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Abstract
This thesis is a systematic research on bearing fault diagnosis using machine learning algo-

rithms, especially on deep neural network or deep learning, an emerging topic of machine

learning.

In the machine health monitoring area, bearing fault diagnosis is an important part because

rolling element bearings are indispensable elements in rotary machines. Bearings are not only

the most critical components but also the main contributor to the system failures, 45 - 55 % of

equipment failure cases caused by broken of bearings. Any unexpected failure of bearings may

cause sudden breakdown of the machine, even of the entire system, leading to huge financial

losses.

The condition monitoring of a bearing can be considered as a pattern recognition task which has

been successfully solved by intelligent diagnosis methods. According to the current literature,

a general intelligent diagnosis methodology includes four steps as follows: data acquisition,

feature extraction, feature selection, and feature classification.

Deep learning algorithms can learn multiple layers of representations from input data by deep

architectures with many layers of data processing units. The output from a layer will be the

input for its successive layer. Each layer can learn a higher level of data presentations from its

preceding layer output. Therefore, DL architectures can automatically extract multiple complex

features from the input data without human engineers.

The ultimate goal of this research is to develop fault diagnosis systems using existing deep

neural networks and also to find novel deep learning algorithms.
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Chapter 1

Introduction

1.1 Machine condition monitoring

Machine condition monitoring is a critical part of every industry to help production run

smoothly and efficiently. In the 1960’s condition monitoring has developed extensively

and rapidly and became popular [1]. When operating under any conditions, electrical

and mechanical systems always generate some kind of signal. If there are any changes

in the intrinsic properties of the system, even if only slightly, the generated signals also

alter. As a result, the operating condition and health status of a machine system can

be monitored indirectly by monitoring and analyzing the generated signals from that

system. Condition monitoring is the process of monitoring a parameter of conditions in

machinery, in order to identify a significant change which is indicative of a developing

fault.

The installation of condition monitoring systems in machinery systems results in major

improvement in plant availability and in reduced costs. The condition monitoring may

help to reduce the maintenance costs, extend the life and reliability of the machine, and

avert the catastrophic failure [2].

A great number of methods have been proposed and extensively studied for machine

condition monitoring. Some popular methods can be listed here are: analysis of lubri-

cating oil [3], analysis of acoustic emission [4], electrical motor current analysis [5], and

vibration signal analysis [6]. Among the existing condition monitoring methods, vi-

bration analysis has been the most popular method. This method has been extensively
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used in industry, since it can accurately identify 90% of all machine failures [2].

1.2 Bearing condition monitoring

Rolling element bearing (REB) is one of the most critical elements in industry. REBs

are used extensively in every rotary machinery because of their low rolling friction.

Bearings allow relative motion of joined parts in rotary machines by utilizing rolling

contacts between the rolling elements and raceways to support the load while permit-

ting constrained motion of one part to another. Bearing has two key functions: transfer

motion and transmit force.

FIGURE 1.1: Ball bearing

Bearing are not only one of the most important components but also one of the first to

fail [7]. Literature reviews by a lot of researchers show that:

• fewer than 20 % of bearings achieve of their design life [8],

• bearing failures account for more than 50 % of all motor failures [9],

• 45 - 55 % of equipment failures caused by breaking bearings [10, 11].

Doctoral thesis - University of Ulsan
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Any failure of bearings may cause a sudden breakdown of the machine, even of the

entire system, leading to great financial losses. In some cases, the safety of human life

can be threaten. Therefore, fault diagnosis of REBs is a major concern and has drawn

substantial consideration of researchers.

1.3 Basic components of bearing

FIGURE 1.2: Components of Bearing

A typical rolling and its components are shown in Figure 1.2. Most bearings have four

basic components: two rings, inner and outer, with raceways; rolling elements - rollers

or balls; and a cage which keeps the rolling elements separated and guides motion. [12]

The inner and outer races are often made of high-purity chrome alloy steel. The inner

race is mounted on the shaft of the machine and is the rotating part. The outer race is

mounted in the machine housing and will not usually rotate.

The rolling elements can be balls, rollers, cones, spheres or needles. They are usually

made from a special high-purity chrome alloy steel. The rolling elements roll on the

raceway of the race and are separated and guided by the cage.

The cage keeps the rolling elements at an appropriate distance from each other and to

prevent direct contact between neighboring rolling elements, in order to keep friction

and thus heat generation as small as possible. The materials used to make the cages

include steel, brass, and plastic.

Doctoral thesis - University of Ulsan
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1.3.1 Bearing fault

The proper description and categorization of bearing damages and their causes is an

easy task as bearing damages occur as an interaction of different causes and conditions

[13]. There are many reasons for bearing failure, including: excessive loading, inade-

quate lubrication, insufficient internal bearing clearance due to an excessively tight fit,

etc [7]. The types of mechanical bearing failure and their relative frequencies are listed

in Table 1.1 [14].

