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Abstract 

In recent years, interest in the application of robot manipulator to automated manufacturing 

soared. The advent of highly capable computer-controlled manipulators indicate d that truly 

flexible automation was feasible, and many manufacturers rushed to take advantage of this 

technology. Robots are used in a wide range of tasks in industrial applications such as ma-

terial handling, milling, painting welding, and roughing. Although the modeled-based ro-

botic calibration methods have been widely researched for decades. It is difficult to create 

models that consider all the causes engendering the end effecter error.   Therefore,  to archive 

further accuracy, a good deal of attention has been paid to the area of un-modeled calibration 

for the sources of errors that could not be taken into account by model-based calibration. 

In this study, new robotic calibration methods are introduced. By combining the joint de-

flection model with the conventional kinematic model of a manipulator, the geometric errors 

and joint deflection errors can be considered together to increase its positional accuracy. A  

new method includes the kinematic calibration and non-geometric compensation with a RBF 

compensator that compensates for compliance errors based on the effective torques. To im-

prove the effectiveness of the calibration process, a neural network is designed to addition-

ally compensate the unmodeled errors, specially, non-geometric errors. Then, the weights 

and biases of the neural network is determined by conventional back-propagation method. 

For increasing the ability of the neural network, heuristic optimization methods such as 

teaching learning optimization and invading weed optimization methods are hired for better 

convergence capability than the back propagation neural network in this calibration process. 

This work also presents a new method includes the kinematic calibration and teaching 

learning-based optimization for directly determining  joint compliance parameters. The ad-

vantages of the suggested method are easy for implementing, removing the need for torque 

sensors, high ability to enhance the precision of the manipulator. 



x 

 

  In order to demonstrate the effectiveness of the proposed method, experimental studies 

are carried out on manipulators. The enhanced position accuracy of the manipulator after the 

calibration confirms the feasibility and more positional accuracy over the other calibration 

methods. 

 
Keywords: Industrial robot manipulator, Constant joint stiffness, Non-linear joint stiffness, Teaching-
learning optimization, Invasive weed optimization, Neural network, Radial basis function.  
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Chapter 1: INTRODUCTION 

 

 

 

 

 

In recent years, interest in the application of robot manipulator to automated manufacturing 

soared. The advent of highly capable computer-controlled manipulators indicate d that truly 

flexible automation was feasible, and many manufacturers rushed to take advantage of this 

technology. Robots are used in a wide range of tasks in industrial applications such as ma-

terial handling, milling, painting welding, and roughing. Although the use of robot manipu-

lators in flexible manufacturing systems still presents problems, such as the high initial cap-

ital costs of automation along with other economic and technical problems caused many 

managers to avoid the use of robots, the goal remains a highly desirable one. However, 

experience has shown that industrial manipulators have much repeatability than accuracy.  

Therefore, the utility of robot manipulators would be significantly enhanced if they were 

made to be as accurate as they are repeatable. To attempt to solve this problem, a good deal 

of attention has been paid to the area of manipulator calibration. 
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1.1 Generally 

An industrial robot is comprised of a robot manipulator, power supply, and comptrollers. 

From a mechanical viewpoint, designers describe the robot by means of parameters repre-

senting geometrical (link lengths, link orientations) and mechanical characteristics (link 

mass, link stiffness) . The source and significance of manipulator errors are topics that have 

attracted the attention of numerous researchers[1]. Whitney et al. [1] used  a PUMA 560 

robot to determine that the most significant error sources for the robot were several nongeo-

metric errors. Judd and Kasinski [2]  studied an AID-900 robots and found that the geometric  

errors were responsible for approximately 95% of the measured error and the nongeometric 

errors appeared to be almost negligible. Jean et al. [3]and Becque [4] reported that flexibility 

in joints and in links is responsible for 8- 10% of the total position and orientation errors. 

