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국문요약

연구배경

근감소증 연구의 중요성이 대두되며 복부 전산화 단층 촬영영상에서 근육량을 정량

적으로 분석해야하는 증례의 수 역시 가파르게 증가하고 있다. 이러한 정량적 측정의

자동화에 있어 가장 첫번째 만나는 장애물은 연구에 적절한 단면영상을 선택하는 단

계로 세번째 요추(L3)의 아래쪽 끝단이 연구에 적절한 단면으로 알려져 있다. 척추변

이는 보고에 따라 일반인구의 4-30% 정도에서 보이는 것으로 알려져 있으며 이러한

척추의변이는정확한 L3 CT slice선택에고려되어야하는중요한인자중하나이다.

연구목적

본연구에서는 L3 CT slice를선택하여근육량을측정하는완전자동화인공지능모델

을개발하고임상적으로검증하고자한다.

연구방법

L3 slice selection 모델은 YOLOv-3 를기반으로하는모델로 L3SEG-net으로명명하였
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다.이과정후 FNC을기반으로하는또다른인공지능 모델을연결하여근육과내장/

피하지방을분할하였다.이두과정은수행자의개입없이자동으로이어져하나의모

델로 구동될 수 있도록 개발하였다. 총 922명의 환자에서 1496개의 복부 전산화단층

촬영영상을 developmenta dataset으로 사용하였으며 이를 8:2로 분할하여 training 및

tunning set으로 활용하였다. 검증을 위한 dataset은 서울아산병원에서 추출한 internal 

validation dataset (n=496)과서로다른세개병원에서추출한 external validation dataset

(n=586)으로 구성하였다.요추에수술로인한하드웨어 있는환자는 dataset에서 제외

하였다. 인공지능 모델에서 선택한 level과 ground truth level과의 차이를 mm 단위로

계산하였고 10mm 이하를 technical success로 정의하였다. 전반적은 분할의 정확성는

cross sectional area error로평가하였다.척추변이에따른인공지능모델의성능역시평

가하였다.

연구결과

전체 dataset에서인공지능모델의정확도는모델이선택한 level과 ground truth 사이거

리 3.7±8.4 mm에서 4.1±8.3 mm로 통상 5mm thickness로 촬영하는 전산화단층촬영에

서 CT slice 1장이하의 오차를 보였다. Technical success rates는 93.1% 에서 92.3% 로



iii

높았다. 척추변이가 있는 군을 따로 떼서 결과를 얻었을 때 distance differencess 는

12.4±15.4 mm에서 12.1±14.6 mm로증가하였으며 technical success rates는 67.2%에서

67.9% 로 감소하다. 전체 dataset 에서 근육량 segmentation 의 accuracy 는 anatomic 

variation과관계없이우수한결과를보여 CSA error값은 1.38–3.10 cm2로측정되었다.

결론

L3 selection과복벽의근육량측정을측정하는완전자동화인공지능모델이개발되었

고실제연구에사용가능한 performance를보였다.

중심단어:근감소증,자동화,인공지능모델,복부전산화단층촬영
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INTRODUCTION

The association of body morphometry, the quantitative analysis of muscle and fat mass, with 

various clinical outcomes from various diseases has been well established by prior research. 

Different muscle and adipose tissue mass compositions are associated with differences in 

surgical complication rates, chemotherapy-related toxicity, recurrence, and survival across 

the various cancer types.[2-4] Computed tomography (CT) is part of the standard-of-care 

management of various malignancies. CT imaging allows for surgical planning, accurate 

diagnosis, and treatment response evaluation. CT scans can be used secondarily for body 

composition measurements to evaluate risk among oncology patients. CT body composition 

measurement is accurate and reliable.[5-7] The muscle area calculated with the help of a 

single third lumbar vertebral–level CT scan can be used as a representative value of whole-

body muscle mass.[8-11]

Although body composition is a potential risk stratification indicator to guide 

prognostication and treatment for various diseases, such assessments are not readily 

available. The assessment of body composition through CT scanning involves intricate steps 
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for selecting the proper level for analysis and for manual segmentation of body composition. 

The first hurdle in efforts toward automating body composition measurements is achieving 

accurate and reliable localization of the L3 level to extract appropriate CT slices for 

segmentation.

Several previous studies have reported the performance of automatic segmentation of body 

composition using various systems.[12-18] These studies involved manual selection of 

single CT slices for analysis, and human experts were required for the segmentation process. 

Two publications describe automatic L3 spotting systems,[19, 20] but the studies that 

informed these articles either were not clinically validated or were associated with an 

unacceptable maximum error value between the ground truth and results generated using the 

automatic spotting system.

The primary objective of this study was to develop a deep learning model (DLM) to 

automatically select L3 slices on abdominal CT scans and then automatically segment areas 

of abdominal muscle, visceral fat, and subcutaneous fat. The secondary objective was to 

validate the DLM’s accuracy in terms of selecting L3 slices and segmenting muscle and fat 
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areas by comparing artificial intelligence–derived results and manually performed ground

truths. The tertiary objective was to evaluate clinical effectiveness in terms of conserving 

time and human resources.