TABLE 1.1: Causes of bearing fault and corresponding frequency

Failure mechanism Failure frequency
Fatigue 2 %

Lubrication 59 %
Dimensional discrepancies 29 %

Other 10 %

According to ISO 15243, bearing damages are classified into six main modes are: fatigue,

wear, corrosion, electrical erosion, plastic deformation, and fracture and cracking [13]. The

brief explanations are as follows.

• The primary failure mode for bearings is the spalling of the bearing elements due

to local fatigue caused by the repeated application of stresses [15].

• Wear is a surface deterioration due to sliding friction at the surface of the raceway,

rolling elements, and roller end faces. Wear can be caused by abrasive particles

due to the lack of cleanliness during operation. Inadequate lubrication is also a

reason of wear defects on bearings.

• Water and moisture in the corrosive operating environment are the factors that

lead to bearing corrosion. Water and moisture form the rust, after that the lubri-

cant fail to provide protection for the bearing surface.

• When an electric current passes through a bearing, which then proceeds from one

ring to the other via the rolling elements, damage will occur. When the damage is

existed, the material is heated to temperatures ranging from tempering to melting

levels.

Doctoral thesis - University of Ulsan
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• There are many reasons to cause cracks occur in bearing rings. The most common

cause is rough treatment when the bearings are being mounted or dismounted.

The hammer blows can cause fine cracks which can grow and cause fragments

of the ring to break-off when the bearing is put into operation. Another cause of

ring cracking is excessive drive up on a tapered seating or sleeve.

1.3.2 Characteristics of bearing fault

In a mechanical system, when a rolling element strides a localized defect, impulses are

created. The impulses are generated periodically and their characteristics depend on

the location of the defect. The frequencies corresponding to the dynamic behaviors

of each bearing component, they are fo, fi, fr, and fc corresponding to the outer race

characteristic frequency, the inner race characteristic frequency, the roller characteristic

frequency and the cage characteristic frequency. These bearing fundamental frequen-

cies are computed as follows [7].

Outer race frequency

fo =
n
2

fs

[
1− BD

PD
cos β

]
(1.1)

Inner race frequency

fi = n( fs − fc) (1.2)

Roller frequency

fr =
PD
BD

fs

[
1−

(
BD
PD

)2

cos β

]
(1.3)

Cage frequency
1
2

fs

[
1− BD

PD
cos β

]
(1.4)

where fs is the shaft rotation frequency, n is the number of rolling elements, BD and

PD are the ball diameter and the pitch circle diameter respectively, and β is the contact

angle.

Doctoral thesis - University of Ulsan
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Computation of the bearing fundamental frequencies is helpful since they can indicate

the damage parts in the bearing, i.e., on which component (inner race, outer race, roller,

or cage) the fault is occurring.

1.4 Literature review on bearing fault diagnosis approaches

The signals generated from bearings under different conditions are complex and hard

to extract useful information that help indicate the fault type and fault location. The

signals are complex, non-stationary and contaminated by background noised. There

are many signal processing techniques which can be divided into three categories: time-

domain, frequency-domain, and time-frequency domain.

1.4.1 Time domain analysis

In this method, the raw signals measured from the machined are used directly to an-

alyze. This method is fast, simple, and but not viable for noise signals [16]. Among

the features of signal in time domain, the statistical features are extensively employed

because they have close relations with bearing damage characteristics [16]. Short ex-

planations and computation equations of time domain features are as follows [17, 18,

19].

Mean - The average of all values of the signal

xmean =
1
N

N

∑
i=1

xi (1.5)

Variance - The average of quadratic summation, which sums the square value of the

difference value of each data and the mean. This value reflects the stability level of

data.

xvar =
1
N

N

∑
i=1

(
xi − xmean

)2

(1.6)

Standard deviation - The deviation from the mean of the signal. Standard deviation is

the square root of the variance.

xstd =
√

xvar (1.7)
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Root mean square - Indicates the energy of the signal.

xrms =

√√√√ 1
N

N

∑
i=1

x2
i (1.8)

Maximum amplitude - Maximum of all values in the signal.

xmax = max(xi) (1.9)

Minimum amplitude - Minimum of all values in the signal.

xmin = min(xi) (1.10)

Peak to peak value - Difference between maximum and minimum values.

xppv = xmax − xmin (1.11)

Square root of amplitude - Value of the root of amplitude.

xsra =

(
1
N

N

∑
i=1

√
|xi|
)2

(1.12)

Skewness - The characteristic parameter to attribute the asymmetry degree of the prob-

ability density curve relative to the mean. Skewness is the order three standard mo-

ments of the signal.

xskew = E
[(

x− µ

δ

)3]
(1.13)

Kurtosis - Measure of the spikiness of the signal relative to a normal distribution.

xkurt =
∑N

i=1(xi − xmean)

(N − 1)(xstd)4 − 3 (1.14)
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Clearance factor - Ratio of the maximum amplitude value to the square of the mean of

the root of the absolute values.