Link flexibility is than joint flexibility error-blow 5% [4]. Therefore, more recently research-

ers devoted to identification of compliance errors as well as kinematic errors in industrial 

robots. Caenen and Angue improved the robot accuracy through identifying both kinematic 

parameters and angular deflections in x, y and z axes [5]. Similarly, Jang et al.[6] considered 

the joint angular errors as the sum of geometric error and joint deformation error. Gong et 

al.[7] compensate joint deflections in z axis by identifying defined dimensionless parameters 

as well as kinematic errors. Despite the fact that the error due to temperature is responsible 

for only 0.1% of the total error [3], they also established and applied empirical thermal error 

models to estimate thermal errors by monitoring the temperature field at different operation 

conditions [7].  

To enhance the accuracy of the robot manipulator , the reason for the difference between 

accuracy and repeatability should be understood. Repeatability is defined as the ability of 

the manipulator to return to a pose that has been stored in joint space. Accuracy, however, 

is the ability of the robot to move to a pose defined in task space. To achieve a pose that is 

defined in task space, the robot controller must convert the task space definition of the pose 
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neural network.  In order to demonstrate the effectiveness of the proposed methods, experi-

mental studies are carried out on manipulators. The enhanced position accuracy of the ma-

nipulator after the calibration confirms the feasibility and more positional accuracy over the 

other calibration methods. 

1.2 Organized of the Thesis 

The following of this thesis is organized as follows 

Chapter 2 presents model-based robot calibrations. This chapter is served as basic for the 

rest of this dissertation. In this part. The kinematic calibration algorithm is introduced first. 

Then, the simultaneous identification of constant joint compliance and kinematic parameters 

calibration method is shown. At the end of this section, the calibration results of experiment 

study using the two methods are presented.  

In chapter 3, a new robotic calibration method is proposed for reducing the positional 

errors of the robot manipulator. First, geometric errors of a robot are identified by using a 

conventional kinematic calibration model of the robot. Then, a radial basis function is con-

structed for compensating the compliance errors based on the effective torques for further 

increasing the positional precision of the robot. The enhanced positional accuracy of the 

robot manipulator in experimental studies that are carried on a YS100 robot  illustrates the 

advantages of the suggested algorithm than the other techniques. 

To archive better precision result, Chapter 4 proposes a new method for enhancing robot 

position accuracy. In order to increase robot accuracy, the proposed method models and 

identifies determinable error sources, for in-stance, geometric errors, and joint deflection 

errors. Because non-geometric error sources such as link compliance, gear backlash, and 

others are difficult to model correctly and completely, an artificial neural network (ANN) is 

used for compensating for the robot position errors, which are caused by these non-geometric 

error sources. The proposed method is used for experimental calibration of an industrial 



7 

 

Hyundai HH800 robot designed for carrying heavy loads. The robot position accuracy after 

calibration demonstrates the effectiveness and correctness of the method. 

Chapter 5 demonstrates a new calibration method for enhancing robot positional accuracy 

of the industrial manipulators. By combining the joint deflection model with the conven-

tional kinematic model of a manipulator, the geometric errors and joint deflection errors can 

be considered together to increase its positional accuracy. Then, a neural network is designed 

to additionally compensate the unmodeled errors, specially, non-geometric errors. The inva-

sive weed optimization method is employed to optimize weights and bias of the neural net-

work.  In order to demonstrate the effectiveness of the proposed method, real experimental 

studies are carried out on HH 800 manipulator. The enhanced position accuracy of the ma-

nipulator after the calibration confirms the feasibility and more positional accuracy over the 

other calibration methods. 

Following the chapter 5, chapter 6 proposed a robotic calibration algorithm for improving 

robot manipulator position precision. At first, the kinematic parameters as well as the com-

pliance parameters of the robot can be identified together to improve its accuracy  using the 

joint deflection model and the conventional kinematic model calibration technique. Then, an 

artificial neural network is constructed for further compensating the unmodeled errors. The 

teaching learning-based optimization is used to determine the parameters of the neural net-

work with less computing and better convergence without relying on choosing initial param-

eters. To show the advantages of the suggested technique, a HH800 robot is employed for 

the experimental study of the proposed algorithm. The improved  position precision of the 

robot after the experiment firmly  proves the practicability and positional precision of the 

proposed method over the  other comparing algorithms. 