MATERIALS and METHODS

This study was approved by the institutional review boards of Asan Medical Center (AMC), 

Kyung Hee University Hospital (KHUH), Ajou University Hospital (AUH), and Ulsan 

University Hospital (UUH). The informed consent requirement was waived by the 

institutional review board. This article reports on and complies with the methods and terms 

described in the most recently published guidance on reading literature about machine 

learning for medical applications.[21]

I. Data acquisition: study subjects

The datasets used for this study were as follows: (1) development dataset used for 



4

developing the DLM, which was further split into the training set and tuning set; (2) 

validation dataset for independent testing of model performance, including an internal 

validation set (acquired from AMC) and an external validation set (acquired from KHUH, 

AUH, and UUH).

The development dataset was composed of 922 patients (560 men and 362 women; 

mean age, 54.4 ± 14.0 years), with 1496 abdominal CT scans of patients who were referred 

to our central imaging core lab from various AMC physicians for body morphometric 

analyses. The development dataset was used in our previous study.[12] The development 

dataset included patients with various diseases (pancreatic cancer, gastric cancer, chronic 

kidney disease, sepsis from any cause), and healthy subjects who underwent CT scanning for 

potential kidney donation were included. The development dataset was further divided into a 

training set and a tuning set, with a ratio of 8 to 2.

The validation dataset was composed of internal and external validation sets. The internal 

validation set was composed of 500 CT scans of healthy individuals from AMC. Four 

subjects who underwent interbody lumbar vertebra fusion surgery were excluded, and a total 
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of 496 CT scans, captured from March through December 2012, were used for validation 

(301 men and 195 women; mean age, 3.7 ± 8.7 years [range, 24-88 years]). The external 

validation dataset included 600 CT scans, captured between September 2011 and March 

2019, obtained from three other institutions, and a total of 586 CT scans were included after 

excluding those of subjects who underwent lumbar interbody fusion surgery (347 men and 

239 women; mean age, 58.5 ± 12.3 [range, 18-88 years]). The clinical characteristics of 

subjects included in the validation dataset are summarized in Table 1. An overview of dataset 

composition is described in Figure 1.
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Figure 1. An overview of dataset composition.
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Table 1. Subject characteristics of internal and external validation cohorts

Characteristics Development dataset Internal validation dataset External validation dataset

Number of subjects 922 496 586

Age (years) 54.4±14.0 53.7±8.7 58.5±12.3

Female (%, female:male) 39.3% (362:560) 39.3% (195:301) 40.8% (239:347)

Anatomic variation

    Normal anatomy group 807 (87.5%) 438 (88.3%) 505 (86.2%)

    Anatomic variants group 115 (12.5%) 58 (11.7%) 81 (13.8%)

       Thoracolumbar variant 48 (5.2%) 20 (4.0%) 26 (4.4%)

       Lumbosacral variant 43 (4.7%) 29 (5.8%) 43 (7.3%)

Numeric variant 12 (1.3%) 4 (1.4%) 7 (1.2%)

       Combined variant 12 (1.3%) 5 (1.7%) 5 (0.9%)

Institution AMC AMC UUH, KHUH, AUH

Underlying disease (n)

None 87 496 586

Gastric cancer 436 0 0

Sepsis 245 0 0

Pancreatic cancer 154 0 0

Note.—AMC = Asan Medical Center, AUH = Ajou University Hospital, KHUH = Kyung Hee University Hospital, UUH = Ulsan 

University Hospital
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CT scanners from various manufacturers (Sensation 16, Sensation 64, Somatom Definition, 

Somatom Definition Flash, and Somatom Definition AS+, Somatom Definition Edge, 

Somatom Plus 4, Definition, Definition AS, Definition AS+, Volume Zome scanners 

[Siemens Medical Systems, Erlangen, Germany]; BrightSpeed, LightSpeed 16, LightSpeed 

plus, LightSpeed VCT, LightSpeed QX/i, Optima CT 660 and Discovery 750 HD scanners 

[GE Healthcare, Milwaukee, WI, USA]; Aquilion PRIME, Aquilion [TOSHIBA, Tokyo, 

Japan]; Brilliance 64, iCT256, Ingenuity Core 128, Ingenuity CT [Philips Healthcare, 

Amsterdam, Netherlands]; and Presto [Hitachi Medical System, Tokyo, Japan]) were used 

during the recruitment period. Abdominopelvic CT scans, with or without contrast 

enhancement, which captured from the diaphragmatic dome to the symphysis pubis, were 

included. Intravenous contrast medium (120-150 mL of 300-370 mgI/mL non-ionic contrast 

[iopromide, Ultravist 300 or Ultravist 370; Bayer Healthcare, Berlin, Germany]) was 

administered at a rate of 2–3 mL/sec for enhanced scanning through an automatic power 

injector using an 18-gauge angiographic catheter. CT scanning was performed after 70 to 90 

seconds of contrast medium injection. The images were reconstructed in the axial plane, 



9

ranging in thickness from 2.5 mm to 5 mm. Detailed specifications of the CT scanners used 

for image acquisition are summarized in Table 2.
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Table 2. Summarization of CT acquisition protocols