xcl f =
xmax

xsra
(1.15)

Shape factor - Value of how much the shape of the signal is affected, other than shifting

or scaling.

xs f =
xrms

( 1
N ∑N

i=1 |xi|)
(1.16)

Impulse factor - Ratio of maximum amplitude value to the mean of absolute values.

xi f =
xmax

1
N ∑N

i=1 |xi|
(1.17)

Crest factor - Ratio of the maximum amplitude value to the root mean square value of

the signal.

xc f =
xmax

xrms
(1.18)

1.4.2 Frequency domain analysis

Frequency domain analysis is widely used in bearing condition monitoring. Investiga-

tion established that frequency domain analysis is generally more sensitive and reliable

than time domain analysis [20]. In frequency domain signal analysis, the Fourier trans-

form is by far the most popular technique [7]. As mention in 1.3.2, each component of a

bearing has its own characteristic frequency, so does any fault associated with that com-

ponent. The fundamental frequencies are a reliable indicator of the bearing conditions.

The most popular approach in frequency analysis is envelope analysis [21]. Consider

a localized defect hitting a raceway, each time the defect hits the raceway, an impul-

sive force (wide frequency content) is generated. This will excite structural resonances

in the transmission bath between the point of impact and the point of measurement.

Envelope analysis is a mechanism for extracting the periodic excitation or the ampli-

tude modulation of the resonance, allowing the presence and location of a defect to be

detected.
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1.4.3 Time-frequency domain analysis

The frequency domain analysis transforms the signal into frequency domain. As a re-

sult, the time domain information is loss. On the contrary, the time domain analysis can

not observe frequency domain information. The time-frequency domain analysis can

conserve both time and frequency information. This approach of analysis is considered

as the most effective. Some popular techniques in this approach can be listed are Short

Time Furrier Transform (STFT), Wavelet Transform (WT) and Wigner-Ville Distribution

(WVD) [22]. These techniques are reported having the ability to detect and diagnose

bearing faults where the Signal-to-Noise Ratio (SNR) is low [23].

1.4.4 Intelligent fault diagnosis

In the intelligent diagnosis approach, the condition monitoring of a REB can be con-

sidered as a pattern recognition task. According to the current literature, as shown in

Figure 1.3 a general intelligent diagnosis methodology includes four steps as follows:

signal measurement, feature extraction, feature selection, and feature classification [24].

Signal
measurement

Feature
extraction Feature selection Feature

classification

FIGURE 1.3: Fundamental steps of intelligent fault diagnosis

Data acquisition step collects signals which reflect the health status of bearings from

sensor systems. These signals are vibration signals [25], acoustic emission signals [26],

or electrical motor currents [27].

Feature extraction maps the original signals onto the statistical parameters which con-

vey the information about the machine status. In the problem of pattern recognition,

to obtain a high accuracy recognition result, the design of feature extractor takes an es-

sential role [28]. Features of signals can be extracted from time domain [29], frequency

domain [30], and time-frequency domain [31, 32]. The original bearing fault signals

collected from rotary machines are in time domain. Bearing fault signals are also can

be investigated in frequency domain and time-frequency domain by using the appro-

priate tools to transform them into the corresponding domains. Fourier Transform (FT)
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is the most popular signal processing tool for transforming the signal into frequency

domain. Time-frequency domain features can be extracted by Wavelet Packet Trans-

form (WPT) [33], Dual-tree Complex Wavelet Transform (DT-CWT) [34], and Short-time

Fourier Transform (STFT) [35].

The extracted feature set often has high dimensions so that it may contain some redun-

dant and irrelevant features. High dimension feature set with many features may make

it difficult to identify bearing faults. A large feature set often requires high computation

effort, increases the learning time, and reduces the performance of classifiers. Thus, se-

lecting the most discriminant features is an important step. Feature selection not only

reduces the computation time but also increases the classification accuracy. Generally,

there are two popular approaches for selecting features. The first approach is to gen-

erate a new feature set with lower dimension from the extracted feature set. Principal

Component Analysis (PCA) [30] and Independent Component Analysis (ICA) [36] are

two well-known methods of this approach. The second approach is to eliminate non-

sensitive or useless features based on certain benchmarks. Sequential Selection [37] is a

popular method of this approach.

Feature classification: once the salient features are selected, they are fed into an ML-

based classifier such as k-Nearest Neighbor (kNN) [38], Artificial Neural Network (ANN)

[39, 40], and Support Vector Machine (SVM) [41] to identify the bearing fault. Among

the current ML based classification algorithms, ANN was proved as a powerful tool

with high accuracy. There are many types of ANN were proposed such as Multilayer

Perceptron (MLP), Recurrent Neural Network (RNN), Radial Basic Function Neural

Network (RBFNN), and Probabilistic Neural Networks (PNN).