In chapter 7, a new calibration method for the industrial robot manipulator is proposed, 

which directly identifies joint compliance parameters by combining kinematic calibration 

technique and teaching-learning-based optimization method. The proposed method 
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combined the geometric and non-geometric calibration to consider the geometric errors and 

the shifting of joints together to enhance the positional precision of the industrial robotic 

manipulator. Due to the fusion of the two fundamental methods, the proposed calibration 

technique has many advantages such as fast convergence, less computing, accurate 

knowledge of error sources and significantly increase the accuracy of  the robot. The pro-

posed modeled-based calibration technique is also performed on YS100 robot to demonstrate 

its effectiveness and feasibility.  

Finally, the conclusion of this dissertation and suggestions for further development are 

given in chapter 8. 
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Fig. 1.2 Flowchart of the simultaneous identification of constant joint compliance and kinematic parameters 
method 

2.4. Experiment Study and Results 

2.4.1 Kinematic Structure of The YS100 Robot 

YS100 is a 6 DOF serial robot[22]. The kinematic structure of it is briefly describe in the 

Fig.2.3 and Table. 2.1 . The homogenous transformation matrix between the base frame and 

the end effector of the robot is express as the following equation:  
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Table 2.5. Absolute position accuracy of the YS100 robot (Calibration). 

 Mean (mm) Maximum (mm) Std. (mm) 

Nominal robot model 12.607 27.1121 5.4769 

KM 0.3847 0.7049 0.1327 

SKCM 0.2733 0.4180 0.0782 

 

2.4.2.2. Experimental validation results 

In order to show the general capability over the entire robot workspace, the method should 

be investigated by another robot configuration. The other set of 45 robot configurations (Q2) 

is randomly selected overall the workspace to show the general capability over the entire 

robot workspace of the methods.  

The calibration results with Q2 data set are shown in Table 2.7 and  Fig.2.6. It shows that 

the position errors generated by the SKCM are better than the conventional kinematic cali-

bration method. The mean of position errors generated by the SKCM method is more  precise 

by 98 % than the errors before calibration (from 12.2686 mm to 0.2191 mm), by 41% than 

the errors by KM (from 0.3842 mm to 0. 2191mm). 

Table 2.6. Absolute position accuracy of the YS100 robot (Validation). 

 Mean (mm) Maximum (mm) Std. (mm) 

Nominal robot model 12.2686 23.288 5.3057 

KM 0.3842 0.7930 0.1864 

SKCM 0.2191     0.3799 0.0752 
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Fig. 2.5.   Absolute position error of the YS100 robot after validation. 

2.5 Conclusion 

This chapter presented the model-based calibration methods for the industrial robot manip-

ulator including KM, SKCM.  

The conventional kinematic method is fast converging, helpful in reducing position errors 

due to the deviations between the nominal and actual values of kinematic parameters. How-

ever, because of neglecting the compliance errors, the residual errors after using this method 

is still high.  

The SKCM has many advantages such as less computing time, fast convergence, and ac-

curate knowledge of error sources. It is also precision and robustness. These calibration tech-

niques are also performed on YS100 robot to demonstrate their effectiveness and feasibility.  
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Chapter 3: A NEW ROBOTIC MANIPULATOR CALIBRATION 
METHOD OF IDENTIFICATION KINEMATIC AND COMPLIANCE 
ERRORS* 

 
 
 
 
 

 In this chapter, a new robotic calibration method is proposed for reducing the positional 

errors of the robot manipulator. First, geometric errors of a robot are identified by using a 

conventional kinematic calibration model of the robot. Then, a radial basis function is con-

structed for compensating the compliance errors based on the effective torques for further 

increasing the positional precision of the robot. The enhanced positional accuracy of the 

robot manipulator in experimental studies that are carried on a YS100 robot  illustrates the 

advantages of the suggested algorithm than the other techniques. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Le, Phu-Nguyen, and Hee-Jung Kang. "A New Robotic Manipulator Calibration Method of Identification Kinematic and Compliance 
Errors." International Conference on Intelligent Computing. Springer, Cham, 2020. 
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where kinP  is the position of the end effector calculated by the kinematic parameter, kinP  is 

the position error caused by the geometric error, cP  is the position error due to the joint 

compliance, and extraP  is the positional residual error that is not modeled. Assuming that 

geometric errors and joint deflection errors are the main parts in causing the position errors 

realP  ( 0extraP ). The error model can be expressed as: 

 kin c real kinP P P P P  (3.2) 

