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Abstract  

 

Evaluation of energy release rate related to crack kink and 

simulation of surface crack shape change of round bar 

 

 

Ya Li Yang 

The Graduate School of the University of Ulsan 

Department of Mechanical and Automotive Engineering 

 

 

Fracture damage usually occurs from pre-existing defects or small cracks in 

service. These cracks influence the stress distribution in the component and can result 

in significant reduction in its strength and service life. As an important impact on the 

safety of engineering components, the crack problem is an interesting research area. 

In this paper, two topics are studied about the crack problem. One is the evaluation 

of the energy release rate related to crack kink under mixed-mode loading. The other 

one is the prediction of shape change of surface crack subjected to tension based on the 

three-parameter model.  

Most of the researches on crack kink are focused on the crack under two kinds of 

loading situation, the mixed-mode -- loading situation is rarely mentioned, and 

the validity of conclusions reached cannot be evaluated yet. The energy release rate 

related to crack kink under mixed-mode loading for aluminum alloy material has been 

investigated using both numerical methods and theoretical derivation. A relatively 

simple and precise numerical method was established to evaluate the energy release 
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rate associated with stress intensity factors under mixed mode loading, based on the 

concept that the energy release rate is equal to the change rate of the energy difference 

before and after crack kink. Based on the numerical method, a series of spatial 

inclined ellipses in Mode I-II and ellipsoids in Mode I-II-III with different 

propagation angles computed from the non-dimensional value (𝐾 √𝐸𝐺⁄ ) were fitted 

by MATLAB, and the expression of energy release rate with crack propagation angle 

was obtained. A theoretical expression of energy release rate at any propagation angle 

for a crack tip under -- mixed-mode crack was deduced based on the propagation 

mechanism of the crack tip under the influence of a stress field. It is confirmed that 

the deduced theoretical expression could provide results as accurate as of the present 

numerical method.  

The results of the proposed method are consistent with experimental data. The 

error, which is lower than 5%, can be accepted considering that the specimens are not 

manufactured using an ideal elastic material. Consequently, the proposed method can 

achieve an accurate evaluation of the energy release rate with concise calculation. 

Meanwhile, the initiating and propagation analysis of surface crack is critical for 

structural integrity prediction of cylindrical metallic components with a circular 

cross-section, since these components have been applied widely in engineering.  

 Most attempts to predict fatigue growth of a surface crack in an un-notched or 

very mild notched bar have focused on the ‗almond‘ crack employing a certain shape 

with a fixed center, which reduced the fatigue calculations to one-or two-dimensional 

problems. Few efforts have been made utilizing a three-parameter model.  

The fatigue propagation of a surface crack in a round bar subjected to tension 

loads has been investigated. The crack growth circles method is developed for the 

surface cracks of a round bar, and the circles are tangent to both current and new 

crack fronts. A three-parameter model with fewer shape restraints whose center is 

allowed to move along the vertical axis is built, and the shape change of a fatigue 

crack is predicted more precisely. The nominal aspect ratio of an ellipse, which is the 

ratio of the maximum crack depth to the chord length, is considered, instead of the 
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actual aspect ratio of an ellipse semi-axis. A relatively large crack growth increment 

can be used by adopting the equivalent stress intensity factor ∆𝐾𝑒 based on the stress 

intensity factors along the current and new crack fronts. 

The crack propagation process is described accurately based on the ratio of 

vertical growth toward the horizontal surface. It can be seen that the crack 

propagation paths differ with different initial flaws, but will converge asymptotically. 

The present results demonstrate good convergence speed and accurate prediction 

of crack shape patterns. Comparisons have been done to verify the proposed solutions, 

it is illustrated that the proposed solutions agree well with experimental data and is 

better than other numerical solutions.



  

V 
 

Table of Contents 

 

Chapter 1 Introduction ................................................................................................ 1 

1.1 Background and overview ................................................................................... 1 

1.1.1 Overview for crack analysis with fracture mechanics .................................. 2 

1.1.2 Literature review for shape change with fatigue damage ............................. 5 

1.2 Objectives and methods ....................................................................................... 8 

1.2.1 Evaluation of the energy release rate associated with crack kink ................. 8 

1.2.2 Prediction of shape change for fatigue crack ................................................ 9 

1.3 Thesis organization .............................................................................................. 9 

Chapter 2 Evaluation of the energy release rate associated with crack kink ....... 11 

2.1 Stress Fields Ahead of Crack Tip ....................................................................... 11 

2.1.1 The stress intensity factor and energy release rate ...................................... 11 

2.1.2 Principle of superposition ........................................................................... 12 

2.2 Energy release rate for - mixed-mode crack .................................................. 13 

2.2.1 Numerical Analysis of 2D crack ................................................................. 13 

2.2.1.1 Crack Simulation with ABAQUS ........................................................ 13 

2.2.1.2 The Theoretical Basis of Energy Release Rate Definition ................... 15 

2.2.1.3 Computational Analysis ....................................................................... 17 

2.2.2 Comparison of Numerical Results with References ................................... 24 

2.2.2.1 The validity of extended Irwin‘s formula ............................................ 24 

2.2.2.2 Inaccuracy of Hussain‘s equation ........................................................ 25 

2.2.2.3 Comparison with Anderson‘s equation ................................................ 29 

2.3. Fracture Parameters for 3D Crack .................................................................... 33 

2.3.1. The Theoretical Derivation for -- Mixed Mode Crack ...................... 33 

2.3.1.1 Stress analysis of crack ........................................................................ 33 

2.3.1.2 The Modified Expression of Energy Release Rate for Mixed Mode 

crack ............................................................................................................................. 35 

2.3.2. Numerical Analysis of 3D Crack ............................................................... 38 



  

VI 
 

2.3.2.1. 3D Model of Crack Simulation ........................................................... 38 

2.3.2.2. Computational Analysis ...................................................................... 40 

2.3.3. Discussion of Theoretical and Numerical Results ..................................... 43 

2.4 Experiment of Mixed Mode Crack for Verification ........................................... 46 

2.4.1 Fundamentals of Experimental Design ....................................................... 46 

2.4.2 Tensile Test of Uniaxial oblique crack ........................................................ 48 

2.4.3 Experimental result ..................................................................................... 51 

2.5 Chapter summary ............................................................................................... 52 

Chapter 3 Prediction of the shape change of a fatigue surface crack in a round 

bar................................................................................................................................ 54 

3.1 Assessment of components with surface cracks ................................................ 54 

3.2 Numerical propagation process.......................................................................... 55 

3.2.1 Model of simulation .................................................................................... 55 

3.2.1.1 Three-Parameter Model ....................................................................... 55 

3.2.1.2 Numerical simulation ........................................................................... 56 

3.2.2 Fatigue Crack Propagation .......................................................................... 59 

3.2.2.1 Stress intensity factors for surface crack ............................................. 59 

3.2.2.2 Fatigue crack growth law ..................................................................... 60 

3.2.3 Prediction of shape for fatigue Crack ......................................................... 61 

3.3 Results and Discussion ...................................................................................... 63 

3.3.1. Evolution of the Crack Shape .................................................................... 63 

3.3.1.1 Crack growth circles ............................................................................ 63 

3.3.1.2 Ellipses of crack fronts ......................................................................... 66 

3.3.1.3 Analysis of propagation ....................................................................... 74 

3.3.2 Comparison with Other Numerical Solutions and Experimental Results ... 77 

3.4 Chapter summary ............................................................................................... 80 

Conclusions ................................................................................................................. 82 

List of publications ..................................................................................................... 84 

References ................................................................................................................... 85 



  

VII 
 

 

List of Figures 

 

Figure 1-1 Cracks at different locations .................................................................. 1 

Figure 1-2 An edge crack ........................................................................................ 2 

Figure 1-3 Surface crack in a round bar .................................................................. 5 

Figure 1-4 Configuration of elliptical-arc surface flaw .......................................... 7 

Figure 2-1 Cracked bodies under three different loading modes .......................... 11 

Figure 2-2 Finite element mesh for kinking problem ........................................... 13 

Figure 2-3 Verification of simulation accuracy .................................................... 14 

Figure 2-4 Extension of a kink crack .................................................................... 15 

Figure 2-5 Determination of energy release rates as the length of kink crack 

approaches zero ............................................................................................. 16 

Figure 2-6 Variation of J with kink crack length for kink crack orientation 30° and 

loading ratio 0:1 ............................................................................................ 18 

Figure 2-7 Non-dimensional value (𝐾𝛪 √𝐸𝐺⁄ , 𝐾𝛪𝛪 √𝐸𝐺⁄ ) for each kink angle ..... 21 

Figure 2-8 Iso-energy release rate ellipses on normalized mixed-mode stress 

intensity factors ............................................................................................. 22 

Figure 2-9 Inclined angle of the Iso-energy release rate ....................................... 22 

Figure 2-10 Semi-major and semi-minor axis of the Iso-energy release rate ....... 23 

Figure 2-11 Coefficients of energy release rate .................................................... 23 

Figure 2-12 Mapping of the angled crack into the unit ........................................ 26 

Figure 2-13 Energy release rate coefficients of present work compared with 

Hussain .......................................................................................................... 26 

Figure 2-14 Rotation of the coordinate ................................................................. 27 

Figure 2-15 The stress intensity factors of present work compared with Hussain28 

Figure 2-16 Coefficients  𝐶11, 𝐶12, 𝐶21, 𝐶22  of present work compared with 

Hussain .......................................................................................................... 29 



  

VIII 
 

Figure 2-17 Energy release rate coefficients of the present work compared with 

Anderson ....................................................................................................... 31 

Figure 2-18 Coefficients 𝐶11, 𝐶12, 𝐶21, 𝐶22  of present work compared with 

Chambolle and Anderson .............................................................................. 32 

Figure 2-19 Errors of coefficients 𝐶11, 𝐶12, 𝐶21, 𝐶22 for Chambolle and Anderson 

with reference to the present ......................................................................... 33 

Figure 2-20 Stress field at the crack tip ................................................................ 36 

Figure 2-21 Infinitesimal kink at the tip in different coordinates ......................... 36 

Figure 2-22 Crack model with mixed-mode -- in ABAQUS ........................ 39 

Figure 2-23 Finite element model ......................................................................... 40 

Figure 2-24 Iso-energy release rate ellipsoids on normalized mixed-mode stress 

intensity factors ............................................................................................. 43 

Figure 2-25 𝐺 𝐺(𝜃)⁄  for each expansion angle ................................................... 44 

Figure 2-26 Distribution of stress intensity factor on the crack tip line under mode 

 loading ................................................................................................... 45 

Figure 2-27 Distribution of stress Intensity factor on the crack tip line under mode 

  loading................................................................................................... 46 

Figure 2-28 Uniaxial oblique crack ...................................................................... 47 

Figure 2-29 Dimensions of an edge crack specimen ............................................ 48 

Figure 2-30 Single side inclined crack specimen ................................................. 49 

Figure 2-31 Universal Testing Machine ................................................................ 50 

Figure 2-32 Uniaxial tensile test of single side oblique crack for 90°  ............ 50 

Figure 2-33 Crack propagation path of experimental results................................ 51 

Figure 3-1 Idealization for surface crack shape .................................................... 54 

Figure 3-2 Three dimensional crack ..................................................................... 55 

Figure 3-3 A round bar .......................................................................................... 56 

Figure 3-4 A surface crack .................................................................................... 56 

Figure 3-5 3D model with load constraint ............................................................ 58 

Figure 3-6 The finite element models of a surface-cracked round bar ................. 58 



  

IX 
 

Figure 3-7 Crack fronts for database .................................................................... 59 

Figure 3-8 Stress intensity factor varying along the crack front of a given initial 

crack .............................................................................................................. 60 

Figure 3-9 Determination of a new crack front by fatigue crack growth circles .. 61 

Figure 3-10 Successive determination of crack fronts by the crack growth circles 

with initial crack b0 𝑎0⁄ = 1, b0 𝐷0⁄ = 0.1 ................................................. 64 

Figure 3-11 Successive determination of crack fronts by the crack growth circles 

with initial crack 𝑏0 𝑎0⁄ = 0, 𝑏0 𝐷0⁄ = 0.08 ................................................ 65 

Figure 3-12 Successive determination of crack fronts by the crack growth circles 

with initial crack 𝑏0 𝑎0⁄ = 1, 𝑏0 𝐷0⁄ = 0.05,𝑚 = 2 ................................... 66 

Figure 3-13 Ellipses used to determine crack fronts ............................................. 69 

Figure 3-14 Crack front as a part of an ellipse...................................................... 69 

Figure 3-15 Change of actual aspect ratio with the same chord length c ............. 70 

Figure 3-16 Shape change of different initial crack for different fatigue crack 

growths exponent m values. .......................................................................... 73 

Figure 3-17 Nominal aspect ratio vs. relative crack depth ................................... 74 

Figure 3-18 Relative crack depth vs. relative chord length with different initial 

parameters ..................................................................................................... 75 

Figure 3-19 Ratio of crack growth along the vertical centerline and toward the 

horizontal surface .......................................................................................... 77 

Figure 3-20 Crack propagation patterns compared with numerical solutions ...... 78 

Figure 3-21 Relationship of crack propagation with depth and chord length 

compared with experimental data ................................................................. 79 

Figure 3-22 Crack propagation patterns compared with experimental data ......... 80 

 

  



  

X 
 

List of Tables 

 

Table 2-1 Comparison of 𝐺 for two different methods ....................................... 24 

Table 2-2 Stress fields for mixed-mode crack ...................................................... 34 

Table 2-3 Composition of 6061-T6 aluminum alloy ............................................ 48 

Table 2-4 Calculated extension angle and experimental extension angle ............. 52 

Table 3-1 Material parameters for steel S45 ......................................................... 57 

 

 

 

 

 

 

 

 

 

 

 



  

1 
 

Chapter 1 Introduction 

1.1 Background and overview 

Fracture damage usually occurs from pre-existing defects or small cracks in 

service. Cracks are generated in many engineering structures and components during 

service lives. These cracks influence the stress distribution in the component and can 

result in significant reduction in its strength and service life. As an important impact 

on the safety of engineering components, the crack problem is an interesting research 

area.  

