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ABSTRACT

Enhanced Mobility Management Algorithms for Cellular

Networks

by

Nguyen Minh Thang

Supervisor: Professor Sungoh Kwon

Submitted in Partial Ful�llment of the Requirements for the Degree of

Doctor of Philosophy (Electrical Engineering)

February 2021

The use of mobile phones and other portable devices is continuously increasing the demand

for high quality of experience (QoE) in wireless networks, such as huge data rate, and ex-

tremely low latency. To satisfy the heavily growing QoE demands, the ultra-dense network

is considered a promising technique for �fth generation (5G) and beyond 5G cellular net-

works. Therefore, to support the data demand, as well as to increase network capacity small

cells are densely deployed in present cellular networks. However, due to the low service

area, the small-cell network is vulnerable to the mobility of user equipment units (UEs).

During the course of movement, the wireless connections between UEs and small cells can

fail frequently, such as handover failure or call drop, thus disturbing user experience. The

problem will be exacerbated under ultra-dense small cell network if mobility-related param-

eter are not optimized. Hence, appropriate con�guration and management of the network

is required to enhance user quality of experience, and this thesis we studied two topics:

handover optimization issues and resource management problems in cellular networks.
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Abstract vii

The �rst part of the thesis focuses on handover optimization for seamless mobility

under ultra-dense small-cell networks. In Chapter I, in order to overcome handover fail-

ure in ultra-dense small-cell networks, we propose a low-complexity distributed mobility

robustness optimization framework for small-cell networks to optimize handover parame-

ters, such as time-to-trigger (TTT), handover o�sets (A3O�set), and cell-individual o�sets

(CIO). The framework performs handover failure classi�cation by exchanging message be-

tween cells in the system. The failure includes too-late handover, too-early handover, and

wrong-cell handover. Due to a trade-o� between too-late handover with too-early handover

and wrong-cell handover, handover parameters are optimized according to the reasons for

failure. Results show that the proposed algorithm improved handover performance more

than baseline algorithms.

In chapter II, we analyzed handover problems to clarify when and how optimal

handover parameters can be obtained. The study utilized geometry to model handover

problems (such as too-late, too-early, and wrong-cell handover) and derived mathematical

condition for handover failures. After that, optimal settings to avoid undesirable handover

was introduced, and the trade-o� between too-late handover and too-early handover was

deeply investigated. We perform analyses for various aspects of wireless networks, such as

impacts of interference, heterogeneous environments, mobility models, and network topology.

In chapter III, utilizing the results of chapter II, we propose a machine learning-

based mobility robustness optimization framework for dynamic small-cell networks. Due to

energy saving or tra�c demands, small cell can be activated or deactivated, thus making

the topology of wireless network become dynamic. Also, user mobility a�ects handover

performance in a dense deployment of small cells. Taking into account the dynamics of

network topology and user mobility, we apply transfer learning and reinforcement learning to

optimize handover parameters. The transfer learning-based algorithm utilized the handover
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analysis in chapter II to adapt the varying topology, and reinforcement learning used the

transferred knowledge to optimize handover parameters with a fast convergence. The results

show that the proposed framework provide signi�cant improvement in handover performance

while achieving short convergence rate under dynamic small-cell networks.

Part II of the thesis focuses on power allocation and beamforming design for multi-

connectivity 5G wireless network. In chapter IV, we propose a cooperating scheme to max-

imize network throughput while guaranteeing user quality of experience (QoE) demands in

multiple-input-multiple-output (MIMO) systems. One of the aspired-to targets of the �fth

generation (5G) network is to guarantee QoE everywhere in the network. However, UEs

in the edge areas are vulnerable to QoE violations, and they need dual connectivity from

two nearby transmission points. Hence, with the motivation to utilize multi connectivity to

satisfy the demanded QoE, our algorithm categorized UEs into two sets: single-connectivity

and dual-connectivity. After classi�cation, transmission power is allocated to maximize the

network capacity while guaranteeing the minimum QoE. We show that our proposed algo-

rithm not only satis�es all the UEs in the system but also maximizes the network capacity

and outperforms benchmark algorithms.

In chapter V, we proposed a resource allocation algorithm for multi-connectivity

wireless networks considering the minimum required QoE and the impact of CSI error. In

practice, CSI error caused by hardware impairments or quantization of channel estimation

scheme can a�ect the power allocation mechanism. Therefore, �rst, we investigate the impact

of CSI error on the received signal quality at UEs in terms of signal-to-noise-plus-interference

(SINR). Then, UEs are classi�ed into two set: single-connectivity and dual-connectivity.

After that, power is allocated to each set with the aims at minimizing transmit power and

satisfying QoE requirement together. The results show that our algorithm can achieve 100 %

satisfaction rate while minimize the transmit power.
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Chapter 1

Mobility Robustness Optimization1

In this chapter, we propose a distributed mobility robustness optimization algo-

rithm to minimize handover failures due to radio link failures by adjusting time-to-trigger

and o�set parameters. According to the reason for failure, the algorithm classi�es han-

dover failure into three categories (too late, too early, and wrong cell), and simultaneously

optimizes three handover parameters according to the dominant failure. Moreover, the algo-

rithm considers handover failures to each neighboring cell and adjusts handover parameters

individually. Via simulation, we show how the proposed algorithm adaptively optimizes the

parameters and outperforms previous algorithms in various mobile environments.

1.1 Introduction

The small cell is one of the key technologies of the �fth-generation network, since

it can share the burden of capacity and coverage demands [2], [3]. Small cells are designed

to be cost-e�ective and power-optimized, serving limited coverage areas [2, 4], and can be

installed at indoor or outdoor hyper-dense locations such as o�ces, campuses, stadiums,

1The study in this chapter was published in IEEE Transactions on Vehicular Technology[1].

3
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airports, and other large venues [2], in a planned or unplanned manner. Hence, manual

con�guration of such a network is di�cult because of the large number of small cells and the

dynamics of unplanned deployment. The self-organizing network (SON) [5] was introduced

to automatically con�gure and optimize a wireless network by reducing manual involvement.

Self-optimization aims at improving network performance by adaptively adjusting system

parameters based on network status.

Among self-optimization case studies, mobility robustness optimization (MRO)

aims to improve user mobility performance by optimizing handover-related parameters [5].

If the parameters are not appropriately set, when users in service move from one cell to

another (referred to as handover), radio link failures (RLFs) and ping-pong can occur. As

RLF causes user equipment (UE) to physically lose the radio connection, additional retrans-

missions or reconnections are required, which interrupts user service and wastes network

resources. In contrast, under ping-pong, user service is successfully maintained while they

are transferred back-and-forth between two neighboring cells within a short duration of time,

called minimum time-of-state [6]. Hence, ping-pong only impacts network signaling load.

Since RLFs a�ect the quality of service more than ping-pongs, the main objective of MRO

is to minimize RLFs by optimizing the handover parameters [5].

In previous work, various MRO algorithms to minimize RLFs have been pro-

posed [7�16]. In [7, 8], the authors introduce joint optimization algorithms for handover

o�set (hysteresis) and time-to-trigger (TTT). However, the hysteresis and TTT parameters

globally impact all neighboring cells, so the algorithms cannot individually adapt to di�erent

neighboring cell environments. The adaptive method in [9] can locally adjust cell-individual

o�sets (CIOs) for speci�c neighboring cells, based on handover failure classi�cation. But

other handover parameters, such as TTT and hysteresis, are not of concern even though

they signi�cantly impact handover performance [10, 11]. In [10], the authors utilize an in-
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terference coordination technique along with appropriate sets of handover o�set and TTT.

Nonetheless, the appropriate sets are �xed and chosen a priori via simulation. Therefore,

the algorithm may not be applicable to real environments, including small-cell networks. To

provide a more �exible way to adjust handover parameters, machine learning-based algo-

rithms are proposed in [12�15]. While the algorithms in [12, 13] can tune handover o�sets

without TTT adjustment, the other algorithms in [14,15] tune hysteresis and TTT, ignoring

CIOs. Hence, the algorithms in [12�15] are limited in handover optimization. Also, the user

speeds reported in [10, 15] are assumed to be precisely estimated, so that their algorithms

are not applicable to general environments in practice.

In this chapter, we propose a distributed SON algorithm for a small-cell network

to minimize the number of RLFs that can happen during handovers. To that end, we

categorize handover failures according to the reasons for RLF. Handover o�sets including

CIOs can reshape geographic handover regions to neighboring cells and a�ect a handover

process spatially. TTT can adjust handover execution time, so the parameter in�uences a

handover process temporally. Hence, to minimize the number of RLFs, our algorithm jointly

optimizes spatial and temporal handover parameters by considering their typical in�uence

on the dominant failure of each neighboring cell, while the previous works only consider a

part of the three parameters (TTT, hysteresis, and CIO). In addition, we discuss the impact

of user speed on RLF optimization and RLF-ping-pong tradeo�.

1.2 System Model and Problem Formulation

1.2.1 LTE Small-Cell Network and SON

In this chapter, we consider a Long-Term Evolution (LTE) small-cell network with a

single frequency and a SON. Small-cell base stations, called small-cell eNBs (SeNBs) in LTE,
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can communicate with each other via the X2 interface. The X2 interface essentially supports

the handover procedure by exchanging operational reports, parameter con�guration, and

radio link failure indication [17]. At each SeNB, a SON entity, known as a distributed

SON [5], keeps gathering handover information and optimizing handover parameters. The

handover procedure is executed when a UE moves from a serving cell to a neighboring cell.

Based on measurement reports from the UE, the serving cell makes a decision of when to

hand over the UE to a target cell in order to maintain service.

1.2.2 Handover Procedure and Parameters

The LTE handover procedure starts based on measurement reports from a UE to

the serving SeNB that makes the handover decision. The UE periodically measures refer-

ence signal received powers (RSRPs) of all discovered SeNBs, and reports a measurement

indicating that a handover should be triggered if a certain condition holds.

In this chapter, the A3 event is con�gured for measurement reporting [17]. The A3

event is triggered when a neighboring cell becomes better than the serving cell based on a

certain o�set. The moment for the UE to report measurements is right after the TTT timer

has expired. The condition is described as follows:

Mn+Ocn+Ofn > Mp+Ocp+Ofp+O�+Hys, (1.1)

where Mp and Mn are the measured RSRP values of the serving SeNB and the neighboring

SeNB, respectively. Hys is the hysteresis parameter to prevent oscillation of Condition (1.1)

due to fading, and O� is the handover o�set for this event. To di�erentiate the A3 event

o�set from other o�sets, we denote the o�set for the A3 event as A3O�set in this chapter.

O�sets Ocn and Ocp are CIOs for the neighboring SeNB and the serving SeNB, respectively.

While Hys and A3O�set a�ect handovers to all neighboring SeNBs, the CIOs can assign



Chapter 1: Mobility Robustness Optimization 7

di�erent o�sets to di�erent neighbors. Ofn and Ofp are frequency-speci�c o�sets for the

neighboring SeNB and the serving SeNB, respectively. Since only intra-frequency handover

is considered, and there is no speci�c o�set for serving cells in this chapter, we set Ofp, Ofn,

and Ocp to zero. Hence, we can rewrite Condition (1.1) as

Mn > Mp+O�setn, (1.2)

where O�setn = A3O�set+ Hys− Ocn. When (1.2) is satis�ed, being as long as the given

TTT, the UE sends a measurement report to the serving SeNB.

1.2.3 Handover Failures

Due to an unreliable radio link, a handover might fail unintentionally if the han-

dover parameters are improperly con�gured. An RLF is detected at the physical layer when

the received signal quality is too low for reliable communication. Based on the quality of

the reference channel, the reliability of the current radio connection is evaluated. If timer

T310 expires after the signal quality drops below threshold Qoutofsync for N310 consecutive

times, the UE triggers an RLF event, and the connection is dropped. During the process,

if the signal quality is above threshold Qinsync for N311 consecutive measurements, the UE

maintains the connection. If a radio link failure happens, the UE �nds the best neighboring

SeNB from the latest measurement session and sends a reestablishment request to the target

SeNB to reconnect [17].

Fig. 1.1 shows an example of an RLF when the o�set parameter in (1.2) and the

TTT are set to O�set
(2)
n and TTT2, respectively. At time t3, since the condition in (1.2)

is met, the A3 event is triggered, and the UE prepares to send a measurement report after

TTT2. However, the signal quality is poorer than Qoutofsync at t4 and remains below the

threshold during N310 consecutive measurements within the T310 period. At time t5, the

UE drops the link due to poor link quality.
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Figure 1.1: Event A3 and control parameters.

Based on the reason for the RLF, handover failures can be categorized into three

types: too late, too early, and wrong cell. A too-late handover happens when a UE moves

faster than the handover parameter settings allow, so that the handover procedure in the

source cell starts too late. Hence, a too-late handover is detected when an RLF occurs in a

serving cell before handover or during the handover procedure owing to a too-weak signal

strength from the serving cell. Then the UE reconnects to a target cell that is di�erent

from the serving cell. The target cell noti�es the originating cell about the RLF via the X2

interface, and the originating cell recognizes a handover that was too late.

A too-early handover happens when a UE moves into a target cell too early, and the

connection is immediately lost due to poor link quality after a successful handover. Then,

the victim UE reconnects to the previous cell. The serving cell itself recognizes the too-early

handover, and noti�cation between cells is unnecessary.

A wrong-cell handover involves three nearby SeNBs, and happens when a UE moves

to an unexpected cell. A wrong-cell handover is detected when an RLF occurs shortly after

a successful handover to the target cell, and then the UE reconnects to another cell that is
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Table 1.1: Solution to handover failures

Handover failure TTT A3O�set Ocn

Too late decrease decrease increase

Too early increase increase decrease

Wrong cell increase increase decrease

neither the serving cell nor the target cell. The last connected cell informs the target cell of

the �rst handover about the failure. The target cell can recognize that this RLF is not due

to a too-late handover but to a wrong-cell handover, and noti�es the originating cell.

1.2.4 Problem Formulation

Improper con�guration of handover parameters brings handover failures. Too-tight

handover parameters induce too-late handovers due to delay in the handover decision. By re-

ducing the TTT or the o�set in (1.2), the number of too-late handovers can be reduced. How-

ever, too-small values for the TTT or the o�set can cause too-early or wrong-cell handovers,

so that a longer value for the TTT, or a greater o�set is required. Table 1.1 summarizes

the solutions for handover failures. Because of complex radio propagation environments,

all kinds of handover failures can happen in the same SeNB, and the con�ict among the

solutions creates a challenge. For example, a handover from SeNB A to SeNB B may be too

late, whereas a handover from SeNB A to SeNB C may be too early. The problem to solve

in this chapter is to minimize the total number of RLFs that happen during handovers by
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adjusting the handover parameters, expressed as

minTTT,Ocn,A3O�set f(TTT,Ocn,A3O�set)

subject to 0 ms ≤ TTT ≤ 5120 ms,

−24 dB ≤ Ocn ≤ 24 dB,

−15 dB ≤ A3O�set ≤ 15 dB,

where f is the number of RLFs. The value ranges for TTT, Ocn, and A3O�set follow the

de�ned standard [18].

1.3 Proposed Algorithm

In this section, we propose a distributed SON algorithm by automatically tuning

handover control parameters such as TTT, Ocns, and A3O�set. A SON entity equipped

at each SeNB collects RLF-related data, and periodically optimizes handover parameters.

Since CIOs (Ocns) specify neighboring cells, each SON constructs a list for CIOs of the N

neighboring cells.

When an RLF happens, each SeNB classi�es the failure based on RLF indication

messages from neighboring SeNBs, and a distributed SON at the serving SeNB collects

statistics for RLF data according to handover problems. We denote the numbers of too-

late, too-early, and wrong-cell handovers from the serving SeNB to neighboring SeNB j as

NLj , NEj , and NWj , respectively. Based on the RLF data, the SON entity computes the

RLF rate (RR), that is, the ratio of the total number of RLFs NtotalRLF to the total number

of handover trials Ntotalhandovertrials, in order to measure handover performance. The RR is

expressed as

RR =
NtotalRLF

Ntotalhandovertrials
=

∑N
j=1

(
NLj +NEj +NWj

)
Ntotalhandovertrials

, (1.3)
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When the timer for updating handover parameters expires, the algorithm checks to determine

if the RR is greater than a certain threshold. If the RR is less than or equal to the threshold,

the algorithm resets the timer as well as the RLF-data counters, and again waits until the

timer ends. If the RR is greater than the threshold, the algorithm updates the handover

parameters in two steps: adapting TTT and Ocns, and updating Ocns and A3O�set.

1.3.1 Adapting TTT and Ocns

Since an SeNB has multiple neighboring cells in which handover environments can

be di�erent, the algorithm adjusts TTT and Ocns according to three types of environment:

too-late, too-early or wrong-cell dominant, and mixed.

When the number of too-late handovers is dominant for all neighboring cells, i.e.,

NLj ≥ NEj+NWj ,∀j, the algorithm reduces TTT to the previous value as long as it is greater

than or equal TTTmin. The TTT value is standardized as an enumerated parameter [17].

When the number of too-early or wrong-cell handovers is dominant for all neighboring cells,

i.e., NLj < NEj + NWj ,∀j, the algorithm increases TTT to the next value as long as it is

less than or equal to TTTmax. After the algorithm changes TTT, it then waits until the

next expiration of the updating timer.

When handover failures are mixed, the algorithm adjusts the CIO with respect to

each neighboring cell in the neighboring list, since TTT can a�ect handovers to all neighbor-

ing cells. If the number of too-late handovers is dominant during handover to neighboring

cell j, i.e, NLj ≥ NEj +NWj , the corresponding CIO (Ocnj) is decreased by one step (1 dB

or 2 dB, depending on the current value). Otherwise, the corresponding CIO (Ocnj) is in-

creased by one step. The actual Ocn value is obtained from a de�ned table [17]. Algorithm 1

summarizes the overall proposed procedure.
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Algorithm 1 TTT and Ocn adaptation algorithm

1: Set up initial handover parameters for neighbour SeNBs

2: Update NLj ,NEj , and NWj for all j

3: if timer for updating RR expires then

4: Calculate RR of (1.3)

5: if RR > Threshold then

6: if NLj ≥ NEj +NWj for all j then

7: Decrease TTT

8: else if NLj < NEj +NWj for all j then

9: Increase TTT

10: else

11: for j = 1 to N do

12: if NLj ≥ NEj +NWj then

13: Decrease Ocnj by one step

14: else if NLj < NEj +NWj then

15: Increase Ocnj by one step

16: end if

17: end for

18: Update A3O�set as in Algorithm 2

19: end if

20: end if

21: Reset the timer and all counters, then return to Line 2

22: else

23: Return to Line 2

24: end if
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Algorithm 2 Ocn and A3O�set modi�cation algorithm

1: if all Ocnj are positive then

2: Ocnj ← Ocnj −Ocnmin for all j

3: A3O�set← A3O�set−Ocnmin

4: else if all Ocnj are negative then

5: Ocnj ← Ocnj −Ocnmax for all j

6: A3O�set← A3O�set−Ocnmax

7: end if

1.3.2 Updating Ocns and A3O�set

After completing all CIOs, the algorithm updates all Ocnjs and the A3O�set in

order to �ne-tune the o�sets. The values of the Ocnjs and A3O�set are indexed [18]. While

the index for A3O�set has 0.5 dB intervals, Ocnj has di�erent granularity according to the

range, i.e., 1�dB steps between −6 dB and 6 dB, and 2�dB steps in other ranges. For

�ne-tuning O�setn in (1.2), the algorithm adjusts A3O�set and the Ocnjs while preserving

O�setn, so that as many Ocnjs as possible work in the range from −6 dB to 6 dB. If the

Ocnjs are all positive, the algorithm subtracts from A3O�set and Ocnjs the minimum of all

Ocnjs, i.e. Ocnmin. If the Ocnjs are all negative, A3O�set and the Ocnjs are reduced by

the maximum of all the Ocnjs, i.e. Ocnmax. Otherwise, A3O�set and the Ocnjs all remain

the same. Algorithm 2 summarizes the process for updating the Ocns and A3O�set.

1.4 Simulation and Performance Analysis

1.4.1 Simulation Environment

To verify the proposed MRO algorithm, simulations were conducted using the NS-

3 network simulator with the LTE module [19]. A one-tier small-cell network composed
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Figure 1.2: Simulation environment.
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Figure 1.3: RLF rates ([0,10] km/h).
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Figure 1.4: RLF classi�cations ([0,10] km/h).

of seven SeNBs was considered and the inter-site distance was set to 30 m. The system

bandwidth was set to 20 MHz. A wireless channel was modelled under a non-line-of-sight

path loss model [20] and an extended typical urban multipath-fading model [21] that follows a

log-normal distribution with variance of 6 dB. If the reference signal received quality (RSRQ)

is below −12 dB for 500 ms, then the radio link is considered to have failed. The random

waypoint (RWP) model was adopted, and the speed was selected within certain ranges. For

the initial handover settings, TTT, A3O�set, and Ocns were set as 480 ms, 3 dB, and 0 dB,

respectively [10]. Additionally, TTTmin and TTTmax were chosen as 40 ms and 5120 ms,

respectively. The threshold for activating MRO was 1% [14], which is also considered as a

performance target.

To evaluate our algorithm, we considered three islands of network coverage, as

shown in Fig. 1.2. In practice, due to blockages, walls, or transmission power, the coverage

of cells can be irregular. Hence, we modeled such irregular coverage boundaries with mul-

tiple islands [22]. For the performance measure, we use the RR in (1.3). To compare the

proposed algorithm, referred to as the MRO algorithm based on classi�cation (MRO-ABC),
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Figure 1.5: Parameter optimization ([0,10] km/h).

three previous algorithms are considered: enhanced weighted performance-based handover-

parameter optimization (EWPHPO) [7], adaptive Ocn tuning (AOT) [9], and fuzzy-based

handover optimization (FHO) [12].

1.4.2 Simulation Results

For the simulations, user velocities for the RWP model were randomly selected

between 0 and 10 km/h to model a pedestrian environment. As shown in Figs. 1.3 and

1.4, MRO-ABC outperforms the other algorithms and smoothly converges to an RR value

below the target performance (1%), while AOT and FHO converge to a higher RR level,

and EWPHPO consecutively oscillates.

To delineate the algorithms, we plot the handover parameters in Fig. 1.52. As can

be seen, MRO-ABC e�ciently �nds optimal parameters, because it is able to optimize three

parameters together and arbitrate optimization con�icts among handover failure classes in

2EWPHPO optimizes TTT and hysteresis. Since the e�ect of hysteresis is identical to A3O�set when
the other is �xed, as shown in (1.1), we plot EWPHPO on the TTT and A3O�set domains
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a cell, while the other algorithms switch back-and-forth between parameter values, which

results in the performance oscillation in Fig. 1.3. Since EWPHPO considers TTT and hys-

teresis, which a�ect all the neighboring SeNBs, and cannot individually optimize handovers

to speci�c neighboring SeNBs at once, the RR of EWPHPO oscillates. FHO and AOT just

attempt to spatially regulate handover regions via CIO adjustments, but they ignore TTT,

which is also a critical parameter to temporally optimize handover [11], so performance is

limited.

To prove the e�ectiveness of our algorithm in various mobile environments, we

conducted simulations in the network seen in Fig. 1.2, varying the average velocities from 10

km/h to 60 km/h. After completing 15-minute simulations with 10 di�erent random seeds,

the averaged results are depicted in Fig. 1.6. The �gure shows that MRO-ABC outperforms

the other algorithms and maintains RRs below the target in all mobile environments, while

EWPHPO and AOT become worse as velocity increases beyond a certain point, and FHO

underperforms.

There may be a tradeo� between RLF reduction and ping-pong [10], since the

reduction of too-late handover bounds the increments of TTT and A3O�set (or hysteresis),

which induces ping-pongs between SeNBs [23]. Hence, we compared the ping-pong rates of

the algorithms, which are de�ned as the ratio of the total number of ping-pongs to the total

number of handover trials throughout the network. Fig. 1.7 shows that the ping-pong rates

of all the algorithms increase as the RRs decrease, and shows that MRO-ABC provides the

lowest ping-pong rate. Except for MRO-ABC, the other algorithms have a strong trade-o�

between RLF reduction and ping-pong. For example, FHO performs second best in RRs,

but worst in ping-pong rates. Since MRO-ABC classi�es handover failures according to

the reasons for RLF and cell-individually optimizes the handover parameters, MRO-ABC

performs the best in both RRs and ping-pong rates.
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1.5 Closing Remarks

In this chapter, a distributed MRO algorithm was proposed to improve handover

performance by reducing RLFs. To that end, the proposed algorithm classi�es handover

failures according to the reasons for failure, and adjusts time-to-trigger, cell-individual o�-

sets, and A3-event o�set together, whereas previous algorithms simply optimize subsets of

the three handover parameters. The proposed SON algorithm adaptively optimizes the han-

dover parameters according to the dominant handover failure. Via simulation, we showed

that our algorithm can e�ectively �nd the optimum handover parameters and outperforms

previous algorithms. In addition, our algorithm induces the fewest ping-pongs among the

considered algorithms.
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Chapter 2

Analysis of Optimal Handover

Parameters1

Handover failure and ping-pongs are the common thorny issues in modern mobile

networks. While handover failures caused by radio link failure (RLF) signi�cantly reduces

the reliability of network operation, ping-pongs drastically waste signaling resources. In the

upcoming �fth-generation (5G) networks especially, a complex deployment of small cells

can exacerbate the two problems, even though the network can be integrated with a self-

organizing network (SON), which is an automation-based solution. Due to the coupling of

RLFs and ping-pongs as explained in the literature, it is di�cult to analyze handovers and

minimize both RLFs and ping-pongs simultaneously. In this paper, we model a handover

procedure with geometric elements (Apollonian circles and the straight line), and analyze

handover performance. The analysis provides an optimal handover setting for minimiz-

ing both RLFs and ping-pongs together, whereas previous works only considered trade-o�s

between them. We show that our analysis accurately estimates the optimal setting by com-

1The study in this chapter was published in IEEE Transactions on Wireless Communications[24].
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paring it with an NS-3 simulation. From the analysis, di�erent environments can require

di�erent optimal values: fading (as well as interference) limit the optimal values; user speed

has a scaling impact; and time-to-trigger has a shifting e�ect.