The position errors caused by geometric errors kinP  in the Eq. 3.1 could be identified by 

the conventional kinematic calibration[23][24][25]. kinP can be expressed as 

 kin kinP J  (3.3) 

where kinJ (3 n ) is a kinematic Jacobian matrix[10][22]. is a 1n kinematic parameter 

error vector. n  is the number of the calibrated kinematic parameters. The total number of 

kinematic parameters is equal to 32. However, the 6 DOF revolute robot has several depend-

encies between some parameters. These dependency parameters are { 1 0, },{ 1 0,d d

},{ 3 2,d d },{ 6,Tz d },{ 6( , ),T Tx y }. In each pair, the parameter errors cannot be 

identified together. Therefore, the dependency parameters that are chosen to calibrate are {

1 , 1d , 3d , Tx  , Ty  , Tz  } while the other error parameter in each pair is set to the 

nominal parameter value. So, the number of calibrated kinematic is reduced to 27. 

The Eq. 3.3 can be solved by the least-square method to overcome the effect of noise and 

uncertainty: 

 T -1 T[(J J) J ] P  (3.4) 
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The positional error P is calculated by  

 m kinP P P  (3.5) 

where Pm is the measured position vector and Pkin is the computed position vector by the 

recent kinematic parameters. The Eq. (3.4) is employed repetitive until the geometric param-

eters converge. Through the kinematic calibration process, the kinP  converges to the 
kin

cP

value. The position errors of the robot end-effector after kinematic calibration process are 

calculated by: 

 c
res m kinP P P  (3.6) 

Assuming that the position errors due to joint deflection errors are the main parts in caus-

ing these residual position errors ( res cP P ). The joint deflections under link self-gravity 

and external payload are also assumed to be dominant in causing compliance errors. There-

fore, the joint deflection errors can be calculated from the related effective torque of joints.  

It should be noted that previous literatures[20],[22] constructed the compliance errors by 

linearizing the relationship of the effective torques and the joint compliances. However, 

there are some residual errors that could not be neglected caused by the nonlinear relation 

between joint torques and joint deflections. For further enhanced the robot precision, the 

relationship of the effective torque and the residual errors is constructed by a RBF in this 

chapter. The RBF has 6 inputs that represent the total effective torque in 6 robot joints, 40 

nodes in the hidden layer, and 3 nodes in the output layer that represent three elements of 

the position error vector. 

The total effective torques in the robot jth joint under related gravity forces are given as: 

 
,

1 1

, i j

N N
T

i i j j
j i j i

J F    (3.7) 
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Fig. 3.3. Experimental setup. 

3.3.1 Experimental calibration 

            The robot configuration data are randomly collected in the working space and clas-

sified into 2 sets. Set Q1 including 50 robot configurations is employed in the calibration 

process and the other set of 50 robot configurations (Q2) is used in the validation process. 

By using the conventional calibration method (Eq. 6), 27 geometric parameters are identi-

fied. The results are demonstrated in Table 3.1. The residual errors and the computed torques 

are used for training the RBF to determine the weights and bias of the RBF. It should be 

noted here the reason why the RBF is used in this working rather than the conventional fed 

forward neural network. In the conventional feedforward neural network, the sigmoid neu-

rons can have outputs over a large region of the input space, while radial basis neurons only 

respond to relatively small regions of the input space[44]. Therefore, the RBF could be said 

to be more stable in responding to noises and uncertainties inputs. However, the drawback 

of this method is that the larger the input space the more radial basis neurons are re-

quired[45]. The experimental calibration processes are carried out by 3 different calibration 
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Nominal robot model 13.5527   30.5911    6.0528 