CT vendors Model name Filter type Convolution 

kernel

Training 

set

Internal 

validation set

External 

validation set

Siemens Definition 0 B30f 9

Definition AS 0 B30f 5

Definition AS + 0 B30f 38

Emotion 0 B40s 1

Emotion 6 1 B30s 1

Emotion 16 1 B41s 1

Sensation 16 0 B30f, B31f 272 2 142

Sensation 64 0 B31f 1

SOMATOM 

Definition

FLAT B30f 18 21

SOMATOM 

Definition AS

FLAT B30f, B40f, I30f 49

SOMATOM 

Definition AS+

FLAT B30f, I30f, I40f 410 1

SOMATOM 

Definition Flash

WEDGE, 

WEDGE_3

B30f, I40f 24 9 9

SOMATOM 

Definition Edge

FLAT B30f, I30f 70

SOMATOM PLUS 

4

N/A AB40, AB50 2

Volume Zoom 0 B40f 1

Siemens_sum 902 32 152

GE BrightSpeed BODY FILTER SOFT 1

Discovery CT750 

HD

BODY FILTER STANDARD 51 97

HiSpeed N/A STANDARD 1

HiSpeed CT/i LARGE 

BOWTIE 

FILTER

STANDARD 20

LightSpeedn Plus BODY FILTER STANDARD, 

SOFT

33

LightSpeed QX/i BODY FILTER STANDARD 19

LightSpeed VCT BODY FILTER STANDARD, 

SOFT

145 337

LightSpeed16 BODY FILTER STANDARD 34 29

Optima CT660 BODY FILTER STANDARD 57 1

GE_sum 361 464

Philips Brilliance 64 C C 10

iCT 256 A,YA A,YA 12 50

Ingenuity Core 128 B B 126

Ingenuity CT YA YA 194

Philips_sum 12 380

Hitachi Presto N/A 4 1

TOSHIBA Aquilion PRIME 54

Aquilion LARGE,EC FC 13, FC 08, FC 

04, FC 18

10

Others_sum 11 54

Sum 1286 496 586
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II. Generation of the ground truth

For each CT scan, the axial CT slice number of the third lumbar vertebra inferior endplate 

was annotated, and the lumbar vertebral anatomic variant was identified by a board-certified 

radiologist (J.H.) and double-checked by another radiologist (K.W.K.). Disagreement was 

resolved by reaching consensus through discussion. At first, the morphologic lumbar 

vertebrae were counted. There are usually five lumbar spines, but some people have four or 

six lumbar vertebrae, as illustrated in Figure 2. Then, anatomic variants were identified and 

categorized into four groups as follows: (1) thoracolumbar variant (twelfth rib 

aplasia/hypoplasia or rudimentary rib attached at the first lumbar vertebra), (2) lumbosacral 

variant (lumbarization of S1 and sacralization of L5), (3) numeric variant (four or six lumbar 

vertebrae without transitional vertebra or rib anomaly), and (4) combination of two different 

variants.[22-24] Morphologically normal ribs were defined as a pair of ribs that were 3.8 cm 

in length or more and originated from the facet between the pedicle and vertebral body. 

Unilateral or bilateral short ribs (<3.8cm), presence of ossification centers without ribs, or 

unfused transverse processes were regarded as rudimentary ribs. Lumbosacral transitional 
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vertebrae were identified based on the criteria described by Castellvi et al. in 1984 [25]. 

Unilateral or bilateral dysplastic lumbar vertebral transverse processes (at least 19 mm in the 

craniocaudal dimension), an enlarged transverse process forming a diarthrodial joint with the 

sacrum, and osseous fusion of a transverse process to the sacrum were classified as 

lumbosacral junction transitional vertebrae. Lumbar vertebrae without rudimentary or 

normal ribs and showing normal transverse processes were regarded as morphologically 

normal lumbar vertebrae and classified as numeric variants if there were not exactly five of 

these vertebrae.

A single axial image was extracted from each CT scan at the L3 inferior endplate for analysis. 

An expert image analyst (S.J.H.) manually generated the ground-truth segmentation map for 

total skeletal muscle, visceral fat, and subcutaneous fat. The segmentation map was double-

checked by a supervising radiologist (K.W.K.). The rectus abdominis, external/internal 

obliques, transverse abdominis, quadratus lumborum, psoas major/minor, and erector spinae 

muscles were included in the analysis. The cross-sectional area (CSA, cm2) and the total 

number of pixels were calculated for the segmentation map of total skeletal muscle, visceral 



13

fat, and subcutaneous fat.
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Figure 2. Anatomic lumbar spine variants. Examples of normal, thoracolumbar, 

lumbosacral, numeric, and combined variations are presented.
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III. Deep learning model development

The DLM was composed of two parts, as follows: (1) a YOLOv3-based component 

for automatically selecting the L3 slice on abdominal CT scans [26] and (2) a fully 

convolutional network (FCN)-based component for automatically segmenting areas of 

muscle, visceral fat, and subcutaneous fat. Of these, the FCN-based component is described 

elsewhere [12].