 

 

(a) Surface crack  (b) Embedded crack    (c) Through crack 

Figure 1-1 Cracks at different locations 

 

According to the position of the crack, there are three kinds of crack defects 

within structures: through crack, surface crack, and embedded crack, as shown in 

Figure 1-1. The depth of surface crack is smaller than the thickness of the structure, 

and the shape of a surface crack is often reduced to elliptic, and the same to the 

embedded crack. Usually, the through crack would penetrate over half the thickness of 

the structure member, called edge crack (Figure 1-2), the radius of curvature of the 

crack tip for the through crack approaches zero, it is easy to accept in engineering as 

the conservative of a design concept. Generally, the problem of through crack is 
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classified into two-dimensional fracture mechanics, and non-through crack problems 

are in the field of three-dimensional. 

 

 
 

Figure 1-2 An edge crack 

 

1.1.1 Overview for crack analysis with fracture mechanics  

The presence of a crack in a part magnifies the stress in the vicinity of the crack 

and may fail before that predicted using traditional strength-of-materials methods. 

Fracture mechanics is a common methodology that is used to predict and diagnose the 

failure of a part with an existing crack or flaw, which is concerned with predicting the 

response of a system to external disturbances.  

Most analyses of crack propagation involve planar crack under normal loading 

conditions (Mode I loading) for some special problem that the crack tends to extend in 

its plane are certainly important since it provides many design-relevant concepts for 

the prediction of structural failures. Meanwhile, the understanding of mixed-mode 

fracture is also an important subject in Fracture Mechanics, as material flaws or 

pre-cracks may inevitably occur in the manufacturing process. To describe crack 

propagation under mixed-mode loading, the classical formula of energy release rate 

𝐺 was expanded in this hypothesis that crack extends collinearly with initial crack.  

While many kinds of research show that the actual expanding direction is not 

collinear with its initial path under the combined loading condition, the crack branch 

is produced and it should also be mentioned that energy release rate in the limit as the 
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propagation kink goes to zero is not same as the one without kink [1-6].  

Analytical and approximate solutions have been studied for the SIF of kinked 

and branched cracks. Chatterjee, S.N. [7] discussed the nature of the stress singularity 

at the re-entrant corner considering a branched crack with two straight arms in an 

infinite sheet. Amestoy, M. and Leblond J.B. [8] calculated precisely the various 

functions of the expansion of the stress intensity factors. Kishen, J.M.C. [9] showed 

the application of the contour integral method for the determination of SIFs. 

Meggiolaro, M.A. et al [10] studied the stress intensity factors of kinked and 

bifurcated cracks through the specialized finite element. Berto, F. and Lazzarin, P.  

[11] presented higher-order terms on the stress field of a cracked plate under plane 

loading. Sih, G.C. [12] proposed a critical value of the strain-energy-density factor 

governing the direction of crack growth and fracture toughness for the mixed problem. 

Cornetti, P. et al [13] exploiting expressions for the asymptotic stress field and 

T-stress in mixed-mode brittle fracture of cracked structures.  

The kink angle of a crack in mixed-mode fracture has been widely investigated. 

Li, X.F. et al [14] determined the kink angle of a plate with an angled crack subjected 

to far-field compressive loading by analysis of T-stresses. Fajdiga, G. [15] defined the 

direction in which the crack kinks at different load modes using maximum energy 

release rate (MER), minimum strain energy density (SED), and maximum tangential 

stress (MTS) criterion. Guo, B. K. et al [16] calculated the initial cracking angle of a 

crack with an arbitrary oriented direction in a strip material through dislocation 

density functions based on the numerical method. However, it is generally recognized 

that it is very difficult to develop accurate solutions due to their complex propagation 

behavior.  

For - mixed-mode crack, the analytic method is widely used in the early 

development of Fracture Mechanics. Hussian‘s [17] work as a founder is worthy to be 

mentioned, which simplified the star-shaped crack to an L-shaped crack and used a 

mapping function [18] to obtain a specific expression of energy release rate in terms 

of a Cauchy integral equation [19] by iteration based on the new path independent 
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integrals [20]. However, some inaccuracy of Hussain‘s equation will be pointed out 

through the comparison with the present method in this paper later, as the derivatives 

of two stress functions in the mapping function during the ―simultaneous expansion‖ 

procedure are incorrect. Meanwhile, complex numerical calculations were used. 

Another way to obtain the complete energy release rate for crack kink is started with 

the stress distribution function by Williams, M.L. [21], then maximum hoop stress 

criterion was proposed by Erdogan, F. and Sih, G. C. [22], which presented polar 

stress state in the neighborhood of the crack tip, and the work was verified and 

supplemented by Williams, J.G. and Ewing, P.D. [23]. Cotterell, B. et al. [24] gave 

specific stress intensity factors for crack kink with the concept of surface tractions 

base on the prior research. Finally, Anderson, T.L. [25] proposed an approximate 

evaluation of energy release rate as a function of propagation direction in mixed-mode 

2D problems.  

Wu, C.H [26] gave the numerical relationship of 𝐾 − 𝐺 for non-crack-parallel 

propagations by using the explicit asymptotic analysis. Hayashi, K. and Nemat-Nasser, 

S. [27] obtained energy release rate in the form of a quadratic of stress intensity 

factors with the coefficients tabulated for various kink angles by the method that 

models a kink as a continuous distribution of edge dislocations. Chambolle, A. [28] 

revisited the energy release rate using the expansion of Amestoy, M and Leblond, J.B 

[8]. Also, the validity of Irwin‘s formula for the energy release rate for any kink angle, 

material anisotropy, and loading condition was proved by Azhdari, A. and 

Nemat-Nasser, S. [29]. Sih, G.C. and Paris, P. C. [30] used a complex variable method 

to evaluate the strength of stress singularities at crack tips in plane problems and plate 

bending problems, which can extend the Griffth-Irwin fracture theory to an arbitrary 

crack extension.  

Although the phenomenon of crack branching is interesting and of great 

importance in fracture mechanics, and many achievements have been made for energy 

release rate, because of the mathematical complexity of the problem, the validity of 

conclusions reached through a complex process cannot be evaluated. Most of the 
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researches are aimed at the crack under two kinds of loading situation. The 

mixed-mode -- loading situation was rarely mentioned, and the methods used 

were either analytical or numerical methods, therefore, it is difficult to be generalized 

to other crack problems. 

1.1.2 Literature review for shape change with fatigue damage 

The initiating and propagation analysis of surface crack is critical for structural 

integrity prediction of cylindrical metallic components (bolts, screws, shafts, etc.) 

with a circular cross-section since these components have been applied widely in 

engineering.  

 Part-through flaws appear on the free surface of a smooth round bar and the 

front of a growing crack can be classified as a so-called ‗sickle‘ crack and ‗almond‘ 

crack by extensive experimental works [31–33], as shown in Figure 1-3. 

 

(a) ‗sickle‘ crack 
(b) ‗almond‘ crack 

 

Figure 1-3 Surface crack in a round bar 

 

Some papers related to sickle-shaped cracks are available for bars with sharp or 

deep notches. Any model for calculating crack propagation and a lifetime to failure 

characteristics of a structure relies upon a knowledge of the stress intensity factor . 

Mattheck, C. et al [34] calculated the stress intensity factor at the deepest point of 

sickle-shaped cracks for a constant, a linear and a quadratic locally varying stress 

distribution by use of a weight function derived from finite element results. Caspers, 

crack 

crack 

bar bar 
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M. et al [35] studied the stress intensity factors for surface cracks in cylindrical bars 

applying the weight function obtained from the crack opening displacement of a 

reference loading using the finite element method. Hobbs, J. et al [36] used 

three-dimensional photoelasticity to analyze the effect of crack shape on the stress 

intensity factors at the tips of cracks in threaded connectors under axial and eccentric 

loads, especially for the crescent-shaped cracks. Carpinteri, A. et al [37, 38] studied 

the sickle-shaped crack in a round bar under complex mode I loading and cyclic 

tension and bending loading.    

Most attempts to predict fatigue growth of a surface crack in an un-notched or 

very mild notched bar have focused on the ‗almond‘ crack as its university in 

engineering. Some investigators have employed a circular arc which is deemed to be 

in good agreement with real fatigue crack surface to describe the crack front [31-32, 

35, 39-44]. The crack front curvature was chosen to model shapes occurring in 

practice and to be the semi-circular crack. Edge crack of maximum depth and radius 

are taken into consideration in this configuration. Then the hypothesis that an actual 

part-through crack can be replaced by an equivalent elliptical arc edge flaw has been 

widely applied. Elliptical-arc surface flaw in around bar under fatigue loading is 

considered. And the relative depth 𝜉 = 𝑎 𝐷⁄  of the deepest point A on the defect 

front and the flaw aspect ratio 𝛼 = 𝑎 𝑏⁄  define the crack configuration being 

examined, where a is the deepest depth of point 𝐴, and 𝐷 is the diameter of the bar, 

as shown in Figure 1-4. 
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Figure 1-4 Configuration of elliptical-arc surface flaw 

 

Lorentzen, T. et al [45] developed a theoretical method for calculating the stress 

intensity factor for semielliptical surface cracks in shafts subjected to a constant 

moment load, and the crack growth was calculated for the two points along the crack 

front with the Paris‘ law. Lin, X.B. and Smith, R.A. [46-47] employs an experimental 

Paris-type fatigue crack growth relation to calculate local crack advances at a few 

points along the crack front based on stress intensity factor along the crack front 

through finite element analysis. Toribio, J. et al [48] analyzed the dimensionless 

compliance evolution in a round bar subjected to fatigue with initial crack geometries 

and several Paris parameters. Branco, R. et al [49] monitored the crack initiation and 

crack growth using a high-resolution digital system.  

Carpinteri, A. [50], as one of the most representative researchers on this topic, 

conducted extensive studies related to this configuration. Carpinteri, A. (1992) [51] 

discussed the influence of crack aspect ratio on the stress intensity factor of 

elliptical-arc edge flaws in solid round bars under tension or bending loading. 

Carpinteri, A. (1993) [52] studied the shape change of surface cracks in round bars 

under cyclic axial loading based on the calculating of stress intensity factor along the 

crack front. Carpinteri, A. (1994,1996) [53,54] analyzed a part-through cracked round 

bar subjected to constant amplitude cyclic bending loading and combined axial and 

 

bar 

crack A 

a 

b 

D 
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bending loading respectively. Carpinteri, A. (2006, 2008) [55, 56] studied the surface 

cracks in notched and un-notched round bars under cyclic tension or bending with the 

stress concentration factor respectively. 

However, regardless of whether they used a circular arc or elliptical arc, most 

researchers employed a certain shape with a fixed center, which transformed the 

fatigue calculations into one- or two-dimensional problems. Few efforts have been 

made by utilizing a three-parameter model. Although Carpinteri, A. (1996) [57] 

mentioned the three-parameter model previously, the fatigue crack propagation was 

only simply examined by applying the Paris-Erdogan law with the least square 

method as in almost all previous studies [58–60].  

In addition to the experimental backtracking technique [61, 62] and normalized 

area-compliance method [63], some researches focused on the 𝐽 -integral for 

elastic-plastic analysis for surface crack. Ismail, A.E. and Ariffin, A.K. [64] 

determined the 𝐽-integral around the crack front of the surface crack using an 

elastic-plastic finite element analysis. Ismail, A.E. et al [65] developed an analytical 

aspect for 𝐽-integral prediction of surface crack in round bars under combined mode I 

loading based on the local limit load approach considering a plastic deformation 

across the crack ligament. There is no further research regarding the method of 

surface crack prediction. 