2.1 Introduction

Trials of 5G cellular systems were demonstrated during the Winter Olympics in

PyeongChang, and the �rst 5G mobiles can be ready for users' hands in 2020 [25]. Among

crucial technologies in 5G, the small cell has been considered an approach to high network

capacity and high spectrum reuse [26]. From a technical aspect, the small cell is a low-

power, low-cost, and ready-to-use prototype of a base station [27]. For this reason, small

cells can be deployed in a planned or unplanned manner in crowded indoor and outdoor

places (such as shopping malls, stadiums, downtown streets, and so on [28]) to improve user

quality of service. As a result, deployment of small cells can result in a dense and complex

wireless network [26] so that traditional drive-test optimization for a cellular network is not

cost-e�ective and applicable if recon�guration is necessary.

To reduce administrative expenses from recon�guring parameters, a small-cell net-

work can be equipped with an automation-inspired solution called a self-organizing network

(SON) [27, 29]. The importance of a SON for small-cell networks is highlighted by its po-

tential features, such as coverage and capacity optimization, energy e�ciency, interference

reduction, mobility load balancing, mobility robustness optimization (MRO), automatic

neighbor relations, and random access optimization [18]. In order to ensure reliable and

e�cient operation of small cells for mobile subscribers, the handover procedure should be

optimized by the SON so the procedure is robust in a dynamic context.

To provide seamless mobility throughout the cellular network, MRO minimizes
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handover failures due to radio link failures (RLFs). Besides that, MRO should keep the

number of ping-pongs as low as possible, since ping-pongs are redundant handovers in a

short time, causing signaling procedure resources to be overburdened. Therefore, RLFs and

ping-pongs should both be minimized. However, previous algorithms faced di�culties in

�nding an optimal solution for joint minimization of both RLFs and ping-pongs [9, 30, 31].

Previous works show that an optimal solution for jointly suppressing RLFs and ping-pongs

is unattainable, and a compromise between them has to be reached based upon heuristic

policies of network administration.

Analyses of handovers in SON-based small-cell networks have been studied in the

literature [23, 32�36]. In [32], a simulation-based analysis showed the impacts of handover

parameters, time-to-trigger (TTT) and handover o�set, and user speed on RLFs and ping-

pongs. The analysis also showed that improvement in RLFs leads to more ping-pongs.

In [33], the authors showed that handover performance depends on handover parameters

(TTT and handover o�set), fading factors, and user mobility parameters (such as user speed

and travel distance). The authors obtained a closed form of handover failure probability

while neglecting ping-pongs. By contrast, in [34], the analysis was totally focused on ping-

pongs, ignoring RLFs. The study showed that an improper handover o�set can lead to

ping-pongs, which occurs between two cells or within clusters of nearby cells. In [23], an

analytical method modeled an RLF based on user mobility and handover o�set without

taking into account TTT. The results showed that handover o�set and fading signi�cantly

a�ects RLFs, while ignoring ping-pongs. In [35,36], analytical methods for RLFs and ping-

pongs took into account TTT and fading, but not handover o�set. The results showed that

when RLFs improved, ping-pongs increased, and vice versa. However, in [1], the authors

showed the possibility of jointly minimizing RLFs and ping-pongs via simulation, but without

providing an analysis.
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In this paper, we provide a comprehensive analysis of RLF and ping-pong mini-

mization in SON-based small cell networks. We study the reasons for RLFs and ping-pongs,

and then derive conditions for them. To that end, we model a wireless environment as geom-

etry with a mathematical tool called the Apollonian circle. Based on the modeled geometry,

we prove the existence of an optimal handover setting to minimize RLFs and ping-pongs

together. Then, from the conditions, we lead to the optimal handover setting. Also, we

investigate the impacts of various factors (such as user mobility, di�erent settings, fading

and interference, handover parameters, and cell deployment) on the optimal setting, and

verify a case for non-existence of the optimal setting.

The remainder of this paper is organized as follows. Section II introduces back-

ground about undesirable handovers, RLFs, and ping-pongs. Section III presents models for

undesirable handovers via the Apollonian circle, and describes the optimal handover setting.

Section IV provides a numerical analysis and a discussion to verify our approximation based

on various aspects.

2.2 System Model

2.2.1 Small-cell Network

In this paper, we assume that small cells operate on a dedicated spectrum to

support a local area. Small cells are connected via the X2 interface to support handover

procedures and to share information [18]. Also, small cells are connected to a core network

via S1 interface to communicate and to receive user data [18]. The small-cell network is

managed by a SON, which receives data from small cells and adjusts parameters to adapt

to the environment [1].
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2.2.2 Quality Measurements of Radio Link

To measure signal strength for a handover decision, reference signal receive power

(RSRP) is chosen. RSRP is the average power of reference signals within a speci�c band-

width [37]. While RSRP is used for handover decisions [1,30,32,35], the signal-to-interference-

plus-noise ratio (SINR) includes inter-cell interference, and is used by user equipment (UE)

to determine RLFs [38�41]. RLFs happen if the SINR remains below a prede�ned threshold,

Qout, for a certain period of time. According to some research [38, 40�42], the SINR for a

UE, γ, is estimated as

γ =
m0∑

i ̸=0mi +N0
, (2.1)

where m0 and mi denote the received RSRP of serving Cell 0 and adjacent Cell i at the UE,

respectively, and N0 is the thermal noise.

Considering a nominated UE located at distance di from Cell i, the received power

for such a distance can be modeled as

mi = pi ·Gi · d−α
i · ηi, (2.2)

where pi is the allocated transmission power of Cell i for the UE, Gi accounts for the antenna

gain, α is the attenuation exponent, and ηi is the fading factor including large-scale fading

and small-scale fading.

2.2.3 Handover Procedure and Control Parameters

Long Term Evolution (LTE) handover enables service switching between cells for

UEs to adapt to mobility. The handover procedure starts based on measurement reports

from the UEs to the serving cell that makes the handover decision. UEs periodically measure

the RSRP of all discovered cells, and eventually or periodically send measurement reports

to the serving cells if certain conditions hold. From the 3rd Generation Partnership Project
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Figure 2.1: Successful handover.

(3GPP) standard, there are six intra-frequency event measurements, designated from A1

to A6 events [17]. Each event measurement is used for a speci�c application of a SON,

like mobility management and neighbor discovery [29]. While the A1 and A2 events only

consider the signal quality of the serving cell, the A4 and A6 events solely observe the signal

quality of neighboring cells. The signal quality of the serving cell and neighboring cells is

embodied by the A5 and A3 events, but only the A3 event assesses a relative comparison

between signal quality of the serving cell and that of neighboring cells. Hence, the A3

event is used for a handover algorithm that decides which cell has the better signal quality

to support moving UEs. The A3 event is triggered when the RSRP of a neighboring cell

becomes better than the serving cell, based on a certain o�set. UEs report measurements

right after the TTT timer has expired. The condition for triggering the event on the decibel
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scale is

Mn + Ocn+ Ofn > Mp + Ocp+ Ofp + O�+ Hys, (2.3)

where Mp and Mn are the measured RSRP of the serving cell and the neighboring cell, re-

spectively. Hys is the hysteresis parameter to prevent oscillation of (2.3) due to fading, and

O� is the A3 o�set for this event. Ocn and Ocp are the cell-individual o�sets (CIOs) for

the neighboring cell and serving cell, respectively. Ofp and Ofn are the frequency-speci�c

o�sets for the serving cell and neighbouring cell, respectively. While Hys and A3 o�set

a�ect handovers to all neighboring cells, the CIOs can assign di�erent o�sets to di�erent

neighbors. In this paper, we set the Ofp and Ofn to zero, since we consider intra-frequency

handover. We rewrite (2.3) as

Mj +∆ij > Mi, (2.4)

where ∆ij = Ocn − Ocp − O� − Hys, which is de�ned as the individual handover margin of

serving Cell i for neighboring Cell j, Mi and Mj are the decibel-scale RSRP of Cell i and Cell

j, respectively. When (2.4) is satis�ed, being as long as the given TTT, the UE sends a

measurement report to Cell i triggering a handover to Cell j. In this paper, the measurement

report carries the RSRP of all discovered cells where the RSRP satis�es (2.4) to Cell i. Then,

Cell i decides to hand over the UE to the best neighboring cell based on the reported RSRP.

Fig. 2.1 shows an example of a successful handover when a UE moves from Cell 0 to Cell 1.

In the �gure, we denote xi as the location of the UE from the serving cell (Cell 0) at time

ti, which is coordinated as (ti, xi). When the RSRP of Cell 1 (M1) is better than the RSRP

of Cell 0 (M0) by a value of −∆01 (i.e., M1 > M0 − ∆01), the A3 event is triggered, and

the timer for TTT starts counting at (t1, x1) for a time lapse of TTT0. When the SINR of

Cell 0 is below an out-of-sync indication threshold (called Qout
2), a timer (called the RLF

2
Qout can be used as the minimum threshold of RSRP [43, 44] or SINR [38, 40]. For simplicity, we plot

Qout as the minimum threshold of RSRP in Fig. 2.1 and Fig. 2.2 while using Qout as the minimum threshold
of SINR for our analysis.
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timer) starts counting for a time duration of τR at (t2, x2)
3. Once M1 > M0−∆01 is retained

for the duration of TTT0, a handover is provoked at (t3, x3). The handover to Cell 1 starts

and completes successfully before a link failure. In this paper, the handover signalling delay

is ignored, because the delay is much shorter than a TTT period (0 to 20 ms, as de�ned

in [45]).

2.2.4 Handover Failures and Ping-pongs

There are two types of undesirable handover: RLF and ping-pong. While ping-

pongs include successful handovers, an RLF causes failed handover attempts based on three

categories of reason: too-late, too-early, and wrong-cell handovers [18]. An RLF is detected

at the physical layer when the received SINR is too low for reliable communications. Based

on the quality of the reference channel, the reliability of the current radio connection is

evaluated. From [17], an RLF detection mechanism in the UE includes T310, N310, and

N311, where T310 and N310 account for out-of-sync detection, and N311 de�nes the number

of in-sync indications when the SINR is above an in-sync level (Qin). If timer T310 expires

after the SINR drops below threshold Qout for N310 consecutive times, the link connection is

dropped due to RLF. During the process, if the SINR is above threshold Qin for N311 con-

secutive measurements, the UE maintains the connection. If an RLF happens, the UE �nds

the best neighboring cell from the latest measurement session and sends a re-establishment

request to the target cell to reconnect [17].

Fig. 2.2a shows an example of a too-late handover, which happens when the UE

moves faster than the handover parameter settings allow, so the handover procedure in the

source cell starts too late. When the SINR of Cell 0 is below Qout, the RLF timer starts

counting at (t1, x1) for a time duration of τR. When M1 is greater than M0 by a value of

3In this paper, τR consists of the time duration of N310 and T310 together, where T310 is a timer mea-
suring the time lapse when SINR is below Qout, and N310 de�nes the number of out-of-sync indications [17].
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Figure 2.2: Handover failures and ping-pongs: (a) too-late handover, (b) too-early handover,
and (c) a ping-pong.

−∆01 (i.e., M1 > M0 − ∆01), the A3 event is triggered for Cell 1, and the timer for TTT

starts counting at (t2, x2) for a time duration of TTT0. Since the SINR of Cell 0 is below

Qout for the duration of τR, an RLF occurs at (t3, x3) before the handover to Cell 1 completes

at (t4, x4). This means that x2 + vTTT0 ≥ x1 + vτR (C1-1). After RLF, the UE tries to

reconnect to Cell 1, which is the best neighboring cell to Cell 0. Cell 1 noti�es Cell 0 about

the RLF via the X2 interface, and Cell 0 recognizes a too-late handover.

A too-early handover happens when a UE joins a neighboring cell too early after

a successful handover, and the connection is immediately dropped because of poor link

quality, as illustrated in Fig. 2.2b. When M1 > M0 −∆01 in (2.4), the A3 event is triggered

for Cell 1, and the timer for TTT starts counting at (t1, x1) for a duration of TTT0. As long

as M1 > M0 −∆01 for the duration TTT0, a handover from Cell 0 to Cell 1 starts and �nishes

successfully at (t2, x2). After a successful handover, the UE joins Cell 1. However, the SINR

of Cell 1 is lower than Qout, so the RLF timer immediately starts counting at (t2, x2) for a

duration of τR. Also, when M0 > M1 −∆10 in (2.4), the A3 event is provoked for Cell 0, and

the timer for TTT starts counting at (t2, x2) for a duration of TTT1. Once the SINR of Cell 1
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is below Qout for the duration of τR, an RLF occurs at (t3, x3) before the SINR of Cell 1

rises above Qout at (t4, x4). This means that x1 + vTTT0 + vτR ≤ x4 (C2-1). The RLF occurs

before the handover �nishes at (t5, x5), which means TTT1 > τR (C2-2). After an RLF,

the UE returns to Cell 0. This failure occurs shortly after a successful handover. Cell 0

itself recognizes the too-early handover based on a recent handover history. A wrong-cell

handover is detected when an RLF occurs shortly after a successful handover to the target

cell, and then, the UE reconnects to another cell that is neither the serving cell nor the

target cell. Since a wrong-cell handover is identical to a too-early handover except for the

re-connection, we merge the wrong-cell problem into the too-early problem.

In contrast to RLFs, ping-pongs maintain the link connection. However, they

include multiple handovers between cells or within a cluster of cells. Fig. 2.2c shows an

example of how a ping-pong is detected. Once M1 > M0 − ∆01 in (2.4), the A3 event is

triggered for Cell 1, and the timer for TTT starts counting at (t1, x1) for a duration of

TTT0. As long as M1 > M0 − ∆01 for the duration of TTT0, a handover to Cell 1 starts

and completes successfully, and the UE joins Cell 1. When M0 > M1 − ∆10 in (2.4), the

A3 event is triggered for Cell 0, and the timer for TTT starts counting at (t2, x2) for a

duration of TTT1. Also, since the SINR of Cell 1 is below QOut, the RLF timer is triggered

at (t2, x2). As long as M0 > M1 − ∆10 for the duration of TTT1, a handover from Cell 1 to

Cell 0 starts and �nishes at (t3, x3), before a failure at (t4, x4). This means that TTT1 ≤ τR

(C3-2) and that x1 + vTTT0 + vTTT1 ≤ x4 (C3-1). It takes a very short time between two

consecutive handovers in a ping-pong. This rapid pace wastes system resources such as

time and signaling procedures [29]. Even though ping-pongs do not cause RLFs, regular

requirement for handover optimization always includes minimizing ping-pongs as much as

possible. The scenario for a ping-pong looks similar to the too-early handover problem; that

is, a handover is triggered more quickly than normal, but ping-pongs do not cause RLFs.
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Table 2.1: Summary of undesirable handovers.

Issues
Condition

Geographical condition Timing condition

Too-late, Fig. 2.2a (C1-1) x2 + vTTT1 ≥ x1 + vτR

Too-early, Fig. 2.2b (C2-1) x1 + vTTT0 + vτR ≤ x4 (C2-2) TTT1 > τR

Ping-pong, Fig. 2.2c (C3-1) x1 + vTTT0 + vTTT1 ≤ x4 (C3-2) TTT1 ≤ τR

Table 2.1 summarizes the conditions for undesirable handovers.

2.3 Analysis of Undesirable Handovers

2.3.1 User Mobility and Positions of Event Triggers

The analysis of undesirable handovers is divided into two steps: between Cell 0 and

Cell 1 alone, and between those two cells from among multiple cells (with both steps using

general parameters). Our analysis starts with a simple scenario of two cells to explain how

handover parameters a�ect handover failures. In practice, there exist multiple neighboring

cells that have di�erent wireless parameters such as transmit power, antenna gain, and

propagation loss. Hence, we discuss the extension of our analytic result from a simple

scenario to a general scenario at the end of this subsection.

In Fig. 2.3a, we depict a handover scenario of two small cells and a user moving

from Cell 0 to Cell 1. Without loss of generality, we assume that the serving cell (Cell 0) is

placed at the origin O(0, 0), and the target cell (Cell 1) is at A(a, 0) on the two dimensional

Cartesian plane. In this �gure, the dashed-line circles represent the transmission range

determined by the minimum SINR, γmin, to decode signals, whereas the solid-line circles

illustrate the boundaries of the A3 events, according to the handover o�set. We assume
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Figure 2.3: (a) User trajectory. (b) Apollonian circles for di�erent ∆01 under identical
settings (ν01 = 1). (c) Apollonian circles for individual ∆01 values under di�erent settings
(ν01 = 1/4). (d) Apollonian circles for an overlaid small cell (ν01 = 1/200).
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that a user moves on a linear path that is formulated as a line, ω ([35,36]), which is modeled

as ω : y = − tan θ(x − b). The path ω intersects the x-axis at B (b, 0) and has a slope of

− tan θ. We assume that θ is within the from range 0 to π/2, without loss of generality.

Trajectory ω intersects the Apollonian circles of Cell 0 at C and D, which are the loci of the

A3 event triggering (i.e., M0 < M1 +∆01) and RLF triggering (i.e., the SINR from Cell 0,

γ0, is less than the minimum required SINR, γmin), respectively. For Cell 1, trajectory ω

also crosses the loci of the A3 event triggering (i.e., M1 < M0 +∆10) at E and out-of-sync

triggering (i.e., the SINR from Cell 1, γ1, is less than the minimum required SINR, γmin) at

F. Next, we determine the loci C(xC, yC), D(xD, yD), E(xE, yE), and F(xF, yF).

To �nd C, we base it on (2.4) as ∆01 = M0 −M1. Switching to the linear domain

using an exponent of 10, we have

10
∆01
10 =

m0

m1
=

(
p0
p1

)(
G0

G1

)(
η0
η1

)(
OC

AC

)−α

. (2.5)

After rearranging and taking an exponent of −2/α for both sides of (2.5), we have

x2C + y2C
(xC − a)2 + y2C

= ν
2
α
0110

−∆01
5α , (2.6)

where the ratio of Cell 0 parameters to Cell 1 parameters, ν01
4, is given as ν01 = p0 G0 η0

p1 G1 η1
.

We rewrite (2.6) as

(
xC −

k2a

k2 − 1

)2

+ y2C =

(
ka

k2 − 1

)2

, (2.7)

where k = ν
1
α
0110

−∆01
10α . For an omni-directional antenna, (2.7) represents the Apollonian

circle [46], where the coordinates of the center and the radius are
(
k2a/(k2 − 1), 0

)
and

ka/
∣∣k2 − 1

∣∣, respectively.
4The random variables for fading factors are independently initialized at positions C, D, E, and F. To

address the randomness from fading factors, we compute position C, D, E, and F for each realization of the
fading factors, and then, average the results.
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According to the parameter settings, the Apollonian circle in (2.7) has di�erent

shapes, as shown in Fig. 2.3b and Fig. 2.3c. For simplicity, we start our analysis with

identical parameters of two cells, although the analysis is applicable to a general setting.

Fig. 2.3b shows the e�ect of ∆01 on Apollonian circles with identical parameters

(ν01 = 1). When ∆01 decreases from −2 dB to −20 dB, leading to a rise of k, the center

of the circle moves toward Cell 1. When ∆01 increases from 2 dB to 20 dB, causing a drop

in k, the center of the circle moves toward Cell 0. When ∆01 equals 0, i.e. k equals 1, the

circle becomes a straight line. The intersection of trajectory ω with the Apollonian circle

is a decreasing function of ∆01. Fig. 2.3b depicts two positions, X1 and X2, which are

intersections of a trajectory, UV , with the circles for 2 dB and −2 dB, respectively, and we

have the x-coordinate of X1 smaller than that of X2. This result plays a fundamental role

in our analysis method. Since C belongs to ω, we �nd the coordinates of C via the following:
x2
C+y2C

(xC−a)2+y2C
= ν

2
α
0110

−∆01
5α

yC = − tan θ(xC − b).

(2.8)

Next, we �nd D on ω where the out-of-sync event occurs. We rearrange (2.1) as

γmin =
m0
m1

1 +
∑N−1

j=2
mj

m1
+ N0

m1

=
m0

m1

1

ρ0
, (2.9)

where transmit power and antenna gain are identical for the cells, ρ0 is the interference

normalized by m1, which is de�ned as ρ0 = 1 +
∑N−2

j=2 mj/m1. Multiplying both sides

of (2.9) with ρ0, we have

ρ0γmin =
m0

m1
=

η0
η1

(
OD

AD

)−α

. (2.10)

Taking the exponent −2/α and rearranging elements for both sides of (2.10), an equivalent

equation is obtained

x2D + y2D
(xD − a)2 + y2D

= ν
2
α
01(ρ0γmin)

−2
α .
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Figure 2.4: A3 event borders for handover o�set -3 dB in six sectors of a heterogeneous
environment.

Then, D can be found with the following:
x2
D+y2D

(xD−a)2+y2D
= ν

2
α
01(ρ0γmin)

−2
α

yD = − tan θ(xD − b).

(2.11)

Similarly, E and F can be found as
(xE−a)2+y2E

x2
E+y2E

= ν
−2
α

01 10
−∆10
5α

yE = − tan θ(xE − b),

(2.12)


(xF−a)2+y2F

x2
F+y2F

= ν
−2
α

01 (ρ1γmin)
−2
α

yF = − tan θ(xF − b),

(2.13)

where ρ1 = 1 +
∑N−2

j=2 mj/m0, which is the interference normalized by m0.

Fig. 2.3c shows a scenario of two cells with di�erent transmission power and antenna

gains, such that ν01 = 1/4. The handover triggering positions shift toward Cell 0, and the

handover region of Cell 0 narrows due to the unbalanced settings. Similar to the identical
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settings, locations C, D, E, and F can be obtained via (2.8), (2.11), (2.12), and (2.13),

respectively.

In practice, there are multiple cells in wireless networks, and handovers to each

neighboring cell have di�erent wireless environments. We extend the approach to �nding

C, D, E, and F in a heterogeneous environment with multiple cells and di�erent settings.

Transmission power and antenna gain di�er according to cell types. Also, beamforming gain

can be captured in (2.2) by adopting the antenna gain as Gi =
∣∣wH

i Hiui
∣∣, where Hi is the

channel matrix between Cell i and the UE, ui is a transmitting beamforming vector from

Cell i to the UE, and wH
i is the Hermitian transpose of the receiving beamforming vector

of the UE toward Cell i [40,41]. If blockages and buildings interrupt a radio connection, Gi

is multiplied by a factor for penetration loss [47].

Heterogeneous networks is a case of di�erent settings, where small cells are overlaid

on a macro cell with range expansion to enhance network capacity. As a macro cell has much

greater transmission power and antenna gain than a small cell, the A3 event boundaries of

the small cell are embedded inside the coverage of the macro cell as shown in Fig. 2.3d.

Due to inappropriate handover settings, ping-pongs can occur between macro cell and small

cell [32, 35, 36]. Also, handovers can fail due to low SINR [48]. Since the proposed analysis

can model handover in general wireless settings, it is applicable to analyze handover problems

in small-cell-overlaid heterogeneous networks.

Figure 2.4 visualizes a scenario of multiple cells with irregular deployment as well

as di�erent settings, where the UE moves from Cell 0 to neighboring cells. The �gure shows

that A3 event borders vary, sector by sector, even though the handover o�set for each sector

is identical. By considering them sector by sector, our analysis can be applied to a general

wireless environment. In the next section, conditions for undesirable handovers are provided

based on locations C, D, E, and F.
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2.3.2 Modeling Undesirable Handovers

With the summary in Table 2.1 for a simple mobility, we extend to general condi-

tions for undesirable handovers. To that end, user mobility as well as the triggering loci are

projected onto the x-axis, as shown in Fig. 2.3a. For a too-late handover, handover trigger-

ing is delayed so that a UE enters deep inside a neighboring cell; hence, the link connection

is disconnected due to strong interference from the neighboring cell. According to Condition

(C1-1) in Table 2.1, the general condition for a too-late handover is expressed as

xC + vTTT0 cos θ > xD + vτR cos θ, (2.14)

where the left side is moving distance during the handover, projected onto the x-axis, and

the right side stands for the travelling distance that the UE experiences low SINR value

(γ0 < γmin).

