of CXR images.

Confusion matrices of three experiments are shown in Table 3, Table 4, Table 5, respectively.

Table 3. A confusion matric of a classifier (real) on real test set.

Classifier (real) on real test set Ground truth Total

Normal Abnormal

Predicted
Normal 1,312 92 1,404

Abnormal 109 1,540 1,549

Total 1,321 1,632 3,053

Table 4. A confusion matrix of a classifier (synthetic) on synthetic test set.

Classifier (synthetic) on synthetic test set
Ground truth

Total
Normal Abnormal

Predicted
Normal 1,264 128 1,392

Abnormal 157 1,504 1,661

Total 1,421 1,632 3,053

Table 5. A confusion matrix of a classifier (synthetic) on real test set.

Classifier (synthetic) on real test set
Ground truth

Total
Normal Abnormal

Predicted
Normal 1,095 191 1,286

Abnormal 326 1,441 1,767

Total 1,421 1,632 3,053
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Figure 7. A result of the ROC curve with AUROC score using a classifier (real) on real test set.

Figure 8. A result of the ROC curve with AUROC score using a classifier (synthetic) on synthetic test 

set.

Figure 9. A result of the ROC curve with AUROC score using a classifier (synthetic) on real test set.
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2. Disentangled pulmonary representations in PGGAN

Linear regression was performed on 8,683, 478, 484, 215, 2235 synthetic CXR images 

classified as normal, nodule[s], consolidation, interstitial opacity, and pleural effusion using 

the 6-class classifier. The synthetic CXR images classified as pneumothorax were found to 

be none. We observed that three feature representations of pulmonary disease patterns of 

consolidation, interstitial opacity, and pleural effusion were discovered among the

aforementioned five disease classes in latent space of PGGAN. We then manipulated CXR 

images starting from normal synthetic image to abnormal with desired pulmonary disease 

patterns. Figure 10. shows the continuous changes on pulmonary regions with abnormalities

when manipulating images by moving along the discovered axes of (a) consolidation, (b) 

interstitial opacity, and (c) pleural effusion. In Figure 10, each of the first column of (a), (b), 

and (c) represents the conditional image synthesis and the second column represents the 

corresponding activation maps when predicting using a 6-class CNN classifier. For the 

quality evaluation, we performed a visual Turing test with a board-certified radiologist with

20+ years of experience. The generated images on the axis of consolidation, interstitial 

opacity, and pleural effusion were scored from normal to severe, moderate and moderate 

stages, respectively. For the quantity evaluation, the likelihood of each disease evaluated by 

the CNN classifier increased from 0 to 0.97, 0.89, 0.99, respectively. We observed that both 

of the visual scoring of the severity of disease patterns and the likelihood of each pulmonary 

disease pattern class increased according to the intensity of manipulation. 
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Figure 10. A visualization of CAM results on CXR image manipulation by moving along the 

pulmonary disease axis of consolidation, interstitial opacity, and pleural effusion.
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3. Anomaly detection with PGGAN

To compare the performance of disease detection on CXR scans with that of AnoGAN model 

and that of preexisting supervised anomaly detection with convolutional neural net (CNN)

model. Our approach to validate the detection performance is by a visual scoring by an 

expert radiologist. Given an unseen CXR image, AnoGAN will provide the most similar case

with some differences. Ideally, the difference map with the highest gap with be localized as 

representing anomaly patterns, since the anomalous region could not possibly be learned in 

the training of normal samples. Material and methods. Using a modified AnoGAN model,   

PGGAN-trained generator yields corresponding synthetic normal images for given query 

images by minimizing mean squared error between the query and the synthetic images. Test 

set consisted of 100 CXR scans to validate and compare the models. The 100 examinations 

were composed of 12 classes as follows: nodule (n=8), calcification (n=9), consolidation 

(n=6), interstitial opacity (n=9), atelectasis (n=9), mediastinal widening (n=6), pleural 

effusion (n=8), pneumothorax (n=9), rib fracture (n=10), pneumomediastinum (n=10), 

subcutaneous emphysema (n=6), and pneumoperitoneum (n=10). AnoGAN model and 6-

class CNN model (6-class: normal, nodule, consolidation, interstitial opacity, pleural effusion, 

and pneumothorax) were used for disease detection of the images. For these 100 query 

images, AnoGAN model generated normal fake image most similar to that image and then 

detected disease by subtraction of two images. After the test set, one board certified 

cardiothoracic radiologist reviewed the images to evaluate the model performance. Results 

of 100 CXR scans, 90 diseases were detected using AnoGAN model as follows: Nodule 