1.2 Objectives and methods 

1.2.1 Evaluation of the energy release rate associated with crack kink 

The objective of this topic was to evaluate the energy release rate associated with 

stress intensity factors at any angle under mixed-mode loading. In this thesis, a more 

concise and precise numerical method was established based on the concept that the 

energy release rate was equal to the change rate of the energy difference before and 

after the crack kink. A series of spatial inclined ellipses in Mode I-II and ellipsoids in 

Mode I-II-III with different propagation angles computed from a non-dimensional 
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value (𝐾 √𝐸𝐺⁄ ) were fitted by MATLAB. Meanwhile, a theoretical expression of 

energy release rate with an angle for a crack tip under -- mixed-mode crack was 

deduced based on the propagation mechanism of the crack tip under the influence of 

the stress field. It was confirmed that the theoretical expression deduced could 

provide accurate results as the proposed numerical method. The validity of the present 

method was shown by comparing with experimental data and previous literature. 

1.2.2 Prediction of shape change for fatigue crack 

The objective of the second topic was to predict the shape change of a fatigue 

crack in a round bar subjected to tension by employing fatigue crack growth circles, 

based on a three-parameter model using finite element analysis. A reduced shape 

restraints model with part-elliptical cracks whose center was allowed to move along 

the vertical axis was built, which could be more precise for expressing the actual 

crack shape front. The nominal aspect ratio of an ellipse, which was more meaningful, 

was proposed for the three-parameter model. Meanwhile, the fatigue crack growth 

circles, which were on a tangent to both current and new crack fronts, were developed 

to predict the crack path. The equivalent stress intensity factor ∆𝐾𝑒 based on both 

stress intensity factors along the current and new crack fronts was proposed to reduce 

the number of modeling computations with only a few iterations. The validity of the 

present method was shown by comparing its results with a simulation solution and 

experimental results. 

1.3 Thesis organization 

A discussion about the evaluation of the energy release rate and shape for a crack 

had been conducted based on the knowledge of fracture mechanics and fatigue 

damage.  

The thesis was constituted with the following chapters. 

Chapter 2 was focused on the evaluation of the energy release rate associated 
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with crack kink firstly. The energy release rate associated with stress intensity factors 

under mixed-mode loading for aluminum alloy material was investigated using both 

numerical method and theoretical derivation. Based on the numerical method, a series 

of spatially inclined ellipses in Mode I-II and ellipsoids in Mode I-II-III with different 

propagation angles were computed by MATLAB, and the expression of energy release 

rate with the crack propagation angle was obtained. A theoretical expression of energy 

release rate at any propagation angle for a crack tip under -- mixed-mode crack 

was deduced based on the propagation mechanism of the crack tip under the influence 

of a stress field. It was confirmed that the theoretical expression deduced could 

provide accurate results as the present numerical method. 

Chapter 3 was the prediction of fatigue propagation of a surface crack in a round 

bar subjected to tension loads by using crack growth circles. The crack growth circles 

method was developed for the surface cracks of a round bar, and the circles were 

tangent to both current and new crack fronts. A three-parameter model with fewer 

shape restraints whose center is allowed to move along the vertical axis was built, and 

the shape change of a fatigue crack was predicted more precisely. The nominal aspect 

ratio of an ellipse, which was the ratio of the maximum crack depth to the chord 

length 𝑐, 𝑏𝑛 𝑐⁄ ,  was taken into consideration, instead of the actual aspect ratio of an 

ellipse semi-axis. A relatively large crack growth increment was used by adopting the 

equivalent stress intensity factor ∆𝐾𝑒 based on the stress intensity factors along the 

current and new crack fronts. Finally, the present solutions were compared with other 

numerical solutions and experimental data.  

Chapter 4 was the discussion and summary of the main contents and conclusion 

of this thesis. 

javascript:;
javascript:;
javascript:;
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Chapter 2 Evaluation of the energy release rate associated 

with crack kink 

2.1 Stress Fields Ahead of Crack Tip 

2.1.1 The stress intensity factor and energy release rate 

For linear elastic materials, the energy release rate 𝐺 describes global behavior, 

while 𝐾  is a local parameter. As the most important parameters for fracture 

mechanics, 𝐾  and 𝐺   have been determined well on the assumption for crack 

propagation. Under Mode I loading, the relationship between 𝐾  and 𝐺  can be 

deduced with elastic modulus 𝐸 and Poisson‘s ratio 𝑣 by the Irwin‘s approach [66]: 

𝐺 =
1

 
𝐾 
2(  𝑎 𝑒    𝑒  ),   𝐺 =

1   

 
𝐾 
2(  𝑎 𝑒    𝑎  )  (2-1) 

Each mode of loading produces the 1 √ ⁄  singularity at the crack tip. As an 

important parameter for stress fields ahead of a crack tip in an isotropic linear elastic 

material, the stress intensity factor is usually given a subscript to denote the mode of 

loading, such as 𝐾 , 𝐾  , 𝐾   , shown in Figure 2-1.  

 

 

(a) Mode I (b) Mode II (c) Mode III 

Figure 2-1 Cracked bodies under three different loading modes 

When the crack is the Mode I, it grows along with the extension of the crack 

plane. However, the crack propagation is not collinear with the initial crack line under 
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the combined loading condition, since the crack propagates in such a way as to 

maximize the energy release rate, there will be kinks for the extension and finally 

tends to propagate normal to the applied stress resulting in pure Mode Ι. In reality, as 

the asymmetry of load distribution and crack orientation, cracks are usually in a state 

of mixed deformation with Mode I, Mode II, and Mode III. When subjected to 

complex loads, the failure mode becomes more complex and the direction of crack 

propagation is unclear. 

Energy is a common method to study linear elastic fracture for mixed crack. A 

crack expands when the energy released is equal to the energy required to form a new 

crack surface. The direction of crack propagation is determined by the maximum 

energy release rate. 

2.1.2 Principle of superposition  

Individual components of stress, strain, and displacement are additive for linear 

elastic materials in the same direction. Similarly, stress intensity factors are additive 

as long as the mode of loading is consistent: 

𝐾 
 𝑜   = 𝐾 

𝑝    1  𝐾 
𝑝    2  𝐾 

𝑝    3
  (2-2) 

the Equation (2-2) is a general relationship for Mode I, the above analysis can be 

repeated for other modes of loading. The superposition principle of stress intensity 

factor can be used to transform complex load problems into simple single load crack 

problems.  

Similarly, contributions to energy release rate 𝐺  from the three modes are 

additive because the energy release rate is a scalar quantity, shown in Equation (2-3): 

𝐺 =
  
 

 
 
   
 

 
 
    
 

2 
  (2-3) 

It is a self-similar crack growth, which is assumed to remain planar and maintain a 

constant shape as it grows.  
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2.2 Energy release rate for - mixed-mode crack 

2.2.1 Numerical Analysis of 2D crack 

2.2.1.1 Crack Simulation with ABAQUS 

A rectangular plate with crack is under combined Mode I and Mode II loading in 

the top side, with fixed bottom side, 𝐿 = 𝑊 = 50𝑚𝑚, 𝐴 = 10𝑚𝑚, shown in Figure 

2-2(a). To reveal the relationship between stress intensity factors and energy release 

rate under - combined loading situation, finite element technology was applied, as 

shown in Figure 2-2 (b). Figure 2-2 (c) is the mesh around the crack tip, which is a 

collapsed element, using duplicate nodes and 1/4 displacement method to simulate the 

singularity of displacement of the crack tip region. The material is linear elastic 

homogeneous isotropic aluminum alloy, 𝐸 = 70000𝑀 𝑎, 𝑣 = 0.33. The 𝐾 and 𝐺 

are obtained by changing the value of 𝜎: 𝜏. 

 

  

(a) A rectangular plate with a 

crack 

(b) The finite 

element model 

(c) Drawing of partial 

enlargement for crack 

Figure 2-2 Finite element mesh for kinking problem 

When ∆𝑎 = 0 𝑚𝑚, 𝜃 = 0°, 𝜏 = 0 𝑀 𝑎, the value of σ changes from 20 𝑀 𝑎 

to 100 𝑀 𝑎 with a step of 20. The result is shown in Figure 2-3. The simulation value 

output from ABAQUS is consistent with the reference value calculated by the 

literature [67]. The errors between the two values of each loading presented in Figure 

τ 

σ 

A 

 θ 

L 

L 
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2-3 (b) are about 0.53%. This simulation method verified will be applied in the 

following sections. Only one loading case is enough in this verification work as the 

linear elasticity of the material. 
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(a) Verification of simulation value output from ABAQUS 
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(b) Errors between the two values of each loading 

Figure 2-3 Verification of simulation accuracy 
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2.2.1.2 The Theoretical Basis of Energy Release Rate Definition 

A cracked plate in plane stress has an infinitesimal kink at angle 𝜃 from the 

plane of the crack, as illustrated in Figure 2-4(a)–(c). The energy release rate 𝐺, as a 

crack extension force, is a measure of the energy available for an increment of crack 

extension, which can be calculated approximately as:  

𝐺 = −
  

  
= −   𝑚     

(   ) (   )

     
 
     

∆ 
  (2-4) 

 

Figure 2-4 Extension of a kink crack  

Irrespective of whether the crack extension is in its initial plane or kinked, the 

angle is 𝜃, where 𝑈1 and 𝑈2 are the strain energy before and after the kink extension, 

(d) 𝐽-integral (c) Kink crack 𝑎2 

(b) Kink crack 𝑎1 

  

(a) Initial crack 
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respectively. And 𝑎 is the length of the kink, which is measured from the original 

crack tip. 

For an edge crack in the linear elastic body, the 𝐽-integral computed along a 

contour surrounding the crack tip is equal to the energy release rate (Figure 2-4(d)), 

which is revalidated by simulation work: 

(1) Obtain the values of 𝐽  and strain energy at these points 𝑎0 = 0 𝑚𝑚, 𝑎1 =

0.1 𝑚𝑚, 𝑎2 = 0.3 𝑚𝑚,  𝑎3 = 0.5 𝑚𝑚, 𝑎4 = 1 𝑚𝑚. 

(2) Calculate the energy differences between  𝑎0 a d a1, a0 a d a2, a0 a d a3,

a0 a d a4 , and divided by 𝑎1 − 𝑎0 = 0.1 𝑚𝑚, 𝑎2 − 𝑎0 = 0.3 𝑚𝑚, 𝑎3 − 𝑎0 =

0.5 𝑚𝑚, 𝑎4 − 𝑎0 = 1 𝑚𝑚. It represents the energy release rate for the crack at 

0.05 mm, 0.15 mm, 0.25 mm, 0.5 mm. 

(3) Determine that the minimum value of kink length for calculation is 0.1 mm; since 

the kink crack becomes infinitesimally small, the values from the energy difference 

deviate from the  𝐽-integral. 
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Figure 2-5 Determination of energy release rates as the length of kink crack 

approaches zero 
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 The strain energy release rate and 𝐽-integral for a kink can be evaluated based 

on the output data of ABAQUS, as shown in Figure 2-5. It is shown that the energy 

release rate is in good agreement with the 𝐽-integral evaluated along the contour 

starting at one kink‘s crack surface and ending at the other kink‘s crack surface under 

arbitrary loading and kink angle conditions.  

This validates the assumed connection between the strain energy release rate and 

𝐽-integral. 𝐽-integral will be used in the following research as it is reliable and 

convenient.  

2.2.1.3 Computational Analysis 

From the output data of the simulation, the energy release rate and stress 

intensity factors can be obtained corresponding to the required condition. The method 

developed in the present study is described as follows:  

(1) Determine 𝐽 for kink cracks repeatedly, varying the kink length from 0.1 𝑚𝑚 to 

1 𝑚𝑚 with four data points  (𝑎 = 0.1 𝑚𝑚, 0.3 𝑚𝑚, 0.5 𝑚𝑚, 1 𝑚𝑚) . Then, 

compute the energy release rate as the kink propagation vanishes on the curve of 𝐽 

versus kink length by the method of fitting. Figure 2-6 is the changing curve of 𝐽 

under an arbitrary loading, and the point of intersection with the vertical axis is 

the value of the energy release rate required. 

(2) Determine 𝐾𝛪  and 𝐾𝛪𝛪  under arbitrary combined Mode   and Mode    loading 

conditions from the simulation work base on the Maximum energy release rate 

crack initiation criterion according to the same method with the value of 𝐽.  

(3) Plot the non-dimensional value ( 𝐾𝛪 √𝐸𝐺⁄ , 𝐾𝛪𝛪 √𝐸𝐺⁄ ) for each kink angle 

(𝜃 = 30°, 60°, 90°, 120°, 150°), as shown in Figure 2-7. 