For a too-early handover, the �rst handover is successful, but the second handover

fails due to the RLF. Since the �rst handover was initialized at a spot far from the territory

of the target cell, the next handover controlled by the target cell su�ers tough interference

from other cells. Also, TTT controlling the second handover is longer than time duration τR,

which leads to the RLF. Based on conditions (C2-1) and (C2-2) in Table 2.1, this problem

can be generally modeled as


xC + vTTT0 cos θ + vτR cos θ ≤ xF

TTT1 > τR.

(2.15)

(2.16)

In the left side of (2.15), vTTT0 cos θ represents the traveling distance during the �rst

handover, and vτR cos θ represents the traveling distance before the RLF of the second

handover, projected onto the x-axis. Condition (2.16) is to prevent the consequent handover

from �nishing earlier than the RLF.
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Last, we model a ping-pong based on conditions (C3-1) and (C3-2) in Table 2.1 as

follows 
xC + vTTT0 cos θ + vTTT1 cos θ ≤ xE

TTT1 < τR.

(2.17)

(2.18)

In (2.17), vTTT0 cos θ and vTTT1 cos θ, respectively, measure moving distances during the

�rst handover (from Cell 0 to Cell 1) and the second handover (from Cell 1 to Cell 0),

projected onto the x-axis. This condition enables triggering the A3 event for the second

handover until its success. Condition (2.18) allows the second handover to �nish before the

RLF.

2.3.3 Optimal Range for Handover O�set

We de�ne the conditions for an optimal value of ∆01 to minimize RLFs and ping-

pongs together for a given ω as follows

xC + v (TTT0 − τR) cos θ ≤ xD, (2.19)

xC + v (TTT0 + τR) cos θ > xF, (2.20)

xC + v (TTT0 +TTT1) cos θ > xE, (2.21)

which are based on (2.14), (2.15), and (2.17). While Condition (2.19) is to avoid too-late

handovers, conditions (2.20) and (2.21) are to avoid too-early handovers and ping-pongs,

respectively. Based on Condition (2.19), we de�ne the lower bound of ∆01, called ∆†
01, for

minimizing too-late handovers, as

∆†
01 = min ∆01 (2.22)

subject to (2.19),

Omin ≤ ∆01 ≤ Omax,
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where Omin and Omax are the maximum and minimum values of ∆01 provided by the system,

respectively. Therefore, if∆01 < ∆†
01, a too-late handover occurs. Based on conditions (2.20)

and (2.21), we de�ne the upper bound, ∆∗
01, of ∆01, for minimizing ping-pongs and too-early

handovers, as

∆∗
01 = max ∆01 (2.23)

subject to (2.20) and (2.21),

Omin ≤ ∆01 ≤ Omax

Hence, if ∆01 > ∆∗
01, a ping-pong or a too-early handover occurs. If ∆

†
01 ≤ ∆∗

01, the optimal

range for minimizing RLFs and ping-pongs at the same time exists, and we denote the

optimal range as [∆†
01,∆

∗
01]. Otherwise, the optimal range does not exist (that is, MRO

reduces RLFs while increasing ping-pongs, and vice versa).

Lemma 1 The optimal range of ∆01 exists, i.e. ∆†
01 ≤ ∆∗

01, when

max

{
xE − xD

TTT1 + τR
,
xF − xD
2τR

}
≤ v cos θ. (2.24)

Proof : See Appendix A.1.

Theorem 1 When Condition (2.24) is met, the optimal range [∆†
01,∆

∗
01] is prolonged when

speed increases, and shrinks when speed decreases.

Proof : See Appendix A.2.

Theorem 2 When Condition (2.24) is met, the optimal range [∆†
01,∆

∗
01] is shifted to the

left when TTT0 decreases, and to the right when TTT0 increases.

Proof : See Appendix A.3.

Since a handover o�set can di�erently in�uence handover performance on individ-

ual trajectory ω ∈ Ω ([49, 50]), where Ω is a set of ω, the problems to �nd ∆†
01 and ∆∗

01 for
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Ω are stated as

∆†
01 = max

ω∈Ω
∆†

01(ω), (2.25)

∆∗
01 = min

ω∈Ω
∆∗

01(ω), (2.26)

where ∆†
01(ω) and ∆∗

01(ω) are given in (2.25) and (2.26) for trajectory ω ∈ Ω. In practice,

Ω can represent a street, road, lane, or pavement where UEs usually move, and Ω is one of

the vital sources of context information for handover optimization [49,50].

2.3.4 Discussion of The Optimal Range of Handover O�set

In general, the closed forms of ∆†
01 and ∆∗

01 are unobtainable owing to nonlinear

complex forms in (2.8), (2.11), (2.12), and (2.13). Hence, it is di�cult to get any intuition

into the relationships between handover parameters and handover failures. For the special

case when UE moves in a straight line between the centers of Cell 0 and Cell 1 (i.e., b = 0

and θ = 0), we can express ∆†
01 and ∆∗

01 as closed forms. With the closed forms, we will

discuss the impact of parameters on the optimal range.

Theorem 3 The optimal range of the handover o�set is at maximum when θ = 0 and b = 0.

Proof : See Appendix A.4 When the UE moves from Cell 0 to Cell 1 on a trajectory with

θ = 0 and b = 0, the y-coordinate values of the position are all zero, i.e., yC = yD = yE =

yF = 0. The x-coordinates, xC, xD, xE, and xF, are determined based on (2.8), (2.11), (2.12),

and (2.13) as follows:

xC =
a ν

1
α
01

ν
1
α
01 + 10

∆01
10α

, xD =
a ν

1
α
01

ν
1
α
01 + (ρ0γmin)

1
α

, xE =
aν

1
α
0110

∆10
10α

1 + ν
1
α
0110

∆10
10α

, xF =
a(ν01ρ1γmin)

1
α

1 + (ν01ρ1γmin)
1
α

.

The lower bound of the optimal handover o�set, ∆†
01, is found based on Condition (2.19)

for too-late handover avoidance: xC + vTTT0 = xD + vτR. After rearrangement, we obtain
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∆†
01 as

∆†
01(dB) = 10 log (ν01)− 10α log

 1

(ρ0γmin)
1
α

ν
1
α
01+(ρ0γmin)

1
α

− v(τR−TTT0)
a

− 1

 . (2.27)

The upper bound of the optimal range, ∆∗
01, is determined as the minimum be-

tween upper bound ∆̄∗
01 obtained from the too-early avoidance condition, and upper bound

∆̃∗
01 acquired for the ping-pong minimization condition. In short, ∆∗

01 = min (∆̄∗
01, ∆̃

∗
01).

From (2.20) and by reordering, ∆̄∗
01 is found to be

∆̄∗
01(dB) = 10 log (ν01)− 10α log

 1
1

1+(ν01ρ1γmin)
1
α
+ v(τR+TTT0)

a

− 1

 . (2.28)

Based on Condition (2.21) for ping-pong reduction, we get ∆̃∗
01 as

∆̃∗
01(dB) = 10 log (ν01)− 10α log

 1
1

1+ν
1
α
0110

∆10
10α

+ v(TTT1+TTT0)
a

− 1

 . (2.29)

It follows from (2.27), (2.28), and (2.29) that lower bound ∆†
01 is a decreasing

function of UE speed v, while upper bound ∆∗
01 is an increasing function of v. Therefore,

the optimal range broadens when v increases, whereas it narrows when v decreases, as

discussed in Theorem 1. On the other hand, lower bound ∆†
01 and upper bound ∆∗

01 are

both increasing functions of TTT0. As a result, the optimal range shifts to the right when

TTT0 increases, and shifts to the left when TTT0 decreases, as explained in Theorem 2.

When UE speed is low compared to the inter-distance between serving Cell 0 and

target Cell 1, i.e., v/a≪ 1, for example, and UE speed v is low in a pedestrian environment,

and we approximate (2.27), (2.28), and (2.29) as

∆†
01(dB) ≈ 10 log(ρ0γmin), (2.30)

∆̄∗
01(dB) ≈ −10 log(ρ1γmin),

∆̃∗
01(dB) ≈ −∆10.
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Then, we get ∆∗
01 as

∆∗
01(dB) = min(∆̄∗

01, ∆̃
∗
01) = −max(10 log(ρ1γmin),∆10). (2.31)

Equations (2.30) and (2.31) reveal the impact of interference on the optimal range.

When normalized interference ρ0 and ρ1 increase, the optimal range is tightened; and the

optimal range is enlarged when ρ0 and ρ1 decrease.

2.4 Numerical Analysis and Discussion

2.4.1 Simulation Environment

To measure handover performance, we considered too-late and too-early/wrong-

cell handovers, and ping-pongs within a certain period of time. For Cell i, we de�ne RLi for

measuring the too-late handover rate. Since a ping-pong is similar to a too-early handover,

except for an RLF, we de�ne REi for measuring too-early handover and ping-pong rates

together. RLi and REi are given as

RLi =

∑N
j=1NLij

Ntotal

, and REi =

∑N
j=1

(
NEij +NPPij

)
Ntotal

,

where NLij , NEij , NPPij , and Ntotal are the numbers of too-late handovers, too-early han-

dovers, ping-pongs, and total handover attempts from Cell i to adjacent Cell j, respectively.

To verify the proposed model of handover problems, we compared our analysis

with an NS-3 simulation [1] in various environments, taking into account the e�ect of user

mobility, fading, inter-cell interference, handover parameters, and deployment of cells. For

the propagation model, α was selected as 4.33 [20]. To model fading, a log-normal random

variable together with Rayleigh fading was integrated into the propagation model, even

though fast fading can be signi�cantly �ltered out by appropriate �lter settings [35, 36]).

This random variable has a zero mean, and standard deviation σ is 6 dB, as in a typical
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Figure 2.5: Regular deployment of small cells.
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Table 2.2: Summary of parameters for simulation.

Parameter Description value

∆01 Handover o�set of Cell 0 on -14 to 14

Cell 1 (dB)

TTT0 Time-to-trigger of Cell 0 (ms) 256

∆10 Handover o�set of Cell 1 on 2

Cell 0 (dB)

TTT1 Time-to-trigger of Cell 1 (ms) 512

Qout Out-of-sync threshold (dB) -4

Qin In-sync threshold (dB) -2

τR RLF detection time (ms) 500

a Inter-site distance (m) 30

σ Log-normal standard deviation (dB) 0, 6, 12

ω User trajectory

θ Angle formed by ω x-axis (rad) U(π/24, 3π/24)

b Point where ω meets x-axis (m) U(5, 25)

v User speed (km/s) 5, 10, 20

α Path loss exponent 4.33
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environment [51]. An omni-directional antenna was used for all small cells. For handover

settings, TTT0, ∆10, and TTT1 were respectively �xed at 256 ms, 2 dB, and 512 ms, while

∆01 varied in the range −14 to 14 dB, with granularity of 1 dB. For RLF triggering, Qout

(i.e., γmin) was set at −4 dB [52], and τR was 500 ms [1]. We set values of TTT0 and TTT1

according to 3GPP standard [18] and previous works [1,31]. A summary of the parameters

in this section is provided in Table 2.2.

2.4.2 Impact of User Mobility

To study how user mobility a�ects the optimal range, we considered a linear trajec-

tory with �ve di�erent patterns (two deterministic and three random patterns) in a two-cell

network with inter-site distance a of 30 m, as shown in Fig. 2.5a. The �rst mobility pattern is

a straight line trajectory, ω, where b = 0 and θ = 0. The second mobility pattern represents

a diagonal trajectory ω, where b = 15 and θ = π/12. The third mobility pattern has a deter-

ministic b of 15, but θ is uniformly distributed between π/24 and 3π/24 so that the average

of θ is π/12. The fourth mobility pattern has θ �xed at π/12 and b uniformly distributed

between 5 and 25 so that the average of b is 15. The last mobility pattern has randomness

in b and θ together, which are uniformly distributed between 5 and 25 and between π/24

and 3π/24, respectively. User speed v is 5 km/h to represent a pedestrian environment.

Handover performance from Cell 0 to Cell 1 is analyzed, unless stated otherwise.

For deterministic mobility models, the analysis gives optimal ranges exactly as in

the simulation, which are [−3, 3] dB and [−3, 2] dB, as depicted in Fig. 2.6a and Fig. 2.6b,

respectively. The �rst optimal range is larger than the second one, because the �rst tra-

jectory gives the maximum optimal range, as in Theorem 3. Regarding mobility models

with randomness, comparing the results in Fig. 2.6c, Fig. 2.6d, and Fig. 2.6e to those in

Fig. 2.6b, ratios RL0 and RE0 slightly increase, and thereby, the optimal ranges are narrower
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(c) b = 15, θ ∼ U(π/24, 3π/24).
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(d) b ∼ U(5, 25), θ = π/12.
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(e) b ∼ U(5, 25), θ ∼ U(π/24, 3π/24).

Figure 2.6: Impact of user mobility (two cells).



Chapter 2: Analysis of Optimal Handover Parameters 47

than in Fig. 2.6b. However, they have similar shapes. In general, the results show that the

optimal range can be di�erent due to user mobility, but our estimation matches the simula-

tion results for deterministic models, and deviates from the simulation results with a value

of handover o�set resolution for random mobility models. We selected the fourth mobility

pattern to model the user trajectory, since UEs tend to move in a speci�c direction, such as

street lanes and on pavement.

2.4.3 Impact of Heterogeneous Settings

We investigated the impact of heterogeneous parameter settings of the two cells in

Fig. 2.3c on handover performance. In practice, cell types can be di�erent, such as a pico

cell, a femto cell, or a macro cell, and have a di�erent antenna gains [53]. Hence, we set

the transmission power of Cell 0 and Cell 1 to 23 dBm, while the antenna gain for Cell 0

and Cell 1 was alternatively con�gured as 2 dBi and 8 dBi [47], to have ν01 of 1/4 and 4.

For ν01 = 1/4, A3 event positions of Cell 0 shift toward Cell 0 in Fig. 2.3c, compared to

Fig. 2.3b for ν01 = 1. Similarly for ν01 = 4, A3 event positions of Cell 0 move toward Cell 1.

Fig. 2.8 shows that the optimal range for handover o�set ([−2, 1] dB) is narrower

than that in Fig. 2.6d ([−3, 2] dB) when ν01 = 1. When ν01 = 1/4, coverage of Cell 0 reduces,

and thereby, handovers to Cell 1 have less time for success, and may fail before TTT expires.

On the other hand, the optimal range in Fig 2.7b is wider than in Fig. 2.6d when ν01 = 4. We

also investigate a case of a small-cell-overlaid heterogeneous network as depicted in Fig. 2.3d.

The distance between cells is 80 m. Transmission powers of Cell 0 (small cell) and Cell 1

(macro cell) are 23 dBm and 46 dBm, respectively, for which ν01 = 1/200 being an extreme

case of di�erent settings. Fig. 2.7c shows that our analysis meets the simulation correctly.

The optimal range of ∆01 is [−2, 1] dB. In overall, our analysis can estimate the optimal

range of handover o�set in di�erent wireless settings, including small-cell-overlaid networks.
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2.4.4 Impact of Fading and Interference

To analyze the e�ect of fading on handover performance, we kept the same scenario,

except for fading factor σ. Compared to Fig. 2.6d, Fig. 2.9 shows that the optimal range

narrows from [−3, 2] dB to [−2, 1] dB when σ increases to 12 dB, and it is extended from

[−3, 2] dB to [−4, 4] dB when σ decreases to 0 dB. The results indicate that our analysis

can estimate the optimal range with high accuracy in various fading environments. To

investigate the impact of interference on handover, we increased the number of small cells to

four and 10 while keeping the same environment as in Fig. 2.6d. Deployments of four small

cells and 10 small cells are shown in Fig. 2.5b and Fig. 2.5c, respectively. Comparing these

results to Fig. 2.6d, Fig. 2.10 shows that interference narrows the optimal range of handover

o�set from [−3, 2] dB to [−2, 2] dB, as discussed in Section III-D. Comparing simulation

results and analytical results, our analysis �ts the simulation well.

2.4.5 Impact of Speed and TTT

The impacts of user speed and TTT on handover performance have been stud-

ied [33, 35, 54]; however, the speci�c e�ect of speed as well as TTT on the optimal setting

is outside the scope of those studies. To assess the in�uence of user speed on the optimal

range, we used the same parameters as in Fig. 2.10a, except for user speed. Compared to

Fig. 2.10a, Fig. 2.11 shows that the optimal range is extended when speed increases, and

as well, our analysis accurately estimates the optimal range. When user speed increases

to 10 km/h (or 20 km/h), the optimal range is extended to [−2, 4] dB (or [−5, 9] dB), as

discussed in Theorem 1 and Section III-D.

To assess the e�ect of TTT on the optimal range, we chose speeds of 5 km/h and

20 km/h while varying TTT from 160 ms to 480 ms and keeping other parameters as seen in

Fig. 2.10a. When TTT increases, Fig. 2.12a depicts a small shift in the optimal range for all
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(c) ν01 = 1/200.

Figure 2.7: Impact of di�erent settings (two cells).
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Figure 2.8: ν01 = 1/200.

values of TTT in a low-speed environment, whereas Fig. 2.12b presents a signi�cant shift in

a high-speed environment. The optimal range is [−4, 9] dB for TTT = 160 ms and [−2, 12] dB

for TTT = 480 ms. Since (2.27), (2.28), and (2.29) are a�ected by vTTT, the impact of TTT in

a high-speed environment is more than in a low-speed environment. Also, the optimal range

shifts to the right when TTT increases, and to the left when TTT decreases, as discussed

in Theorem 2 and Section III-D.

2.4.6 Irregular Deployment of Small Cells and Non-existence of the Op-

timal Setting

Since deployment can be irregular in real wireless networks, we borrowed a �eld

trial scenario from [55] to test the accuracy of the estimation in a practical deployment of

small cells. We choose 10 cells near a shopping center, as provided in Fig. 3 of [55], and

plotted the area in Fig. 2.13a. The parameters are the same as Fig. 2.10b except for the

deployment of the cells. The mobility area between the two center cells was considered.

Fig. 2.13b shows that our analysis provides an almost accurate estimation of the optimal
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(a) σ = 0 dB.
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(b) σ = 12 dB.

Figure 2.9: Impact of fading (two cells).
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(a) Four cells.
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(b) 10 cells.

Figure 2.10: Impact of interference.
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(a) 10 km/h.
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(b) 20 km/h.

Figure 2.11: Impact of speed (four cells).
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Figure 2.12: Impact of TTT (four cells).
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range. The optimal range is [−3, 2] dB via simulation and [−2, 2] dB via analysis. Therefore,

our analysis is applicable to estimating the optimal range for an irregular deployment of small

cells in practice.

To verify the non-existence of the optimal range, we considered the scenario in

Fig. 2.10a, and set ∆10 to 4 dB. Via Lemma 1, the condition for the existence of the optimal

range is violated (i.e., ∆†
01 > ∆∗

01), so there is no optimal range. As shown in Fig. 2.14, when

∆01 > −3 dB, too-late handovers improved while ping-pongs as well as too-early handovers

worsened, and vice versa. In our analysis, ∆†
01 = −1 dB and ∆∗

01 = −5 dB, which is close to

the simulation. Since our analysis provides an accurate estimation, even for non-existence

of the optimal range, we can apply the analysis in MRO to assess a handover setting, even

if it induces no optimal solution for minimizing RLFs and ping-pongs.

2.5 Closing Remarks

In order to estimate an optimal handover setting in SON-based small-cell networks,

we analyzed undesirable handovers that lead to RLFs or ping-pongs, and provided an anal-

ysis of undesirable handovers. Based on the analysis and an NS-3 simulation, we veri�ed

the existence of an optimal range for handover parameters in order to minimize RLFs and

ping-pongs at the same time. The analytic estimation of the optimal range for handover

parameters is highly accurate, when compared to simulation results. Furthermore, we pro-

vided a comprehensive study of handover performance in various environments that require

di�erent optimal settings. When a wireless channel experiences more fading or interference,

the optimal range for handover o�set shrinks. The optimal range grows when user speed

increases, and shrinks when user speed decreases. The optimal range shifts to the left when

TTT decreases, and to the right when TTT increases. Also, veri�cation in a heteroge-
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Figure 2.13: Irregular deployment of 10 small cells and the results.
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Figure 2.14: Non-existence of the optimal range.

neous scenario and a real deployment of small cells gave a high-accuracy estimation. From

the analysis, future work will be developing an MRO algorithm for a SON that considers

estimation of the optimal range in order to minimize RLFs and ping-pongs at the same time.
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Chapter 3

Machine Learning�Based Mobility

Robustness Optimization Under

Dynamic Cellular Networks.

In this chapter, we propose a mobility robustness optimization algorithm for dy-

namic small-cell networks. Due to their nature and energy-saving functionality, small cells

can be arbitrarily deployed, moved, and turned on and o�. As a result, the small-cell network

topology varies from time to time. However, previous works have only considered dynamics

due to user mobility in the given static networks. To optimize handovers under a dynamic

network topology and user mobility together, we propose a machine learning�based algo-

rithm that consists of two steps: topology adaptation and mobility adaptation. The �rst step

obtains prior knowledge on the optimal handover settings for the given network topology

and transfers that knowledge to the second step. The second step �ne-tunes the handover

parameters to adapt to the mobile environment based on the transferred knowledge. Via

simulation, under a dynamic wireless network, the proposed algorithm reduced adaptation

59
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time to 4.17% of the time needed by a comparative machine�based algorithm. Further-

more, the proposed algorithm improved the user satisfaction rate to 416.7% compared to

the previous work.

3.1 Introduction

A small cell has been considered an essential approach to high network capacity

and high spectrum reuse in order to accommodate tra�c demands in the �fth-generation

(5G) era [26]. Because the small cell is a low-power, low-cost, and ready-to-use prototype of

a base station [27], network providers can activate their small cells in a planned or unplanned

manner in crowded places (such as shopping malls, stadiums, and downtown streets [28]) to

improve the user's quality of experience.

To reduce administrative expenses from frequent parameter optimization, a small-

cell network is equipped with an automation-inspired solution called a self-organizing net-

work (SON) [27, 29]. The importance of a SON to small-cell networks is highlighted by its

potential features, such as coverage and capacity optimization, energy e�ciency, interfer-

ence reduction, mobility load balancing (MLB), mobility robustness optimization (MRO),

automatic neighbor relations, and random access optimization [1, 56]. To ensure reliable

and e�cient operation of small cells, the handover procedure should be optimized by MRO

to guarantee seamless mobility throughout the cellular network. MRO minimizes handover

failures due to radio link failures (RLFs) and keeps the number of ping-pongs as low as

possible, since RLFs disturb the user experience and ping-pongs induce resource-consuming

handovers in a short time. Therefore, RLFs and ping-pongs should both be minimized.

Due to the dynamic operation of small cells, such as switching them on and o�,

the network topology is non-static. Small cells can be switched on and o� by personal usage
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Figure 3.1: Dynamic topologies with cells switching on and o� (a) two cells are switched on,
and (b) three cells are switched on.

or by network operators to adapt to tra�c loads and energy-saving demands [26]. Fig. 3.1

shows an example of di�erent topologies when cells are switched on and o�. Based on cell 3's

activation, the coverage of cells changes, so handover parameters should be modi�ed. The

wireless environment, such as cell boundaries, changes according to the network topology,

thus a�ecting network optimization and performance [57]. Along with user mobility and

dense deployment of small cells, the dynamic topology is a challenging issue for handover

optimization.

Previous MRO algorithms have considered the adjusting of handover parameters

while considering user mobility and dense deployment of small cells [1, 7, 9, 30, 38]. The

authors in [7,9,38] improved handover performance by adjusting time-to-trigger (TTT) and

handover o�set. The algorithms are rule-based and take into account negotiation between

RLFs and ping-pongs. In [30], the authors provided a more �exible optimization policy

that regulates cell individual o�sets (CIOs). In [1], the authors proposed an algorithm that



62 Chapter 3: Machine Learning�Based Mobility Robustness Optimization

manipulates TTT, handover o�set, and CIOs together in order to improve handover perfor-

mance. That algorithm achieved an impressive handover performance without a negotiation

between RLFs and ping-pongs. Machine learning techniques have also been applied in wire-

less networks to optimize handover parameters. In [14, 31, 58, 59], reinforcement learning

(RL) was applied to adjust handover parameters. In the RL algorithm, the learning agent

interacts with the outside environment to choose the optimal action based on feedback from

the environment [60]. Studies in [14, 31, 58] considered a model-free RL, modeling the re-

ward as load level (for MLB) and handover performance (for MRO), while the actions that

modi�ed handover parameters (TTT and hysteresis) were chosen according to �xed poli-

cies. In [59], the authors utilized fuzzy-based policies with RL-based algorithms to change

handover o�sets in order to improve handover quality. Even though previous works ad-

justed handover parameters while taking into account user mobility and cell deployment,

they applied only to a static network topology. Therefore, optimizing handover parameters

under dynamic wireless networks that have a dynamic topology as well as mobility still poses

challenges to wireless network optimization.

To address the challenges in dynamic wireless networks, an optimization algorithm

should have capabilities to quickly respond to network topology changes while achieving

stable performance. A candidate solution is to exploit prior knowledge in optimizing di�erent

wireless networks, and to apply this experience to the new wireless network. Prior knowledge

can consist of the optimal parameters from previous optimizations and/or knowledge bases

of optimal parameters. Transfer learning (TL) is one of the machine learning techniques

that utilize prior knowledge from previous optimizations for better performance under a

new problem, because those parameters will provide better initialization instead of nothing.