1.5 Data sources used for the research

In this research, two types of signals are the vibration signal and the motor current sig-

nal are considered. The vibration signal along with the vibration analysis are the most

popular approaches in bearing fault diagnosis. The vibration signal data source used

in this research is obtained from the well-known and popular Case Western Reserve

University bearing data center [42].
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FIGURE 1.4: Case Western Reserve University bearing test-bed

The test-bed shown in Figure 1.4 includes a dynamometer (right), a 2 HP motor (left),

a torque transducer/encoder (center). The test-bed also consists of a control electronics

but was not shown in the figure. The motor shaft is supported by the test bearings.

Single point faults were introduced to these bearings using electro-discharge machin-

ing with fault diameters of 7 mils, (1 mil = 0.001 inches). Vibration data are collected

by using accelerometers, which are attached to the housing with magnetic bases. Ac-

celerometers are placed at the 12 o’clock position at both the drive housing. Vibration

signals are collected using a 16 channel DAT recorder including three operating condi-

tions. The operating conditions are considered with bearing 6205-2RS JEM SKM, which

is a deep groove ball bearing type.

The second type of signal used in this research is the motor current signal. The motor

current signal analysis is considered as an non-destructive method because this method

often does not require additional sensors. The motor current data source used in this

research is obtained from the Kat-Data Center website of the Chair of Design and Drive

Technology, Paderborn University, Germany [13]. The test-bed is shown in Figure 1.5.

Ball bearings with different types of defects were installed in the bearing test module

to generate the experimental data. Bearing defects are real damages that were obtained

from accelerated life test. Three types of ball bearing were used in the test-bed: bearings

with fault at the outer race, bearings with fault at the inner race, and healthy bearings.
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frequency
inverter

current
transducer

low-pass
filter

current 
u,v 

A/D
converter

speed n 
torque M 

surface acceleration  a 
radial force F 
temperature T 

low-pass
filter

Data
storage

motor torque-
measurement

shaft

bearing module flywheel

flywheel

load motor

FIGURE 1.5: Kat-Data Center bearing test-bed

The test-bed operations could be varied by changing the rotational speed of the elec-

tric motor (S), the load torque of the load motor (M), and the radial force on the test

bearings (F). The radial force on the bearings, the load torque at the torque-measuring

shaft, the rotary speed and the oil temperature in the bearing module are measured

synchronously to the motor currents and vibration signals.

The motor currents are measured at the two current phases by the current transducers

of the type LEM CKSR 15-NP with an accuracy of 0.8 % of IPN = 15 A. The motor

currents are then filtered by a 25 kHz low-pass filter and then converted to a digital

signal with sampling rate 64 kHz. The vibration signal is also measured for comparing

the vibration-signal-based fault diagnosis and current-signal-based fault diagnosis. The

vibration signals are filtered by a 30 kHz low-pass filter and then converted to digital

signals with sampling rate 64 kHz.
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Chapter 2

Fundamental of deep learning

2.1 Introduction

Deep Learning (DL) is a branch of Machine Learning (ML), where multiple layers of

data processing units are assembled to form deep architectures to extract multiple levels

of data abstraction. The concept of deep learning appeared in the 1980s, but it has

become more popular recently because of two main reasons [43]:

• The increase of the computational ability of processing units, especially Graphics

Processing Units (GPUs), while the cost is reducing: DL algorithms often require

strong computation efforts. The low cost and high computational ability help to

implement, train, and perform DL algorithms more easily and quickly.

• Recent advances in ML research: Before the year of 2006, training deep architec-

tures was very difficult and had unsuccessful results. A rational reason explain-

ing for this problem is that the gradient-based optimization starting from random

initialization of weight matrices often has poor results [44]. In 2006, Hinton et al.

proposed an efficient method for training networks with deep structures, called

greedy layer-wise training [45]. This work can be considered as the breakthrough

which opened the fascinating era of ML research with deep architectures.

DL architectures such as Convolutional Neural Network (CNN), Stacked Autoencoder

(SAE), Deep Belief Network (DBN), Deep Boltzmann Machine (DBM), and Recurrent

Neural Network (RNN) have been applied successfully in many areas, which includes

computer vision [46, 47], natural language processing [48, 49], medical image analysis
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[50, 51], and machine health monitoring [52, 53]. DL algorithms can learn multiple lay-

ers of representations from input data by deep architectures with many layers of data

processing units [54]. The output from a layer will be the input for its successive layer.

Each layer can learn a higher level of data presentations from its preceding layer out-

put. Therefore, DL architectures can automatically extract multiple complex features

from the input data without human engineers: layers of features are extracted from

raw data by a general purpose learning procedure [55].

2.2 Fundamental deep neural networks

Up to date, there are a lot of DL structures applied in various areas. In this section, we

supply a brief introduction about the three most popular and fundamental structures

in DL.