(4) Determine the parameters of inclined ellipses that fit the above data points using 

the curve fitting algorithm by MATLAB, and the corresponding ellipse equation is 

presented as follows: 

(
  
√  

 𝑜   
   
√  

  𝑛  ) 

  
 
(
   
√  

 𝑜   
  
√  

  𝑛  ) 

  
= 1  (2-5) 
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where 𝑎, b,   are the semi-major axis, semi-minor axis, and inclination of the 

ellipse, respectively. 

(5) Obtain the coefficients of quadratic of energy release rate in terms of stress 

intensity factors with 𝑎11, 𝑎12 and 𝑎22, defined as following 

𝐺 =
1

 
(𝑎11𝐾 

2  𝑎12𝐾 𝐾   𝑎22𝐾  
2)  (2-6) 
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Figure 2-6 Variation of J with kink crack length for kink crack orientation 30° and 

loading ratio 0:1 
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(c) Kink angle 90° 
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  (e) Kink angle 150° 

Figure 2-7 Non-dimensional value (𝐾𝛪 √𝐸𝐺⁄ , 𝐾𝛪𝛪 √𝐸𝐺⁄ ) for each kink angle 

 

By fitting the database of non-dimensional value (𝐾𝛪 √𝐸𝐺⁄ , 𝐾𝛪𝛪 √𝐸𝐺⁄ ) calculated 

through the method proposed above for each kink angle, a series of inclined ellipses 

are presented with a certain angle and size, as shown in Figure 2-8. Figure 2-9 is the 

inclined angle 𝛼 of Iso-energy release rate ellipses with kink angle 𝜃. The variation 

of inclination for ellipses drops linearly with the increase of the kink angle. The trend 

of the semi-major axis and semi-minor axis of ellipses according to the variation of 

the kink angle has been shown in Figure 2-10. The coefficients of quadratics for 

energy release rate in terms of stress intensity factors are calculated for each kink 

angle based on the ellipse equations (Figure 2-11). 
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Figure 2-8 Iso-energy release rate ellipses on normalized mixed-mode stress intensity 

factors 
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Figure 2-9 Inclined angle of the Iso-energy release rate 
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Figure 2-10 Semi-major and semi-minor axis of the Iso-energy release rate 
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Figure 2-11 Coefficients of energy release rate 
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2.2.2 Comparison of Numerical Results with References 

2.2.2.1 The validity of extended Irwin’s formula 

The Equation (1) for computing the energy release rate of 2𝐷 body can be 

extended to cracks under combined loading if the stress intensity factors involved are 

interpreted as the kink stress intensity factors, 𝑘𝛪(𝜃) a d 𝑘𝛪𝛪(𝜃): 

𝐺(𝜃) =
  
 ( )    

 ( )

 
  (2-7) 

The validity of extended Irwin‘s formula is reiterated by the numerical 

simulation under two arbitrary loading conditions, as shown in Table 2-1. Stress 

intensity factors 𝑘𝛪(𝜃) a d 𝑘𝛪𝛪(𝜃) with the limiting process as the propagation kink 

goes to zero is obtained from the output of the ABAQUS, and 𝐺(𝜃) is obtained from 

equation (2-7). The value of 𝐺  obtained from the present numerical method is 

consistent very well with the value from Irwin‘s formula. In other words, it is proved 

again that Irwin‘s formula indeed holds at the inception of kink for all kink angles, 

and is not limited to only the collinear crack extension [29].  

 

Table 2-1 Comparison of 𝐺 for two different methods 

𝜎 = −10.4 × 105𝑀𝑃𝑎, 𝜏 = 2.5 × 105𝑀𝑃𝑎  

𝜃 

(deg) 

𝑘 (𝜃) from 

ABAQUS 

(𝑀𝑃𝑎√𝑚𝑚) 

𝑘  (𝜃) from 

ABAQUS  

𝑀𝑃𝑎√𝑚𝑚 

𝐺(𝜃) for Irwin’s 

(mJ) 

𝐺 for the present 

method 

(mJ) 

30° 1.31 × 10
5
 9.90 × 10

5
 4.84  4.84  

60° −5.01 × 10
5
 6.26 × 10

5
 3.12  3.17  

90° −7.72 × 10
5
 1.30 × 10

5
 2.98  2.98  

120° −6.88 × 10
5
 −2.42 × 10

5
 2.58  2.58  

150° −4.02 × 10
5
 −3.22 × 10

5
 1.29  1.29  

180° 0.00 × 10
0
 0.00 × 10

0
 0.00  0.00  

𝜎 = 0 𝑀𝑃𝑎, 𝜏 = 105 𝑀𝑃𝑎  

𝜃 

(deg) 

𝑘 (𝜃) from 

ABAQUS  

𝑀𝑃𝑎√𝑚𝑚 

𝑘  (𝜃) from 

ABAQUS 

𝑀𝑃𝑎√𝑚𝑚  

𝐺 for Calculation 

(mJ) 

𝐺 for Simulation 

(mJ) 
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30° 2.91 × 10
6
 1.18 × 10

6
 47.82  47.82  

60° 1.85 × 10
6
 1.46 × 10

6
 26.84  26.84  

90° 8.14 × 10
5
 1.18 × 10

6
 10.02  10.01  

120° 1.50 × 10
5
 5.97 × 10

5
 1.84  1.84  

150° −8.86 × 10
4
 1.02 × 10

5
 0.09  0.09  

180° 0.00 × 10
0
 0.00 × 10

0
 0.00  0.00  

 

2.2.2.2 Inaccuracy of Hussain’s equation 

In this section, Hussain‘s equation will be reviewed, some errors of Hussain‘s 

equation can be found through the comparison with the present technique. An 

L-shaped crack in the z-plane was mapped onto the unit circle in the 𝜁-plane, and 

𝐴′𝐵′𝐶′𝐷′ were respectively, the images of ABCD. Hussain formulated the problem in 

terms of a Cauchy integral equation along the path 𝐵′𝐶′𝐷′. The equation was then 

solved by iteration. In the process of iteration, the ―simultaneous-expansion‖ 

procedure was introduced assumed that 𝐵′, 𝐷′  𝐶′ as   0 [68]. In the limit as 

𝑅  0, the path of integration in the 𝜁-plane corresponded to the integration around 

the crack tip in the z-plane (Figure 2-12). Then Hussain proposed the specific 

expression of the energy release rate for any angle in the limit as the propagation 

branch goes to zero using the elastic solution, as shown in Formula (2-8). 

 

𝐺(𝜃) =
1

4 
(
1   ⁄

1   ⁄
)  ⁄ (

4

3  𝑜   
)2{(1  3𝑐  2𝜃)𝐾𝛪

2  8   𝜃 𝑐  𝜃𝐾𝛪𝐾𝛪𝛪  

(9 − 5𝑐  2𝜃)𝐾𝛪𝛪
2}  

(2-8) 
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Figure 2-12 Mapping of the angled crack into the unit 
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Figure 2-13 Energy release rate coefficients of present work compared with Hussain 

 

Figure 2-13 was the comparison of the coefficients of energy release rate 

quadratics between Hussain‘s equation and the prior result investigated in this work. 

As Hussain‘s crack started from left, there was a difference of negative sign for 𝑎12. 

The overall trend is consistent. However, the analytic expression from Hussain 

showed erroneous results for 𝑎22 and 𝑎1, especially in the range of 60° to 120°.  

Hussain obtained the same equation through two ways, one was to use 𝐽1, 𝐽2, and 

another was to use stress intensity factors 𝑘𝛪(𝜃), 𝑘𝛪𝛪(𝜃). It was indicated that the 

𝐽1, 𝐽2 of Hussain‘s expression were different from the conventional definition, such as 

Cherepanov, G.P. [69]. 
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It was necessary to compute the energy release rate in an arbitrary direction 

𝜃 for a crack tip located near the origin, as shown in Figure 2-14. The energy release 

rate referring to the new coordinate can be obtained using the transformation 

equations [70]: 

 

𝐽1
′ = (c  𝜃)𝐽1  (   𝜃)𝐽2 (2-9) 

 𝐽2
′ = (−   𝜃)𝐽1  (c  𝜃)𝐽2 (2-10) 

 

 

Figure 2-14 Rotation of the coordinate 
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Figure 2-15 The stress intensity factors of present work compared with Hussain 

 

It was observed that Hussain just kept the energy release rate in the 𝑥′ direction 

after translation, coherently with the inaccurate expression of stress intensity factors 

of Hussain. Figure 2-15 displayed the comparison of 𝑘𝛪(𝜃), 𝑘𝛪𝛪(𝜃) between Hussain 

and present work for stress intensity factors under arbitrary loading conditions. When 

the kink angle was in the range of 30° to 150°, there was a significant difference 

between the two values of the stress intensity factor. The coefficients of 𝑘𝛪(𝜃), 𝑘𝛪𝛪(𝜃) 

can be obtained from Hussain‘s equations. 
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Where the coefficients 𝐶   were obtained  

𝐶11 = (
1 − 𝜃  ⁄

1  𝜃  ⁄
) 2 ⁄ (

4

3  𝑐  2𝜃
) c  𝜃 (2-13) 
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       𝐶12 = −
3

2
(
1 − 𝜃  ⁄

1  𝜃  ⁄
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3  𝑐  2𝜃
)    𝜃 (2-14) 
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2
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)    𝜃 (2-15) 

𝐶22 = (
1 − 𝜃  ⁄

1  𝜃  ⁄
) 2 ⁄ (

4

3  𝑐  2𝜃
) c  𝜃 (2-16) 
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Figure 2-16 Coefficients 𝐶11, 𝐶12, 𝐶21, 𝐶22 of present work compared with Hussain 

 

Figure 2-16 illustrated the huge gap between the present work and Hussain, 

especially for the  𝐶11  and 𝐶12 . Hence, in general, the error which led to the 

fundamental inaccuracy was the derivatives of two stress functions in the mapping 

function during the ―simultaneous expansion‖ procedure are incorrect. 

2.2.2.3 Comparison with Anderson’s equation  

The results obtained by the proposed method were more evident through the 

comparison with Anderson. Anderson‘s analytic work introduced the local SIFs, 

which were functions of nominal SIFs—the local SIFs represent the true stress 
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strength in front of a kink crack, shown as the following: 

 

𝑘 (𝜃) = 𝜎  √2  = 𝐶11𝐾  𝐶12𝐾   (2-17) 

𝑘  (𝜃) = 𝜏  √2  = 𝐶21𝐾  𝐶22𝐾   (2-18) 

 

Where the coefficients 𝐶   were given by 
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)] (2-21) 

𝐶22 =
1

4
𝑐  (

𝛼

2
)  

3

4
𝑐  (

3𝛼

2
) (2-22) 

 

And the energy release rate expression with angle 𝛼 can be found as the following 

formula: 

𝐺 =
1

 
(3  4 𝑐  𝛼  𝑐  2𝛼)𝐾𝛪

2 − (   𝛼  
1

2
   2𝛼)𝐾𝛪𝐾𝛪𝛪  

1

 
(7  

4 𝑐  𝛼 − 3 𝑐  2𝛼)𝐾𝛪𝛪
2

  
(2-23) 

Where the coefficients 𝑎   were shown as following: 

 

𝑎11 =
1

8
(3  4 c  𝛼  c  2𝛼) (2-24) 

𝑎12 = −(   𝛼  
1

2
   2𝛼)   (2-25) 

𝑎22 =
1

 
(7  4 c  𝛼 − 3 c  2𝛼)    (2-26) 
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Figure 2-17 Energy release rate coefficients of the present work compared with 

Anderson 



  

32 
 

Figure 2-17(a) was the coefficients calculated by Anderson‘s theory and the 

proposed method. The values of coefficients 𝑎11, 𝑎12 and a22calculated by Anderson 

and the proposed method was surprisingly consistent. Figure 2-17(b) was the errors 

between the two results for each kink angle. It was observed that the coefficients 𝑎12 

and 𝑎22 had relatively larger differences between the two methods. The maximum 

error was less than 0.09 for 𝑎12  and 𝑎22  at the point of 60°  and 150°  , 

respectively. The accuracy was better for 𝑎11, the discrepancy varied from -0.004 to 

0.006. The average error between each kink angle was less than 1%, which illustrated 

that the results obtained by the present work agreed well with Anderson‘s. 

However, the slight deviation found was imputable to the fact that the kink 

extension was not sufficiently small with respect to the initial crack: the effect remote 

load was thus underestimated. To obtain more accurate estimations, higher-order 

terms in the expansions of stress fields, or non-linear models must be taken into 

consideration [71].  