KM   0.6894      1.9318    0.4015 

SKCM   0.6065      1.6811  0.3488 

Proposed method   0.2785      0.9332    0.2095 

 

 The calibration results show that the precision of the robot after calibrated by the pro-

posed method is dramatically reduced. By employing the KM-RBF method, the position 

errors are lower than the results by other methods. In comparing to the conventional kine-

matic calibration method, the proposed method reduces the mean of position errors from 

0.6894 mm to 0.2785 mm (precise increasing by 59.6%). It also increases the accuracy by 

54.08% in comparison to the results generated by the SKCM method (from 0. 6065 mm to 

0.2785 mm). The suggested algorithm also generates the lowest maximum position error ( 

0.9332 mm), and the lowest standard deviation (0.2095mm).  

3.3.2 Experimental validation results  

The proposed method should be validated by another robot configuration to demonstrate 

the ability of it over the working space. The robot configuration set Q2 that is totally different 

from Q1 is hired for the validation process with 3 different methods. 
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Fig. 3.5. Residual errors of the YS100 robot after validation. 

Table 3.3. the absolute position accuracy of the YS100 robot (Validation). 

 Mean (mm) Maximum 

(mm) 

Std. (mm) 

Nominal robot model 14.1106   32.3303    5.9835 

KM   0.7245      1.7584   0.3814 

SKCM   0.6398      1.7031   0.3214 

Proposed method   0.2802      0.7846   0.2084 

By employing the method, the position errors are lower than the results by other methods in 

the validation process (Table 3.3 and Fig. 3.5). In comparing to the conventional kinematic 

calibration method, the proposed method reduces the mean of position errors from 0.7245 

mm to 0.2802 mm (precise increasing by 61.33%). It also increases the accuracy by 56.21% 

in comparison to the results generated by the SKCM method (0.6398 mm to 0.2802 mm). 

The suggested algorithm also generates the lowest maximum position error ( 0.7846  mm), 

and the lowest standard deviation (0.2084mm).  
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confirmed by the experimental studies on a YS100 robot in contrasting with 2 other methods 

such as the conventional kinematic calibration and the method for simultaneously calibrate 

the geometric and joint stiffness parameters of the robot . 
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shortcomings because a user cannot know the robot error sources. However, some errors can 

be modeled easily and correctly, for examples, the robot link geometric errors and the robot 

joint compliance are easily modeled. 

The model-based calibration method, mentioned above, has many advantages such as less 

computing time, fast convergence, and accurate knowledge of error sources. Some error 

sources (especially non-geometric errors) cannot, however, be determined and modeled cor-

rectly. Therefore, the robot position error, which is caused by these error sources, should be 

compensated for by using an ANN. The combination of both model-based calibration and 

ANN compensation methods can be an effective solution for enhancing robot position accu-

racy. 

In this chapter, we present a technique for the calibration of industrial robots by combining 

the advantages of the two above methods. The first one is a model-based calibration method 

and the second is position error compensation using an ANN. First, we model and identify 

robot kinematic error parameters, including geometric errors and joint compliance errors. 

Second, the robot residual position errors, which are caused by other non-geometric errors 

such as link deflection, gear backlash, etc., are compensated for by using an ANN. By com-

paring with the work[6], the proposed method can also include the robot joint compliance 

errors in the robot model. The ANN, which was built with the proposed method, also de-

scribed a more appropriate relationship between the robot joint readings and its end-effector 

positions instead of the unsuitable one used in the work[6]. Experimental calibration for the 

Hyundai HH800 robot was carried out to demonstrate the effectiveness and correctness of 

the proposed method. 

The remainder of the chapter is organized as follows: Section 4.2 develops a robot kine-

matic model for use in calibration. Section 4.3 derives formulas for the identification of robot 

kinematic parameters including geometric parameters and joint compliance. Section 4.4 con-

structs an ANN and shows how to compensate for the robot position errors. Section 4.5 
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off-line program contains a set of modified robot joint commands, which is used to guide 

the robot to its desired position in the workspace with a specific accuracy. 