2.2.1 Autoencoder and Its Deep Models

Autoencoder

Autoencoder (AE) is an unsupervised DL algorithm. It was first proposed by Rumel-

hart et al. [56]. As shown in Figure 2.1, an AE is a special neural network that consists

of three layers: input layer, hidden layer, and output layer. The difference is that in the

structure of AE, the input and output layer have the same number of neurons.

x1

x2

x3

xm

x̂1

x̂2

x̂3

x̂m

...

...

encoder decoder

...

FIGURE 2.1: Structure of AE
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The structure of an AE can be considered as an encoder which integrates with a decoder.

The encoder includes the input layer and the hidden layer, mapping the input vector to

the hidden layer. The decoder takes the output of the hidden layer to recreate the input

values. Consider an input vector x, the forward direction computation of AE includes

two steps: encoding and decoding. The encoding step maps the input vector into the

hidden layer:

ai = f (Wexi + be) (2.1)

and the decoding step tries to reconstruct the input values from hidden values:

x̂i = f (Wdai + bd) (2.2)

where We, be and Wd, bd are respectively the weight matrix - bias vector of the encoder

and decoder. f (.) denotes the activation function. With an input set including m sam-

ples xi, i = 1 : m, the AE will produce m output samples x̂i, i = 1 : m. The loss function

is defined as the following equation with squared error as:

J(We, Wd, be, bd) =
1

2m

m

∑
i=1

(x̂i − xi)2 (2.3)

or with the cross-entropy as:

J(We, Wd, be, bd) =
1
m

m

∑
i=1

xi log(x̂i) + (1− xi) log(1− x̂i) (2.4)

The training process minimizes the loss function and optimizes the AE parameters to

reconstruct the output vector x̂ so that the reconstruct error (x− x̂) is as small as pos-

sible. After being trained, the AE can reconstruct the output from the original input

with an arbitrary accuracy [56]. Since the output is reconstructed from the hidden vec-

tor, we can say that the hidden vector is a representation of the input data, i.e., the AE

has learned representative features from the original input data and mapped into the

hidden vector.
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Denoising Autoencoder

Denoising Autoencoder (DAE) which first proposed by Vincent et al. [57] is another

type of AE. A DAE has the same structure with the original AE, the difference is the

way of feeding the input data into the network. First, the original input data is cor-

rupted before being passed to the network. The procedure of encoding and decoding is

similar to that of a typical AE. However, the DAE is trained to reconstruct the original

input from the corrupted data version. The corrupted data can be produced by adding

Gaussian noise, Masking noise, and Salt-and-pepper noise. The schematic diagram of

the procedure of DAE is shown in Figure 2.2.

x1 x2 xm...
Original data x

x
⎯⎯

1 x
⎯⎯

2 x
⎯⎯

m
...

Corrupted data x⎯⎯
add noise

z1 z2 zm...
Recontructed data z

y2 yn...
Encoded data y

decode

en
co

de

FIGURE 2.2: Structure of DAE

The original input data xi is added noise to obtain the corrupted data x̄i. The corrupted

input data are mapped into the hidden layer by:

yi = f (We x̄i + be) (2.5)

The the decoder phase of the AE reconstructs the output by:

zi = f (Wdyi + bd) (2.6)

The loss function is calculated by:

J(We, Wd, be, bd) =
1

2m

m

∑
i=1

(zi − xi)2 (2.7)
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Stacked Autoencoder

The architecture of a SAE is constructed by stacking multiple AEs together to form a

deep model with many layers. The training process of an SAE called greedy layer-wise

training proposed by Hinton et al. [45]. Consider a SAE constructed by n AE as shown

in Figure 2.3.

... ...

... ...

FIGURE 2.3: Stacked Autoencoder

The encoding operation is described by the following equation:

ak = f (Wk
e ak−1 + bk

e ), k = 1 : n (2.8)

where k denotes the kth AE. ak denotes the encoding result of kth AE. When k = 1, a0 = x

is the input data. The decoding operation is described by the following equation:

ck = f (Wn−(k−1)
d ck−1 + bn−(k−1)

d ), k = 1 : n (2.9)

when k = 1, c0 = an, when k = n, cn = x̂ is the reconstructed data of the input data x.

2.2.2 Restricted Boltzmann Machine and its deep models

Restricted Boltzmann Machine

Restricted Boltzmann Machine (RBM) is an unsupervised learning algorithm intro-

duced by Smolensky [58]. The structure of a RBM is shown in Figure 2.4.