Several pre-processing steps were used to generate input data for training our 

YOLOv3-based L3 selection model. Using Otsu thresholding, a region of a patient’s image 

was extracted from the background. Then, hole filling and noise removal were performed on 

the region by seeded region growing and morphological filtering. The histogram distribution 

of the region was normalized to generate consistent grayscale information, irrespective of the 

scanner type and protocol. Then, maximum intensity projection (MIP) coronal images were 

generated to efficiently evaluate the lumbar spines.

To increase the effective dataset size and improve overfitting and accuracy, data 

augmentation was performed to generate 15,226 MIP images from 922 CT scans. Of these, 
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12,180 MIP images were used as a training set, and 3,046 images were used as a tuning set. 

The data augmentation was performed using random combinations of affine transformations, 

elastic distortion, edge extraction, blurring, and cropping.

i. YOLOv3-based L3 slice selection algorithm

A YOLOv3-based model was adopted because such a model can detect objects and extract 

features more efficiently than conventional convolution neural networks, accomplished via 

object detection and classification [26]. With our YOLOv3-based model, we aimed to predict 

bounding boxes using anchor boxes which were configured via dimension clustering. As 

illustrated in Figure 3, multiple bounding boxes were generated in the MIP images based on 

the following prerequisites: (1) the L4 vertebra was located at the iliac crest level, (2) the L3 

vertebra was located superiorly to the L4 vertebra, (3) the morphologies of the lumbar 

vertebrae were the same. The YOLOv3-based model used an objectness score for each 

bounding box obtained from logistic regression to predict the width and height of the box as 

well as its location relative to grid cell. The sum of the squared error loss was used to train 

the model for minimizing differences between the ground-truth object and the bounding box. 
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Any error between the bounding box over the ground-truth object was incurred for both 

classification and detection loss.

Our model extracted features of the bounding boxes using the network architecture 

illustrated in Figure 3. Our network architecture used successive 3×3 and 1×1 convolution 

layers and a set of residual blocks with shortcut connections. A total of 53 convolutional 

layers were formed like Darknet-53. YOLOv3 predicted boxes at three different scales to 

support detection on varying scales. Using a similar concept to feature pyramid 

networks,[27] our model extracted features from multi-scales of the bounding boxes and 

took the feature maps. Then, we merged them with upsampled features using concatenation. 

For training, we used 416×416 MIP images with no hard-negative mining. We also used 

multi-scale training, data augmentation, and batch normalization.
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Figure 3. Example of multiple bounding boxes for training of the YOLOv3-based 

model and architecture of our YOLOv3-based network. 
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ii. FCN-based segmentation algorithm

Our FCN-based model for automatically segmenting areas of muscle, visceral fat, and 

subcutaneous fat is described elsewhere [12]. We adopted the same model for automatic 

segmentation of muscle and fat areas. In this study, we added post-processing based on 

Hounsfield units (HU) to divide the segmented muscle areas into skeletal muscle areas 

(SMAs, −29 to 150 HU) and inter-/intra-muscular adipose tissue (IMAT, −190 to -30 HU). 

The network architecture of our FCN-based model was illustrated in Figure 4. 
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Figure 4. The network architecture of a fully convolutional network–based 

segmentation model. Post-processing based on Hounsfield units (HU) was added to 

separate the intramuscular adipose tissue from skeletal muscle area. Red and blue 

areas indicate skeletal muscle area (−29 to 150 HU) and area in yellow indicates 

intramuscular adipose tissue (−190 to −30 HU). Brown area indicates subcutaneous fat 

area and area in purple represents visceral fat area.
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IV. Validation of deep learning model

i. Accuracy of automatic L3 slice selection

The accuracy of the DLM selection of the third lumbar vertebra inferior endplate was 

evaluated using internal and external validation cohorts. Two board-certificated abdominal 

radiologists evaluated the accuracy of the DLM-derived results.

The differences in CT slice numbers between the ground truth and the DLM-derived results 

were calculated and multiplied by slice thickness to generate the actual difference in 

millimeters. Mean differences were calculated for each internal and external validation group. 

Technical success was calculated as the percentage of cases that showed differences of less 

than 10 mm between the ground truth and the DLM-derived results for each validation group.
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Figure 5. Examples of technical success and technical failure. 

(A) Technical success when L3 CT slice numbers are identical between the ground 

truth (GT) and the deep learning model (DLM)–derived results.

(B) Technical success when the distance difference between the GT and the DLM-

derived results is less than 10 mm. 

(C) Technical failure when the distance difference between the GT and the DLM-

derived results is greater than 10 mm.
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ii. Segmentation accuracy of the DLM

The axial CT images were extracted at the level of the inferior endplate of the third lumbar 

vertebra selected by manually and using the DLM. Areas of each tissue type—skeletal 

muscle, subcutaneous fat, and visceral fat—were segmented manually and using the DLM 

system.

DSC and CSA error values were used to evaluate technical performance. The DSC is an 

index of spatial overlap ranging from 0 to 1. Completely overlapping areas yield a DSC 

value of 1, whereas the absence of overlap yields a DSC value 0. DSCs were calculated 

using the following formula:

DSC=
2 × |ground truth∩FCN|

|ground truth|+|FCN|

DSC=
2 × TPP

2 × TPP+FPV+FNV

TPp denotes the number of pixels correctly included in both the ground truth and the DLM-

derived result. FPv denotes the number of pixels included in the DLM-derived result but not 

in the ground truth. FNv represents the number of pixels included in the ground truth but not 
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the DLM-derived results.