100.0% (8/8), calcification 100.0% (9/9), consolidation 100.0% (6/6), interstitial opacity 

100.0% (9/9), atelectasis 88.9% (8/9), mediastinal widening 83.3% (5/6), pleural effusion 

87.5% (7/8), pneumothorax 100.0% (8/9), rib fracture 80.0% (8/10), pneumomediastinum

60.0% (6/10), subcutaneous emphysema 83.3% (5/6), and pneumoperitoneum 100.0% 

(10/10). The 6-class CNN model detected 37 of 40 diseases for trained classes (92.5%) 

whereas that detected only 14 of 60 disease for untrained classes (23.3%). Overall detection 

rate was higher in AnoGAN model than that of 6-class CAD model (90.0% vs. 51.0%, p < 

0.001).
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Table 6. Results of AnoGAN with a various disease samples with the metric of sensitivity

Index Diagnosis Number of Subjects Num of Subjects
Detected by AnoGAN

Sensitivity

1 Nodule* 8 8 100.0%

2 Calcification 9 9 100.0%

3 Consolidation* 6 6 100.0%

4 Interstitial opacity* 9 9 100.0%

5 Atelectasis 9 8 88.9%

6 Mediastinal widening 6 5 83.3%

7 Pleural effusion* 8 7 87.5%

8 Pneumothorax* 9 8 88.9%

9 Rib fracture 10 8 80.0%

10 Pneumomediastinum 10 6 60.0%

11 Subcutaneous emphysema 6 5 83.3%

12 Pneumoperitoneum 10 10 100.0%

Total 100 90 90.0%

Discussion

Medical image synthesis

Questions have been raised as to whether the utilization of GAN-generated synthetic images 

in medical imaging is acceptable. Although many researches have been conducted based on 

GAN-based augmentation in medical domain16,38-42, the metric of validating whether GAN-

generated synthetic images have enough information was less explored. Our study focused 

on measuring how well the GAN generator generates synthetic CXR images towards the use 

of those in downstream tasks, especially classification. The experimental results have shown

that a CNN classifier trained on PGGAN-derived synthetic dataset has only slight superiority 

in performance compared to the one trained on real CXR dataset. One possible interpretation 

of the results could be that GAN-generated CXR images are so realistic that even a classifier 

trained on synthetic dataset can learn anatomical variations with pulmonary abnormalities 

comparable to the one with real dataset. For better explanations, we additionally analyzed

what regions of a given CXR image influenced the CNN classifier the most when predicting.

Figure 11. represents Gradient-weighted Class Activation Mapping (Grad-CAM)43 results of 
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the classifiers trained on real and synthetic datasets on testing. The first row represents a 

sample of normal case (left) and the second row represents a sample of pneumothorax case

with ground truth annotation (left). The second and third columns represent the respective 

Grad-CAM results (center and right) when tested on the classifiers trained on real and 

synthetic datasets. In both cases, the activated regions from each classifier have anatomical 

consistency. These visual explanations can be a strong indication of radiological information 

preserved in GAN-generated CXR images.

Figure 11. A Visualization of Grad-CAM results on false negative and false positive cases.

We derived a quantitative measure of image fidelity by exploiting a CNN-based

classification network trained on PGGAN-generated synthetic images. By using AUROC 

comparison, we implemented a metric that has statistical validations. This has benefits

compared to visual scoring test, IS, FID, PPL which does not have any statistical validations. 

Additionally, unlike FID, which uses an ImageNet-pretrained network, we can utilize the 

semantic features trained on the medical domain; these will measure the anatomical fidelity 

instead of general features of natural images.
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Leveraging the high-fidelity image synthesis, we moved forward the controllable image 

synthesis in the medical domain. Our study aimed at CXR image synthesis with desired

pulmonary disease patterns by disentangling the latent space of PGGAN. Visual scoring of

our results has demonstrated that the control of CXR images with a specific pulmonary 

abnormality was plausible as well as moving towards the axis represent the severity of the 

disease patterns. In addition, we adapted our suggested evaluation metric for validating the 

manipulated CXR images with pulmonary abnormalities. The results have shown that visual 

scoring and the confidence score of a softmax output have an agreement in terms of disease 

severity.