Applications of TL algorithms for wireless networks are found in [57, 61�63], but none of

them apply the TL concept to handover optimization under dynamic wireless networks.
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In this chapter, to optimize handover parameters for dynamic wireless networks,

we propose an MRO algorithm that takes into account prior knowledge in optimizing dif-

ferent wireless environments. The algorithm includes a knowledge transfer algorithm for

adapting to a dynamic topology and an adaption algorithm to suit dynamic mobility. To

adapt to a dynamic topology, the TL-based algorithm gathers prior knowledge that in-

cludes the estimated optimal handover parameters, which are based on network topology,

and knowledge bases of optimal parameters to adapt to dynamic on/o� cells. Then, the

adaptation algorithm uses the transferred knowledge to optimize three handover parameters

(TTT, hysteresis, and CIO) together, in order to suit dynamic mobility. Via simulation and

analysis, we verify our proposed algorithms under a dynamic topology, random mobility,

and irregular deployment of small cells.

3.2 System Models and Problem Formulation

3.2.1 The SON and the Small-cell Network

In this chapter, we consider a hierarchical SON that supervises small cells, as shown

in Fig. 3.2. Two types of SON are taken into account: the centralized SON (cSON) and

the decentralized SON (dSON). While a cSON is located under network management for

network-wide optimization, dSONs are implemented with the small cells for local adaptation.

The cSON receives information from dSONs to keep track of network-wide information in

order to optimize the network globally [64]. When a new cell is activated, the dSON of this

cell receives initial settings from the cSON, which includes cell identi�cation (ID), handover

parameters, neighboring cell information, and other control parameters.

Due to energy saving or the arbitrary on/o� manner of small cells, dSONs send

noti�cations to the cSON before the corresponding cells are deactivated. Hence, the cSON
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Figure 3.2: A scenario with a small-cell network and its SON.
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always keeps updating the network topology in order to produce global adjustments. Fur-

thermore, the cSON communicates with smart tra�c monitoring systems [65] to monitor the

environmental context, such as average user speed and tra�c �ows on the streets. There-

fore, the environmental context is partially known and is used as input for optimization

algorithms by the cSON.

For mobility management, small cells communicate with their neighbors via Xn

interface to share information. Via the Xn interface, nearby small cells exchange user infor-

mation, such as handover information and failure noti�cation messages [17]. Based on the

recorded data and the cSON's support, the dSON adapts to dynamic mobility by optimizing

handover parameters locally.

3.2.2 Handover Procedures and Issues

Quality measurements of a radio link

Considering the nominated UEs located at distance di (in meters) from cell i, the

received power for such a distance can be modeled as

mi = ptxd
−α
i νG−1

0 ,

where ptx is the transmission power of a cell, G0 is a reference value that accounts for a �xed

propagation loss, α is the attenuation exponent characterizing the level of attenuation of a

speci�c propagation environment, and ν is the fading factor.

When a UE moves, it eventually or periodically sends signal measurements such as

reference signal received power (RSRP) to the serving cell. The received measurement data

are used for evaluating the quality of the wireless connection. The signal-to-interference-

plus-noise ratio (SINR) is calculated based on the measurements. SINR is used by UEs to

detect an RLF. The RLFs happen if the SINR remains below a prede�ned threshold, Qout,
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for a certain period of time. Thus, the cell coverage is determined based on Qout. The SINR,

γ, is de�ned as

γ =
mi∑

j ̸=imj +N0
,

where mi and mj are linear values for the RSRP of the serving cell and other cells, respec-

tively, as measured by the UE, and N0 is thermal noise [24,37,38].

Handover procedure and control parameters

In the 3rd Generation Partnership Project (3GPP) standards, the handover pro-

cedure starts based on measurement reports from the UE to a serving cell for a handover

decision. UEs periodically measure RSRPs of all discovered cells, and eventually or periodi-

cally send measurement reports to the serving cells when certain conditions hold. There are

six intra-frequency event measurements, designated A1 to A6, in the 3GPP standards [17].

Each event measurement is used for a speci�c application of a SON, like mobility manage-

ment and neighbor discovery [1, 56,66].

For a handover algorithm, the A3 event is chosen because it is based on the better

relative signal quality between two cells [1, 24]. The A3 event is triggered when the RSRP

of a neighboring cell becomes better than that of the serving cell, based on a certain o�set.

The moment for UEs to report measurements is right after the TTT timer has expired. The

condition for triggering the event on the decibel (dB) scale is

Mn + Ocn+ Ofn > Mp + Ocp+ Ofp + O�+ Hys, (3.1)

where Mp and Mn are the measured RSRP in dB of the serving cell and the neighboring cell,

respectively. Hys is the hysteresis parameter to prevent oscillation of Condition (3.1) due

to fading, and O� is A3O�set for this event.

O�sets Ocn and Ocp are CIOs for the neighboring cell and the serving cell, re-
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spectively. While the Hys and A3O�set a�ect handovers to all neighbors, the CIOs assign

di�erent handover o�sets to each neighbor. In this chapter, we set the CIOs' Ofp and Ofn

to zero, since we consider intra-frequency handover. We can rewrite Condition (3.1) as

Mj +∆ij > Mi, (3.2)

where ∆ij = Ocn − Ocp − O� − Hys and is the equivalent CIO of serving cell i for neighboring

cell j, while Mi = 10 logmi and Mj = 10 logmj . In practice, cell i has many neighboring

cells; hence, we denote the set of neighboring cells of cell i as Hi.

When Condition (3.2) is satis�ed within the TTT period at time t3 and location

x3, denoted as ordered pair (t3, x3), the UE sends a measurement report to cell i triggering

a handover from cell i to cell j, as shown in Fig. 3.3(a). The measurement report carries

RSRPs of all discovered cells where the RSRP satis�es Condition (3.2) with regard to cell i.

Then, cell i chooses the best neighboring cell based on the reported RSRP for a handover.

However, if the SINR is lower than threshold Qout for time duration τR, which is the timing

length for RLF detection [24] that starts at (t2, x2), the wireless links are corrupted leading to

an RLF at time (t4, x4), and the handover fails. There are two types of undesirable handover:

RLFs and ping-pongs. While ping-pongs are similar to repeated successful handovers among

cells, an RLF causes failed handover attempts based on one of three reasons: a too-late, a

too-early, or a wrong-cell handover [18].

Undesirable handover conditions

To study conditions for undesirable handovers, we model a handover with geometry

elements: a straight line for the user trajectory, and Apollonian circles for A3 event coverage

and transmission ranges, as shown in Fig. 3.3(b) [24]. The trajectory is characterized by

slope angle θ and x-intercept b. This trajectory meets the A3 event coverage of cell 1, the

transmission range of cell 1, the A3 event coverage of cell 2, and the transmission range
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Figure 3.3: A successful handover.

of cell 2 at C, D, E, and F, respectively. The A3 event coverage for the handover of cell i

to cell j is adjusted by modifying ∆ij , while the transmission range is determined by the

minimum SINR.

To explain conditions for undesirable handovers, we project C, D, E, and F onto

the line segment between cell i and cell j, which are denoted xC, xD, xE, and xF, respectively.

A too-late handover occurs when the moving depth of the UE during TTTi, which is xC +

vTTTi cos θ, is longer than the coverage that cell i allows for τR, which is xD + vτR cos θ.

After an RLF, the UE tries to reconnect to cell j, which is the best neighboring cell to cell i.

Cell j noti�es cell i about the RLF via the Xn interface, and cell i recognizes a handover
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that was too late. The condition under which a too-late handover happens is

xC + v (TTTi − τR) cos θ > xD (C1),

A too-early handover happens when a UE joins target cell j too early after a

successful handover, and the connection is immediately dropped because of a poor SINR

(γ ≤ Qout). This failure occurs shortly after a successful handover from cell i to cell j, and

the UE camps to cell i again because it is still within cell i coverage. Therefore, the total

moving depth during TTTj and τR, which is xC + v (TTTj + τR) cos θ, is too short to enter

the coverage of cell j, which is at xF. In addition, a duration for TTTj that is longer than

τR causes an RLF in cell j. After the RLF, the source cell recognizes the too-early handover

based on handover history. A wrong-cell handover is detected when an RLF occurs shortly

after a successful handover to the target cell, and then, the UE reconnects to another cell

that is neither the serving cell nor the target cell. Since a wrong-cell handover is identical

to a too-early handover, except for the reconnection, we merge the wrong-cell problem into

the too-early problem. The condition under which a too-early handover occurs is

xC + v (TTTj + τR) cos θ ≤ xF (C2), and TTTj > τR,

where xF is the projection of F onto the line segment between cell i and cell j, as depicted

in Fig. 3.3(b).

In contrast to RLFs, a ping-pong maintains the link connection. However, it repeats

the handover from cell i to cell j multiple times or even among multiple cells within a short

time [66]. For example, the pattern of a ping-pong between cell i and cell j can be cell j�

cell i�cell j, and so on. To cause a simple ping-pong pattern, i.e., cell j�cell i (counted as one

ping-pong), the moving depth during TTTi and TTTj , which is xC + v (TTTi +TTTj) cos θ,

should not exceed the A3 event coverage of cell j, which is at xE, to guarantee a handover

back to cell j again; and TTTj must not be greater than τR to avoid RLF at cell j. This
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rapid pace of handovers wastes system resources, such as time and signaling procedures [29].

Even though ping-pongs do not cause RLFs, a regular requirement for handover optimization

always includes minimizing ping-pongs as much as possible. The scenario for a ping-pong

looks similar to the too-early handover problem, but ping-pongs do not cause RLFs. The

condition for a ping-pong is described as

xC + v (TTTi +TTTj) cos θ ≤ xE (C3), and TTTj ≤ τR,

where xE is the projection of E onto the cell i-cell j line segment, as shown in Fig. 3.3(b).

3.2.3 Optimal Handover Parameters

As explained in the conditions for undesirable handovers, when handover o�set

∆ij increases, too-late handovers happen less often, whereas too-early handovers occur more

often. When handover o�set ∆ij decreases, too-late handovers happen more often, whereas

too-early handovers occur less often. Therefore, there is a lower bound on ∆ij to prevent

too-late handovers, and an upper bound on ∆ij to eliminate too-early handovers.

The lower bound of ∆ij , ∆
†
ij , is obtained as follows

∆†
ij = min ∆ij (3.3)

s.t. xC + v (TTTi − τR) cos θ ≤ xD,

Omin ≤ ∆ij ≤ Omax,

where Omin and Omax are the maximum and minimum values of ∆ij , respectively. The



72 Chapter 3: Machine Learning�Based Mobility Robustness Optimization

upper bound, ∆∗
ij , of ∆ij , is obtained as follows

∆∗
ij = max ∆ij (3.4)

s.t. xC + v (TTTj + τR) cos θ > xF,

xC + v (TTTi +TTTj) cos θ > xE,

Omin ≤ ∆ij ≤ Omax.

The optimal range for ∆ij exists when ∆†
ij ≤ ∆∗

ij . The condition for the existence

of the optimal range of handover parameters was explained in Lemma 1 in [24]. If the

optimal range exists (i.e., ∆†
ij ≤ ∆∗

ij), optimal handover parameters are obtained randomly

as long as they are within the optimal range. Otherwise (i.e., ∆†
ij > ∆∗

ij), we would probably

choose a value based on a prede�ned policy. For this chapter, we chose the average of the

lower bound and the upper bound of the optimal handover o�set as the approximate optimal

value, which is (∆†
ij +∆∗

ij)/2, regardless of the existence of the optimal range.

3.2.4 Problem Formulation

The dynamic on/o� switching characteristic of small cells a�ects handovers, since

the wireless environment (e.g., cell boundaries, topology, and interference) changes accord-

ingly. In Fig. 3.4, we show an example of a handover failure where a new cell (cell 3) is

switched on for a given network with two small cells, as seen in Fig. 3.3(a). In Fig. 3.3(a),

the UE should be handed over from cell 1 to cell 2 if there are only two cells. Due to the

activation of cell 3, the UE is handed over to cell 3 at (t1, x1). However, at (t6, x6), the UE

cannot be handed over successfully from cell 2 to cell 3. This failure is because handovers

among cell 1, cell 2, and cell 3 are no longer optimized due to the changed topology.

We de�ne the topology, T , of a wireless network as a set of cells that are identi�ed

by cell ID as well as cell location. For instance, T = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} means that
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there are 10 cells with IDs from 1 to 10 deployed in the wireless network. Also, we de�ne

a cluster of adjacent cells, Ti, as a sub-topology of cells in the wireless network such that

T = ∪Ki=1Ti if there are K sub-topologies. For example, T1 = {1, 2, 3} means that sub-

topology T1 contains three adjacent cells: cell 1, cell 2, and cell 3.

We formulated a handover optimization problem considering the dynamic network

topology as follows:

minTTT,Ocn,A3O�set f(TTT, Ocn, A3O�set, T )

subject to 0 ms ≤ TTT ≤ 5120 ms,

−24 dB ≤ Ocn ≤ 24 dB,

−15 dB ≤ A3O�set ≤ 15 dB,

where f is a cost function of handover optimization, and T is the network topology.

3.3 Transfer Learning-Based MRO

To minimize undesirable handovers in dynamic cellular networks, we propose a

transfer learning�based MRO algorithm, as described in Fig. 3.5. The algorithm consists of

two main steps. The �rst step, which is taken by the cSON, obtains prior knowledge of the

optimal handover settings for adapting the dynamic topology, and transfers that knowledge

to dSONs. The second step, taken by dSONs, �ne-tunes the handover parameters to adapt

to mobile environments based on the transferred knowledge.

3.3.1 Knowledge Transfer Algorithm

To deal with the dynamic topology of wireless networks, we utilize the concept

of transfer learning that exploits prior knowledge in order to achieve better optimization.

Transfer learning is de�ned as follows. Given a source domain, Ds, and the learning task
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Ls, plus a target domain, Dt, and the learning task Lt, transfer learning aims to enhance

the accuracy of the target predictive model in Dt using the knowledge in Ds and Dt in

cases where Ds ̸= Dt and/or Ls ̸= Lt [67]. In our paper, the domain is network topology T

that changes over time, and the learning task is identical for all network topologies, which

is optimization of handover parameters. A transfer learning algorithm has to address three

questions: when, what, and how to transfer knowledge.

Topology similarity detection

Prior knowledge is transferred when a network topology changes due to cells switch-

ing on and o�. When the network topology changes, the handover situation becomes dif-

ferent. While previous algorithms focused on parameter adjustments, regardless of prior

knowledge, the proposed transfer-learning�based algorithm utilizes prior knowledge to im-

prove the optimization process. At the cSON, the transfer learning algorithm extracts

features of the old topology, T old, that are similar to the new topology, T new. Extracting

the topology similarity is based on the key idea that a cell in one topology is similar to a

cell in another topology if their neighboring nodes are similar.

To determine how similar topology T new is to topology T old, the proposed algorithm

uses the information about the recent on-and-o� cells that is stored in set UON/OFF. For each

cell i in UON/OFF, the algorithm groups cell i with its neighboring cells in topology T new to

form a sub-topology (Ti). The dissimilar parts between T old and T new are sub-topologies

that contain the recent on/o� cells, whereas the similar parts are sub-topologies that do not

have neighboring relations to the recent on/o� cells.

Once the similarities and dissimilarities between T old and T new are obtained, to

determine what knowledge should be transferred to cells in T new, the algorithm searches

sub-topologies Tis that contain the recent on/o� cells throughout the database of the topol-
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Algorithm 3 Knowledge Transfer Algorithm

1: Select cells that were recently on and o� in T old to make set UON/OFF.

2: for cell i ∈ UON/OFF do

3: Group cell i with its neighboring cells to obtain sub-topology Ti

4: if Ti ∈ TDB then

5: Transfer knowledge bases to cells in Ti

6: else

7: Transfer the estimated optimal handover parameters to cells in Ti (Algorithm 5)

8: Store Ti in TDB

9: end if

10: end for

11: Keep the current handover parameters and knowledge bases for the remaining cells in

T new

12: Go to Algorithm 6
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ogy, TDB. Database TDB contains the sub-topologies that appeared in the history and the

knowledge bases of the cells in each sub-topology. If Ti is in TDB, the algorithm transfers the

knowledge bases to each cell in Ti. Otherwise, the algorithm transfers the estimated optimal

handover parameters to each cell in Ti and stores Ti into TDB for future queries. For similar

parts between T old and T new, current parameters and knowledge bases are kept unchanged.

We summarize the knowledge transfer in Algorithm 3.

Knowledge acquisition

The cSON transfers knowledge to dSONs, including knowledge bases and the es-

timated optimal handover parameters based on the sub-topology. The knowledge bases

provide information about the optimal handover parameters that are expected to achieve

the best handover performance. However, if knowledge bases are not available for a sub-

topology (usually at the wireless network's deployment), the optimal handover parameters

for cells in the sub-topology must be estimated. Considering two adjacent cells, cell i and

cell j (i, j ∈ Ti), to estimate optimal parameters for handovers by cell i to cell j, we solve

optimization problems (3.3) and (3.4) to get the lower bound (∆†
ij) and the upper bound

(∆∗
ij), respectively, of ∆ij given the geometric information and cell settings.

First, positions D, E, and F are computed for a given user trajectory, (θ, b). Then,

we can �nd ∆†
ij by a trying each o�set value until (C1) is satis�ed. Similarly, ∆∗

ij is found

by trying each o�set value until (C2) and (C3) are met. The process is summarized in

Algorithm 4.

Bound values ∆†
ij and ∆∗

ij depends on various parameters, such as θ, b, ∆ji, TTTi,

and TTTj . Hence, we express ∆†
ij and ∆∗

ij as f †
ij(θ, b, TTTi) and f∗

ij(θ, b,∆ji, TTTi, TTTj), re-

spectively, to represent such dependencies. Since a user trajectory varies according to (θ, b),

we estimate the lower bound and the upper bound for handover o�set of cell i for cell j as
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follows

∆̂†
ij = Eθ,b(f

†
ij(θ, b, TTTi)), (3.5)

∆̂∗
ij = Eθ,b(f

∗
ij(θ, b, TTTi,∆ji, TTTj)), (3.6)

where Eθ,b(X) is the expectation of X over two variables, θ and b, which we assume have

uniform distributions [24,32]. The estimated optimal value of ∆ij , ∆̂
opt

ij , is the average value

of ∆̂†
ij and ∆̂∗

ij . That is ∆̂
opt

ij =
(
∆̂∗

ij + ∆̂†
ij

)
/2.

After obtaining the estimated optimal CIO, ∆̂opt

ij , the algorithm �nds ∆̂opt

ji for

cell j in a process similar to the one given for ∆̂opt

ij in order to optimize handovers from

cell j to cell i. The process for computing ∆̂opt

ij and ∆̂opt

ji are repeated until they converge.

The results are rounded to the nearest values that follow the 3GPP standard [17]. We

summarize the algorithm for estimating the optimal handover parameters for two adjacent

cells in Algorithm 5. When the estimation is completed, the algorithm selects another cell

pair in Ti until completing all the cell pairs. Note that we change the origin of the coordinate

plane to the location of the considered cell (e.g., cell i) and a neighboring cell (e.g., cell j)

to estimate the optimal parameters for handovers between them.

In the next section, we provide an environment adaptation algorithm to cope with

mobility and wireless environments given the transferred knowledge.

3.3.2 Environment Adaptation Algorithm

The wireless environment also varies due to UE mobility, and therefore, we propose

a reinforcement learning�based algorithm for dSONs to use to adapt to the target environ-

ment given the transferred knowledge from the cSON. Our algorithm optimizes handover

parameters, such as TTT and CIO, by taking into account too-late handovers, too-early han-

dovers, and ping-pongs, to meet the required performance. Next, we are going to explain



Chapter 3: Machine Learning�Based Mobility Robustness Optimization 79

Algorithm 4 Geometry-based Computation for the Upper Bound and Lower Bound of the

CIO
1: Input: TTTi, ∆ji, TTTj , b, θ, and locations of cells

2: Output: ∆†
ij and ∆∗

ij

3: Compute positions D and F with γmin, and E with ∆ji

4: for each ∆ij value in a learning range do

5: Compute position C with ∆ij

6: if (C1) is satis�ed then

7: ∆†
ij ← ∆ij and break

8: end if

9: end for

10: for each ∆ij value in a learning range do

11: Compute position C with ∆ij

12: if (C2) & (C3) are satis�ed then

13: ∆∗
ij ← ∆ij and break

14: end if

15: end for



80 Chapter 3: Machine Learning�Based Mobility Robustness Optimization

Algorithm 5 Optimal Handover Parameter Estimation

1: Input: TTTi, ∆ji, TTTj , a range of θ, a range of b, and locations of cells

2: Output: ∆̂opt

ij and ∆̂opt

ji

3: ∆̂opt

ji ← ∆ji

4: for each value of θ and b in the speci�ed ranges do

5: Compute ∆∗
ij and ∆†

ij for cell i given ∆̂opt

ji via Algorithm 4

6: end for

7: Compute ∆̂†
ij and ∆̂∗

ij via (3.5) and (3.6)

8: ∆̂opt

ij ←
(
∆̂∗

ij + ∆̂†
ij

)
/2

9: for each value of θ and b in the speci�ed ranges do

10: Compute ∆∗
ji and ∆†

ji for cell j given ∆̂opt

ij via Algorithm 4

11: end for

12: Compute ∆̂†
ji and ∆̂∗

ji via (3.5) and (3.6)

13: ∆̂opt

ji ←
(
∆̂∗

ji + ∆̂†
ji

)
/2

14: Return to Line 4 until ∆̂opt

ij and ∆̂opt

ji converged, then round them to the nearest value

standardized by 3GPP.
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the adaptation algorithm generally.

At the dSON, the environment adaptation algorithm initializes the handover pa-

rameters based on the transferred knowledge from the cSON. Then, the algorithm computes

the optimization costs after the timer for handover statistics has expired. The cost of too-late

handovers from cell i to cell j, RLij , is given as

RLij =
NTLij

Ntotalij

, (3.7)

where NTLij and Ntotalij are the number of too-late handovers and the total handovers from

cell i to cell j, respectively. The cost of too-early handovers from cell i to cell j is de�ned as

REij =
NPPij +NTEij

Ntotalij

(3.8)

where NTEij and NPPij are the numbers of too-early handovers and ping-pongs from cell i

to cell j.

Based on the costs, the algorithm perceives the system states following Algorithm 8,

which determines directions for parameter adjustments. Then, with the computed costs and

the system state, the algorithm updates knowledge bases for selecting optimal handover

parameters later. The algorithm will compare the RLF rate with the target performance

ThRR. The RLF rate for handovers from cell i to its neighboring cells, RRi, is given as

RRi =
∑
j∈Hi

NTLij +NTEij

Ntotali

,

whereNtotali is the total number of handovers from cell i. If RRi exceeds ThRR, the algorithm

selects optimal actions to adjust the handover parameters of cell i in order to adapt to

dynamic mobility, which follows Algorithm 7. After adjusting handover parameters, the

adaptation algorithm resets the timer and �ushes all the counters for handover statistics. If

the network topology changes, the current optimization process switches to the knowledge

transfer algorithm (Algorithm 3). We summarize the environment adaptation algorithm in

Algorithm 6, and will describe it in detail after the algorithm elements de�nitions.
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Algorithm 6 Environment Adaptation

1: if knowledge bases are available then

2: Initialize handover parameters according to the transferred knowledge bases from

cSON by (3.10)

3: else

4: Initialize handover parameters according to the transferred parameters

5: end if

6: Receive data NLij , NEij , and NPPij ,∀j ∈ Hi

7: if timer for receiving handover statistics has expired then

8: Compute RLij , REij , and Rij by (3.7), (3.8), and (3.9), respectively

9: Measure system state sij , ∀j ∈ Hi (Algorithm 8)

10: Update knowledge bases by (3.12)

11: if RRi > ThRR then

12: Select action aij , ∀j ∈ Hi (Algorithm 7)

13: end if

14: Reset the timer and �ush all counters of cell i, then return to Line 6

15: else

16: if network topology changes then

17: Go to the knowledge transfer algorithm (Algorithm 1)

18: else

19: Return to Line 6

20: end if

21: end if
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Elements of the algorithm

To adapt dynamic mobility from cell i to cell j, the environment adaptation algo-

rithm includes four elements: cost function Rij ; system state sij ∈ S, which is a �nite set of

system states; action aij ∈ A(sij), which is a �nite set of actions that depend on the current

state, sij ; and a knowledge base Q(aij). In general, the algorithm chooses the optimal action

in set A(sij) for state sij to minimize the handover cost, which is analogous to reinforcement

learning. System states, actions, and the cost function are de�ned as follows.

System state sij ∈ S is sensed through a perception stage based on the handover

situation, because the objective of the algorithm is to minimize undesirable handovers. The

set S consists of four states (Scio+ , Scio− , Sttt+ , and Sttt−) to increase the CIO, decrease the

CIO, increase TTT, and decrease TTT, respectively, from their current values.

Action aij ∈ A(sij) adjusts the values of TTT and CIO to minimize undesirable

handovers according to current state sij . Therefore, set A(sij) varies based on state sij .

An example of action values is shown in Fig. 3.6. We consider the learning range for TTT

from 0 ms to 480 ms, because higher values lead to too-late handovers [1,24]. Similarly, the

learning range for the CIO is between -4 dB to 4 dB.