DSCs were used for the subgroups that yielded identical third lumbar vertebral inferior 

endplates from both the ground truth and the DLM-derived results. SMA, subcutaneous fat 

area (Sfat), and visceral fat area (Vfat) at the L3 inferior endplate level were manually 

measured by an expert image analyst (ground truth) and using the automatic DLM model. 

The areas were compared using DSCs.

CSA in cm2 and the total pixel number of the segmentation map (total skeletal muscle, 

subcutaneous fat, and visceral fat) were analyzed. CSA error was used for the subgroups that 

yielded different L3 inferior vertebra levels between the ground truth and the DLM. CSA 

error is a standardized measure of percentage differences in measured areas. The ground-

truth segmentation maps for SMA, Sfat, and Vfat were generated manually by an expert 

image analyst at the ground-truth L3 inferior endplate level, and these were compared with 

the DLM-measured segmentation map at the DLM-derived L3 endplate level.

CSA error (%)=
|ground truthCSA-FCNCSA|

ground truthCSA
x 100
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DSC values were compared in the concordant group with identical CT slice numbers from 

both the ground truth and the DLM-derived results. CSA error and Bland–Altman analyses 

were used to assess agreement in the discordant group with acceptable differences between 

the ground truth and the DLM-derived results, producing technical success and technical 

failure groups. Examples from the concordant group, discordant group, and a maximal 

difference case of technical failure are presented in Figure 5.

V. Subgroup analysis according to anatomic variation

Factors influencing the performance of the DLM at spotting the L3 level were explored by 

subgroup analysis. Each validation cohort was divided according to spinal anatomic 

variation and age groups. The L3 selection performance of the DLM was compared between 

these groups. The thoracolumbar junction variant group included scans of patients with a 

rudimentary rib attached to the first lumbar vertebra and those with a hypoplastic/aplastic 

twelfth rib. The lumbosacral junction variant group included scans of patients with 

sacralization of L5 and those with lumbarization of S1. Subjects with four or six 

morphologically normal lumbar vertebrae were defined as numeric variant group, and those 
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with two or more anatomic variants were classified as the combined variation group. The 

whole validation dataset was divided according to age group, and L3 selection performance 

was compared between the groups..

VI. Statistical analysis

Differences between the ground truth and the DLM-derived results were compared using the 

Mann–Whitney and Kruskal–Wallis tests. Logistic regression was conducted to evaluate 

factors potentially influencing technical success, including anatomic variation and 

demographic factors. Bland–Altman analysis was done to assess for agreement of body

composition between the ground truth and the DLM–derived results. The limits of agreement 

used in the Bland–Altman plot was defined as the mean difference ± the 95% confidential 

interval. SPSS Statistics for Macintosh , version 21 (IBM Corp., Armonk, NY, USA), 

MedCalc 12.7.0 (MedCalc Software, Mariakerke, Belgium), and R version 3.6.3 (R 

Foundation for Statistical Computing, Vienna, Austria) were used for statistical analysis. A p-

value < 0.05 was regarded as statistically significant..
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RESULTS

I. Accuracy of automatic L3 slice selection

The YOLOv3-based DLM developed for spotting L3 was successful in both the internal and 

external validation datasets. The overall validation dataset results are summarized in Figure 

6.

The mean differences [median, interquartile range, min-max] between the ground truth and 

the DLM-derived results were 3.9 ±8.3 [0, 0-5, 0-40], 3.7±8.4 [0, 0-5, 0-40], and 4.1±8.3 [0, 

0-4, 0-40], in mm, for the overall, internal, and external validation cohorts, respectively. 

Subjects with normal spine anatomy yielded smaller differences between the ground truth 

and the DLM-derived results than those with anatomic variants (2.6±6.0 vs. 12.2±14.8, 

2.5±6.1 vs.12.4±15.4, and 2.8±5.9 vs. 12.1±14.6 mm for overall, internal, and external 

validation datasets; p < 0.01). The technical success rates were 92.7%, 93.1%, and 92.3% for 

the overall, internal, and external validation datasets, respectively. The normal anatomy 

group yielded higher technical success rates than the anatomic variant group (96.5% vs. 

67.4%, 96.6%vs. 67.2% and 96.2% vs. 67.9%).
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Figure 6. Box plots of distance difference between ground truth and deep learning 

model (DLM) derived results in (A) internal validation dataset and (B) external 

validation cohorts. The mean differences between the ground truth and the DLM-

derived results were 3.7 mm ± 8.4 and 4.1 mm ± 8.3 for the internal, and external 

validation cohorts, respectively. 
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II. Segmentation accuracy of DLM-derived abdominal muscle and fat areas

The area segmentation concordance analysis is summarized in Table 3. The mean DSC 

values for SMA, Sfat, and Vfat were high in both the internal and external validation datasets. 