0 30 60 90 120 150 180

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 

 

C
o

e
ff
ic

ie
n

ts
 C

1
1
 C

1
2
 C

2
1
 C

2
2

Kink angle  (deg)

C
11

        C
12

         C
21

        C
22

                Chambolle [15]

                Anderson [17]

                Present results

 

Figure 2-18 Coefficients 𝐶11, 𝐶12, 𝐶21, 𝐶22 of present work compared with 

Chambolle and Anderson 

 

The above interpretation for deviation also can be proved by Chambolle, A. [28] 
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with the semi-analytical and semi-numerical method. Using the expansion of Amestoy, 

M and Leblond, J.B. [8] in the interval [0°, 80°], the curve-fitting for larger angles 

yields the numerical curves for the coefficients of stress intensity factors. Figure 2-18 

compared the coefficients 𝐶11, 𝐶12, 𝐶21, 𝐶22 between Chambolle and Anderson. The 

error of coefficients 𝐶12, 𝐶22 for Chambolle is distinctly smaller than Anderson with 

reference to present results (Figure 2-19), as the higher-order expression was 

concerned.   
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Figure 2-19 Errors of coefficients 𝐶11, 𝐶12, 𝐶21, 𝐶22 for Chambolle and Anderson 

with reference to the present 

2.3. Fracture Parameters for 3D Crack 

2.3.1. The Theoretical Derivation for -- Mixed Mode Crack 

2.3.1.1 Stress analysis of crack  

Each mode of loading produces the 1 √ ⁄  singularity at the crack tip, but the 

proportionality constants the stress intensity factor 𝐾 and 𝑓   depend on the mode. 
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Thus, the stress fields ahead of a crack tip in an isotropic linear elastic material can be 

written as: 

   
  0

𝜎  
( ) =

𝐾 

√2  
𝑓  
( )(𝜃)

   
  0

𝜎  
(  ) =

𝐾  

√2  
𝑓  
(  )(𝜃)

   
  0

𝜎  
(   ) =

𝐾   

√2  
𝑓  
(   )(𝜃)

}
  
 

  
 

 (2-27) 

 

Table 2-2 Stress fields for mixed-mode crack 

Stress 
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Mode I Mode II Mode III 
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2
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Detailed expressions for the singular stress fields for Mode I, Mode II, and Mode 

III are given in Table 2-2[21]. 

Based on the principle of linear superposition, in a mixed-mode problem, the 

individual contributions to a given stress component are additive for Modes I, II, and 

III, respectively. 

𝜎  
( 𝑜   )

= 𝜎  
( )
 𝜎  

(  )
 𝜎  

(   )
  (2-28) 

Accordingly, the stress fields ahead of the crack front for Mode I, Mode II, and Mode 

III are obtained as following: 
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  (2-29) 

2.3.1.2 The Modified Expression of Energy Release Rate for Mixed Mode crack  

The stress intensity factor defines the amplitude of the crack-tip singularity. The 

stresses near the crack tip increase in proportion to 𝐾. Moreover, the stress intensity 

factor completely defines the crack tip conditions; if 𝐾 is known, it is possible to 

solve for all components of stress, strain, and displacement as a function of   and 𝜃. 

This single-parameter description of crack tip conditions turns out to be one of the 

most important concepts in fracture mechanics. 

Considering the meaning of SIFs, 𝐾  ,  𝐾  ,  𝐾    denote the intensity of tensile 

stress, in-plane stress, and out-of-plane stress in a 3D crack, as shown in Figure 2-20. 

When a crack kink occurs, the local SIFs at the crack tip should be recalculated under 

the influence of the stress field. A local 𝑥′ − 𝑦′ − 𝑧′ the coordinate system at the tip 

of the kink is defined and assumes that the remote stress fields in polar coordinates 

defined the local stress field. The transformation of the 𝑥′ − 𝑦′ plane is shown in 

Figure 2-21. 
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Figure 2-20 Stress field at the crack tip 

 

 

 

 

Figure 2-21 Infinitesimal kink at the tip in different coordinates 

 

For the stress fields to be useful at the crack tip in local coordinates, it is needed 

to determine 𝐾 from remote loads in polar coordinates. The closed-form solutions 

for stress fields ahead of the crack front for Mode I, Mode II, and Mode III at an angle 

𝜃 in polar coordinates are shown in Equation (2-30) [73]. 
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(a) The crack-tip stress fields in 

polar coordinate system 

 (b) The local stress fields in 

𝑥′ − 𝑦′ coordinates system 
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   (2-30) 

 

The directions of the local stress field for the kink tip in a local 𝑥′ − 𝑦′ − 𝑧′ 

coordinate system are consistent with those of the polar coordinate, as shown in 

Figure 2-21. Thus, the stress at the kink tip between the polar coordinate and local  

𝑥′ − 𝑦′ − 𝑧′ coordinate has the following relationship: 

 

   

𝜎 ′ ′ = 𝜎  
𝜎 ′ ′ = 𝜎  
𝜏 ′ ′ = 𝜏  
𝜎 = 𝜎 
𝜏 ′ ′ = 𝜏  
𝜏 ′ ′ = 𝜏  }

 
 

 
 

 (2-31) 

 

Consider a through crack in a stress plane plate experiences combined Mode I, 

Mode II, and Mode III loading in 𝑥′ − 𝑦′ − 𝑧′coordinate system with 𝜃 = 0, which 

are created by the resolved normal and shear components form applied stress. The 

stress normal to the crack plane, 𝜎 ′ ′, produces pure Mode I loading, 𝜏 ′ ′ applies 

Mode II loading to the crack, and 𝜏 ′ ′ applies Mode III loading, the stress intensity 

factors for the plate with crack can be inferred as following: 

 

𝐾 = 𝜎 ′ ′(𝜃 = 0)√2  

𝐾  = 𝜏 ′ ′(𝜃 = 0)√2  

𝐾   = 𝜏 ′ ′(𝜃 = 0)√2  

} (2-32) 

Accordingly, in the Figure 2-21, the local stress intensity factors 𝑘(𝜃)′for the 
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infinitesimal kink at the arbitrary extend angle  𝜃 were deduced by combining 

Equations (2-30), (2-31), (2-32), respectively: 

 

𝑘 
′(𝜃) = 𝜎 ′ ′√2  = 𝐶11𝐾  𝐶12𝐾  

𝑘  
′ (𝜃) = 𝜏 ′ ′√2  = 𝐶21𝐾  𝐶22𝐾  

𝑘   
′ (𝜃) = 𝜏 ′ ′√2  = 𝐶33𝐾   

} (2-33) 

 

where the coefficients can be calculated as following: 
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 (2-34) 

 

Reviewing the expression of the classical energy release rate, the new expression 

for the -- mixed-mode crack can be modified as Equations (2-35): 

 

𝐺(𝜃) =
𝑘 
′2(𝜃)

𝐸
 
𝑘  
′ 2(𝜃)

𝐸
 
𝑘   
′ 2(𝜃)

2 
 (2-35) 

2.3.2. Numerical Analysis of 3D Crack 

2.3.2.1. 3D Model of Crack Simulation  

As there are few relevant studies of fracture of crack under mode I, II, III. A 

finite element model of mixed crack was established based on the research of 2D 

crack above. The pattern of stress and deformation for the component is different 

from the plane stress before. The stress intensity factor and 𝐽-integral values are 
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generated at each node of the crack tip along the thickness direction. 

A 3D model with a mixed-mode crack is considered here (Figure 2-22): 𝐿 =

50 𝑚𝑚,𝑊 = 50 𝑚𝑚, 𝐷 = 20 𝑚𝑚, 𝐴 = 10 𝑚𝑚. The bottom is fixed, and normal 

stress and shear stress are applied at the top. The front of the surface cracks in the 3D 

model exhibits a straight line. 

 

   

(a) A 3D model with a 

mixed-mode crack 
(b) Loaded solid model 

(c) Definition of crack for 

three-dimensional 

specimen  

 

Figure 2-22 Crack model with mixed-mode -- in ABAQUS 

 

Quadratic hexahedral elements are used with the 20-nodes collapsed element in 

the crack tip region by the1/4-node displacement method [74, 75] to simulate the 

singularity of the displacement at the crack tip. Figure 2-23 shows the finite element 

model with a partially enlarged drawing of mesh generation at the crack front. Several 

circles of the cylindrical hexahedral element are arranged around the crack tip as the 

transition section. The mesh size increases gradually to ensure the refinement of the 

crack tip and reduces the number of overall elements. This meshing method can not 

only ensure the accuracy of calculation but also improves the efficiency.   
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(a) Overview of model (b) Crack tip meshes 

 

Figure 2-23 Finite element model 

2.3.2.2. Computational Analysis 

The data processing for 𝐾  and 𝐺  under the -- mixed-mode crack 

simulation is more complex than the - mixed-mode crack—not only for the value 

𝐾    added, but also for much more data on the crack tip line. To obtain the fracture 

parameter 𝐾, the present study is described as follows: 

(1) Determine 𝐾 and 𝐽 for kink cracks repeatedly, varying the kink length from 

0.1 𝑚𝑚 to 1 𝑚𝑚 with four data points  (𝑎 = 0.1 𝑚𝑚, 0.3 𝑚𝑚, 0.5 𝑚𝑚,

1 𝑚𝑚). Then, compute the energy release rate and stress intensity factors as the 

kink propagation vanishes on the curve of 𝐾 and 𝐽 versus kink length through 

fitting each node along the crack tip line. 

(2) Plot the non-dimensional value (𝐾𝛪 √𝐸𝐺⁄ , 𝐾𝛪𝛪 √𝐸𝐺⁄ , 𝐾𝛪𝛪𝛪 √𝐸𝐺⁄ ) for each kink 

angle (𝜃 = 30°, 60°, 90°, 120°, 150°) 

(3) Determine the parameters of inclined ellipsoids that fit the above data points 

using a fitting method for quadric surfaces in space by MATLAB, and the 

corresponding ellipsoid equation is presented as follows: 

(
  
√  

 𝑜   
   
√  

  𝑛  ) 

  
 
(
   
√  

 𝑜   
  
√  

  𝑛  ) 

  
 
(
    

√ 𝜇 
) 

𝐶 
= 1  (2-36) 
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where 𝑎, 𝑏, 𝑐, 𝛼 are the semi-major axis, semi-middle axis, semi-minor axis, 

and inclination of an ellipse, respectively. 

(4) Obtain the coefficients of quadratic of energy release rate in terms of stress 

intensity factors, and defined as  

𝐺 =
1

 
[𝑎11𝐾 

2  𝑎12𝐾 𝐾   𝑎22𝐾  
2  𝑎33(1  𝑣)𝐾   

2 ]  (2-37) 

The results of fitting the non-dimensional value are shown in Figure 2-24. A 

series of conclusions can be summarized as follows: 

(1) A series of ellipsoids are fitted based on the non-dimensional value 

( 𝐾𝛪 √𝐸𝐺⁄ , 𝐾𝛪𝛪 √𝐸𝐺⁄ , 𝐾𝛪𝛪𝛪 √𝐸𝐺⁄ ) transformed from the data output from 

ABAQUS, which stands for ( 𝑥, 𝑦, 𝑧 ) respectively in a three-dimensional 

coordinate system.  

(2) At each presupposed extended angle (30~150), the scattered points of 

dimensionless data output by ABAQUS under different loadings are all on the 

surface of the same inclined ellipsoid. Here to show this phenomenon clearly, the 

perspective of 𝑦 = 𝑥 observation is adopted.   

(3) The coefficients of quadratics for energy release rate in terms of stress intensity 

factors are calculated for each kink angle based on the ellipsoid equations. 

 
a) 30° 
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(b) 60° 

 

 

 
(c) 90° 
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(d) 120° 

 
（e）150° 

Figure 2-24 Iso-energy release rate ellipsoids on normalized mixed-mode stress 

intensity factors 

2.3.3. Discussion of Theoretical and Numerical Results 

Based on the research of - mixed-mode crack, the method extent to -- 

mixed-mode crack, not only added out-of-plane loading but also considered the 

thickness factor. Therefore, the nodes along the thickness direction in a finite element 

model can output multi-group values of 𝐾 and 𝐺.  

An arbitrary loading had been imposed on a crack model, the energy release rate  
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𝐺 can be obtained based on the numerical method, and 𝐺(𝜃) was calculated with the 

obtained global stress intensity factor   through the theoretical expression (2-35). 