Cost Rij is the total cost for a handover from cell i to cell j taking into account

handover performance, including RLFs and ping-pongs, de�ned as

Rij = RLij +REij . (3.9)

Cost Rij is used to update the knowledge bases of the dSON at cell i.

The knowledge base is stored in the dSON of a cell for its neighboring cells. The

knowledge base of cell i for cell j is a Q-value database, Q(aij), that maps a parameter

value to a real value [60]. For future utilization of prior knowledge, the dSON dispatches

the knowledge bases to the cSON after they are updated by the dSON. An example of a
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Q-value database is shown in Fig. 3.6. There is one knowledge base for TTT and at least

one knowledge base for CIO because more than one neighboring cell of a cell exists. In the

next sections, we explain how the adaptation algorithm selects optimal actions, determines

system states, and updates knowledge bases.

Action selection

Algorithm 7 Action Selection

1: Input: System state sij , ∀j ∈ Hi

2: Output: Optimal action a∗ij

3: if sij == Sttt+ then

4: Increase TTT from the current TTT action based on softmax strategy (12)

5: else if sij == Sttt− then

6: Decrease TTT from the current TTT action based on softmax strategy (12)

7: else if sij == Scio+ then

8: Increase ∆ij from the current ∆ij action based on softmax strategy (12)

9: else

10: Decrease ∆ij from the current ∆ij action based on softmax strategy (12)

11: end if

At the beginning of the environment adaptation algorithm, if knowledge bases are

transferred by the cSON, the optimal action a∗ij of cell i for neighboring cell j is selected,

based on a greedy strategy, which is

a∗ij = argminaijQ(aij) (3.10)

Otherwise, the dSON applies the estimated optimal handover parameters that were trans-

fered by the cSON.
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For later optimization, an optimal action is chosen based on a softmax strategy,

given the perceived system state. A softmax strategy chooses an action based on probability

distribution. An action with a higher probability is more likely to be selected because it is

expected to bring better handover performance in the future. The probability of taking an

action is calculated from a Gibbs (or Boltzmann) distribution, which is the popular softmax

method used in reinforcement learning [60]. For neighboring cell j of cell i, each action,

aij ∈ A(sij), in state sij is assigned a probability of selection, p(sij , aij), as follows

p(sij , aij) =
exp

(
−Q(aij)

τ

)
∑

bij∈A(sij)
exp

(
−Q(bij)

τ

) , (3.11)

where τ is a positive parameter called the temperature. We apply negative Q values for

the softmax method because it is preferred to a parameter with a low Q-value rather than

parameters with a higher Q-value. The lower the Q-value for a parameter, the better the

handover performance the parameter is expected to achieve. A higher temperature causes

the actions to have a more equal probability, which encourages state space exploration. A

lower temperature leads to a greater di�erence in the selection probability for actions, which

encourages utilizing prior knowledge.

After choosing optimal actions, the algorithm waits to obtain handover optimiza-

tion costs and system states from the wireless environment. Then, with the costs and states,

the algorithm updates the knowledge base in (3.12), which will be explained later.

State perception

With the optimization costs, the algorithm translates them into system states.

When a too-late problem is dominant for handovers to neighboring cell j (i.e., RLij ≥ REij ),

the system state for handovers to cell j is Scio+ , which demands a CIO increment. When

a too-early problem is dominant for handovers to cell j (RLij < REij ), the system state
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Algorithm 8 State Perception

1: Input: RLij and REij , ∀j ∈ Hi

2: Output: System state sij , ∀j ∈ Hi

3: for each neighboring cell j ∈ Hi do

4: if RLij ≥ REij then

5: sij ← Scio+

6: else

7: sij ← Scio−

8: end if

9: end for

10: if sij == Scio+ , ∀j ∈ Hi then

11: sij ← Sttt− , ∀j ∈ Hi

12: else if sij == Scio− , ∀j ∈ Hi then

13: sij ← Sttt+ , ∀j ∈ Hi

14: end if
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TTT Values (ms) 0 40 64 ... 480

Q-value 0.52 0.31 0.22 ... 0.05

CIO Values (dB)  4 … 4

Q-value 0.25 … 0.41

(a)

(b)

Figure 3.6: A knowledge base is a database for the algorithm at a cell, including (a) TTT
knowledge and (b) CIO knowledge for a neighboring cell.

for handovers to cell j becomes Scio− to decrease the CIO. If the system state for all the

neighboring cells of cell i is Scio+ , the system state for each neighboring cell is Sttt− for TTT

decrement. This is because the TTT adjustment a�ects handovers to all the neighboring

cells of a cell. If the system state for all the neighboring cells is Scio− , the system state for

each neighboring cell is Sttt+ , which means increase TTT. The algorithm for system state

perception is in Algorithm 8.

Knowledge base update

To update the knowledge base of cell i for neighboring cell j, Q(aij), we apply a

temporal di�erence method that considers observed system state sij , current action aij , and

optimization cost Rij [60]. The knowledge update is as follows

Q(aij) =(1− β)Q(aij) + β(Rij + λ max
a′ij∈A(s′ij)

Q(a′ij)), (3.12)

where β ∈ (0, 1] is the learning factor and λ ∈ [0, 1] is the discount rate. A β learning factor

of 1 means that the latest knowledge is considered, while the prior knowledge is ignored.

A β of zero means there is no learning at all. Discount rate λ that is close to 1 increases

the importance of the prior knowledge in the received cost. We show the structure of a

knowledge base in Fig. 3.6, where each parameter value has its own Q-value.
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3.4 Numerical Results and Discussion

3.4.1 Simulation Environment

To evaluate the potential of our algorithm under dynamic networks, we consider a

network of 12 small cells, where the topology periodically changes, as shown in Fig. 3.7. In

practice, small cells can be turned on and o� depending on speci�c strategies, such as energy

e�ciency and load balancing [68�70]. We show the cell numbers in Fig. 3.7d for readers to

easily compare di�erent network topologies in di�erent periods, where each period is 20

minutes long. For user mobility, we applied a Manhattan grid mobility model with di�erent

user speeds: 5 km/h and 30 km/h. The number of UEs in the simulation was 200. For the

default settings, TTT, hysteresis, A3O�set, and Ocn were set to 256 ms, 3 dB, 0 dB, and

0 dB, respectively [32].

For a propagation model, signal decaying factor α and G0 were selected at 4.33

and 10 log 14.74 [20]. To model the fading e�ect, a log-normal random variable together

with a Rayleigh factor was integrated into the propagation model. The fading variable had

a zero mean, and standard deviation σ was 6 dB, as in a typical environment [51]. An

omni-directional antenna was used for all small cells, and transmit power ptx was 23 dBm.

For RLF detection, out-of-sync threshold Qout was set at −4 dB, and RLF detection time

τR was 500 ms [24]. For estimating the optimal handover parameters, we derived ranges for

θ and b by uniformly sampling distributions (0, π/3) and (0, a), respectively, where a is the

inter-site distance between two adjacent cells [24]. For the adaptation algorithm, β, λ, and

τ were set at 0.1, 0.95, and 1, respectively [71], for utilization of the transferred knowledge.

To evaluate the proposed transfer learning�based MRO algorithm (MRO-TL), two

base lines were considered: the MRO algorithm based on classi�cation (MRO-ABC) [1],
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(a) Nine cells (1st period).
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(b) 11 cells (2nd period).
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(c) 10 cells (3rd period).
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Figure 3.7: The dynamic topology of a small-cell network.
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Figure 3.8: At 5 km/h.

which adjusts TTT, CIO, and A3O�set to adapt mobility; and a Q-learning-based MRO

(MRO-Q) [31], which is a model-free RL algorithm for adjusting TTT and A3O�set. The

target performance for the considered algorithms was set at 1 % [1].

3.4.2 Handover Performance under Dynamic Network Topology

Fig. 3.8 shows the performance in terms of RLFs and ping-pongs in a 5 km/h

environment. We observe that MRO-TL satis�es the target performance, improves han-
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Table 3.1: Adaption times of the algorithms (in minutes) for a speed of 5 km/h

9 cells 11 cells 10 cells 12 cells Average Reduction (%)

MRO-Q 10 4 5 5 6.0 100

MRO-ABC 5 4 6 4 4.75 79.17

MRO-TL 0 0 1 0 0.25 4.17

Table 3.2: Satisfaction rates of algorithms (%) for a speed of 5 km/h

9 cells 11 cells 10 cells 12 cells Average Improvement (%)

MRO-Q 0 80 5 5 22.5 100

MRO-ABC 75 80 60 75 72.5 322.2

MRO-TL 100 100 85 90 93.75 416.7

dover performance more than MRO-Q and MRO-ABC, and optimizes RLFs and ping-pongs

together. In particular, MRO-TL experiences the lowest rise in RLF at the beginning of

each period. This is because MRO-TL utilizes prior knowledge of the optimal handover

parameters for the new topology just before the new cells are switched on and o�.

To evaluate how fast the algorithms adapt to topology changes, for four topologies,

we computed the average adaptation time, which is from the beginning of a topology until

the �rst time the algorithm meets the target performance. The adaptation times of the

algorithms are shown in Table 3.1. The results show that MRO-TL owns the shortest

adaptation time, 0.25 minutes on average, to meet the target performance, while MRO-

ABC and MRO-Q needed 4.75 minutes and six minutes on average, respectively. With

respect to MRO-Q, which is based on model-free RL, MRO-TL reduced the adaptation time

to 4.17% of MRO-Q, while that of MRO-ABC was 79.17% of MRO-Q. MRO-TL achieved

such a signi�cant improvement because of the optimal initialization of handover parameters
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Figure 3.9: At 30 km/h.

at the beginning of a new topology. Since MRO-TL achieved fast adaptation to topology

changes, it is applicable to dynamic wireless networks.

To examine how the algorithms ful�ll the target handover performance, we cal-

culated a satisfaction rate, which is the fraction of time in which handover performance is

below the target performance. The results are summarized in Table 3.2. We observed that

MRO-TL satis�es the handover performance requirements for all the topologies with the

best satisfaction rate, 93.75% on average, while MRO-ABC and MRO-Q attained 72.5%
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and 22.5%, respectively, on average. With regard to MRO-Q, MRO-TL improved the satis-

faction rate by 416.7%, while MRO-ABC improved it by 322.2%. MRO-TL attained such a

remarkable improvement because it �ne-tunes the handover parameters around the optimal

parameters based on transferred knowledge, which provides information on optimal values.

Unlike MRO-TL, MRO-ABC and MRO-Q adjust the handover parameters independent of

topology changes. Regarding ping-pong performance, MRO-TL and MRO-ABC were sta-

ble, while MRO-Q �uctuated. In general, the results for RLFs and ping-pongs showed

that MRO-TL is a candidate for handover optimization under dynamic mobility with stable

performance.

We also studied the impact of user speed to handover optimization in a dynamic

topology. Fig. 3.9 visualizes the RLF and ping-pong rates of the algorithms when speed was

30 km/h. Adaptation time and satisfaction rate are presented in tables 3.3. MRO-TL owns

the shortest adaptation time, 0.75 minutes on average, to meet the handover performance

target, while MRO-ABC and MRO-Q spent 3.25 minutes and 2.25 minutes on average,

respectively, to adapt to topology changes. For the satisfaction of UEs, MRO-TL achieved

a notable satisfaction rate of 96.25%. Regarding ping-pong performance, MRO-TL was

close to MRO-ABC, while MRO-Q had more �uctuations. With respect to the 5 km/h

environment, the algorithms experienced fewer ping-pongs because the upper bound of the

handover o�set, which is to avoid too-early handovers and ping-pongs, increases when the

user speed increases [24]. Overall, the results show that MRO-TL works well at a higher

speed and under a dynamic network topology.

3.4.3 Impact of the User Mobility Model

To verify the impact of a random mobility model on handover performance, we

chose a random waypoint (RWP) mobility model to simulate a pedestrian environment.
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Figure 3.10: Handover performance under a random mobility model.
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Table 3.3: Adaption times (in minutes) and satisfaction rates (%) of algorithms for a speed
of 30 km/h

9 cells 11 cells 10 cells 12 cells Average Reduction (%)

MRO-Q 4 0 4 1 2.25 100

MRO-ABC 3 1 6 2 3 133.33

MRO-TL 0 0 3 0 0.75 33.33

9 cells 11 cells 10 cells 12 cells Average Improvement (%)

MRO-Q 5 90 30 80 51.25 100

MRO-ABC 85 95 70 90 85 165.9

MRO-TL 100 100 85 100 96.25 187.8

UEs moved at a speed of 5 km/h in a scenario of 12 cells, as seen in Fig. 3.7d. Simulation

time was 30 minutes long to check how the algorithms dealt with randomness in mobility.

The simulation results for RLFs and ping-pongs are depicted in Fig. 3.10. We

observed that handover performance �uctuated more than in the Manhattan environment

of Fig. 3.7c. This was due to the randomness of the RWP model. MRO-TL still improved

handover performance more than the others, because it estimates the optimal handover

parameters at the very beginning, and also adapts to the mobile environment with the

estimated optimal parameters. MRO-ABC achieved the second best performance because it

�ne-tunes the handover parameters according to undesirable handover classi�cations. MRO-

ABC performance was close to MRO-TL in the long run, but in the beginning, MRO-TL was

better because it estimates the optimal parameters before the topology changes. MRO-TL

had better performance than MRO-Q, since MRO-TL utilizes prior knowledge and �ne-tunes

the parameters.
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Figure 3.11: Examples of optimal handover parameter estimation. The number indicates
the optimization step.

3.4.4 Impact of CIO Resolution on Handover Performance

Handover performance is a�ected by the resolution of CIO because the optimal

handover o�set is a real value instead of an integer, as standardized by the 3GPP [17].

Fig. 3.11 shows the way that MRO-TL (speci�cally Algorithm 5) estimates the optimal

handover parameters for two adjacent cells, called cell 1 and cell 2. The inter-site distance

was 30 m. TTT1, ∆21, and TTT2 were initialized at 256 ms, −2 dB, and 480 ms, respectively.

Other settings, such as transmit power and antenna gain, were identical for both cells. The

estimation of ∆̂opt

12 and ∆̂opt

21 took nine iterations to converge. The results show that ∆̂opt

12

and ∆̂opt

21 (in dB) were approximately 0.5 and −1, respectively. That inspired us to evaluate

handover performance for MRO-TL with a �ner resolution for CIO.

To verify the impact of resolution on handover optimization, we investigated MRO-

TL under the wireless scenario in Fig. 3.7d with a CIO resolution of 0.5 dB. The results are

compared to those from a resolution of 1 dB, as depicted in Fig. 3.10. Fig. 3.12 shows that

the resolution of 0.5 dB improved handover performance more than a resolution of 1 dB,
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Figure 3.12: Handover performance with di�erent CIO resolutions.
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Figure 3.13: Prior knowledge for cell 1 with a softmax probability of τ = 1

and the outcome of the earlier resolution �uctuated less. The reason is that the adaptation

algorithm provides �ner tuning of the CIO around the estimated optimal parameters, thus

inducing more pleasing results.

3.4.5 O�ine Learning

Since MRO-TL utilizes prior knowledge to optimize handover parameters, the more

prior knowledge the algorithm is provided, the better the performance it can achieve. To

get more prior knowledge for MRO-TL, we kept simulating the environment of 10 cells in

Fig. 3.7c for �ve hours and stored the knowledge bases of the dSONs in the database of

the cSON. The cSON transferred the knowledge bases to the dSON at the beginning of the

considered topology. We depict the knowledge bases for the optimal CIOs in the dSON of

cell 1 for its neighboring cells as probability distributions in Fig. 3.13. The �gure shows

that the distributions of the optimal CIOs are di�erent, cell-to-cell, which is due to the cell

locations.

We compared the performance of MRO-TL in Fig. 3.7c referred to as MRO-TL
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Figure 3.14: Comparison between online and o�ine MRO-TL.
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Online, and against MRO-TL with the transferred �ve-hour knowledge bases, called MRO-

TL O�ine. The results are depicted in Fig. 3.14 showing that MRO-TL Online and MRO-

TL O�ine performances were close. Particularly, MRO-TL Online and MRO-TL O�ine

achieved satisfaction rates at 85% (13/20) and 90% (18/20), respectively. Since MRO-TL

estimates the optimal handover parameters in the very beginning of a speci�c topology, and

�ne-tunes the parameters to adapt to dynamic mobility with the transferred knowledge, the

online algorithm is applicable to real-time handover optimization.

3.5 Closing Remarks

In this chapter, we proposed a transfer learning�based MRO algorithm, MRO-TL,

to minimize undesirable handovers (handover failures and ping-pongs) under a dynamic

network topology as well as dynamic mobility. To that end, MRO-TL has two steps: �rst,

to adapt to the changing topology, MRO-TL estimates the optimal handover parameters

for the cells in the new topology, and also transfers the knowledge bases to them, which

is done by the cSON. Second, an adaptation algorithm utilizes the transferred knowledge

and �ne-tunes the handover parameters around the estimated optimal values to adapt to

dynamic user mobility, which is done by the dSON.

We evaluated the proposed algorithms under a dynamic topology network with

dynamic cell switching on/o� scenarios as well as di�erent mobility models. With optimal

parameter estimation, MRO-TL adapts to dynamic wireless networks in a short time. Simu-

lation showed that the adaptation time of MRO-TL was only 4.17% of the baseline reference

algorithm. Furthermore, by utilizing transferred knowledge, MRO-TL adapted to dynamic

mobility better with a stable handover performance, and satis�ed the performance target at

such a signi�cantly improved rate�416.7%�compared to the baseline algorithm.
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We showed that MRO-TL estimated the optimal parameters to obtain better ini-

tialization of handover parameters for the dynamic network topology, and utilized the prior

knowledge as probability distributions of the optimal parameters to adapt to dynamic mo-

bility. We also observed that the optimal CIOs were real numbers instead of integers, as

in the 3GPP standards. Hence, a �ner resolution for a CIO helped improve handover opti-

mization, which was proven in the simulations. Finally, the online MRO-TL performed so

closely to the o�ine one that the di�erence was negligible. Therefore, online MRO-TL is

applicable to real-time handover optimization under dynamic wireless networks.
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Chapter 4

Joint Power Allocation and

Beam-forming Design for

Dual-connectivity Wireless Networks1

In this paper, we propose a cooperating scheme to maximize network throughput

while guaranteeing user quality of experience (QoE) demands in multiple-input-multiple-

output (MIMO) systems. One of the aspired-to targets of the �fth generation (5G) network

is to boost QoE everywhere, especially in the cell-edge areas. User equipments (UEs) in

the edge areas are vulnerable to QoE violations, and they need dual connectivity from two

nearby transmission points. Hence, UEs are categorized into two groups: single-connectivity

and dual-connectivity. After classi�cation, transmission power is allocated to maximize the

network capacity while guaranteeing the minimum QoE. By comparing performance with

a single connectivity�based algorithm and a �xed multi-connectivity�based algorithm, we

show that our proposed algorithm not only satis�es all the UEs in the system but also

1The study in this chapter was published in IEEE WCNC 2020[72].
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maximizes the network capacity.

4.1 Introduction

Achieving high data rates with remarkably enhanced user quality of experience

(QoE) is the main driving force in the development of �fth generation (5G) wireless networks.

The data rate for 5G is expected to be orders of magnitude larger than the legacy Long

Term Evolution Advanced (LTE-A) system [73]. In 5G, network operators aim to o�er their

subscribers guaranteed QoE everywhere, which involves all the characteristics for quality

of service, such as throughput, reliability (a low packet loss rate), low delay, and high

availability. To improve QoE, network operators can deploy a large number of transmission

points (TPs) in wireless networks [73], such as small cells and WiFi access points. In such a

dense network, multi-connectivity that enables more than one TP to serve UEs is considered

to be a vital solution for enhanced data rates as well as reliability [74].

Theoretical research has shown the necessity for cooperative multi-connectivity

transmissions to improve QoE in multiple-input multiple-output (MIMO) networks [74,

75]. Moreover, engineering demonstrations have proven that cooperative multi-connectivity

transmission concepts can provide higher data rates and increased spectral e�ciency [76,77].

The concepts are based on appropriate beamforming algorithms so that signals transmitted

from coordinating TPs are mutually suppressed to eliminate interference, or are construc-

tively added to increase the data rate.

Cooperative multi-connectivity transmission has been studied [78�84]. In [78], a

block diagonalization technique was applied to remove inter-user interference in cooperative

MIMO networks. In [79], the authors proposed a sub-optimal user-selection algorithm under

a zero-forcing beamforming mechanism in multi-cell MIMO systems. To maximize network
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capacity under a per�base station power constraint, a joint transmission algorithm based

on a block diagonalization precoding technique was developed [80, 81]. In [82], the authors

utilized a game theory�based approach for cooperation between TPs, and to maximize the

network sum rate. Even though they attempted to maximize capacity, guaranteed QoE was

ignored.

To improve QoE in LTE-A networks, Shen et al. [83] provided joint transmission to

support cell-edge UEs while limiting interference among cooperating base stations. In [84],

the authors studied cooperation over transmissions in WLAN networks to improve QoE in

the systems. Though they adopted a multi-connectivity concept to improve QoE, capacity

maximization was excluded. Furthermore, previous work utilized all TPs in a system to

support all UEs; however, the number of TPs needed for each UE can be di�erent due to

various the channel conditions of the UEs.

In this paper, we propose a solution for maximizing network capacity while taking

into account a minimum QoE in cooperating MIMO systems. To maximize network capac-

ity and ful�ll the minimum QoE, we apply a beamforming design to eliminate inter-user

interference, and implement an adaptive dual-connectivity algorithm to guarantee QoE at

the edge areas. Based on the channel conditions and the minimum QoE, we propose a UE

classi�cation algorithm to identify whether UEs need dual connectivity to ful�ll QoE. After

classi�cation, we introduce power allocation to meet the QoE for UEs, while also maximizing

network capacity.

4.2 System Model and Problem Formulation

We consider a coordinating MIMO network, where multiple TPs can serve UEs

simultaneously via a joint transmission scheme. The scheme enables data to be available at
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multiple TPs so that data can be delivered to UEs in the same time-frequency resource to

improve throughput [85]. We denote a set of multi-connectivity UEs as U , and the set is

served by a set of coordinating TPs denoted as J . In practice, there can be several multi-

connectivity UE sets and corresponding TP sets, as shown in Fig. 4.1. For example, U1 and

U2 are served by J1 and J2, respectively. There are NTP TPs in the system.

The MIMO system operates at millimeter wave (mmWave) frequencies, in which

TPs and UEs are equipped with a fully-connected hybrid beamforming architecture [86].

For beamforming, a TP has Na antennas and Nrf radio frequency (RF) chains. Each UE

owns Ma antennas and Mrf RF chains. A single data stream is used by each of the UEs.

Assuming channels experience block fading, the input�output expression of user

u ∈ U is generally given by

yu =WH
bbu

WH
rfu

∑
j∈J

(
Hj,uFrfjFbbj,usu

+
∑

v∈U ,v ̸=u

Hj,uFrfjFbbj,vsj,v + nu

)
, (4.1)

where su is the transmitting baseband signal for UE u with E[susuH ] = 1 (E[x] denotes the

expectation of x, and xH is the conjugate transpose vector of x). Hj,u ∈ CMa×Na is the

channel matrix of UE u from TP j, and nu ∈ CN (0, σ2) is additive complex Gaussian noise

and is identically and independently distributed. Fbbj is an Nrf × K baseband precoding

matrix of TP j for serving K users. Fbbj,u is an Nrf × 1 baseband precoding vector of TP j

for UE u. Frfj is the baseband precoding matrix of TP j. Wbbj,u is the Mrf × 1 baseband

combining vector of UE u for TP j, and Wrfu is the Ma ×Mrf RF combining matrix.

For expressing a multi-connectivity transmission, we rewrite (5.1) as

yu =WH
bbu

H̃uFbbusu +
∑

v∈U ,v ̸=u

WH
bbu

H̃uFbbvsv

+WH
bbu

WH
rfu
nu, (4.2)
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Figure 4.1: An example of a dual-connectivity wireless network.

where H̆j,u ∈ CMrf×Nrf is the e�ective channel matrix and is given as

H̆j,u = WH
rfu
Hj,uFrfj , (4.3)

and H̃u =
[
H̆1,u, . . . , H̆|J |,u

]
. The operand |·|means the cardinality of a set. The achievable

rate for UE u is

Ru = log2

(
1 +D−1

u WH
bbu

H̃uFbbuQuF
H
bbu

H̃H
u Wbbu

)
, (4.4)

where Qu is the power loading coe�cient for UE u, and Du is given by

Du =
∑

v∈U ,v ̸=u

WH
bbu

H̃uFbbvPvF
H
bbv

H̃H
u Wbbu

+WH
bbu

WH
rfu
WrfuWbbuσ

2. (4.5)

For modeling the wireless channel, we use the cluster-based mmWave channel model

to simulate the limited scattering feature of the mmWave channel [86, 87]. The mmWave
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channel for UE k from TP j, which is Hj,k, is given as

Hj,k =

√
NaMa

µj,kNCNP

NC∑
m=1

NP∑
n=1

αj,k
m,na

j,k
UE(θ

j,k
m,n)a

j,k
TP(ϕ

j,k
m,n),

where µj,k is the large-scale path loss including shadowing from TP j to UE k [88], NC is the

number of clusters. NP is the number of radio paths scattering from one cluster, αj,k
m,n is the

complex gain of radio path n in clusterm, and aj,kUE(θ
j,k
m,n) and aj,kTP(ϕ

j,k
m,n) are the receiving and

transmitting ray-like radio paths at the azimuth angles of θj,km,n and ϕj,k
m,n, respectively; θ

j,k
m,n

and ϕj,k
m,n are the angle of arrival and departure, respectively, and are uniformly distributed

from 0 to 2π. Assuming a uniform linear array antenna layout is considered, each radio path

can be characterized by an array response vector as

a(θ) =
1√
La

[
1, ej2π

d
λ
sin θ, . . . , ej(La−1)2π d

λ
sin θ

]T
, (4.6)

where La is the number of antenna elements, λ is the wavelength, and d stands for the

inter-element distance. In this paper, we consider half-lambda spacing, e.g. d/λ = 1/2.