The DSC values of body composition area in concordant subgroups were high in both the 

internal and external validation datasets. The DSC values of SMA, Sfat, and Vfat for the 

internal validation group were 0.98, 0.98, and 0.98, respectively. The values for the external 

validation group were 0.96, 0.97, and 0.97, respectively. The mean CSA error values of the 

concordant subgroup were low in both the internal and external validation groups. The CSA 

error values for SMA, Sfat, and Vfat were 1.05%,1.89%, and 2.10%, respectively, in the 

internal validation dataset; the values in the external validation dataset were 2.71%, 2.75%, 

and 2.26%, respectively. The CSA error values of the discordant subgroup were low but 

slightly higher than those of the concordant subgroup. The CSA error values of SMA, Sfat, 

and Vfat were 1.62%, 3.29%, and 5.02%, respectively, in the internal validation dataset. The 

values for the external dataset were 3.05%, 4.18%, and 4.71%, respectively.
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The Bland–Altman plots of both the internal and external validation datasets reflected good 

agreement in terms of area segmentation between the ground-truth L3 level and the DLM-

derived level, as depicted in Figure 7. The mean differences (±limits of agreement) of SMA, 

Sfat, and Vfat in the internal validation dataset were 0.33 ± 4.28, −1.62±7.62, and 

−1.69±6.66 cm2, respectively. The mean differences for the external validation dataset were 

2.61±7.61, −2.74±8.65, and −0.25±7.53, respectively. The Bland–Alman plot outlier in the 

internal validation set was for an Sfat area, and the case achieved technical success, with a 

difference of 5 mm between the ground truth and the DLM-derived level. However, thick 

gluteal subcutaneous fat layers were included in the ground-truth level and were not included 

in the DLM-derived level. Figure 8 is the exact Sfat map segmented at both levels.

The CSA error values of the subgroup that did not achieve technical success were 5.03%, 

19.2%, and 16.5% for SMA, Sfat, and Vfat, respectively, in the whole validation dataset. The 

values were 3.7%, 20.4%, and 18.4% for the internal validation group and 5.0%, 18.3%, and 

15.1% for the external validation group, respectively.

The Bland–Altman analysis was done to evaluate for agreement in terms of body 
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composition area for the technical failure group (Figure 9). The mean difference and limits 

of agreement for the internal validation group was 3.27±52.8 cm2. The value for the external 

validation group was 1.82±38.8 cm2.
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Table 3. Cross-sectional area segmentation using the ground truth–derived and DLM–derived levels

Parameter
Internal validation dataset External validation dataset

SMA Sfat Vfat SMA Sfat Vfat

All subjects

(n=1082)

CSA from GT 

(cm2)

140.88±34.5

3
140.90±56.71 114.53±65.05 132.76±31.25 133.15±62.16 110.59±64.29

CSA from DLM 

(cm2)

140.53±34.2

0
141.98±56.60 115.93±65.40 130.07±31.07 135.54±62.64 110.72±65.19

p value* 0.874 0.764 0.736 0.139 0.492 0.973

CSA error (%) 1.38±1.46 3.51±5.41 4.00±6.35 3.10±2.85 4.54±6.34 4.26±6.47

Subjects with 

technical success

(n= 1004)

CSA from GT 

(cm2)

141.20±34.4

6 
138.85±55.86 112.42±64.73 132.75 ±31.15 133.99 ±62.82 110.88 ±64.18 

CSA from DLM 

(cm2)

140.87±34.0

6

140.47 ±

55.72
114.11±64.95 130.14 ±31.00 136.73 ±63.15 111.13 ±65.06 

p value* 0.883 0.659 0.692 0.167 0.474 0.950

CSA error (%) 1.22 ±1.08 2.31±2.21 2.97 ±3.21 2.86 ±2.57 3.39±2.78 3.36 ±4.68 

Subjects with 

technical failure 

(n=78)

CSA from GT 

(cm2)

136.33±35.1

8
169.78±60.54 144.23± 62.27 132.97±32.3 123.03±52.30 107.10±65.61

CSA from DLM 

(cm2)

135.77±35.8

0
163.24±64.41 141.53± 66.37 129.21±31.93 122.66±54.42 105.78±66.50

p value* 0.949 0.672 0.865 0.579 0.974 0.924

CSA error (%) 3.68±3.19 20.42±8.14 18.37±15.68 6.01±4.18 18.28±15.16 15.06±12.56

p value§ <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Note.—Data are presented as mean ± standard deviation

* The p-value is calculated from Student t-test comparing the GT CSA and the CSA determined using the DLM.

§ The p-value is calculated from Student t-test comparing CSA errors between subjects with technical success and subjects with 

technical failure. 