Figure 2-25 was the 𝐺/𝐺(𝜃) along the thickness direction, the values at node 4~17 

were at about a constant value of 1.1, while the values at node 1, 2, 3 and 18, 19, 20 

which were adjacent to the free surface are offset highly from 1.1. It was confirmed 

that the theoretical expression deduced could provide accurate results as the proposed 

numerical method. The reason for deviation for the two solutions was not only the 

influence of the free surface at both ends of the crack front but also the stress coupling 

effect. 
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Figure 2-25 𝐺/𝐺(𝜃) for each expansion angle 

 

The case to be considered was the specimen subject to in-plane shear loading, as 

shown in Figure 2-26. In this case, the generated 𝐾   values were rather constant in 

the inner part of the specimen. But the values for nodes near the free surface increase 

remarkably, which means that the singularity changed in the vicinity of the free 

surface. The stress intensity factor 𝐾    was generated, even if the external loading of 

the specimen did not include an out-of-plane shear component. This phenomenon was 

defined as the stress coupling effect [76, 77]. The in-plane shear loading not only 
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create 𝐾   , but also 𝐾    as the imbalance of stress about the neutral layer. However, 

there was no normal stress created by the shear loading influence, so the 𝐾  was 

inexistent throughout. The absolute values of 𝐾    were enlarged gradually from the 

middle node of the crack tip to both sides, which illustrated the coupling effect 

enhanced by the free surface. Due to the absolute values of 𝐾    were less than 𝐾  , 

especially in the inner part of the specimen, the coupling effect was called weak 

coupling. 
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Figure 2-26 Distribution of stress intensity factor on the crack tip line under mode 

 loading 
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Figure 2-27 Distribution of stress Intensity factor on the crack tip line under mode   

loading 

 

Figure 2-27 showed the out-of-plane shear loading case. In this case, the pure 

mode  loading generated 𝐾    and 𝐾  , and the absolute value 𝐾   of nodes 

adjacent to the free surfaces exceeds the value of 𝐾   , which was called the strong 

coupling effect. Regarding the -- mixed-mode crack simulation, the induced 𝐾   

and 𝐾    had a significant influence on their theoretical value due to the coupling 

effect, which can result in the deviation between 𝐺 and 𝐺(𝜃). 

2.4 Experiment of Mixed Mode Crack for Verification 

2.4.1 Fundamentals of Experimental Design 

The fracture mechanics test is the foundation of studying fracture mechanics 

theory, and the preparation of the fracture sample is related to the accuracy of the test. 

Various forms of fracture specimens have been used to determine the fracture 

parameters of cracks, and only the test method of mode I crack was identified for 

criterion, such as Compact Tension (CT), Three-Points Bending(3PB), C tensile 

specimen. As there is no standard sample to determine the fracture parameters for 

javascript:;
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mixed-mode crack, standard samples for mode I is improved here. 

To research the law of crack propagation under combined loading, the uniaxial 

oblique crack experiment was carried out. An oblique crack in a plate where the 

normal to the crack plane was oriented at an angle 𝛽 with the stress axis is shown as 

in Figure 2-28(a). The crack experienced combined Mode I and Mode II loading when 

𝛽 ≠ 0; And 𝐾   = 0 as long as the stress axis and the crack normal both lied in the 

plane of the plate. For the convenience of analysis, the coordinate axis was redefined 

to coincide with the crack orientation (Figure 2-28(b)), so the applied stress will be 

resolved into normal and shear components. The stress normal to the crack plane was 

𝜎 ′ ′, which produced pure Mode I loading, and shear stress 𝜏 ′ ′ applies Mode II 

loading to the crack. The stress intensity factors can be calculated by Formula (38), 

which was relating 𝜎 ′ ′ and 𝜏 ′ ′ to 𝜎 and 𝛽 through Mohr‘s circle [25]: 

 

𝐾 = 𝜎 ′ ′√ 𝑎 = 𝜎√ 𝑎    
2 𝛽

𝐾  = 𝜏 ′ ′√ 𝑎 = 𝜎√ 𝑎    𝛽 c  𝛽
}  (2-38) 

 

Figure 2-28 Uniaxial oblique crack 

 

Note that Equation (38) transformed to the pure Mode I solution when 𝛽 = 0; 
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The maximum 𝐾   occurs at 𝛽 = 45°, where the shear stress was also at a maximum. 

And reference [72] verified the validity of specimen for mixed-mode fracture 

experiment.  

2.4.2 Tensile Test of Uniaxial oblique crack  

The composition of the 6061-T6 aluminum alloy which was used to manufacture 

test specimens is shown in Table 2-3. A rectangular plate was fabricated with length 

50𝑚𝑚 , width 25 𝑚𝑚 , and thickness 2 𝑚𝑚 containing a 5𝑚𝑚  edge crack as 

showing in Figure 2-29. Samples were processed by middle-speed WEDM, and the 

accuracy was 0.2 𝑚𝑚. The surface roughness of the specimens was controlled by a 

polishing treatment to reduce the effect of roughness on the direction of crack 

propagation. 

 

Table 2-3 Composition of 6061-T6 aluminum alloy 

Chemical 

composition 
Al Si Fe Mn Mg Zn Cr Ti  Cu  other 

Ratio 95.8 0.6 0.7 0.15 0.8~1.2 0.25 0.3 0.15 0.2~0.4 0.15 

 
Figure 2-29 Dimensions of an edge crack specimen 
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A propagating crack seeks the path of least resistance (or the path of the 

maximum driving force) and need not be confined to its initial plane. If the material is 

isotropic and homogeneous, the crack will propagate in such a way as to maximize 

the energy release rate. What follows is an evaluation of the energy release rate as a 

function of propagation direction in mixed-mode problems. To study the propagation 

of the mixed-mode crack, the angle between the crack and loading was changed to 

obtain the different rate of 𝐾 𝐾  ⁄ . Therefore, the specimens were divided into three 

groups by inclination angle 𝛽 = 30°, 60°, 90° . To avoid accidental errors, each group 

had three replications, as shown in Figure 2-30.  

 

 
 

Figure 2-30 Single side inclined crack specimen 

 

The test pieces were prepared in accordance with the American Society for 

Testing Materials, ASTM E8/E8M-15a Standard Test Methods for Tension Testing of 

Metallic Materials. Figure 2-31 was the Universal Hydraulic Testing Machine (type 

LD26.105) with the capability of 100 kN in axial load, which was used to accomplish 

the test at room temperature. The samples with oblique crack were of the exerted 

displacement boundary condition on the top end at a speed of 0.2 𝑚𝑚/  and fixed 
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on the bottom end until the crack started propagation. 

 

Figure 2-31 Universal Testing Machine 

 

As the specimen contains a crack, stress concentration will occur at the crack tip 

with the increase of tension at both ends of the clamping specimen. The crack 

propagation will start from the crack tip until fracture. Figure 2-32 showed the 

propagation of single side oblique crack for 90° under the uniaxial tensile force. 

Equivalent loading was adopted slowly for each group of specimens with the same 

loading mode.  

 

 
 

Figure 2-32 Uniaxial tensile test of single side oblique crack for 90°  
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2.4.3 Experimental result  

As shown in Figure 2-33(a), it was revealed that when the inclination angle was 

90° ( Mode Ι crack), the crack extended in a self-similar manner that propagated 

along the direction of the initial crack, while the phenomenon was unsuitable for 30° 

and 60° (mixed - crack) extension situations. Crack propagation under these two 

angles deviated from the initial direction, which illustrated that the assumption for the 

mixed-mode crack extension path along its initial plane was wrong. 

 

 
 

 

(a) Samples with extension crack 

 

(b) Schematic diagram of crack extension 

 

Figure 2-33 Crack propagation path of experimental results 

 

From the experimental results, the actual extension angles were measured 

through kink crack as shown in Figure 2-33(b). The stress intensity factors for cracked 

specimens were obtained through the analytical expression (2-38) of the stress field at 

the oblique crack tip based on the output force curve of the test machine. Then the 

energy release rate 𝐺(𝜃) can be calculated by the formula (2-35) from the present 

result.  And the extension angles were deduced by the 𝑀𝐺-criterion, and the results 

were shown in Table 2-4: 

 

 

oblique crack 

kink crack 

expansion-angle 
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Table 2-4 Calculated extension angle and experimental extension angle 

Crack 

Angle 

(deg) 

Sample 

Number 

Calculated 

Extension Angle 

(deg) 

Experimental 

Extension Angle 

(deg) 

Experimental 

Extension Angle 

(Average) (deg) 

Error 

(%) 

30 

1 −60 −59 

−58.7 2.17 2 −60 −59.5 

3 −60 −57.6 

60 

1 −43 −41.5 

−41.2 4.26 2 −43 −40.8 

3 −43 −41.2 

90 

1 0 0 

0 0 2 0 0 

3 0 0 

 

Relatively similar results between the calculated extension angle and an 

experimental extension angle were observed. As the specimens were not 

manufactured by ideal elastic material, the error value (lower than 5%) was 

reasonable.  

 

2.5 Chapter summary 

The energy release rate associated with stress intensity factors under 

mixed-mode loading for aluminum alloy material had been investigated using both 

numerical method and theoretical derivation. The present results demonstrate the 

simpler, accurate calculation process and accurate evaluation of the energy release 

rate with infinitesimal crack kink, which can be used to study the propagation of 

branch kink, and then conduct fracture prediction and analysis in practical engineering 

applications. The following conclusions can be drawn： 

(1) A relatively simple and precise numerical method was established to evaluate the 

energy release rate associated with the stress intensity factors under mixed-mode 

loading, based on the concept that the energy release rate is equal to the change 

rate of the energy difference before and after crack kink. 

(2) Based on the numerical method, a series of spatial inclined ellipses in Mode I-II 

and ellipsoids in Mode I-II-III with different propagation angles computed from 

javascript:;
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the non-dimensional value (𝐾 √𝐸𝐺⁄ ) were fitted by MATLAB, and the 

expression of the energy release rate with the crack propagation angle was 

obtained. 

(3) A theoretical expression of energy release rate at any propagation angle for a 

crack tip under -- mixed-mode crack was deduced based on the propagation 

mechanism of the crack tip under the influence of a stress field. It was confirmed 

that the theoretical expression deduced could provide results as accurately as the 

present numerical method. 

(4) The present results were consistent with the experimental data. The error, which 

is lower than 5%, can be accepted considering that the specimens were not 

manufactured by an ideal elastic material. Consequently, the proposed method 

can achieve an accurate evaluation of energy release rate, with concise 

calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

54 
 

 Chapter 3 Prediction of the shape change of a fatigue 

surface crack in a round bar 

3.1 Assessment of components with surface cracks 

The crack will cause fracture under low stress, which occurs and develop under 

fatigue loads in engineering structures. In addition to the cracks formed by the defects 

of the material, most of the cracks formed originated from the surface with a 

high-stress level under fatigue loading.  

For the failure assessment of cracked components of metallic materials, the 

geometry of surface crack, both real defects found during nondestructive evaluation 

and hypothetical cracks are modeled as planar, having semi-elliptic contours and 

being loaded normal to the plane.  

For a better estimation, the shape of the semielliptical crack may be determined 

according to Figure 3-1. The length 2𝐶 is the mean value of the maximum crack 

extension in the length direction and crack extension at the surface of the body. The 

crack depth a is the maximum depth of the smoothened contour of the real crack. 

The shape of real cracks usually deviates little from a semi-ellipse as long as plastic 

deformations in the crack vicinity are small. 

 

 

Figure 3-1 Idealization for surface crack shape 

 

Except general cases, there are hole wall surface crack, corner crack and hole 

wall corner crack, as shown in Figure 3-2. 

a 

2c 2c 

a 
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Figure 3-2 Three dimensional crack 

 

For analytical evaluation of surface crack, although the stress intensity factor 

varies along the crack front, those at the deepest point and the intersection with the 

free surface are used as representative values for estimating crack growth in the depth 

and length directions. Meanwhile, the power-law relations are used widely between 

the defective stress intensity factor range and the crack growth per cycle.  

3.2 Numerical propagation process 

3.2.1 Model of simulation 

3.2.1.1 Three-Parameter Model 

A surface crack in a smooth round bar with a diameter 𝐷0  and height 

𝐿(𝐿 ≫ 𝐷0) subjected to fatigue tension are taken into consideration. The geometry of 

the round bar is shown in Figure 3-3. A part-elliptical surface flaw which is in the 

2C 
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a 

(a) Semi-elliptical surface crack  (b) Semi-elliptical crack from a hole  

(c) Corner crack  (d) Corner crack emanating from a hole 
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median cross-section of the bar is defined by three parameters: (1) major axis of an 

ellipse 𝑎, (2) minor axis of an ellipse 𝑏, and (3) center of the ellipse 𝑂 . (Figure 3-4). 

When the aspect ratio of the ellipse 𝑏 𝑎 = 1⁄ , the crack is a so-called part-circular 

crack. When 𝑏 𝑎⁄  0, the crack is regarded as a straight crack. And any other 

intermediate crack geometry between the two above limiting cases can be defined by 

the aspect ratio of the ellipse 𝑏 𝑎⁄ . 

 

Figure 3-3 A round bar 

 

Figure 3-4 A surface crack 

3.2.1.2 Numerical simulation 

The typical model of a round bar with a diameter 𝐷0 and length 𝐿 that contains 

a surface crack in its median cross-section has been used in many experimental tests 

and numerical simulations. Yang, F.P. [62] presented the experimental results of 
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fatigue crack growth for a straight-fronted edge crack in an elastic bar under axial 

loading with a diameter of 12 𝑚𝑚, a length of 90 𝑚𝑚, and carbon steel S45 as the 

material. Table 3-1 is material parameters for steel S45. Carpinteri, A. [52, 55] 

calculated the surface cracks in round bars with 50 𝑚𝑚  diameters through 

finite-element analysis. Since the propagation of crack shape is defined by the crack 

configuration for a given loading type [58], in the present paper, the models are 

established for different values of these initial parameters to compare the fatigue crack 

propagation with the experimental and simulation results from Yang, F.P. [62] and 

Carpinteri, A. [52,55]. 