We assume that TPs can share channel state information (CSI) and user data

through an inter-cell connection link with extremely low-latency optical �bers [77]; thus,

the synchronization delay is negligible. Moreover, CSI is assumed to be recorded at both

transmitters and receivers.

To maximize the total capacity while considering the minimum QoE, we propose

an optimization problem as follows

(P1) : max
{Fbb,Frf,Wbb,Wrf}

∑
u∈U

Ru

s.t.
∑
u∈U

Tr
(
Fbbj,uFrfjQuF

H
rfj
FH
bbj,u

)
≤ Pmax, j ∈ J

Ru ≥ Rmin,

where Pmax and Rmin are the maximum transmission power and the minimum required

throughput, respectively. The problem considers multi-connectivity transmission, which



Chapter 4: Joint Power Allocation and Beam-forming Design for Dual-connectivity
Wireless Networks 111

includes all TPs, to satisfy UEs in the system. Since wireless connections can experience

high propagation loss, we consider dual connectivity to leverage the e�ciency of power

allocation.

To solve optimization problem (P1), in Section III, we �rst work on the hybrid

beamforming design for multi-connectivity transmission. After that, we propose a UE clas-

si�cation algorithm and power allocation algorithms in Section IV.

4.3 Hybrid Beamforming Design

This section provides a hybrid beamforming design to obtain a large antenna, gain

as well as to suppress the inter-user interference for multi-cell transmissions.

4.3.1 Design of the Combining and Precoding RF Matrices

The objective of the RF design is to compensate for higher than expected channel

losses by facilitating a large beamforming gain. First, the combining RF matrix of each of

the UEs is maximized by solving the following problem [86]

max
Wrfu∈W

∑
j∈J

∥∥∥(Wrfu)
HHj,u

∥∥∥2
1

where W is a discrete fourier transform matrix of dimension Ma ×Ma, in which the spatial

frequency is 2πd/λ sin θ. GivenWrfu , we de�ne matrix Ĥj as Ĥj = [ĤT
j,1, . . . , Ĥ

T
j,|U|]

T , where

Ĥj,u = WrfuHj,u. Then, Frfj is computed based on an equal gain transmission algorithm [86]

Frfj =
1√
Na

eiξj,u ,

where ξj,u is the phase of the (j, u)-th element of ĤH
j .
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4.3.2 Joint Design of the Baseband Combining and the Precoding Ma-

trices

To suppress the inter-user interference on dual-connectivity downlink, we apply

the block diagonalization (BD) technique to obtain the baseband combining and precoding

matrices, Wbb and Fbb. To leverage the low-dimensional BD processing, we consider the

e�ective channel matrices. Via (5.9), we aim at designing Fbb such that H̄uFbbv = 0, ∀u ̸= v.

We de�ne a concatenating matrix for UE u as

H̄u =
[
H̃T

1 , . . . , H̃
T
u−1, H̃

T
u+1, . . . , H̃

T
|U|

]T
. (4.7)

The fundamentals of BD are to obtain the Fbbu that lies in the null space of H̄u. By singular

value decomposition (SVD), we can obtain Fbbu . The SVD of H̄u is

H̄u = ŪuΣ̄u

[
V̄1

u, V̄
0
u

]H
, (4.8)

where V̄1
u ∈ C2|U|Mrf×(|U|−1)Mrf contains the �rst (|U|−1)Mrf right singular vectors of H̄u, and

V̄0
u includes the last 2|U|Mrf− (|U|− 1)Mrf right singular vectors that form the null basis of

the null space of H̄u. The rank of H̄u implicitly satis�es the condition 2|U|Mrf > (|U|−1)Mrf.

Since Fbbu lies on the null space of H̄u, we can rewrite (4.2) as

yu = WH
bbu

H̃uFbbusu +WH
bbu

WH
rfu
nu.

To achieve the optimal achievable rate, we perform SVD as follows

H̃uV̄
0
u = ÛuΣ̂uV̂

H
u . (4.9)

Then, the optimal precoding and combining baseband matrices of Fbbu andWbbu are V̄
0
uV̂

(1)
u

and Û
(1)
u , respectively, whereA(1) denotes the �rst column of matrix A. The overall precoding

matrix for dual-connectivity UEs in TP j is given as FDCj = [FrfjFbbj,1 , . . . ,FrfjFbbj,|U| ].
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With the obtained precoding and combining baseband matrices, the inter-user interference

is eliminated so that we can rewrite the achievable data rate (5.8) as

Ru = log2

(
1 + σ−2(Σ̂⋆

u)
2Qu

)
,

where Σ̂⋆
u is the �rst, and also the largest, singular value in diagonal singular matrix Σ̂u.

Since UEs can be served by a sigle TP, we can apply the BD technique for single-

connectivity transmission. Assuming that UEs select the best TP based on reference signal

received power (RSRP), we de�ne the single-connectivity set served by TP j as Kj . For UE

k ∈ Kj , we apply (5.10), (5.11), and (5.12) for concatenating H̆j,k in (5.5). Then, we can get

Fbbj,k
, Wbbj , and Σ̂⋆

j,k, which are, respectively, the baseband precoding vector of TP j for

UE k, the baseband combining vector of UE k for TP j, and the largest singular value of the

channel between UE k and TP j. For single-connectivity UEs, the inter-cell interference can

be negligible because of the propagation loss of the mmWave channel. We summarize the

notations used in this paper in Table 4.1. In the next section, we provide UE classi�cation

and a power allocation algorithm, which are based on the obtained singular values.

4.4 Power Allocation Algorithms

This section provides the proposed power allocation algorithm that can guarantee

QoE via dual connectivity while maximizing the network capacity. According to channel

conditions and QoE, single-connectivity transmission is enough for some UEs, while dual

connectivity is essential for others. Hence, we �rst identify which UEs need dual connectivity.

After the classi�cation, we allocate the power to ful�ll QoE demands of the dual-connectivity

UEs, and the remaining power is for maximizing the sum rate of the single-connectivity UEs.

The main algorithm is described in Algorithm 9
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Table 4.1: Summary of parameters in this paper.

Parameter Description

Hj,u Channel matrix between UE u and TP j

Fbbj Baseband precoding matrix of TP j

Frfj RF precoding matrix of TP j

Fj,u Overall precoding matrix of TP j for UE u

Wbbu Baseband combining matrix of UE u

Wrfu RF combining matrix of UE u

H̆j,u E�ective channel matrix between UE u and TP j

H̄u Concatenation of e�ective matrix for BD technique

gj,k Chanel quality between single-connectivity UE k and TP j

gu Chanel quality received by dual-connectivity UE u

Pmin
j,k Minimum power of TP j in order for UE k

to satisfy the QoE demand

Pmax
DCj

Maximum power of TP j for dual connectivity

Un The n-th dual-connectivity UE set

Utotal The dual-connectivity set in the system

U† The optimal selected dual-connectivity set in the system

Jn The n-th TP set supporting Un

Kj The single-connectivity UE set of TP j

Ǩj The optimal single-connectivity set of TP j

Algorithm 9 Adaptive Dual-Connectivity Power Allocation Algorithm

1: Classify UEs into single-connectivity UEs and dual-connectivity UEs (Algorithm 10)

2: Allocate power to satisfy as many dual-connectivity UEs as possible (Algorithm 11)

3: Allocate the remaining power to maximize network capacity by solving (P3)
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4.4.1 User Classi�cation Algorithm

This algorithm classi�es UEs based on the idea of a water-�lling algorithm that

maximizes the network capacity [78]. The algorithm examines whether single-connectivity

transmission is enough for all UEs to meet the required QoE. If single-connectivity trans-

mission can guarantee QoE for all UEs, power is allocated to all UEs by solving (P3).

For each TP j, the algorithm sorts single-connectivity UE list Kj to obtain a sorted

list, Ǩj , with respect to their channel quality, Σ̄j,k (k = 1, . . . , |Kj |). To identify which UEs

cannot be satis�ed by single-connectivity transmissions, we compute the minimum power

for UE ǩ ∈ Ǩj to ful�ll QoE under single-connectivity transmission, denoted as Pmin
j,ǩ

, given

as

Pmin
j,ǩ

=
∥∥Fj,ǩ

∥∥2Qmin
j,ǩ

, (4.10)

where Qmin
j,ǩ

= (2R
min
ǩ − 1)/(g2

j,ǩ
), which is the minimum power loading coe�cient, and

gj,ǩ = σ−2(Σ̂⋆
j,ǩ
)2, which is the channel gain of single-connectivity transmission for UE ǩ

from TP j, and ∥ · ∥ denotes a norm-2 operand. Since Pmin
j,ǩ

is reciprocal to gj,ǩ, the last UE

in Ǩj needs the largest amount of power to meet QoE.

Due to the channel condition, we need to �nd the optimal single-connectivity list

for TP j, because all UEs are not satis�ed by single connections. To get the optimal single-

connectivity list for TP j, the algorithm iteratively removes the last UE of Ǩj such that∑|Ǩj |
ǩ=1

Pmin
j,ǩ
≤ Pmax. For UEs that cannot be satis�ed by single connections, the algorithm

stores them in a dual-connectivity UE set, called Utotal.

Each dual-connectivity UE u ∈ Utotal chooses the second TP for dual connectivity,

which has the second-largest RSRP in the system. Because dual-connectivity UEs can be

served by di�erent pairs of TPs, we group dual-connectivity UEs by pairs of TPs. For

example in Fig. 4.1, dual-connectivity UE set U1 including UE 1 and UE 2 are served by TP
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set J1 consisting of TP 1 and TP 2. Likewise, dual-connectivity UE set U2 including only

UE 4 is served by TP set J2 consisting of TP 1 and TP 3. We summarize the algorithm for

user classi�cation in Algorithm 10. In the next subsection, we propose a power allocation

algorithm for dual-connectivity UEs in order to meet QoE while maximizing the sum rate

of single-connectivity UEs.

Algorithm 10 User Classi�cation Algorithm

1: Input: Fj,k, Σ̄j,k, j = 1, . . . , NTP, k = 1, . . . , |Kj |

2: Output: Uns and corresponding Jns, Ǩj , j = 1, . . . , NTP

3: for each TP j do

4: Sort single-connectivity UE list Kj in ascending order based on the single-

connectivity channel quality Σ̄j,k (k = 1, . . . , |Kj |). Achieve sorted list Ǩj

5: Calculate Pmin
j,ǩ

(ǩ = 1, . . . , |Ǩj |) via (4.10)

6: while
∑|Kj |

ǩ=1
Pmin
j,ǩ

> Pmax do

7: Remove the last UE in sorted list Ǩj and put the UE in dual-connectivity UE set

Utotal

8: end while

9: end for

10: for each UE in dual-connectivity UE set U do

11: Find the second-best TP based on RSRP

12: end for

13: In Utotal, group dual-connectivity UEs that have common TPs in order to get Uns and

the corresponding Jns.
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4.4.2 Power Allocation with Guaranteed QoE

To meet the required QoE while maximizing the network capacity, we allocate

power to dual-connectivity UEs to meet QoE with a power constraint, and the remaining

power is for maximizing network capacity with single-connectivity UEs. First, we compute

the su�cient power for each of the dual-connectivity UEs based on their channel quality.

For each TP j that serves dual-connectivity UE u, the minimum power assigned by TP j

for dual-connectivity UE u is given as

Pmin
j,u =

∥∥Fj,u

∥∥2Qmin
u (4.11)

where Qmin
u = (2R

min
u − 1)/g2u, and gu = σ−2(Σ̂⋆

u)
2, which is the overall channel gain of dual

connectivity to UE u from the corresponding TP set.

Since all dual-connectivity UEs may not be served at once due to the power limi-

tation, we choose an optimal subset of dual-connectivity UEs from Utotal, called U†. To that

end, we solve the following optimization problem to get U†

(P2) :max
∣∣U†∣∣

s.t.
∑
u∈U†

∥Fj,u∥2Qmin
u ≤ Pmax

DCj
, j = 1, . . . , NTP

Qu ≥ 0, u ∈ U†.

We note that ∥Fj,u∥2Qmin
u = 0 if TP j does not serve UE u.

We obtain U† as follows. We initialize U† such that U† = U . For each TP j, the

maximum remaining power Pmax
DCj

for each TP j available for satisfying dual-connectivity

UEs is computed as

Pmax
DCj

= Pmax −
|Ǩj |∑
ǩ=1

Pmin
j,ǩ

. (4.12)
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Algorithm 11 Power Allocation Algorithm for Dual Connectivity

1: Input: FSCj , Σ̄j,k, j = 1, . . . , NTP, k = 1, . . . , |Kj |

2: Output: U† and PDCj , j = 1, . . . , NTP

3: for each UE u ∈ U do

4: Compute Pmin
j,u by (5.23) for each TP j serving UE u

5: end for

6: Set U† = U

7: for each TP j in the system do

8: Compute Pmax
DCj

via (5.24)

9: Sort dual-connectivity UEs that are served by TP j based on the minimum power

10: Compute PDCj via (4.13)

11: while PDCj > Pmax
DCj

do

12: Remove the last UE of the sorted list for TP j and also remove it from U†

13: end while

14: end for
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Then, a list of the dual-connectivity UEs served by TP j is sorted in ascending order based

on Pmin
j,u . After the sorting process, the algorithm iteratively removes the last UE from the

sorted list, and extracts it from U† until the power for dual connectivity does not exceed

Pmax
DCj

, i.e.,
∑

u∈U† ∥Fj,u∥2Qmin
u ≤ Pmax

DCj
.

After U† has been achieved, the total power spent for dual connectivity for each

TP j, PDCj , is given by

PDCj =
∑
u∈U†

∥Fj,u∥2Qmin
u . (4.13)

The procedure to acquire U† is summarized in Algorithm 11.

After satisfying dual-connectivity UEs, we maximize the sum rate for single-connectivity

UEs with the remaining power at each TP j, Pmax
SCj

, given as

Pmax
SCj

= Pmax − PDCj .

For each TP j, we allocate the power for single-connectivity UEs according to the following

optimization problem

(P3) :max

|Ǩj |∑
ǩ=1

Rǩ

s.t.

|Ǩj |∑
ǩ=1

∥Fj,ǩ∥
2Qj,ǩ ≤ Pmax

SCj
,

Qj,ǩ ≥ 0, j = 1, . . . , |Ǩj |,

Rǩ ≥ Rmin
ǩ

.

Since (P3) is a convex problem, and the constraints are feasible, it is solved by a water-�lling

approach [78].
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Figure 4.2: Percentage of satis�ed UEs at di�erent QoE thresholds.
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Figure 4.3: Network capacity for di�erent QoE thresholds.
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4.5 Simulation Results and Analysis

In this section, we evaluate the performance of the proposed algorithm in terms

of network capacity and the percentage of satis�ed UEs using Matlab. We compared the

proposed adaptive dual-connectivity algorithm, denoted as Adaptive DC, with a previous

algorithm that considers single-connectivity transmission [86], called the SC algorithm, and

an algorithm that encompasses multiple TPs for joint transmissions [89], called the MC

algorithm.

The simulation environment includes seven TPs, i.e NTP = 7, each of which serves

12 UEs [85] in the beginning. TPs are deployed regularly at an inter-site distance of 50 m [85].

The maximum transmission power of a TP is 30 dBm. The system operates on a carrier

frequency of 28 GHz with a 100 MHz bandwidth [85]. The noise �gure at a receiver is

set at 10 dB. Hybrid beamforming is commonly used for all considered algorithms. For

beamforming parameters, Na = 256, Nrf = 48, Ma = 8, and Mrf = 4, as in [85]. For channel

realization, we set NC and NP at 3 and 2, respectively. The UE mobility is modeled as a

random walk at 3 km/h. We set identical QoE thresholds for all UEs in the system.

Fig. 5.2 depicts the percentage of satis�ed UEs achieved by our proposed algorithm

and in two previous works by setting three QoE thresholds: 100 Mbps, 200 Mbps, and

300 Mbps. As we can observe, the adaptive DC algorithm can satisfy all the UEs, while

the SC algorithm can only ful�ll QoE for a portion of the UEs. This is because the SC

algorithm neglects the minimum required QoE, and lacks coordination between TPs in order

to support cell-edge UEs. The MC algorithm can satisfy UEs for 100 Mbps and 200 Mbps

QoE requirements; however, the algorithm can guarantee the minimum QoE for just under

50% of the UEs when the demand is 300 Mbps. Since the MC algorithm requires all TPs in

the system to support UEs, power is ine�ciently allocated when some UEs are too far from



122
Chapter 4: Joint Power Allocation and Beam-forming Design for Dual-connectivity

Wireless Networks

1 2 3 4 5 6 7 8 9 10
Time instance

0

2

4

6

8

10

12

Pe
rc

en
ta

ge
 o

f 
du

al
-c

on
ne

ct
iv

ity
 U

E
s

100 Mbps
200 Mbps
300 Mbps

Figure 4.4: Adaptive DC for each time instance due to mobility.

a TP for e�cient communication. We provide a solution for adaptive dual connectivity, and

therefore, we have better performance.

Fig. 5.3 illustrates the system capacity from the three algorithms. The results

show that the adaptive DC algorithm obtains the second-best performance but it is close

to the SC algorithm. Meanwhile, the MC algorithm provides the lowest performance. This

is because our algorithm can maximize the sum rate of single-connectivity UEs that are

near the center of the TPs, and can also ful�ll the QoE requirements of the UEs via dual

connectivity. The MC algorithm pushes all TPs in the system to support a UE, which is

ine�cient due to high propagation loss, so it induces the worst performance.

Fig. 5.4 shows that the portion of dual-connectivity UEs varies over time due to

mobility. We chose snapshots from 10 di�erent times. The results show that our algorithm

can adaptively classify UEs for dual connectivity in order to ful�ll the required QoE. When

the demanded QoE is higher the percentage of dual-connectivity UEs increases because more

power is needed to meet the QoE requirements.
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4.6 Closing Remarks

In this paper, we proposed a power allocation algorithm with hybrid beamforming

to maximize the network capacity, along with satisfying the minimum QoE. The beam-

forming design was applied to reduce interference and to maximize network throughput. In

cases where single connections cannot guarantee the minimum QoE for all UEs, depending

on the wireless environment, for a given beamforming, UEs are classi�ed into two groups.

According to the UE categories, power is allocated to maximize the network capacity while

satisfying the minimum QoE. Simulations show that our proposed algorithm dynamically

classi�es UE groups based on QoE and the channel conditions of the UEs, and maximizes

network capacity while satisfying the QoE for UEs.
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Chapter 5

Joint Power Allocation and

Beam-forming Design for

Dual-connectivity Wireless Networks

Under Imperfect CSI

Multi-connectivity is a promissing solution for current wireless technologies and

future networks to ful�ll ever increasing demands of quality of experience (QoE). User data

will be transmitted from multiple source using massive multi-output multi-input (MIMO) to

support subscribers, which can not be happy due to a low QoE. In multi-connectivity wireless

networks, the tradeo� between energy e�ciency and spectrum e�ciency poses a challenge

on to the radio access design, such as power allocation and beamforming. Furthermore,

performance of MIMO systems can be majorly degraded because of the accuracy of the

channel estimation, which is known as channel state information (CSI). In this work, we

propose a joint power allocation and beamforming design considering the impact of imperfect

125
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CSI to guarantee user quality of experience (QoE) demands while minimizing the total

transmission power in multi-connectivity multiple-input-multiple-output (MIMO) systems.

Then, the design took into account dual connectivity of 5G new radio (NR) standard. First,

the e�ect of imperfect CSI is analyzed and estimated by a closed form in term of signal-

to-interference-plus-noise (SINR) ratio. Then a two-stage algorithm will categorize UEs

into two groups: single-connectivity and dual-connectivity. After classi�cation, transmission

power is allocated to guarantee the demanded QoE while minimizing the transmission power.

By comparing performance with a single connectivity�based algorithm and a �xed multi-

connectivity�based algorithm, we show that our proposed algorithm not only satis�es all

the UEs in the system but also consumes less transmission power.

5.1 Introduction

Guaranteeing high quality of experience (QoE) while spending power e�ciently is

one of the main driving force for the sustainable development of �fth generation wireless

networks (5G) and beyond 5G [73,90]. However, the trade-o� between energy e�ciency and

high quality of service has been challenging the optimization of the wireless systems [91�93].

To guarantee QoE every where in a wireless network, a dense deployment of transmission

points (TPs) and a large number of antenna will be a potential solution [73, 92]. In such

dense networks, a cooperative multi-connectivity communication scheme will enable more

than one TP to support UEs to enhance QoE [74,94].

Theoretical research has shown the necessity for cooperative multi-connectivity

transmissions to improve QoE in multiple-input multiple-output (MIMO) networks [74,

75]. Moreover, engineering demonstrations have proven that cooperative multi-connectivity

transmission concepts can provide higher data rates and increased spectral e�ciency [76,
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77, 95]. The concepts are based on beamforming design so that signals transmitted from

coordinating TPs are mutually suppressed to eliminate interference, or are constructively

added to increase the data rate. However, beamforming gain is strongly a�ected by the

channel state information (CSI), which is obtained by channel estimation scheme.

Assuming wireless communications is under perfect CSI, cooperative multi-connectivity

transmission has been studied [78�84,96]. In [78], a block diagonalization technique was ap-

plied to remove inter-user interference in cooperative MIMO networks. In [79], the authors

proposed a sub-optimal user-selection algorithm under a zero-forcing beamforming mecha-

nism in multi-cell MIMO systems. To maximize network capacity under a per�base station

power constraint, a joint transmission algorithm based on a block diagonalization precoding

technique was developed [80,81]. In [96], complexity of the block diagonalization technique

was investigated and a low-complexity precoding algorithm was developed. In [82], the au-

thors utilized a game theory�based approach for cooperation between TPs, and to maximize

the network sum rate. To improve QoE in LTE-A networks, Shen et al. [83] provided joint

transmission to support cell-edge UEs while limiting interference among cooperating base

stations. In [84], the authors studied cooperation over transmissions in WLAN networks to

improve QoE in the systems. These previous works attempted to maximize capacity without

considering minimum QoE requirement and energy e�ciency.

Considering energy e�ciency in multi-connectivity MIMO networks, joint beam-

forming design and power allocation were studies [97�102]. In [97], an optimization problem

for maximizing the energy e�ciency was developed by designing a hybrid beamforming ar-

chitecture based on a statistical model for the transmitted signal. In [98], an transmission

point (TP) selection scheme and the optimal power allocation algorithm were proposed,

which aimed at maximizing the total energy e�ciency subject to a per-user spectral e�-

ciency constraint and a power constraint. In [99], the security aspect of multi-connectivity
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MIMO network under a pilot spoo�ng attack was studied. The problem of minimizing the

power consumption subject to security constraints was also considered. In [100], the author

provided a usercentric architectures operating at millimeter wave frequencies, considering a

training-based channel estimation phase, and the downlink and uplink data transmissions,

hybrid beamforming, and resource allocation strategies maximizing the global energy e�-

ciency. In [101], provide the a comprehensive analysis of multi connectivity wireless network

under di�erent degrees of cooperation among the TPs. In [102], a power saving strategy with

load balancing was developed to minimize total power consumption in multi-connectivity

wireless networks. However, from these researches, joint power allocation and beamforming

design for guaranteed QoE with imperfect CSI in multi-connectivity MIMO network is still

left as an open issue.

Considering imperfect CSI in joint power allocation and beamforming design, [103�

106]. In [103], a robust coordinated beamforming for mitigating the inter-cell interference

under imperfect CSI was studied. The objective of research is to minimize sum transmission

power of base stations while considering worst-case SINR of UEs. In [104], the authors

developed a power control technique with zero-forcing precoding to improve the energy

e�ciency considering the backhaul power consumption. In [105], the authors investigated a

coordinated beamforming with error channel estimation via a uplink training scheme, and

then devised a max-min fairness power control algorithm for energy e�cency. In [106], a full-

duplex mmWave multi-connectivity system was investigated, a robust hybrid beamforming in

an imperfect CSI scenario was studied, and sum rate maximization problem was considered.

Nevertheless, guaranteeing minimum QoE requirement was still absent from these researches.