CSA = cross-sectional area, DLM = deep learning model, GT = ground truth, Sfat = subcutaneous fat area, SMA = skeletal 

muscle area, Vfat = visceral fat area
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Figure 7. Bland Altman plots to evaluate agreement of SMA between the GT and DLM

(A) In subjects with technical success in the internal validation cohort

(B) In subjects with technical failure in the internal validation cohort

(C) In subjects with technical success in the external validation cohort

(D) In subjects with technical failure in the external validation cohort
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Figure 8. Bland Altman plots to evaluate agreement of Sfat between the GT and DLM

(A) Sfat in subjects with technical success in the internal validation cohort

(B) Sfat in subjects with technical failure in the internal validation cohort

(C) Sfat in subjects with technical success in the external validation cohort

(D) Sfat in subjects with technical failure in the external validation cohort 
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Figure 9. Bland Altman plots to evaluate agreement of Vfat between the GT and DLM

(A) Vfat in subjects with technical success in the internal validation cohort

(B) Vfat in subjects with technical failure in the internal validation cohort

(C) Vfat in subjects with technical success in the external validation cohort

(D) Vfat in subjects with technical failure in the external validation cohort 
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III. Subgroup analysis according to anatomic variation

Anatomic variant type was the only factor significantly influencing the technical success of 

the system (p = 0.003). The technical success rate of the whole validation set (n=1082) was 

92.7%. The value for the normal anatomy subgroup (n=943) was 96.5%; the values were 

82.6%, 63.9%, 54.5%, and 40% for thoracolumbar (n=46), lumbosacral (n=72), numeric 

variant(n=11), and combined variation (n=10) subgroups, respectively. The mean difference, 

in the presence of any abnormal anatomic variant, between the ground truth and the DLM-

derived was statistically significant (2.6 vs. 12.2 mm, p < 0.01). The mean differences 

according to the specific abnormal variant types were 7.4, 13.4, 16.5, and 21.4 mm for the 

thoracolumbar, lumbosacral, numeric and combined variant groups, respectively. Distance 

according to specific variation group was showed in Figure 10. CSA errors of body 

composition area were significantly different between the subgroups. The mean CSA error 

values were 2.21 and 3.04 cm2 for SMA, 3.49 and 7.95 cm2 for Sfat, and 3.59 and 8.87 cm2 

for Vfat in terms of normal and abnormal anatomy, respectively (p < 0.01). Bland–Altman 

analysis was performed to evaluate CSA concordance between the subgroups. The mean 
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differences (±limits of agreement) of SMA, Sfat, and Vfat for each subgroup were 1.67±7.19, 

−2.23±13.61, −0.86±10.08 for the normal anatomy group and 1.33±10.28, 0.71±37.08, 

0.33±29.84 for the abnormal anatomy group, respectively. The results of subgroup analysis 

were summarized in Table 4.
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Figure 10. Box plot of distance difference in (A) internal, and (B) external validation 

dataset according to specific anatomic variation.
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Table 4. Subgroup analysis according to spine anatomy

Subgroup Distance

difference 

(mm)

Technic

al 

success

(%)

CSA error (%) Bland-Altman (mean±limits of agreement)

SMA Sfat Vfat SMA Sfat Vfat

Normal anatomy (n=943) 2.6±6.0 96.5 2.22±2.

46

3.46±4.78 3.57±5.58 1.68±7.22 -2.29±13.13 -0.84±10.03

Thoracolumbar variation

(n=46)

7.4±11.9 82.6 2.73±2.

24

5.83±8.79 5.87±7.04 2.23±7.90 2.41±34.33 -2.69±24.10

Lumbosacral variation

(n=72)

13.4±15.

2

63.9 3.04±2.

49

8.72±10.63 7.94±9.23 1.40±10.56 2.17±35.93 0.86±24.84

Numeric variation (n=11) 16.5±16.

1

54.5 2.37±2.

11

10.87±7.62 10.36±10.19 -0.22±7.10 -3.93±46.02 -1.82±26.79

Combined variation

(n=10)

21.4±17.

0

40 4.06±2.

92

11.86±12.66 14.95±17.03 -2.53±14.78 -7.15±58.06 10.82±67.40

Note.—CSA = cross-sectional area, Sfat = subcutaneous fat area, SMA = skeletal muscle area, Vfat = visceral fat area.
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DISCUSSION

Our YOLOv3-based model allowed accurate automatic localization of the L3 inferior 

endplate. Technical success was achieved for the majority of cases in both the internal and 

external validation groups. Technical success rates were higher than 90% for all datasets 

from all participating institutions. Almost all cases (95%) showed differences of less than 30 

mm between the human expert and the DLM-derived results, equivalent to differences of 

less than one vertebral body height. CSA differences of each body composition area between 

the human expert and the DLM-derived results were small (less than 10 cm2) in the whole 

validation group, even in the subset that did not achieve technical success, representing a 

comparable performance of the L3 spotting system. DSC values were higher than 0.96 in the 

concordant group, and CSA errors were lower than 5% in both the concordant and discordant 

groups that achieved technical success. The CSA error rate for SMA in the technical failure 

group was 5% for the whole validation group; the error rates were 3.7% and 6.0% for the 

internal and external validation groups, respectively.