In the visible layer, the visible nodes are denoted by vi. In the hidden layer, the hidden

nodes are denoted by hj. Nodes in the same layers are not connected. The weight which
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FIGURE 2.4: Structure of RBM

connects node vi and hj is denoted by wij. Each node has its own bias value. Visible

node vi has the corresponding bias value bi; the hidden node hj has the corresponding

bias value cj. The relationship of the visible layer and hidden layer is defined by the

energy function given by:

E(v, h) = −∑
i

vibi −∑
j

hjcj −∑
i,j

vihjwij (2.10)

The eventual goal of RBM training is to optimize the parameter set θ = wij, bi, cj that

minimizes the model energy and balances the model at a finite state. Every possible

case of a pair visible-hidden nodes is assigned a probability by the energy function:

p(v, h) =
1
Z

e−E(v,h) (2.11)

where Z is the partition function, calculated by summing all possible visible-hidden

node pairs:

Z = ∑
v,h

e−E(v,h) (2.12)

Since nodes in the same layer are not connected, the conditional probability distribu-

tions of each unit are described by the following equations:
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p(vi = 1|h) = 1
1 + exp(−cj −∑j wijhj)

(2.13)

p(hj = 1|v) = 1
1 + exp(−bi −∑i wijvi)

(2.14)

The training process for RBM is to maximize the joint probability. The parameters can

be trained by Contrastive Divergence (CD) algorithm proposed by Hinton [59].

Deep models of Restricted Boltzmann Machine

DBN proposed by Hinton [60] is a deep model constructed by stacking multiple RBMs,

where the input of a layer is the output of the preceding layer. DBNs can also be trained

with the greedy layer-wise training [44].

DBM introduced by Salakhutdinov and Hinton [61] is a deep model with many hidden

layers stacked into a hierarchy structure. The difference between a DBM and a DBN

is that a DBM is an indirect model while a DBN is a direct model. DBMs can also be

trained efficiently by the greed layer-wise algorithm [62].

2.2.3 Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of feed-forward neural network which

constructed by three types of layers: Convolutional Layer (CL), Pooling Layer (PL),

and Fully-connected Layer. The Fully-connected Layer has the same structure and the

way of operation with the conventional feed-forward neural network. Advantages of

CNN come from the differences in the structures and operations of CLs and PLs. An

illustration of CNN structure for processing 2-D data is shown in Figure 2.5.

A CL consists of multiple learnable kernels. Each kernel has a trainable weight and

bias. The CL convolves the input data with kernels in that layer. The result of the

convolution operation then will be fed into an activate function to produce the final

output of that CL. The math operation in the lth layer between the specific jth and the
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FIGURE 2.5: Convolutional Neural Network

input data xl−1 can be described by the following equation:

xl
j = f

(
∑

i∈Mj

xl−1
i ∗ kl

j + bl
j
)

(2.15)

where (∗) represents the convolution operation. The explanation for the above equation

is as follows. Assume that the input data xl−1 includes m 2-D matrices. Every input

matrix xl−1
i ( i ∈ m) is convolved with the kernel k j. Then the sum of all convolution

operation results will be added to the bias. Finally, the result will be fed into the activate

function f to produce the final output of kernel j. The purpose of CL is to extract local

features from the input data. Weight sharing is a term often used for the way of using

kernels for all input maps of data.

After each CL, there is a PL. The purpose of a PL is to reduce the spatial size of the fea-

ture maps produced by the preceding layer. The operation of a PL is a down-sampling

operation which exploits max-sampling or average-sampling.

Doctoral thesis - University of Ulsan



Chapter 2. Fundamental of deep learning 21

2.3 Deep Learning applications in bearing fault diagnosis

For a long time, conventional ML has been widely applied in bearing fault diagnosis.

However, the performance of this approach highly requires hand-craft feature extrac-

tion, expert knowledge, and human labor. That makes the task of creating an automatic

fault diagnosis model impossible. DL with the ability of automatically learning multi-

ple levels of features and data abstraction has been considered to possess the potential

to solve the drawbacks of conventional ML. Until now, AE has been the most popu-

lar algorithm of DL applied for bearing fault diagnosis. The reason is that AE has a

simple structure as a typical NN. Moreover, even the deep models of AE such as SAE

and SDA can be simply constructed and well trained by the greedy layer-wise train-

ing method. RBM is also an unsupervised learning algorithm like AE in the family

DL. RBM has become popular since the invention of CD algorithm. RBM based deep

models can also be trained by the greedy layer-wise training. AE and RBM based deep

models were used as unsupervised learning, using unlabeled data to learn high-level

salient features from fault data. CNN, a supervised learning algorithm is the third DL

architecture widely applied in bearing fault diagnosis. Using CNN models, there was

a novel approach when bearing vibration signals are presented in 2-D form beside the

approach working directly with 1-D signals. CNN models are integrated both feature

extractors and feature classifiers in their structures. Their training process is supervised

learning which requires labeled data. In the cases of AE and RBM, their deep models are

used as feature extractors. The training processes of AE and RBM based deep models

are unsupervised learning which has two phases: pre-training phase and fine-turning

phase. RNN is also an important deep structure in the DL family. RNN has memory

and can process arbitrary sequences of input patterns, in a sense, RNN is the deepest

model [63]. RNN models have been applied in many areas. However, until now, there

are not much publications of RNN on bearing fault diagnosis. That is the reason we did

not mention about RNN in the previous review section. Signals from bearings are time

series data in nature, so RNN is also a promising tool for bearing fault diagnosis.