Figure 12. Examples of synthetic image manipulation using disentangled feature axes.

Despite the controversy, GAN-generated synthetic images are still beneficial in downstream 

tasks in medical imaging in the following three viewpoints. First, patient privacy can be 

resolved when constructing datasets. Second, GAN-generated synthetic images can be useful 

to improve the generalizability of deep learning models, as the training of deep learning 
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models heavily relies on the quality and quantity of dataset. However, existing data 

augmentation techniques are manually designed, e.g. rotation, flipping, color jittering, and 

can not cover the whole variation of the data. GANs can allow us to sample the training data 

distribution which offers more flexibility in augmenting the training data as shown in Figure 

13. PGGAN is able to generate high resolution realistic images with unprecedented level of 

details. This could be readily applied to CXR dataset to generate images with pulmonary

abnormalities that has insufficient number of cases. Third, another potential of GANs will be 

in synthesizing uncommon cases. Through conditional image synthesis with disentangling 

the latent space, many issues driven from imbalanced dataset or rare cases can be detoured. 

Figure 13. Examples of normal (top) and abnormal (bottom) cases of PGGAN-generated CXR images.

In short, our study concerning medical image synthesis suggested two points: (1) PGGAN

can generate high-fidelity CXR images preserving radiologic information so that can be 

utilized for possible applications in medical imaging and (2) the disentanglement of PGGAN

enabled CXR image synthesis with control of pulmonary disease features. Not only our 

method and result imply GAN can generate realistic images on image information level

which can be used in data augmentation, anomaly detection, and other various fields, but 

also show performance of GAN can be measured with classifier with statistical manner.

Alongside many promising results of GANs, there are limitations in our study. First, 

although our evaluation metric for GAN generator is practically useful, there is still in need 
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of confirmation of medical experts to be applicable to diagnostic assistance in clinical 

settings. Second, the feature axes of nodule and pneumothorax were not discovered, which 

needs more exploration in the latent space of PGGAN.

Unsupervised Anomaly Detection

Unsupervised anomaly detection has drawn many attentions with the rise of GAN-based 

applications. Our study is to explore the anomaly detection system in CXR images with 

high-quality image synthesis using PGGAN. Figure 14. and Figure 15. show each result of

unsupervised and supervised methods in detecting pulmonary abnormal patterns. In Figure 

14. when unseen data with abnormality is given, the unsupervised anomaly detection system 

can detect and localize the region of interest in positive residual difference map. Our study 

suggested that the unsupervised scheme of anomaly detection has potentials with unseen data 

with rare disease patterns, which could not sensitively be detected with a supervised scheme.

By highlighting possible anomalous regions in CXR images, physicians or radiologists could 

use this system as a complementary or a second opinion in diagnosis. However, there are 

several weaknesses of this system. The optimization process is relatively time-consuming 

compared to the supervised system since it requires an iterative algorithm. Also, false 

positive maps should be handled. In Figure 15., false positive maps are found when the 

unseen data without abnormality is given. The false positive region makes difficult to 

recognize anomalous patterns in lung regions and set a threshold to differentiate between

normal and abnormal. Although PGGAN can generate high-quality data and optimization 

method can successfully discover the matching latent vector, additional post processing is 

required to obtain accurate locations or boundaries.
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Figure 14. A visual comparison of the prediction results of abnormal case using unsupervised and 

supervised methods in anomaly detection.

Figure 15. A visual comparison of the prediction results of normal case using unsupervised and 

supervised methods in anomaly detection.

Conclusion

In this study, we have explored GANs, especially PGGAN, in the task of the evaluation of 

the GAN generator, control of image synthesis, and anomaly detection on CXR images. We 

suggested an unsupervised method that uses GANs and CNN classifiers for CXR image 

generation and its quantitative evaluation. Additionally, we suggested an unsupervised 
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anomaly detection in CXR images using GANs with an iterative optimization. Results have 

demonstrated that PGGAN-generated synthetic CXR images can be utilized for downstream 

tasks such as data augmentation. Furthermore, disentanglement of the latent space of 