Anatomic spinal variation was the only factor that significantly influenced DLM 
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performance. CSA errors for each body composition segmented area were lower in the 

normal anatomy group than in the anatomic variant group. However, the CSA error rates for 

SMA were less than 5%, regardless of the presence or absence of abnormal anatomy. Among 

the abnormal variant subtypes, the thoracolumbar junction variant subgroup, including T12 

rib hypoplasia/aplasia and L1 rudimentary rib, yielded similar performance to the normal 

anatomy group, whereas the lumbosacral junction variant subgroup and other numeric 

variant subgroup yielded lower technical success rates. The lower technical success of the 

lumbosacral junction variant subgroup may be attributable to a specific process component 

wherein the algorithm assumes the L4 level as the iliac crest. 

A recently published study by park et al.[28] indicated that the tissue compositions of the L2 

to L4 levels were not significantly different from one another and that the body composition 

between the L2 and L4 levels could represent the whole body composition area. The 

maximum difference in our results was 40 mm, which is equivalent to the distance from L2 

to L4. In cases of technical failure, the body composition of the DLM-derived level could 

represent the maximal range of error.
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Several researchers have reported adequate performance of automatic L3 level 

spotting models. Belharbi et al. [20] compared the performance of various convolutional 

neural networks (CNNs) at spotting the L3 level, including homemade and pre-trained CNNs, 

with a dataset of 642 CTs. The mean difference was 1.8 to 10.5 CT slices with thicknesses of 

2-5 mm, equivalent to 3.6 to 50.5 mm in total distance. The dataset was from one institution, 

and they did not conduct clinical validation. Additionally, the study was limited to the task of 

L3 spotting and did not evaluate the accuracy and reliability of segmented body composition 

at the extracted level. Our YOLOv3-based L3 spotting system had a minimum value similar 

to that reported by Belharbi el al.[19], with a mean distance of 3.9 mm in the whole 

validation dataset.

Bridge et al.[19] reported the L3-spotting and automatic segmentation performances of deep 

learning algorithms, specifically ResNet, DenseNet, and U-net. They treated slice selection 

and segmentation as one process. The dataset was composed of a training cohort (n=595) 

and a testing cohort (n=534). The mean localization error was 9.4 mm, and the mean DSCs 

for muscle, Sfat, and Vfat were 0.97, 0.98, and 0.95, respectively. The DSC values of our 
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study were similarly high, but the mean difference of our YOLOv3-based model was smaller

than that reported by Bridge and colleagues.

Our study had some limitations. First, the study was retrospective, and the subject 

recruitment process was not consecutive and may have been fraught with selection bias. 

Second, healthy subjects were only included for the internal and external validation cohorts. 

The performance of the developed DLM may require validation with large samples of 

patients with various diseases. Furthermore, our YOLOv3-based model had a moderate 

technical success rate (67.4%) with the abnormal anatomic variant group. Further training 

processes using subjects with anatomic variation may improve the performance of the 

system.

CONCLUSION

In conclusion, our YOLOv3-based L3 spotting model performed well at localizing the L3 

inferior endplate. Additionally, segmented body composition identification (especially the 

muscular area) at the DLM-derived level was acceptable. Therefore, this automated L3 
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spotting model could be used in various clinical and research applications for body 

morphometry analysis.

ABSTRACT 

Background 

Sarcopenia research has been expanding rapidly. The numbers of patients requiring 

abdominal muscle measurements in each new study have also rapidly increased, requiring 

human resources and time. Among the hurdles to automating such measurements is L3 

vertebral level selection. We aimed to develop and validate a fully automatic system for 

selecting the L3 level and compared body composition errors between the ground truth and 

deep learning model (DLM)–derived results.

Methods

A YOLOv3-based DLM automatically spotting L3 CT slice was developed via supervised 

learning from a training dataset (922 computed tomography [CT] scans). A radiologist 

provided L3 slice levels as the ground truth(GT). The internal(n=500) and external 



45

validation(n=600) datasets ended up with 496 and 586 scans after excluding 4 and 14 scans 

of patients who underwent lumbar surgery. The difference between the GT and DLM-

selection was calculated. Technical success was evaluated based on a 10 mm cut-off value in 

difference. Dice similarity coefficient (DSC) and cross-sectional area (CSA) errors were 

evaluated for segmented body compositions. Bland–Altman analysis was conducted to 

assess segmented area agreement. Subgroup analysis was performed according to vertebral 

anatomic variation.

Results 

The mean differences between the ground truth and DLM selections were 3.6±8.3 mm, 

2.5±6.1 mm, and 12.1±15.1 mm in the internal validation set (n=496), subgroup with normal 

anatomy (n=438), and subgroup with abnormal anatomy (n=58), respectively. The technical 

success rates were 93.1% (463/496), 96.6% (422/438), and 67.2% (39/58), respectively. In 

the external validation set (n=586), with the normal (n=503) and abnormal (n=83) anatomic 

variant groups, the mean differences were 4.1±8.3 mm, 2.8±5.9 mm, and 12.1±14.6 mm, 

respectively. The technical success rates were 92.3% (542/586), 96.2 % (486/503), and 
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67.9% (55/83), respectively. DSC values of segmented body composition were over 0.96 in 

subgroup with identical CT slice between GT and DLM-derived results. The CSA error rate 

was less than 5% in technical success group. 

Conclusions

The YOLOv3-based DLM system performed well in the automatic L3 level selection, which 

enables fully automated CT measurement of abdominal muscle area.
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