 4.5. Experiment and Results 

 The proposed method is applied for the experimental calibration of a Hyundai HH800 ro-

botic manipulator. The enhanced position accuracy of the robot after calibration proves the 

effectiveness and correctness of the proposed method. This section presents orderly steps of 

experimental calibration such as arrangement of the robot calibration system, measurement 

process, calibration results, and validation of robot accuracy after calibration. 

Laser Tracker
Reflector 
Location

HH800 Robot

 

Fig. 4.5. Calibration setup of the Hyundai HH800 robot 

A robot calibration system consists of a Hyundai HH800 robot (6 dof) which has one 

closed-loop actuating mechanism, a 3D point sensing device (API Laser Tracker, measure-

ment accuracy of 0.01 mm/m, repeatability of +/-0.006 mm/m), and an accompanying laser 

reflector. The reflector is fixed at a particular location of the robot end-effector. The system 

is arranged as shown in Fig. 4.5. 

In order to acquire suitable measurement data for robot parameter identification and ANN 

training, the robot workspace is divided into 10 sub-workspaces which are depicted in Fig. 

4.6. In each sub-workspace (the central angle is 18º), the robot moves its end-effector to 50 

positions such that they entirely cover the sub-workspace. The three-dimensional 
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coordinates of the end points are measured by the Laser Tracker and saved in a computer. 

At the same time, the associated robot joint readings also are recorded. For the other sub-

workspaces, the measurement procedure is performed similarly. As a result, a set of 500 end-

effector positions and a set of 500 robot joint angle readings are acquired. These measure-

ments will be grouped as follows: a set of 4×10 = 40 end-effector positions (referred to as 

Q1) for parameter identification is collected from the sub-workspaces (4 endpoints from each 

of 10 sub-workspaces).  

A set of 20×10 = 200 (referred to as Q2) robot endpoints for training the ANN is collected 

from the sub-workspaces (20 endpoints from each of 10 sub-workspaces). A set of 20×10 = 

200 (referred to as Q3) arbitrary endpoints for robot accuracy validation is collected from 

the sub-workspaces (20 end-points from each of 10 sub-workspaces).  

Elements of the sets Q1 and Q2 should be totally different. It is worth to noting that the sets 

Q1 and Q2 of end-points are selected such that these points have a uniform distribution 

within each sub-workspace. 

 x0

 z0, z1
 y0

 180º

 18º

 (1)
 (2)

 (10)

 

Fig. 4.6. An arrangement for collecting robot end-effector measurements in each sub-workspace 
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Table 4.3. Absolute position accuracy of the HH800 robot (calibration) 

 

Mean 

[mm] 

Std. 

[mm] 

Max. 

[mm] 

Before calibration (nominal robot model) 4.0654 0.8803 6.3291 

After robot link geometry and joint compliance compen-

sation  
0.6919 0.3244 1.9312 

After robot non-geometric error compensation by ANN 0.3264 0.1275 0.8430 

Table 4.4 Absolute position accuracy of the HH800 robot (validation) 

 

Mean 

[mm] 

Std. 

[mm] 

Max. 

[mm] 

Before calibration (nominal robot model) 4.0629 0.8451 6.1681 

After robot link geometry and joint compliance compen-

sation  
0.7035 0.3154 2.1372 

After robot non-geometric error compensation by ANN 0.3959 0.1799 0.8928 

In the identification process, we first identify the robot link geometric errors and joint com-

pliance parameters by using the measurement set Q1. By using the whole set Q1, we can 

define an over-determined system of 120 (3 × 40 = 120) differential equations based on Eq. 

(4.17). The solution of Eq.  (4.18) of this system of equations in the sense of least squares is 

identified link geometry and joint compliance parameters[67]. The total number of identifi-

able parameters is 29 (25 geometric parameters and four joint compliance parameters, s2, s3, 

s4, s5). With this type of robot, the first joint axis is vertical, so the s1 parameter is not taken 

into account because the torsional deformation about the first axis is so small compared with 

other joint axes. The joint deformation about the sixth axis is not identifiable because of 

dependence characteristics associated with other parameters[63]. The identified values of 
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