 

Table 3-1 Material parameters for steel S45 

Monotonic 

Tensile Yield 

Strength 

𝜎0(𝑀𝑃𝑎) 

Nominal Ultimate 

Tensile Strength 

σ (𝑀𝑃𝑎) 

True Ultimate 

Tensile Strength 

𝜎 (𝑀𝑃𝑎) 

Young‘s 

Modulus 

𝐸(𝑀𝑃𝑎) 

Poisson‘s 

Ratio 𝑣 

Crack 

Growth 

Parameter 

𝑚 

635.07  775.65  2101.65  2.06𝑒5 0.33 3 

 

Since the bar geometry and applied loads present two planes of symmetry, 3D 

finite element analysis is performed by modeling a quarter of the round bar. The load 

is applied at the rear ends in the form of uniform tensile stress, and the cross-section 

of the surface crack is restrained with symmetry, as shown in Figures 3-5.  

The finite element analysis software ABAQUS TM (France) is used to simulate 

the scenario. About 350,000–380,000 quadratic hexahedral elements have been 

employed in each model. The 1/4-node displacement method and fine meshing with a 

0.02 𝑚𝑚 mesh size has been used around the crack front to model the stress field 

singularity and improve the accuracy of the contour integral calculation, as shown in 

Figure 3-6. 
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Figure 3-5 3D model with load constraint 

 

 

Figure 3-6 The finite element models of a surface-cracked round bar 
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3.2.2 Fatigue Crack Propagation 

3.2.2.1 Stress intensity factors for surface crack 

The manner of fatigue crack growth is affected by multiple factors, such as load 

ratio, frequency and amplitude, plastic zone, microstructure, mean stress, stress 

concentration factors, and so on. Based on the previous study, it is indicated that the 

range of stress intensity factor ∆𝐾 is the major factor for fatigue crack growth, based 

on previous fatigue crack growth experiments. 

The finite element method is employed to estimate the stress intensity factors 

along the crack front. As the output stability of 𝐽-integral for simulation, the stress 

intensity factor 𝐾  in mode I is estimated at each node lying on the crack front based 

on the following equation in elastic analysis condition. 

𝐽 =  𝐺 =
1 − 𝑣2

𝐸
𝐾 
2 (3-1) 

 

Figure 3-7 Crack fronts for database 

 

Figure 3-7 shows the surface crack front along which the point P is between the 

two intersections with the bar. The stress intensity factor 𝐾 is varying along the 

crack front for an arbitrary loading condition and initial shape of the crack (Figure 

3-8), it is symmetrical with the axis of the deepest point on the crack front. The values 

crack 
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bar 
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of the stress intensity factor 𝐾 for two intersections are bigger than the middle ones.  
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Figure 3-8 Stress intensity factor varying along the crack front of a given initial crack 

3.2.2.2 Fatigue crack growth law 

For fatigue growth rate, three regions can usually be observed in the experiment. 

Crack growth is dependent on material microstructure in the first region, the threshold 

∆𝐾 ℎ is the main parameter for crack growth. The second region is called power-law 

growth, which is usually referred to as Paris law (Equation 3-2) of fatigue crack 

growth. Both the coefficient 𝐶  and exponent 𝑚  account for the material and 

environmental effects affect the crack growth rate 𝑑𝑎 𝑑𝑁⁄ , which is proposed in 

ASTM E647-88[78]. The third region represents rapid crack growth, and fracture 

occurs when 𝐾𝑚  ≥ 𝐾  , 𝐾   is the fracture toughness. 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 (3-2) 

To apply the stress intensity factor calculation to the fatigue crack propagation, 

𝜎 and 𝐾  are replaced by ∆𝜎 and ∆𝐾 , and the defect is assumed to grow according 

to Paris- Erdogan law of the second region. 



  

61 
 

3.2.3 Prediction of shape for fatigue Crack  

 

Figure 3-9 Determination of a new crack front by fatigue crack growth circles 

 

The propagation of a surface crack in a round bar under cyclic tension is 

predicted by employing fatigue crack growth circles [79] (Figure 3-9). If the crack 

front presents an ellipse shape up to the ith loading step, the initial ellipse whose 

center is located on the surface of the specimen can be defined with given 𝑎  and 𝑏i, 

as represented by the following equation. 

𝑥2

𝑎 2
 
𝑦2

𝑏 
2 = 1 (3-3) 

Points 𝑂, 𝐴, 𝐵, 𝐶, and 𝐷 in Figure 3-9 with coordinates (𝑥  , 𝑦  ) are deployed 

equidistantly along the current crack front, where the subscript 𝐽 refers to the points 

𝑂, 𝐴, 𝐵, 𝐶, and 𝐷. 

The growth of a new crack front lying on an ellipse with semi-axes 𝑎  1, 𝑏  1, 
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and center 𝑂  1 after one cyclic loading step to a new configuration can be described 

by the following equation 

𝑥2

 (𝑎  1)2
 
(𝑦 − 𝑂 ,  1)

2

(𝑏  1)2
= 1 (3-4) 

The assumed crack growth circles, which pass points 𝑂, 𝐴, 𝐵, 𝐶, and 𝐷, 

respectively, are tangent to both current and new crack fronts. The new crack front 

points  𝑂', 𝐴', 𝐵', 𝐶 ' and 𝐷'  with coordinates (𝑥 ,(  1), 𝑦 ,(  1) ) are the points of 

tangency between crack growth circles and the new crack front. Meanwhile, the 

centers of crack growth circles can be determined as (𝑥 , ,  𝑦 , ). 

The crack growth increment for these points can be determined by applying the 

Paris-Erdogan law (Equation 3-2).  

After each computed crack configuration, an increment of crack growth at the 

interior point  𝑂' is given. The crack growth length of other points 𝐴′,  𝐵′,  𝐶′, a d 𝐷′ 

can be determined as following: 

∆  = (𝑦𝑂,  1 − 𝑦𝑂, )
(∆𝐾𝑒 )

𝑚

(∆𝐾𝑒𝑂)𝑚
 (3-5) 

Here, ∆𝐾𝑒 stands for the equivalent stress intensity factor related to the stress 

intensity factors of both current and new crack fronts.  

The stress intensity factor ∆𝐾 is assumed to be a linear function of crack growth 

increment. An arbitrary number of crack growth steps can be assumed. Using 

𝑑𝑎 = 𝐶(∆𝐾)𝑚𝑑𝑁, (3-6) 

the crack growth length is increased to 𝑎  𝑑𝑎 repeatedly in each step to the last step 

by adjusting material constant 𝐶. The equivalent stress intensity factor ∆𝐾𝑒 with 

stepping coefficient   can be obtained appropriately through the crack growth plot of 

𝑑𝑎 𝑑𝑁⁄  vs. 𝑁.  

∆𝐾𝑒 =  (𝐾  )
𝑚
 (
1

2
(𝐾 ,  𝐾(  1), ))

𝑚  (1 −  )(𝐾(  1), )
𝑚
     0 <  < 1 (3-7) 

At the beginning of iteration, sometimes a relatively large value of   can be 

used to avoid diverging. 

The distance from the center of crack growth circles to points  𝑂', 𝐴', 𝐵', 𝐶 ' and 
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𝐷' along the new crack front are calculated using the geometrical relationship 

∆𝑑 = √(𝑥 ,(  1) − 𝑥 , )2  (𝑦 ,(  1) − 𝑥 , )2 (3-8) 

An error equation can be derived as  

𝐸    =∑|∆𝑑 − ∆  /2| (3-9) 

The values of 𝑎  1 and 𝑂  1 minimize the error equation through iterative 

methods and repeat all of the above steps based on the obtained crack front. The 

parameters of the ellipse for each new crack front can be determined until the results 

converge. 

3.3 Results and Discussion 

3.3.1. Evolution of the Crack Shape 

3.3.1.1 Crack growth circles 

Figure 3-10 illustrates the fatigue shape evolution by the crack growth circles in 

a round bar subjected to tension for the initial condition 

𝑏0 𝑎0⁄ = 1, 𝑏0 𝐷0 = 0.1⁄ ,𝑚 = 2 a d 𝑚 = 4.  

 
(a) 𝑏0 𝑎0⁄ = 1, 𝑏0 𝐷0 = 0.1⁄ ,𝑚 = 2 
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(a) 𝑏0 𝑎0⁄ = 1, 𝑏0 𝐷0 = 0.1⁄ ,𝑚 = 4 

Figure 3-10 Successive determination of crack fronts by the crack growth circles with 

initial crack 𝑏0 𝑎0⁄ = 1, 𝑏0 𝐷0 = 0.1⁄  

 

For 𝑏0 𝑎0⁄ = 1, 𝑏0 𝐷0 = 0.1⁄ ,𝑚 = 2, seven crack front profiles displayed are 

deduced from roughly 29 crack growth circles in less than 20 iterations. The 

outermost crack growth circle rolls along the internal profile of the round bar 

approximately. When the point of tangency between crack growth circle with crack 

front approaches very closely to the surface of the bar, such as crack front 6 in Figure 

3-10 (a), the outermost crack growth circle will disappear in the next propagation. 

For 𝑏0 𝑎0⁄ = 1, 𝑏0 𝐷0 = 0.1⁄ ,𝑚 = 4, eleven crack front profiles displayed with a 

smaller step size of increment. Although more crack growth circles and iterations are 

needed, the outermost crack growth circles are far from the internal profile of the 

round bar, the number of crack growth circles is consistent always, as shown in Figure 

3-10(b). 

Figure 3-11 illustrates the fatigue shape evolution by the crack growth circles in 

a round bar subjected to tension for the initial condition 𝑏0 𝑎0⁄ = 0, 𝑏0 𝐷0 = 0.08⁄ ,
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𝑚 = 2 𝑎 𝑑 𝑚 = 3.  

 
(a) 𝑏0 𝑎0⁄ = 0, 𝑏0 𝐷0 = 0.08⁄ ,𝑚 = 2 

 

 
(b) 𝑏0 𝑎0⁄ = 0, 𝑏0 𝐷0 = 0.08⁄ ,𝑚 = 3 

Figure 3-11 Successive determination of crack fronts by the crack growth circles with 

initial crack 𝑏0 𝑎0⁄ = 0, 𝑏0 𝐷0 = 0.08⁄  
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For 𝑏0 𝑎0⁄ = 0, 𝑏0 𝐷0 = 0.08⁄ ,𝑚 = 2,𝑚 = 3 , there are twelve crack front 

profiles displayed by roughly 55 crack growth circles in less than 36 iterations. The 

outermost crack growth circles are far from the internal profile of the round bar as the 

small step of increment of crack propagation in the vertical direction, and the 

curvature of ellipses present smaller for the first several steps. As the initial crack is 

straight, the increment should be smaller based on multiple tests, or else it is difficult 

to converge for iteration. 

Figure 3-12 illustrates the fatigue shape evolution by the crack growth circles in 

a round bar subjected to tension for the initial condition 𝑏0 𝑎0⁄ = 1, 𝑏0 𝐷0 = 0.05⁄ ,

𝑚 = 2 . Twelve crack front profiles displayed are deduced from roughly 52 crack 

growth circles in less than 36 iterations. The outermost crack growth circle rolls also 

tend to approach the internal profile of the round bar, and the outermost crack growth 

circle disappeared from the crack front 9. 

 

 
Figure 3-12 Successive determination of crack fronts by the crack growth circles with 

initial crack 𝑏0 𝑎0⁄ = 1, 𝑏0 𝐷0 = 0.05⁄ ,𝑚 = 2 

3.3.1.2 Ellipses of crack fronts 

The rate of crack propagation can be observed intuitionally by the size of crack 
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growth circles. As shown in Figure 3-13, the optimum simulation result for the center 

of an ellipse is not fixed on the surface of the bar but is reciprocating along the y-axis. 

Therefore, the actual crack shape can be expressed accurately by the three-parameter 

model. The center locations of ellipses are around the outermost surface of the round 

bar mostly with the initial crack 𝑏0 𝑎0⁄ = 0, 𝑏0 𝐷0 = 0.08⁄ . The crack fronts tend to 

be flat as the straight curve of the initial crack.  