In this paper, we propose a solution for guaranteeing QoE under imperfect CSI

acquisition while minimizing the total power power in cooperative multi-connectivity MIMO

systems. We applied block diagonalization technique for beamforming design aiming at
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minimizing inter-user interference. Due to the impact of imperfect CSI on interference aspect

of downlink transmission, the channel quality is degraded and we estimated that impact in

terms of signal-to-noise-and-interference (SINR) metric. We formulated the optimization

problem using the estimated SINR. To solve the problem, we proposed a two-stage adaptive

dual-connectivity algorithm aiming at utilizing dual connectivity, which is standardized by

3GPP. The �rst stage of the proposed algorithm classi�es UEs into two di�erent sets based

on the estimated SINR and identi�es condition when UEs need more than one connectivity

to be satis�ed. The second stage allocate power allocation to each UE meet the required QoE

while also minimizing the transmission power. For the performance evaluation, we verify

the proposed algorithm with various aspects of the wireless networks, such as di�erent QoE

requirement, level of CSI error, network load, and antenna settings.

Notations: In this paper, matrices is denoted by bold-face upper-case letters. 0, I

denote an identity matrix and an zero matrix, respectively, with appropriate dimensions. AT,

A†, and Tr(A) are the transpose, conjugate transpose, and trace of a matrixA, respectively.

A ≥ 0 means that A is postive semi-de�ne matrix. ∥A∥l is the l-norm of matrix A.

Diag(a1, . . . , aN ) denotes a square block-diagonal matrix with diagonal elements a1, . . . , aN .

The operand | · | means the cardinality of a set. δ̄mn means that δ̄mn = 1 if m ̸= n, and

δ̄mn = 0 if m = n. The operand ⊙ is the Hadamard product. (A)mn denotes the element

at row m and column n of matrix A. (A):m is the column m of matrix A. vec (A) is the

vectorization of matrix A.

5.2 System Model and Problem Formulation

In this section, we provide the system model and then formulate the power con-

sumption minimization problem.
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Figure 5.1: An example of a dual-connectivity wireless network.

5.2.1 System Model

We consider a coordinating MIMO network, where multiple TPs can serve UEs

simultaneously via a joint transmission scheme. The scheme enables data to be available at

multiple TPs so that data can be delivered to UEs in the same time-frequency resource to

improve throughput [85]. We denote a set of multi-connectivity UEs as U , and the set is

served by a set of coordinating TPs denoted as J . In practice, there can be several multi-

connectivity UE sets and corresponding TP sets, as shown in Fig. 5.1. For example, U1 and

U2 are served by J1 and J2, respectively. There are NTP TPs in the system.

The MIMO system operates at millimeter wave (mmWave) frequencies, in which

TPs and UEs are equipped with a fully-connected hybrid beamforming architecture [86].

For beamforming, a TP has Na antennas and Nrf radio frequency (RF) chains. Each UE

owns Ma antennas and Mrf RF chains. A single data stream is used by each of the UEs.

Assuming channels experience block fading, the down-link input�output expression
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of UE u ∈ U that is expected by TPs is expressed as

yu = WH
bbu

WH
rfu

∑
j∈J

HjuFrfjFbbjuQ
1
2
u su +

∑
v∈U ,v ̸=u

HjuFrfjFbbjvQ
1
2
v sjv + nu

, (5.1)

where su is the transmitting baseband signal for UE u with E[susuH ] = 1 (E[x] denotes

the expectation of x, and xH is the conjugate transpose vector of x). Hju ∈ CMa×Na is the

downlink channel matrix of UE u observed by TP j, and nu ∈ CN (0, σ2) is additive complex

Gaussian noise and is identically and independently distributed. Fbbj is an Nrf×K baseband

precoding matrix of TP j for serving K users. Fbbju is an Nrf×1 baseband precoding vector

of TP j for UE u. Frfj is the baseband precoding matrix of TP j. Wbbju is the Mrf × 1

baseband combining vector of UE u for TP j, and Wrfu is the Ma ×Mrf RF combining

matrix.

To model the wireless channel, we use the cluster-based mmWave channel model

to simulate the limited scattering feature of the mmWave channel [86, 87]. The downlink

mmWave channel vector for UE u from TP j, Hju, is given by

Hju =

√
NaMa

NCNP

NC∑
m=1

NP∑
n=1

αjumna
ju
UE(θjumn)a

ju
TP(ϕjumn), (5.2)

where NC is the number of clusters. NP is the number of radio paths scattering from

one cluster, αjumn is the complex gain of radio path n in cluster m, and ajuUE(θjumn) and

ajuTP(ϕjumn) are the receiving and transmitting ray-like radio paths at the azimuth angles

of θjumn and ϕjumn, respectively; θjumn and ϕjumn are the angle of arrival and departure,

respectively, and are uniformly distributed from 0 to 2π. Assuming a uniform linear array

antenna layout is considered, each radio path can be characterized by an array response

vector as

a(θ) =
1√
La

[
1, ej2π

d
λ
sin θ, . . . , ej(La−1)2π d

λ
sin θ

]T
, (5.3)
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where La is the number of antenna elements, λ is the wavelength, and d stands for the

inter-element distance. In this paper, we consider half-lambda spacing, e.g. d/λ = 1/2.

For expressing a multi-connectivity transmission, we rewrite the signal at (5.1) as

yu =WH
bbu

∑
j∈J

H̃juFbbjuQ
1
2
u su +

∑
v∈U ,v ̸=u

H̃juFbbjvQ
1
2
v sjv + nu


=WH

bbu

H̃uFbbuQ
1
2
u su +

∑
v∈U ,v ̸=u

H̃uFbbvQ
1
2
v sv

+WH
bbu

WH
rfu
nu (5.4)

where H̃ju ∈ CMrf×Nrf is the e�ective channel matrix and is given as

H̃ju = WH
rfu
HjuFrfj , (5.5)

and H̃u =
[
H̃1u, . . . , H̃|J |u

]
∈ CMrf×|J |Nrf is the concatenating matrix for e�ective channel

matrix of all the TPs for UE u.

We assume that TPs can share channel state information (CSI) and user data

through an inter-cell connection link, and user perfectly estimate the channel. Since the

quality of the CSI feedback from UEs to TPs can be a�ected by quantization at the RF

transceivers, the real e�ective channel witnessed by UE u can be di�erent to that at TP

j. We model the relation between the e�ective channel witnessed by UE u, H̃′
ju, and that

observed by TP j, H̃ju, as follow

H̃′
ju = H̃ju +∆H̃ju, (5.6)

where ∆H̃ju ∈ CN (0, σ2
eIMrf×Nrf

).

In our paper, some basic assumptions are summarized as follows

• For channel model, the direction of angle of arrival/departure are uniformly distributed

in [0, 2π].

• UEs can perfectly estimate the DL channel using channel estimation algorithm; how-

ever the feedback CSI to TPs has error, which distribution is known.
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Table 5.1: Summary of parameters in system model.

Parameter Description

Hju Channel matrix between UE u and TP j

Fbbj Baseband precoding matrix of TP j

Frfj RF precoding matrix of TP j

Fju Overall precoding matrix of TP j for UE u

Wbbu Baseband combining matrix of UE u

Wrfu RF combining matrix of UE u

H̃ju E�ective channel matrix between UE u and TP j

H̃BD
u Concatenation of e�ective matrix for BD technique

• Precoding matrices are designed based on the channel observed by TPs, H̃ju.

5.2.2 Problem Formulation

Under imperfect CSI acquisition, the decoded signal at UE u is actually as

y′u =WH
bbu

H̃′
juFbbuQ

1
2
u su +

∑
v∈U ,v ̸=u

H̃′
juFbbvQ

1
2
v sv

+WH
bbu

WH
rfu
nu, (5.7)

The achievable data rate at UE u under imperfect CSI is expressed as

Ru
′ = log2

(
1 +D−1

u WH
bbu

H̃′
uFbbuQuF

H
bbu

H̃u
′HWbbu

)
(5.8)
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where Qu is the power loading coe�cient for UE u, and Du is given by

Du =
∑

v∈U ,v ̸=u

WH
bbu

H̃′
uFbbvQvF

H
bbv

H̃u
′HWbbu +WH

bbu
WH

rfu
WrfuWbbuσ

2
n. (5.9)

Since the error is unknown except for its error distribution, our main objective is to minimize

the minimum power consumption while guaranteeing the expected achievable data rate

meeting the minimum required QoE and power constraint. For that end, We will address

the following optimization

(P1) : min
{Fbbju ,Frfj ,Wbbu ,Wrfu}

∑
j∈J

∑
u∈U

Tr

(
FbbjuFrfjQuF

H
rfj
FH
bbju

)
s.t. E

[
Ru

′] ≥ Rmin,∑
u∈U

Tr

(
FbbjuFrfjQuF

H
rfj
FH
bbju

)
≤ Pmax,∀j ∈ J ,

where Rmin and Pmax is the minimum required throughput and the maximum power, re-

spectively. The problem considers multi-connectivity transmission, which includes all TPs,

to satisfy UEs in the system. However, to leverage the 5G NR feature, we consider dual

connectivity and single connectivity together.

To solve optimization problem (P1), in Section III, we �rst work on the hybrid

beamforming design for multi-connectivity transmission while considering perfect acquisition

of CSI. After that, we analyze the impact of imperfect CSI on the beamforming design

and formulate the expected SINR at UEs. With the expected SINR, we propose a UE

classi�cation algorithm and power allocation algorithms to satisfy QoE requirement while

minimizing power consumption in Section IV.

5.3 Hybrid Beamforming Design

This section provides a hybrid beamforming design for obtaining a large antenna

gain and suppress the inter-user interference for multi-cell transmissions while considering
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perfect CSI.

5.3.1 Design of the Combining and Precoding RF Matrices

The objective of the RF design is to compensate for higher than expected channel

losses by facilitating a large beamforming gain. First, the combining RF matrix of each UE

is maximized by solving the following problem [86]

max
Wrfu∈W

∑
j∈J

∥∥∥(Wrfu)
HHju

∥∥∥2
1
,

where W is a discrete fourier transform matrix of dimension Ma × Ma, in which the

spatial frequency is 2πd/λ sin θ. Given Wrfu , we de�ne a temporary matrix Htemp

j =

[HtempT

j1 , . . . ,HtempT

j|U| ]T , where Htemp

ju = WrfuHju. Then, Frfj is computed based on an equal

gain transmission algorithm [86]

Frfj =
1√
Na

eiξju ,

where ξju is the phase of the (ju)-th element of HtempH

j .

5.3.2 Joint Design of the Baseband Combining and the Precoding Ma-

trices

To suppress the inter-user interference on dual-connectivity downlink under perfect

CSI, we apply the block diagonalization (BD) technique to obtain the precoding matrices,

Fbb, at TPs. To leverage the low-dimensional BD processing, we consider the e�ective

channel matrices. Via (5.9), we aim at designing Fbb such that H̃uFbbv = 0, ∀u ̸= v. We

de�ne a concatenating matrix for BD of the channel of UE u as

H̃BD
u = [H̃T

1 , . . . , H̃
T
u−1, H̃

T
u+1, . . . , H̃

T
|U|]

T . (5.10)
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The fundamentals of BD are to obtain the Fbbu that transform the channel matrix of UE

u, H̃u, on to the null space of the hyper-plan containing the channel matrices of the other

UEs, H̃BD
u . By the singular value decomposition (SVD), we can obtain Fbbu as follows. We

de�ne the SVD of H̃BD
u as

H̃BD
u = U

1
uΣ

1
uV

1H

u +U
0
uΣ

0
uV

0H

u , (5.11)

where V̄1
u ∈ C2|U|Mrf×(|U|−1)Mrf contains the �rst (|U| − 1)Mrf right singular vectors of H̃

BD
u ,

and V̄0
u includes the last 2|U|Mrf − (|U| − 1)Mrf right singular vectors that form the null

basis of the null space of H̃BD
u . The rank of H̃BD

u implicitly satis�es the condition 2|U|Mrf >

(|U| − 1)Mrf.

By utilizing V
0
u as part of precoding matrix, the inter-user interference is elimi-

nated. So, we can rewrite (5.4) as

yu = WH
bbu

H̃uFbbuQ
1
2
u su +WH

bbu
WH

rfu
nu.

To design the combining and full precoding matrices, we perform SVD as follows

H̃uV
0
u = Û1

uΣ̂
1
uV̂

1H

u + Û0
uΣ̂

0
uV̂

0H

u . (5.12)

The optimal precoding and combining baseband matrices of Fbbu and Wbbu are V
0
u

(
V̂1

u

)
:1

and
(
Û1

u

)
:1
, respectively, since we consider single stream transmission scheme. With the ob-

tained precoding and combining baseband matrices, the inter-user interference is eliminated.

So, the decoded signal in (5.4) is simpli�ed as

yu =
(
Σ̂1

u

)
11
Q

1
2
u su +WH

bbu
WH

rfu
nu,

where
(
Σ̂1

u

)
11

is the �rst, and also the largest, singular value in diagonal matrix of non-zero

singular Σ̂1
u. Thus, the achievable data rate in (5.8) under perfect CSI is rewritten as

Ru = log2

1 +

(
Σ̂1

u

)2

11
Qu

σ2
n

 .
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Since UEs can be served by single TP, we can apply the BD technique for single-

connectivity transmission. UEs can select the best TP based on reference signal received

power (RSRP). We de�ne the single-connectivity set served by TP j as USCj . For UE u ∈ USCj ,

we apply the similar procedure (5.10), (5.11), and (5.12) by concatenating H̃ju in (5.5) for TP

j only. Then, we can get Fbbju , Wbbj , and
(
Σ̂1

ju

)
11
, which are, respectively, the baseband

precoding vector of TP j for UE k, the baseband combining vector of UE u for TP j, and the

largest singular value of the channel between UE u and TP j. In the next section, we provide

an analysis for the impact of imperfect CSI on beamforming and network performance.

5.3.3 Impact of imperfect CSI on Beamforming and Network Perfor-

mance

Because the CSI is imperfect, the inter-user interference remains. The decoded

signal in (5.7) is equivalent to the following

y′u =WH
bbu

(
H̃u +∆H̃u

)
V

0
u

(
V̂1

u

)
:1
Q

1
2
u su +WH

bbu

∑
v∈U ,v ̸=u

(
H̃u +∆H̃u

)
V

0
v

(
V̂1

v

)
:1
Q

1
2
v sv

+WH
bbu

WH
rfu
nu. (5.13)

To analyze the impact of imperfect CSI on beamforming design, we express the

SVD of H̃′
uV

0
u as

H̃′
juV

0
u =

(
H̃u +∆H̃u

)
V

0
u =

(
Û1

u +∆Û1
u

)(
Σ̂1

u +∆Σ̂1
u

)(
V̂1H

u +∆V̂1H

u

)
, (5.14)

where ∆Û1
u, ∆Σ̂1

u, and ∆V̂1
u are the errors in the combiner vector, singular matrix, and

precoding vector, respectively.

Lemma 1 The error in precoding for UE u, ∆V̂1
u, is expressed as

∆V̂1
u ≈ V̂1

uTu + V̂0
uV

0H

u ∆H̃H
u Û1

uΣ̂
1−1

u , (5.15)
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where Tu is computed as

Tu = Ψu ⊙
(
V̂1H

u V
0H

u ∆H̃H
u Û1

uΣ̂
1
u + Σ̂1

uÛ
1H

u ∆H̃HV
0
uV̂

1
u

)
, (5.16)

and the elements of matrix Ψu are given as

(Ψu)mn =

((
Σ̂1

u

)2

mm
−
(
Σ̂1

u

)2

nn

)−1

δmn. (5.17)

Proof : See Appendix B.1.

Lemma 2 The error singular matrix of UE u, ∆Σ̂1
u, has the diagonal elements(

∆Σ̂1
u

)
mm

=
1

2

((
Û1

u

)H

:m
∆H̃uV

0
u

(
V̂1

u

)
:m

+
(
V̂1

u

)H

:m
V

0H

u ∆H̃H
u

(
Û1

u

)
:m

)
.

Proof : See Appendix B.2.

Theorem 1 The expected SINR at UE u, E [Γu], is approximated as

E [Γu] ≈

((
Σ̂1

u

)2

11
+ 1

2σ
2
e

)
Qu

σ2
e

∑
v∈U ,v ̸=u

Qv + σ2
n

. (5.18)

Proof : See Appendix B.3.

The expected achievable data rate at UE u under imperfect CSI is given as

E
[
Ru

′] ≈ log2

1 +

((
Σ̂1

u

)2

11
+ 1

2σ
2
e

)
Qu

σ2
e

∑
v∈U ,v ̸=u

Qv + σ2
n

 .

5.4 Power Allocation Algorithm Under Imperfect CSI

This section describes the proposed algorithm under imperfect CSI for guaranteeing

QoE via dual connectivity while minimizing the power consumption. The algorithm is shown

in Algorithm 12. First, UEs are classi�ed based on which UEs need dual connectivity to

be satis�ed, based on channel quality. Then, with the classi�ed UEs, power is allocated to

ful�ll QoE demands of the dual-connectivity UEs, and the remaining power is for satisfying

the single-connectivity UEs.
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Algorithm 12 Adaptive Dual-Connectivity Power Allocation Algorithm

1: Classify UEs into single-connectivity UEs and dual-connectivity UEs (Algorithm 2)

2: Allocate power to satisfy as many dual-connectivity UEs as possible (Algorithm 3)

3: Allocate the remaining power to satisfy single-connectivity UEs

5.4.1 UE Classi�cation Algorithm

This algorithm classi�es UEs based on the minimum power to meet QoE require-

ment, which is determined by (5.18). The algorithm examines whether single-connectivity

is enough for all UEs to meet the required QoE. If single-connectivity transmission can

guarantee QoE for all UEs, power is immediately allocated to all UEs by solving (5.20).

For each TP j, the problem is to compute the minimum power for satisfying single-

connectivity UE of list USCj , such that the following condition is ful�lled

E [Γju] > Γmin
u ∀u ∈ USCj . (5.19)

If inter-user interference is eliminated, the problem is solved trivially [72]. Due to the

existence of inter-user interference, this problem becomes nontrivial and is solved by applying

the Pareto optimal approach [107]. The optimal power loading vector of TP j for satisfying

UE in USCj , QSC∗
j =

(
QSC∗

j1 , . . . , QSC∗

j|Kj |

)T
, is given as follows

QSC∗
j =

(
I−GSC

j

)−1
BSC

j (5.20)

where GSC
j is a matrix with

(
GSC

j

)
kl
=


0 l = k

σ2
eΓ

min
k

(Σ̂1
jk)

2

11
+

σ2
e
2

l ̸= k
(5.21)

and BSC
j =

(
bj1, . . . , b

j|USC
j

|

)T

is a vector with

bjk =
σ2
nΓ

min
k(

Σ̂1
jk

)2

11
+ σ2

e
2

.



140
Chapter 5: Joint Power Allocation and Beam-forming Design for Dual-connectivity

Wireless Networks Under Imperfect CSI

Due to the channel condition and power limitation, all UEs may not be satis�ed

by single connections. So, we need to �nd the optimal single-connectivity list for TP j. To

get the optimal single-connectivity list for TP j, the algorithm sorts the UEs in ascending

order according to the minimum required power, and obtained sorted list USC∗
j . Then, the

algorithm iteratively removes the last UE in USC∗
j , such that the minimum total required

power does not exceed Pmax

|USC∗
j |∑
u=1

P SC∗
ju =

|USC∗
j |∑
u=1

∥Fju∥22Q
SC∗
ju 6 Pmax.

For UEs that cannot be satis�ed by single connections, the algorithm stores them in a dual-

connectivity UE set, denoted as UDCtotal. The next step is categorizing the dual-connectivity

UE according to pairs of TPs because dual-connectivity UEs can be served by di�erent pairs

of TPs.

Each dual-connectivity UE u ∈ UDCtotal chooses the second TP for dual connectivity,

which has the second-largest RSRP in the system. Then, dual-connectivity UEs are grouped

according pairs of TPs, as depicted in Fig. 5.1. Dual-connectivity UE set UDC{12} including

UE 1 and UE 2 are served by TP set {1, 2} consisting of TP 1 and TP 2. Likewise, dual-

connectivity UE set UDC{13} including only UE 4 is served by TP set {1, 3}. We summarize

the algorithm for user classi�cation in Algorithm 13. In the next subsection, we propose a

power allocation algorithm for dual-connectivity UEs in order to meet the required QoE.

5.4.2 Power Allocation for Dual-Connectivity UEs

To meet the required QoE while minimizing the power consumption, we allocate

power to dual-connectivity UEs to meet QoE with a power constraint, and the remaining

power is for satisfying network capacity with single-connectivity UEs. First, we compute

the su�cient power for each of the dual-connectivity UEs based on their channel quality and
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Algorithm 13 User Classi�cation Algorithm

1: Input: Fju, Σ̄ju, j = 1, . . . , NTP, u = 1, . . . , |USCj |

2: Output: UDCn s and corresponding J DC
n s, USC∗

j , j = 1, . . . , NTP

3: for each TP j do

4: Compute the optimal power for satisfying UEs with single-connectivity scheme, Q∗
j ,

by (5.20)

5: Sort single-connectivity UE list USCj in ascending order based on minimum needed

power, Q∗
ju, achieving sorted list USC∗

j

6: while

|USC∗
j |∑
u=1

∥Fju∥22Q
SC∗
ju > Pmax do

7: Remove the last UE in sorted list USC∗
j and store it in dual-connectivity UE set

UDCtotal

8: end while

9: end for

10: for each UE in dual-connectivity UE set UDCtotal do

11: Find the second-best TP based on RSRP

12: end for

13: In UDCtotal, group dual-connectivity UEs that have common TPs in order to get Uns and

the corresponding Jns.
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QoE requirement. The optimal power loading vector for satisfying dual-connectivity UEs

served by TP i and TP j, QDC∗

{ij} =

(
QDC∗

{ij}1, . . . , Q
DC∗

{ij}|UDC{ij}|

)T

, is given as

QDC∗

{ij} =
(
I−GDC

{ij}

)−1
BDC

{ij}. (5.22)

where GSC
j is a matrix with

(
GDC

{ij}

)
kl
=


0 l = k

σ2
eΓ

min
k

(Σ̂1
k)

2

11
+

σ2
e
2

l ̸= k
,

and BDC

{ij} =
(
b{ij}1, . . . , b{ij}|UDC{ij}|

)T
is a vector with

b{ij}k =
σ2
nΓ

min
k(

Σ̂1
{ij}k

)2

11
+ σ2

e
2

.

Then, for each TP in set {i, j} that serves dual-connectivity UE u, the minimum power

assigned by TP j for dual-connectivity UE u is

PDC∗
ju = ∥Fju∥22Q

DC∗

{ij}u. (5.23)

Since all dual-connectivity UEs may not be served at once due to the power limi-

tation, we choose an optimal subset of dual-connectivity UEs from UDCtotal, called UDC
∗

total . The

objective is to satisfy as many as dual-connectivity UEs as possible. To obtain UDC∗
total , we

solve the following optimization problem

(P2) :max
∣∣∣UDC∗

total

∣∣∣
s.t.

∑
u∈UDC∗

total

∥Fju∥22Q
DC∗

{ij}u 6 Pmax
DCj

, ∀i, j ∈ J

Qu ≥ 0, ∀u ∈ UDC∗
total ,

where Pmax
DCj

is the maximum power for dual-connectivity transmission at TP j, which is

calculated as

PDCmax

ju = Pmax −

∣∣∣USC∗
j

∣∣∣∑
u=1

P SC∗
ju . (5.24)
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We note that PDC∗
ju = ∥Fju∥2QDC∗

{ij}u = 0 if TP i or TP j does not serve UE u.

Algorithm 14 Power Allocation Algorithm for Dual Connectivity UEs

1: for each UE u ∈ U do

2: Compute PDC∗
ju by (5.23) for each TP j serving UE u

3: end for

4: Set UDC∗
total = UDCtotal

5: for each TP j in the system do

6: Compute PDCmax

ju via (5.24)

7: Sort dual-connectivity UEs that are served by TP j based on their minimum required

power for dual connectivity, PDC∗
ju

8: Compute the total power for connectivity, PDCj

9: while PDCj > Pmax
DCj

do

10: Remove the last UE of the sorted list UE served by TP j and also remove the

UE from UDC∗
total

11: end while

12: end for

We obtain UDC∗
total as follows. Initially, UDC∗

total = UDCtotal; then, a list of the dual-

connectivity UEs served by TP j is sorted in ascending order based on PDC∗
ju . After that,

the algorithm iteratively removes the last UE from the sorted list, and also extracts it from

UDC∗
total until the total power for dual connectivity at TP j does not exceed Pmax

DCj
, which is

PDCj =
∑

u∈UDC∗
total

PDC∗
ju 6 Pmax

DCj
(5.25)

The process is applied to all TPs that support dual-connectivity UEs.

After UDC∗
total has been achieved, dual-connectivity UEs in UDC∗

total will be satis�ed by

allocating the minimum required power from the corresponding pairs of TPs. The total
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power spent for dual connectivity at TP j, PDCj , is computed as

PDCj =
∑

u∈UDC∗
total

PDC∗
ju . (5.26)

The algorithm for obtaining UDC∗
total is summarized in Algorithm 14. The remaining power

after allocating power for dual-connectivity UEs will be allocated to single-connectivity UE

at each TP based on (5.20).

5.4.3 Complexity Analysis

In this section, we provide a complexity analysis for the algorithm. Speci�cally,

the computational complexity of the problems are given in the following table.