There are two approaches to process raw signals before feeding into the DL models.

The first approach uses deep models with raw signals in time domain directly, while the
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second one employs signal processing technique to extract low-level features or trans-

forming raw signals into other forms before feeding into a deep model. The low-level

features can be extracted from the time domain, frequency domain, and time-frequency

domain. In some publications using models constructed from CNN, raw signals were

transformed into 2-D forms, such as square matrix or image form. Obviously, this ap-

proach still requires signal processing techniques, expert knowledge, and human la-

bor. In other words, this approach cannot create an automatic process for diagnosing

bearing fault, although DL architectures were exploited and the performance is better

than traditional ML based methods. The first approach which deals with raw signals

successfully created the end-to-end systems which can automatically diagnose bearing

fault.

Compared with conventional ML architectures, DL models can learn salient features

from data more easily, but it is not easy to design an appropriate deep model for

any specific diagnosis task. Since each hyper-parameter has a reasonable effect on the

model performance. Through the above-reviewed publications, we can see that hyper-

parameters were almost chosen by trial and error method. This is a time-consuming

work and requires experiences. Designing a deep model is still a challenge in DL re-

search when there is still no standard way to select appropriate hype-parameters.
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Chapter 3

Vibration Image and Convolutional

Neural Network

3.1 Introduction

In machine health monitoring, since 2015, a lot of researchers have tried to exploit DL

models to diagnose bearing faults. F. Jia et al. used SAE to extract features from signals

in the frequency domain [64]. In an introductory paper, Z. Chen et al. proposed three

deep models, includes DBN, DBM, and SAE for bearing fault diagnosis [65]. They

applied two approaches to learning fault features, the first one is to use the deep model

with raw signals in time domain directly. In the second approach, low-level features

were extracted from the time domain, frequency domain, or time-frequency domain,

then deep models were employed to learn higher-level features from those low-level

features. L. Eren used a one-dimensional CNN to diagnose bearing faults, using raw

signals directly in the time domain [66].

In the family of DL algorithms, DBM and DBN are based on Restricted Boltzmann Ma-

chine (RBM), SAE is based on Autoencoder (AE), all of them are unsupervised learning

algorithms, while CNN is a supervised learning method. Initially, with three key ar-

chitectural ideas: local receptive fields, weight sharing, and sub-sampling in the spatial

domain, CNN is suitable for processing 2-D data [67]. In machine health monitoring,

some researchers have tried to apply one-dimensional CNN models [64, 65, 66]. How-

ever, it is much easier to extract information from data in a high dimension [68]. Being
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motivated by this fact, in this chapter, a CNN model called (VI-CNN) is proposed for

diagnosing bearing faults using 2-D form of vibration signals. First, the vibration sig-

nals in the time domain are transformed into 2-D form, called vibration images. After

that, a CNN will be used to identify the faults of the bearing through vibration image

classification.

3.2 Method development

3.2.1 Vibration image construction

The vibration signals of bearings are 1-D data form. In this section, we explain in detail

the method to transform the vibration signals into gray-scale images. We call this type

of image vibration image. Figure 3.1 shows the process of vibration image construc-

tion. The amplitude of each sample in the vibration signal is normalized into the range

[−1, 1]. After that, the normalized amplitude of each sample becomes the intensity of

the corresponding pixel in the corresponding image. The conversion between the nor-

malized amplitude of the sample and the corresponding pixels can be described by the

following equation [69].

P[i, j] = A[(i− 1) ∗M + j] (3.1)

where i = 1 : N; j = 1 : M; P[i, j] is the intensity of the corresponding pixel (i, j) in the

M×N vibration image. A[.] is the normalized amplitude of the sample in the vibration

signal. The number of pixels in the vibration image equals to the number of samples in

the vibration signal.

Current signal Gray image

FIGURE 3.1: Vibration Image Construction
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3.2.2 Image Classification with CNN

The proposed fault diagnosis method in this chapter has the diagram shown in Figure

3.2.

FIGURE 3.2: Proposed bearing fault diagnosis method

Figure 3.3 shows the architecture of the VI-CNN for bearing fault diagnosis. Vibration

images are given to CNN, firstly, successive CLs and SLs extract features from vibra-

tion images. Multiple layers help acquire good representations of the input image and

improve the performance of the network. Features extracted from the previous layers

are classified by a full connection layer with the softmax function.

FIGURE 3.3: Convolutional Neural Network

Loss function of the proposed model is the cross-entropy between the estimated soft-

max output probability distribution and the target class probability distribution. Let

denote the target distribution as p(x) and the estimated distribution as q(x). The cross
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entropy between p(x) and q(x) is defined as follows:

H(p, q) = −∑
x

p(x)logq(x) (3.2)

Once the loss function is derived, numerous optimization algorithms can be applied

to train the network, such as stochastic gradient descent, gradient descent with mo-

mentum and variable learning rate, Adam Stochastic optimization [70]. In this paper,

stochastic gradient descent is applied to train our CNN because it is easy to implement,

memory-saving and computationally effective.