 

 

(a) 𝑏0 𝑎0⁄ = 1, 𝑏0 𝐷0 = 0.1⁄ ,𝑚 = 2 

 

 

(b) 𝑏0 𝑎0⁄ = 1, 𝑏0 𝐷0 = 0.1⁄ ,𝑚 = 4 

 

Round bar 

Elliptic crack 

Round bar 

Elliptic crack 
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(c) 𝑏0 𝑎0⁄ = 0, 𝑏0 𝐷0 = 0.08⁄ ,𝑚 = 2 
 

 

(d) 𝑏0 𝑎0⁄ = 0, 𝑏0 𝐷0 = 0.08⁄ ,𝑚 = 3 

 

 

 

 

 

Round bar 

Elliptic crack 

Round bar 

Elliptic crack 
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(e) 𝑏0 𝑎0⁄ = 1, 𝑏0 𝐷0 = 0.05⁄ ,𝑚 = 2 

 

Figure 3-13 Ellipses used to determine crack fronts 

 

 

 

Figure 3-14 Crack front as a part of an ellipse 

Round bar 

Elliptic crack 
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In the simulation process, once the center is not fixed, several different ellipses 

with the same chord length can be replaced to describe one actual crack front, since 

only part of an ellipse is used (Figure 3-14). A large variation of ellipse actual aspect 

ratio is obtained with undifferentiated iteration error, as shown in Figure 3-15. Hence, 

the actual aspect ratio of the ellipse semi-axis is meaningless for the three-parameter 

model to describe the crack front. 
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Figure 3-15 Change of actual aspect ratio with the same chord length 𝑐 
 

Figure 3-16 illustrates the fatigue shape evolution for five cases. The aspect ratio 

of the initial ellipse 𝑏0 𝑎0⁄ = 0, 1,  and the relative crack depth 

𝑏𝑛 𝐷0⁄ = 0.05, 0.08, a d 0.1, while the material constants in the Paris-Erdogan law 

are assumed to be 𝑚 = 2, 3, and 4. The trends of crack propagation are adequately 

demonstrated. 
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(a) 𝑏0 𝑎0⁄ = 1, 𝑏0 𝐷0⁄ = 0.05 
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(b) 𝑏0 𝑎0⁄ = 1,  𝑏0 𝐷0⁄ = 0.1 
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(c)  𝑏0 𝑎0⁄ = 0, 𝑏0 𝐷0⁄ = 0.08 

Figure 3-16 Shape change of different initial crack for different fatigue crack growths 

exponent 𝑚 values. 
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3.3.1.3 Analysis of propagation  

As mentioned previously, the nominal aspect ratio of an ellipse, which is the 

ratio of the maximum crack depth to the chord length 𝑐, 𝑏𝑛 𝑐⁄  can be considered here. 

It is noteworthy that, as shown in Figure 3-17, both initial crack dimensions and Paris 

law exponent 𝑚 affect the evolution of different parameters. The trends of crack 

propagation are consistent with the same initial crack aspect ratio, although the 

beginning propagation is affected by the crack depth provisionally. Meanwhile, a 

difference of transition can be noticed between the crack propagation with different 

Paris law exponent 𝑚 values. In Figure 3-17, it can be found that the nominal aspect 

ratio change is very sensitive to the initial crack geometry during early growth, and 

the nominal aspect ratios for all cases are converged and become constant around 

𝑏𝑛 𝐷0⁄  0.4. It is shown that the flaws tend to follow preferential propagation paths 

that flatten gradually when the crack depth becomes larger. 
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Figure 3-17 Nominal aspect ratio vs. relative crack depth 

 

The propagation of fatigue crack along with 𝑏𝑛 𝐷0⁄  and  𝑐 𝐷0⁄  under cyclic 
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loading with different initial parameters is shown in Figure 3-18. It can be seen that 

the crack propagation paths differ with different initial flaws, It‘s shown obviously 

that the same shape of initial flaws (𝑏0 𝑎0 = 1⁄     𝑏0 𝑎0 = 0⁄ ) generate the generally 

consistent propagation, no matter the size of the initial flaw. However, they will 

converge asymptotically ultimately. 
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Figure 3-18 Relative crack depth vs. relative chord length with different initial 

parameters 

 

Furthermore, in the process of expansion, the crack growth rate for the center 

and outermost points are variable, which is deduced from the gradient of two type 

lines with initial flaws  𝑏0 𝑎0⁄ =  0, 1. This can be seen more precisely in Figure 3-19. 

For the case of an initial crack  𝑏0 𝑎0⁄ = 1 shown in Figure 3-19(a), the ratio of 

crack growth (𝑑𝑏 𝑑𝑐⁄ ) is always less than 1 for most propagation processes, which 

means the crack growth rate for the central point is always slower than the outermost 

point until the relative crack depth  𝑏𝑛 𝐷0⁄  0.6. However, the change in growth 

ratio will slow down from the beginning to the stage of  𝑏𝑛 𝐷0⁄  0.6 for all the 
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cases with initial flaws  𝑏0 𝑎0⁄ = 1, and then increase distinctly. For the case of an 

initial crack with  𝑏0 𝑎0⁄ = 0, as shown in Figure 3-19(b), the crack growth along the 

vertical central line is always greater than the growth adjacent to the horizontal 

surface until the relative crack depth satisfies  𝑏𝑛 𝐷0⁄  0.4, since the gradient line 

exceeds 1. Furthermore, the rate decreases sharply at the beginning propagation, 

especially for 𝑚 = 3. Larger values of Paris law exponent   convey more drastic 

changes. It can be deduced that in the early propagation stage, the exponent 𝑚 in the 

Paris law has a distinct effect on the evolution of the crack. The change of crack 

growth rate for the central point is bigger for a large value of 𝑚. It is considered to be 

related to plasticity which suppresses the crack propagation on the outermost surface. 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

 

 

R
at

io
 o

f 
g
ro

w
th

 (
d
b
/d

c)

Relative crack depth(b
n
/D

0
)

 b
0
/a

0
=1, b

0
/D

0
=0.05, m=2

  b
0
/a

0
=1, b

0
/D

0
=0.1, m=2

  b
0
/a

0
=1, b

0
/D

0
=0.1, m=4

 

(a)  b0 a0⁄ = 1 

 



  

77 
 

0.1 0.2 0.3 0.4 0.5 0.6

0

1

2

3

4

5

6

7

 

 

R
at

io
 o

f 
g
ro

w
th

 (
d
b
/d

c)
 

Relative crack depth (b
n
/D

0
)

 b
0
/a

0
=0, b

0
/D

0
=0.08, m=2

 b
0
/a

0
=0, b

0
/D

0
=0.08, m=3

 

           (b)  b0 a0⁄ = 0 

Figure 3-19 Ratio of crack growth along the vertical centerline and toward the 

horizontal surface 

3.3.2 Comparison with Other Numerical Solutions and Experimental Results 

In Figure 3-20, the fatigue propagation of the initial crack 

𝑏0 𝑎0⁄ = 1 ,  𝑏0 𝐷0 = 0.05⁄ a d 0.1  is compared with numerical solutions from 

Carpinteri, A. [52, 55]. The curves in the present results are similar in all cases. 

However, a certain discrepancy between the present result and Carpinteri can be seen, 

especially for the initial crack 𝑏0 𝑎0⁄ = 1, 𝑏0 𝐷0 = 0.05⁄ . The deviation is mainly 

due to the difference in the crack growth method adopted and the idealized crack front 

geometry in the above comparison. A two-parameter elliptical-arc shape with a fixed 

center is assumed only by employing the Paris-Erdogan law ordinarily by Carpinteri 

[52,55]. The two-parameter shape assumption method mentioned above can simplify 

the fatigue calculations, but it is also clear that better predictions should be obtained if 

the shape restraint can be reduced, such as those generated by the proposed method. 
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Moreover, the crack growth circles, which are tangent to the new crack front as well 

as to the current crack front, can accurately represent the real path of the fatigue crack 

and thus obtain more accurate results. Also, the better mesh refinement demonstrated 

in this paper leads to improved prediction accuracy. 
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Figure 3-20 Crack propagation patterns compared with numerical solutions 

 

Figures 3-21 and 3-22 are the comparisons of the crack propagation result with 

the experimental data deduced from Yang, F.P. [62]. It is shown that the present results 

agree well with the experimental data. For the relationship of crack propagation with 

depth and chord length, the overall trend remains consistent, although most data of 

experiment are beyond the simulation results slightly, as shown in Figure 3-21. 
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Figure 3-21 Relationship of crack propagation with depth and chord length compared 

with experimental data 

 

In Figure 3-22, the consistency of the comparison with the two results is good, 

especially for the propagation of the previous stage. Nevertheless, the experimental 

result deviates abnormally around the relative crack depth of 𝑏𝑛 𝐷0 = 0.4⁄  . The 

maximum discrepancy is approximately 12%. The deviation of the two solutions are 

acceptable, as the fracture begins to happen in the experimental method approach the 

relative crack depth 𝑏𝑛 𝐷0 = 0.4⁄ , the discreteness of the experiment is inevitable. It 

is confirmed that the proposed method could provide relatively good accuracy. 
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Figure 3-22 Crack propagation patterns compared with experimental data 

3.4 Chapter summary 

The fatigue propagation of a surface crack in a round bar subjected to tension 

loads has been investigated by using crack growth circles. It is illustrated that the 

proposed method can achieve good convergence speed and accurate prediction of 

crack shape patterns. The following conclusions can be drawn: 

(1) The crack growth circles method is developed for the surface cracks of a round 

bar, and the circles are tangent to both current and new crack fronts. In this way, 

good simulation accuracy can be achieved with less iteration. 

(2) A three-parameter model with fewer shape restraints whose center is allowed to 

move along the vertical axis is established, and the shape change of a fatigue 

crack is predicted more precisely. The nominal aspect ratio of an ellipse, which is 

the ratio of the maximum crack depth to the chord length 𝑐 , 𝑏𝑛 𝑐⁄ ,  is 

considered, instead of the actual aspect ratio of an ellipse semi-axis. 
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(3) A relatively large crack growth increment can be used by adopting the equivalent 

stress intensity factor ∆𝐾𝑒 based on the stress intensity factors along the current 

and new crack fronts. 

(4) The crack propagation process is described accurately based on the ratio of 

vertical growth toward the horizontal surface. It can be seen that the crack 

propagation paths differ with different initial flaws, but will converge 

asymptotically. The ratio of crack growth is always less than 1 for the case of 

initial crack  𝑏0 𝑎0⁄ = 1, and the crack growth along the vertical centerline is 

always greater than the growth toward the horizontal surface. For the case of an 

initial crack  𝑏0 𝑎0⁄ = 0, a greater Paris law exponent m value generates more 

drastic change. 

(5) The present solutions are compared with other numerical solutions and 

experimental data. It is shown that the proposed solutions agree well with the 

experimental data and are better than other numerical solutions. 

In this paper, the dimensions of the initial crack and the material parameters are 

considered. The main reason is these factors are directly related to the method 

employed here.  
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Conclusions 

The crack problem as an important impact on the safety of engineering 

components is a significant research area. Crack propagation evaluation method based 

on fracture mechanics and fatigue damage is conducted in this thesis, involving the 

evaluation of energy release rate related to crack kink and simulation of surface crack 

shape change of round bar. The following conclusions can be drawn: 

(1) The energy release rate related to crack kink under mixed-mode loading for 

aluminum alloy material has been investigated using both a numerical method and 

theoretical derivation. 

A relatively simple and precise numerical method was established to obtain the 

expression of energy release rate associated with the stress intensity factors under 

mixed-mode loading by a series of spatially inclined ellipses in Mode I-II and 

ellipsoids in Mode I-II-III with different propagation angles, based on the concept that 

the energy release rate is equal to the change rate of the energy difference before and 

after crack kink. 

A theoretical expression of energy release rate at any propagation angle for a 

crack tip subjected to -- mixed-mode crack was deduced based on the 

propagation mechanism of the crack tip under the influence of a stress field.  

An experiment is carried out to verify the present methods. The results of the 

proposed method are consistent with the experimental data. It is illustrated that the 

proposed method can achieve an accurate evaluation of the energy release rate, with 

concise calculation. 

(2) The fatigue propagation of a surface crack in a round bar subjected to tension 

loads has been investigated. 

A series of crack growth circles, which are tangent to both current and new crack 

fronts, is developed to predict the shape of the surface cracks for a round bar under 

tension loads base on a three-parameter model with fewer shape restraints whose 

center is allowed to move along the vertical axis. It shows that good simulation 
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accuracy can be achieved with less iteration. 

An equivalent stress intensity factor ∆𝐾𝑒 based on the stress intensity factors 

along the current and new crack fronts is proposed to increase the crack growth 

increment of simulation.  

The crack propagation process is described accurately based on the ratio of 

vertical growth toward the horizontal surface. It can be seen that the crack 

propagation paths differ with different initial flaws, but will converge asymptotically. 

Comparisons have been done to verify the present solutions with other numerical 

solutions and experimental data. It is indicated that the present solutions agree well 

with the experimental data and are better than other numerical solutions. 
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