5.5 Simulation Results and Analysis

In this section, we show the numerical results to evaluate the performance of the

proposed adaptive-dual connectivity (ADC) power control. For comparison, the base lines

are the single-connectivity (SC) scheme [86] and dual-connectivity scheme (DC), in which

all UEs are supported by dual connectivity.

5.5.1 Simulation Setup

The simulation environment includes seven TPs, i.e NTP = 7. TPs are deployed

regularly at an inter-site distance of 50 m [85]. The maximum transmission power of a

TP is 30 dBm. The system operates on a carrier frequency of 28 GHz with a 100 MHz

bandwidth [85]. The noise �gure at a receiver is 10 dB. Hybrid beamforming is all used for

all considered algorithms. For beamforming parameters, Na = 256, Nrf = 48, Ma = 8, and

Mrf = 4, as provided in [85]. For channel realization in (5.2), we set NC and NP as 3 and 2,

respectively. Large-scale path loss for the wireless channel between TP j and UE u is given
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Table 5.2: Complexity analysis.

Elements Complexity

Wrf O(M2
a )

Frf O(MaNaMrf)

V
0
u O

(∣∣∣USC
j

∣∣∣ (∣∣∣USC
j

∣∣∣− 1
)2

M3
rf

)
with u ∈ USC

j

O
(
2
∣∣∣USC

j

∣∣∣ (∣∣∣UDC
j

∣∣∣− 1
)2

M3
rf

)
with u ∈ UDC

Fbbu O
(
NrfM

2
rf

)
with u ∈ USC

O
(
2NrfM

2
rf

)
with u ∈ UDC

QSC
j O

(∣∣∣USC
j

∣∣∣3)

QDC
j O

(∣∣∣UDC
j

∣∣∣3)
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as 32.4 + 20 ∗ log10(d) + 20log10(fc) + ∆shadow [88], where d is the Euclidean distance (in

metre) between the TP and the UE,∆shadow = 2 dB [88] is the shadowing factor, and fc is the

carrier frequency, which is set to 28 GHz. Thus, the full channel model is The UE mobility

is modeled as a random walk at 3 km/h [72]. Each simulation was performed 100 times and

the results were averaged. Measurement metrics are the total transmission power and the

percentage of satis�ed UEs, which is the ratio between the number of UEs receiving at least

the demanded QoE and the total of UEs in the network. QoE is is measured by the actual

throughput at each UE, and the throughput is calculated based on Shannon capacity. For

all UEs, we set identical QoE threshold, and the value is varied (e.g., 100 Mbps, 200 Mbps,

300 Mbps, and 400 Mbps) for performance evaluation.

5.5.2 Impact of CSI error on connectivity

To verify the adaptation to varying channel quality of our proposed algorithm, we

changed the variance of CSI error value, σ2
e , in (5.6) from 0.01 to 0.1 [108]. Fig. 5.2 provides

the percentage of dual-connectivity UEs under di�erent error variance values. As shown in

the �gure, the number of connectivity tends to increase when a CSI error rises. This trend

is explained by (5.18) showing that interference can increase due to the CSI error. And, to

meet the QoE requirement under varying channel quality, UEs may need more connectivity

supported by the network. The proposed algorithm classi�es the UEs based on the expected

SINR and UE QoE requirements to provide necessary resource. Additionally, we also witness

an increment of dual-connectivity UEs when QoE demand is higher. Due to varying channel

quality and power limitation, one wireless connection may not be su�cient to satisfy some

UEs, hence, dual connectivity should be involved.
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Figure 5.2: Percentage of dual-connectivity UEs versus QoE threshold and CSI error.

5.5.3 Impact of CSI error on network performance

In this section, we evaluated the e�ect of CSI error on UE satisfaction rate and the

total spent power of the system. With the QoE target of 50 Mbps, the results are plotted in

Fig. 5.3a and 5.3b. In Fig. 5.3a, ADC satis�es all UEs when CSI error, σ2
e , is smaller than

0.02. When σ2
e reaches 0.1, ADC satis�es around 93% UEs. The SC algorithm performs

similar to ADC except for when σ2
e increases from 0.09 to 0.1, where SC falls behind ADC

to around 90%. This is because ADC found some UEs that needs more than one connection

due to the increasing interference and changing channel quality. This situation is shown in

Fig. 5.2 for QoE of 50 Mbps that an increment of σ2
e increases dual-connectivity UEs. The

DC algorithm satis�es less UEs than ADC and SC algorithm, however, it consumes more

power than the ADC and SC, as shown in Fig. 5.3b. This is because UE only needs dual

connectivity to meet the required QoE depending on its channel condition [105]. Since ADC

leverages the channel quality to classify the UEs, it e�ciently allocates power to meet the

required QoE.
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Figure 5.3: Network performance versus CSI Error for QoE of 50 Mbps.
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Figure 5.4: Network performance versus CSI Error for QoE of 100 Mbps.
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Figure 5.5: Network performance versus CSI Error for QoE of 200 Mbps.
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We investigate the impact of the CSI error with higher QoE targets, such as

100 Mbps, as shown in Fig. 5.4. It is shown that the ADC algorithm satis�es more UEs

while spending less power than its counterparts. For QoE of 100 Mbps, at a low CSI error

level (σ2
e = 0.01), the ADC algorithm can satis�es around 96% UEs while the SC and DC

algorithms just accomplish around 90% and 86%, respectively. Regarding the total trans-

mission power, the ADC algorithm spends only around 24.7 dBm, however, ADC and SC

algorithms use around 27.5 and 28 dBm, respectively. When σ2
e rises to 0.1, ADC algo-

rithm can satisfy up to approximately 72% UEs, which outperforms SC (around 61%) and

ADC (around 54%) algorithms. In context of power consumption, ADC needs only around

26.6 dBm, which is greener than SC's (around 27.5 dBm) and DC's (around 28 dBm).

Increasing QoE demand to 200 Mbps, we plot the results in Fig. 5.5. It is observed

that ADC algorithm improved the UE satisfaction rate more than the others, even though

the CSI error a�ects the performance more, as compared to the results of 100 Mbps QoE

target. ADC algorithm can a�ord QoE demand of around 96% UEs when σ2
e ≤ 0.02, and

around 64% when σ2
e increases to 0.1. Looking at Fig. 5.2, to guarantee the requirement,

ADC algorithm chose around 7% UEs and 14% for dual connectivity when σ2
e = 0.01 and

σ2
e = 0.1, respectively. Thus, the performance of ADC algorithm is better than the baseline

algorithms. Furthermore, by e�ectively selecting UE for dual connectivity rather than �xed-

connectivity scheme, ADC spent less power, around 0.5 dB and 1.1 dB than SC and DC

algorithms, respectively, when σ2
e = 0.01; and, around 1.6 dB and 2.1 dB than SC and DC

algorithms, respectively, when σ2
e = 0.1.

5.5.4 Impact of QoE requirements

In this section, we scrutinized the e�ectiveness of the algorithms with various QoE

targets, where we set σ2
e to 0.02. Fig. 5.6a and 5.6b presents the UE satisfaction rate
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Figure 5.6: Network performance with various QoE requirements and σ2
e = 0.02.
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and total transmission power , respectively. We can observe from Fig. 5.6a that ADC

algorithm satis�es more UEs than SC and DC algorithms. Starting from 50 Mbps, where

ADC and SC algorithms satisfy all the UEs and DC algorithm pleases around 96% UEs, the

di�erence between ADC and SC/DC signi�cantly enlarges when QoE goal extends beyond

100 Mbps. When it reaches 400 Mbps, ADC can still o�er around 89% UEs the QoE

requirements, however SC and DC can only a�ord the requirement for around 77% and

64% UEs, respectively. In Fig. 5.6b, although the total transmission power grows for all the

algorithms to ful�ll increasing QoE demand, ADC algorithm still spends less power than

SC and DC algorithm. By utilizing dual connectivity e�ciently based on channel quality

and estimating the impact of CSI error for power allocation, ADC algorithm can improve

the UE satisfaction rate while being greener than the benchmark algorithms.

5.5.5 Impact of the number of UEs

In this section, we clari�ed the impact of network load in terms of the number of

UEs on the performance of three algorithms. The number of UEs are varied as 28, 32, 36,

40, 44, and 48 while the σ2
e = 0.02 and the QoE requirement is set to 50 Mbps. Percentage

of satis�ed UEs and the total transmission power are depicted in Fig. 5.7a and Fig. 5.7b,

respectively. One can observe from Fig. 5.7a that UE satisfaction rate decreases when the

network load increases. This is caused by the growing interference due to imperfect CSI.

However, the performance if the proposed algorithm is better than others. Starting from

28 UEs, where ADC, SC, and DC satis�es 100%, 100%, and around 96%, respectively.

When the number of UEs rises to 84, ADC algorithm can supply around 82% of UEs with

matching QoE requirement, while SC and DC algorithms obtains only around 70% and

63%, respectively. Fig. 5.7b shows that the energy consumption grows in keeping with the

growth of the number of UEs to provide a pleased service. Since ADC algorithm utilized
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Figure 5.7: Network performance with various number of UEs and σ2
e = 0.02.
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dual connectivity e�ciently, it spends less energy than SC and DC algorithms.

5.5.6 Impact of the number of RF chains

Here, we examined the impact of the number of RF chain elements at TP, Nrf, on

the UE satisfaction rate and transmission power. We changed the number of RC chains at

TP, such as 28, 32, 36, 40, 44, and 48, while setting CSI error, QoE requirement, and the

number of UEs to 0.02, 50 Mbps, and 28 respectively. Fig. 5.8a shows that ADC algorithm

can satisfy all of UEs for all the RF chain settings. Meanwhile, performance of SC and DC

algorithms are only improved by increasing the number of RF chains (from around 90% when

Nrf = 28 to 100% when Nrf = 44 for SC algorithm, and from around 82% when Nrf = 28

to around 96% when Nrf = 48 for DC algorithm). This is because increasing the RF chains

can improve the spectral e�ciency [109, 110]. For transmission power, we observed from

Fig. 5.8b that the total transmission power tends to increase with the number of RC chains

since more RC chains will consume more power. However, the ADC algorithm still saved

more transmission power than the benchmarks.

5.6 Closing Remarks

In this work, we proposed a power allocation algorithm with hybrid beamform-

ing to guarantee the required QoE while minimizing transmission power. A cooperative

beamforming design was applied and the impact of imperfect CSI was analyzed in terms of

estimated SINR. Based on the estimated SINR, the proposed algorithm follows two stages,

UE classi�cations and power allocation. In cases where single connections cannot guarantee

the minimum QoE for all UEs, depending on the wireless environment, for a given beam-

forming, UEs are classi�ed into two groups. After that, according to the UE categories,

minimum power is allocated to satisfy the demanded QoE. Simulations show that our pro-



156
Chapter 5: Joint Power Allocation and Beam-forming Design for Dual-connectivity

Wireless Networks Under Imperfect CSI

28 32 36 40 44 48
N

rf

75

80

85

90

95

100

Pe
rc

en
ta

ge
 o

f 
sa

tis
fi

ed
 U

E
s 

(%
)

ADC
SC
DC

(a) Percentage of satis�ed UEs.

28 32 36 40 44 48
N

rf

20

20.5

21

21.5

22

22.5

23

T
ot

al
 T

ra
ns

m
is

si
on

 P
ow

er
 (

dB
m

)

ADC
SC
DC

(b) Total transmission power .

Figure 5.8: Network performance with various number of TP's RF chains and σ2
e = 0.02.



Chapter 5: Joint Power Allocation and Beam-forming Design for Dual-connectivity
Wireless Networks Under Imperfect CSI 157

posed algorithm dynamically classi�es UE groups based on QoE and the channel conditions

of the UEs, and satisfy the UE while minimizing transmission power. Furthermore, various

aspects of a wireless network such as QoE requirements, accuracy of CSI, network load, and

RF settings are investigated.
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Appendix A

Proofs in Chapter 2

A.1 Proof of Lemma 1

From (2.19)/(2.20) and (2.19)/(2.21), the following describes conditions for an

optimal value of ∆01

xE − v(TTT0 +TTT1) cos θ < xC ≤ xD − v(TTT0 − τR) cos θ, (A.1)

xF − v(TTT0 + τR) cos θ < xC ≤ xF − v(TTT0 − τR) cos θ. (A.2)

Then, the optimal range can-not exist when (A.1) and (A.2) are invalid for all values of ∆01.

Thus, we can derive the following:

xE − v(TTT0 +TTT1) cos θ ≥ xD − v(TTT0 − τR) cos θ,

xF − v(TTT0 + τR) cos θ ≥ xF − v(TTT0 − τR) cos θ.

After rearrangement, a condition for non-existence of the optimal range can be stated as

min

{
xE − xD

TTT1 + τR
,
xF − xD
2τR

}
≥ v cos θ.
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Finally, the condition for existence of the optimal range can be expressed as

max

{
xE − xD

TTT1 + τR
,
xF − xD
2τR

}
≤ v cos θ.

�

A.2 Proof of Theorem 1

First of all, we denote the dependence of xC on ∆01 and of xE on ∆10 as fC(∆01)

and fE(∆10), respectively. Like wise, fD(γmin) and fF(γmin), respectively, expresses the

dependence of xD and xF on γmin. Since handover o�set is a discrete value variable, we

denote the granularity of ∆01 as ε. First, from (2.19), we have

fC(∆
†
01)− fD(γmin)

(τR − TTT0) cos θ
≤ v. (A.3)

We assume that TTT0 is less than τR, so the denominator of (A.3) is positive. For ∆′
01 =

∆†
01 − ϵ (ϵ > 0), we have fC(∆

′
01) > fC(∆

†
01), since fC is a decreasing function of ∆01 as

explained in Section III-A. As a result, we have

v <
fC(∆

′
01)− fD(γmin)

(τR − TTT0) cos θ
.

Here, we can choose any v′ such that v′ > v and

fC(∆
′
01)− fD(γmin)

(τR − TTT0) cos θ
≤ v′ <

fC(∆
′
01 − ε)− fD(γmin)

(τR − TTT0) cos θ
.

As can be seen, ∆†
01 now becomes ∆′

01 when v increases to v′. Therefore, the optimal range

extends to the left when user speed increases.

Secondly, we can rearrange (2.20) with ∆01 = ∆∗
01 as follows

fF(γmin)− fC(∆
∗
01)

(TTT0 + τR) cos θ
< v.
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For ∆′′
01 = ∆∗

01 + ϵ (ϵ > 0), we have fC(∆
′′
01) < fC(∆

∗
01). As a result, we have

v ≤ fF(γmin)− fC(∆
′′
01)

(TTT0 + τR) cos θ
.

Here, we can choose any v′′ such that v′′ > v and

fF(γmin)− fC(∆
′′
01)

(TTT0 + τR) cos θ
< v′′ ≤ fF(γmin)− fC(∆

′′
01 + ε)

(TTT0 + τR) cos θ
.

We can see that ∆′
01 becomes ∆∗

01 when v = v′′. Likewise, we can obtain a similar result

with the ping-pong problem in (2.21). Therefore, the optimal range extends to the right

when user speed increases. �

A.3 Proof of Theorem 2

First, we reorganize (2.19) as follows TTT0 ≤ τR −
(
fC(∆

†
01)− fD(γmin)

)
/v cos θ.

For ∆′
01 = ∆†

01 + ϵ (ϵ > 0), we have fD(∆
′
01) < fD(∆

†
01) since fD is a decreasing function of

∆01 as explained in Section III-A. As a result, we have:

τR −
fC(∆

†
01)− fD(γmin)

v cos θ
< τR −

fC(∆
′
01)− fD(γmin)

v cos θ
.

Thus, we can choose TTT′
0 > TTT0 such that

τR −
fC(∆

†
01 − ε)− fD(γmin)

v cos θ
< TTT′

0 ≤ τR −
fC(∆

′
01)− fD(γmin)

v cos θ
.

We can see that ∆′
01 becomes ∆†

01 when TTT0 increases to TTT′
0. In other words, ∆†

01

increases when TTT0 rises.

Secondly, (2.20) can be rearranged as

TTT0 >
fF(γmin)− fC(∆

∗
01)

v cos θ
− τR.

For ∆′′
01 = ∆∗

01 + ϵ (ϵ > 0), we have

TTT0 ≤
fF(γmin)− fC(∆

′′
01)

v cos θ
− τR.
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Figure A.1: Trajectories with θ = 0

We are able to select TTT′′
0 > TTT0 such that

fF(γmin)− fE(∆
′′
01)

v cos θ
− τR < TTT′′

0 ≤
fF(γmin)− fE(∆

′′
01 + ε)

v cos θ
− τR.

So, ∆′′
01 becomes ∆∗

01 when TTT0 increases to TTT′′
0. Likewise, we can obtain a similar

result with the ping-pong problem in (2.21). �

A.4 Proof of Theorem 3

In (2.19), (2.20), and (2.21), the term v cos θ is a projection of velocity v on the

x-axis. Therefore, θ = 0 gives the maximum impact of v on the optimal range, which is

explained by Theorem 1. With θ = 0, UE trajectories are parallel to the x-axis. We denote

xC and xD as fC(∆01, b) and fD(∆01, b), respectively, to express the dependence of xC and

xD on ∆01 and b. We rearrange the condition for too-late handover avoidance in (2.19) as

fC(∆
†
01, b)− fD(γmin, b) ≤ v(τR − TTT0). There exists b̂ such that fC(∆

†
01, b̂)− fD(γmin, b̂) =

v(τR − TTT0). As we can see in Fig. A.1, we have
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fC(∆
†
01, b)− fD(γmin, b) < fC(∆

†
01, b̂)− fD(γmin, b̂) = v(τR − TTT0),

for 0 ≤ b < b̂ (we consider only b ≥ 0 due to geometrical symmetry). For ∆′
01 = ∆†

01 − ϵ

(ϵ > 0), we have fC(∆
′
01, b) > fC(∆

†
01, b), because fC(∆01, b) is a decreasing function of ∆01.

As a results, fC(∆
′
01, b)− fD(γmin, b) > fC(∆

†
01, b)− fD(γmin, b). Also, there exists ∆

′
01 such

that

fC(∆
′
01, b)− fD(γmin, b) = v(τR − TTT0).

Thus, the reduction of b decreases ∆†
01 and is lower-bounded by 0. Similarly, we prove that

f(∆∗
01, b) is a decreasing function of b. Therefore, the reduction of b can broaden the optimal

range [∆†
01,∆

∗
01]. As a result, the optimum value of b is 0. This is the line going directly

through Cell 0 and Cell 1. �
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Appendix B

Proofs in Chapter 5

B.1 Proof of Lemma 1

Without lack of generation, we consider a matrix A ∈ CN×M with rank N and its

SVD

A = U1Σ1
(
V1

)H
+U0Σ0

(
V0

)H
,

where U1, Σ1, V1 corresponds to M non-zero singular values; and U0, Σ0, and V0 corre-

sponds to M −N zero singular values.

An error matrix ∆A of A perturbed the SVD such that

A+∆A = (U+∆U) (Σ+∆Σ)
(
VH +∆VH

)
.

We estimate ∆V as follows. From properties of eigenvalues and eigenvectors, we have

Avi = uiσi and AHui = σivi, and thus obtain

AHAvi = σi
2vi. (B.1)

Similar to [111], by di�erentiating both sides of B.1, we have

∆AHAvi +AH∆Avi +AHA∆vi ≈ σ2
i∆vi + 2σi∆σivi (B.2)
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Since ∆vi is not the eigenvector of A, we can express ∆vi as a linear combination of the

right singular vectors of A as

∆vi =
N∑

k=1,k ̸=i

gikvk, (B.3)

where gik is coe�cient. Hence, we rewrite (B.2) as

∆AHAvi +AH∆Avi+AHA
N∑

k=1,k ̸=i

gikvk ≈ σ2
i

N∑
k=1,k ̸=i

gikvk + 2σi∆σivi. (B.4)

Multiply both sides of (B.4) with vHj (j ̸= i) and note that vHj vi = 0, we obtain the following

vHj
(
∆AHAvi +AH∆Avi

)
+ gijσ

2
j ≈ gijσ

2
i .

And gij is obtained by

gij ≈
vHj

(
∆AHAvi +AH∆Avi

)
σ2
i − σ2

j

.

So, ∆vi in (B.3) is computed as

∆vi ≈
N∑

j=1,j ̸=i

vi
vHj

(
∆AHAvi +AH∆Avi

)
σ2
i − σ2

j

. (B.5)

We rewrite (B.5) as

∆vi ≈
N∑

j=1,j ̸=i

vjv
H
j

(
∆AHA+AH∆A

)
vi

σ2
i − σ2

j

+
M∑

j=N+1

vjv
H
j

(
∆AHA+AH∆A

)
vi

σ2
i

=V1ΨiV
1H

(
∆AHA+AH∆A

)
vi +V0V0H

(
∆AHA+AH∆A

)
viσ

−2
i , (B.6)

where Ψi is a matrix with

Ψi = diag

(
1

σ2
i − σ2

1

, . . . , 0,
1

σ2
i − σ2

i+1

, . . . ,
1

σ2
i − σ2

N

)
.

Since Avi = uiσi, V
1HAH = Σ1U1H , and V0HAH = 0, equation (B.6) can be rewritten as

∆vi ≈V1Ψi

(
V1H∆AHuiσi +Σ1U1H∆Avi

)
+V0V0H∆AHuiσ

−1
i .
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Thus, we have the following

∆V1 ≈V1Ψi

(
V1H∆AHU1Σ1 +Σ1U1H∆AV1

)
+V0V0H∆AHU1Σ−1 (B.7)

By replacing A, ∆A, V1, V0, and σ2
i with H̃uV

0
u, ∆H̃uV

0
u, V̂

1
u, V̂

0
u, and

(
Σ̂1

u

)
ii

respectively, in (B.7), we prove Lemma 1. �

B.2 Proof of Lemma 2

Multiply both sides of (B.2) with vHi , we obtain the following

vHi
(
∆AHAvi +AH∆Avi +AHA∆vi

)
≈ vHi

(
σ2
i∆vi + 2σi∆σivi

)
(B.8)

After rearrangement and applying the fact that Avi = uiσi and vHi AH = uHi σi, we

rewrite (B.8) as

vHi ∆AHuiσi + uHi σi∆Avi + vHi σ2
i∆vi ≈ vHi σ2

i∆v + 2σi∆σi.

Thus, we have

∆σi =
1

2

(
vHi ∆AHu+ uHi ∆Avi

)
(B.9)

and

∆Σ = diag (∆σ1, . . . ,∆σN ) (B.10)

By replacing A, ∆A, V1, V0, and σ2
i with H̃uV

0
u, ∆H̃uV

0
u, V̂

1
u, V̂

0
u, and

(
Σ̂1

u

)
ii
respec-

tively, in (B.10), we prove Lemma 2. �
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B.3 Proof of Theorem 1

With ∆V1 and ∆Σ̂1
u, we rewrite (5.13) as

y
′
=
(
Û1

u +∆Û1
u

)H (
Û1

u +∆Û1
u

)(
Σ̂1

u +∆Σ̂1
u

)
×
(
V̂1H

u +∆V̂1H

u

)
V̂1

uQ
1
2
u su +

(
Û1

u +∆Û1
u

)H

×
(
H̃u +∆H̃u

) ∑
v∈U ,v ̸=u

V
0
vV̂

1
vQ

1
2
v sv.

Via approximation, we have

y
′ ≈

(
Σ̂1

u +∆Σ̂1
u + Σ̂1

u∆V̂1H

u V̂1
u

)
Q

1
2
u su +

(
Û1

u +∆Û1
u

)H
∆H̃u

∑
v∈U ,v ̸=u

V
0
vV̂

1
vQ

1
2
v sv

≈
(
Σ̂1

u +∆Σ̂1
u + Σ̂1

u∆V̂1H

u V̂1
u

)
Q

1
2
u su + Û1H

u ∆H̃u

∑
v∈U ,v ̸=u

V
0
vV̂

1
vQ

1
2
v sv

=
(
Σ̂1

u +∆Σ̂1
u

)
Q

1
2
u su︸ ︷︷ ︸

ydesired

+ Σ̂1
u∆V̂1H

u V̂1
uQ

1
2
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,

where ∥ydesired∥22, ∥yself∥
2
2, and ∥yintf∥

2
2 denote the power of the desired signal, self-interference

signal, and interference signal from other UEs.

The expected SINR of UE u under imperfect CSI is given as
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E
[
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]
E
[
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. (B.11)

First, We compute E
[
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]
as follows
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.
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For single stream, we compute E
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∆Σ̂1

u
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]
as follows
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By applying the property of Kronecker and vectorization vec {ABC} = vec
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we have
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Hence, we obtain

E
[
∥ydesired∥22

]
≈ Qu

((
Σ̂1

u

)2

11
+

1

2
σ2
e

)
(B.12)

Next, we compute E
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as follows
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Since we consider single stream transmission, from (5.17), Ψu = 0, thus, from

(5.16), TH
u = 0. Therefore

E
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= 0 (B.13)
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as follows
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Û1

u

)H

:1

)
vec

(
∆H̃u

)
vec

(
∆H̃u

)H
vec

((
V

0
v

(
V̂1

v

)
:1

)∗
⊗
(
Û1
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By putting E
[
∥ydesired∥22

]
, E

[
∥yself∥22

]
, and E

[
∥yintf∥22

]
from (B.12), (B.13), and

(B.14), respectively, into (B.11), we proved the Theorem 1. �
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