PGGAN can be exploited to generate insufficient data with rare disease patterns. Lastly, 

detection of pulmonary abnormalities in CXR images was feasible in an unsupervised

manner without the need for data unusual or rare patterns. Our method has shown the 

potential of utilizing GANs in various applications in medical imaging, bypassing patient 

privacy, data imbalance, and data deficiency issues.
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Abstract (in Korean)

최근주목받고있는인공지능기술중하나인딥러닝은수많은컴퓨터비전작업에서

유망한결과를보여주었다. 컨볼루션신경망(CNN)이발전함에따라병변패턴의분류

및 감지, 장기의자동분할, 의료이미지 재구성 등과 같은 의료 이미징에 딥러닝이 빠

르게채택되었다. 전통적인방법인지도학습을위해서는고품질이미지및정확한주

석이필요하다. 그러나고품질데이터세트를구성하는것은의학분야에서어렵다. 제

한된 데이터 액세스, 불균형 데이터 세트 및 값 비싼 주석 과정은 딥러닝의 예측 능력

을제한하고편향된결과를유도할수있다.

고품질 의료 이미지 데이터 세트에 대한 요구가 증가하는 가운데 생성적 적대 신경망

(GAN)의출현은새로운돌파구가되었다. GAN은적대적인학습과정을통해기존데

이터세트에서그럴듯한새로운샘플을생성하는능력을배운다. GAN은도메인적응, 

초해상화, 이미지 대이미지 변환, 이미지 스타일전송, 이상탐지 등다양한 작업에서

잠재력을입증했다.

GAN의유망한결과에도불구하고,의료분야에서는적은수의연구만이진행되었다.

이 연구에서는점진적으로성장하는생성적 적대신경망 (PGGAN)을 의료 영상, 특히

흉부 X선 (CXR) 영상에응용하기위한몇가지비지도적 학습방법을제안한다.다루

는 주제는 다음과 같다. (a) PGGAN에서 생성된 합성 CXR 영상의 충실도 평가하고, 

(b) (a)에서 학습한 PGGAN의 잠복 공간에서 의미론적 표현을 풀어내어 원하는 폐질

환 패턴을 가진합성 CXR 영상을 생성하며, (c) PGGAN을 사용하여 비지도적 방식으

로 CXR 영상의이상패턴을식별하는이상감지시스템을개발한다.

(a)의첫번째주제에서는딥러닝기반분류네트워크 (분류기)를활용한 3 단계방법을

제안한다. 단계 1및 2에서는실제 CXR 이미지와합성 CXR 이미지에대해별도로학

습한 두 분류기의 성능을 비교한다. 단계 3에서는실제 CXR 영상으로 구성된 동일한

테스트 데이터 세트에서 이진 분류(정상 또는 비정상) 성능을 평가한다. PGGAN에서

생성된 합성 CXR 영상이 실제영상에 준하는 방사선 정보를 보존한다는 것을 발견하

였다. (b)의 두번째 주제에서는 PGGAN의 잠복 공간에서 미리 정의된 폐질환 패턴의

의미론적표현을탐색하고발견한다. 간단한선형회귀를통해원하는질병패턴을가

진 CXR 영상의제어가능한생성이가능함을입증하였다. 평가는 20년이상의경험을

가진 전문 방사선 전문의의 시각적 채점과 (a)에서 제안된 분류기를 사용하는 지표에

의해 정성적 및 정량적으로 각각 수행되었다. (c)의 세 번째주제에서는 PGGAN을 이
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용하여비지도방법으로 CXR 영상의이상탐지시스템을제안한다. 비정상 CXR 샘플

을 식별하기 위해 정상 CXR 데이터 세트로 PGGAN을 훈련하였다. 이상이 있는 실제

CXR 영상이 주어지면 반복 알고리즘을 통해 잠재 벡터를 최적화하여 주어진 영상과

가장유사한정상 CXR 이미지를근사하였다. 평가에서질병주석이필요없이 CXR의

비정상적인패턴을민감하게감지할수있음을입증하였다.

이 연구는의료영상에서비지도딥러닝기반애플리케이션을개발하는데있어 GAN

의 잠재력을보여준다. CXR 영상에 대한 고충실도 영상생성, 제어가능한 영상생성

및이상감지의각결과를활용하여,환자의개인정보보호, 불균형데이터세트및의

료영상의값비싼주석과같은감독학습의기존문제를해결할수있다.
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