3.3 Experimental study

3.3.1 Data pre-processing

Four health status of the bearing are considered, includes normal status, fault in inner

race, fault in ball, and fault in outer race as shown in Figure 3.4. The bearing data for

each bearing condition is supplied a single Matlab file. In order to have enough samples

for training and testing classifiers, vibration signals are split into segments with the

same length. The process of dividing signals into segments is shown in Figure 3.5.

Each segment is normalized to have zero mean in the range [−1, 1]. One segment of the

vibration signal will be transformed into one corresponding vibration image with size

M = 20, N = 20 by Equation 3.1. Correspondingly, we obtain four types of vibration

images as shown in Figure 3.6. The test-bed is operated under four load conditions,

includes 0 hp, 1 hp, 2 hp and 3 hp. Four corresponding datasets A, B, C, and D are built

as described in Table 3.1. Each dataset corresponds to one operating condition of the

test-beb and contains four types of vibration images, with the number of images in each

type is 606.

TABLE 3.1: Vibration Image Dataset

Name Number of Images Load Condition
A 2424 0 hp
B 2424 1 hp
C 2424 2 hp
D 2424 3 hp
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FIGURE 3.4: Vibration signals
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FIGURE 3.5: Signal Segmentation

FIGURE 3.6: Vibration images

3.3.2 Hyper-parameters selection

Each hyper-parameter has a big effect on not only the classification accuracy but also

the training time of CNN model. Unfortunately, until now, there is no standard method
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for selecting appropriate hyper-parameters. In this section, we explain our simple way

to select hyper-parameters based on experiments.

The first parameter should be selected is the size of signal segments. The segment size

must be long enough to capture the localized features of vibration signals. However,

too long segments will make the classifier model more complex. Moreover, to easily

transform signal segments into vibration images, the length of the segments must be

a square number. We choose the segment size is 400, i.e., each segment contains 400

samples. Correspondingly, each vibration image has a size of 20× 20 and contains 400

pixels.

A deeper structure does not ensure a better classification performance, and a too shal-

low structure limits the capacity of the model in learning complex features of data.

Because the size of vibration images is small (20× 20), we only use two CLs and two

SLs. Kernel size is selected as follows. The next CL has a kernel size smaller than that of

the previous CL because after each CL and SL, the size of output data is reduced. The

size of kernels in the first CL is 5× 5, for the next CL, the kernels have a size of 3× 3.

In the FC, we fix the number of neurons equal to the number of fault types. The output

layer uses the softmax function.

After fixing the number of layers and the kernel size in each layer, we select the number

of kernels in each layer by experiments as follows. We start with a small number of

kernels. In the second CL, the number of kernels is two times higher than in the first

CL. The initial CNN model will be trained by 2024 vibration images and tested by 400

vibration images from the dataset A (load 0 hp). After each time of training - testing,

the number of kernels will be increased by 5 and retrained with the same dataset. This

process is continuously conducted until the satisfied performance is reached. Table 3.2

shows the classification accuracy of CNN with different kernel sizes.

TABLE 3.2: Classification Accuracy with Different Kernel Sizes

CL1 kernel size CL2 kernel size Accuracy (%)
10 20 96.75
15 30 96.75
20 40 99
25 50 99.75
30 60 100
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Based on the result of this experiment, we can see that the CNN model with 30 kernels

in the first CL and 60 kernels in the second CL achieves 100% classification accuracy.

As a result, we select the configuration of CNN model as shown in Table 3.3.

TABLE 3.3: Structure of CNN Model

Layer Kernel Size Kernel Number Padding Type Output Size
CL 5× 5 30 SAME 20× 20
SL 2× 2 30 no 10× 10
CL 3× 3 60 SAME 10× 10
SL 2× 2 60 no 5× 5

3.3.3 Evaluate under different load conditions

In Table 3.2, we can see that when being trained and tested with vibration images from

the same load conditions (dataset A), the CNN classifiers can achieve 100% classifica-

tion accuracy. However, in the real application or in the industry, machines and their

bearings have to work under various types of conditions. When the working condition

changes, the measured vibration signals also change. That makes the fault diagnosis

more difficult, and the classifier usually must be retrained before being applied in a

different working condition. In this section, we conduct experiments to evaluate the

performance of the proposed diagnosis method under different load conditions with-

out retraining the diagnosis system.

As mentioned in Section 3.3.1, we build four datasets of vibration images correspond-

ing to four working conditions of the test-bed: 0 hp (dataset A), 1 hp (dataset B), 2 hp

(dataset C), and 3 hp (dataset D). The selected CNN model as in Section 3.3.2 is trained

by 2424 images from one dataset and then is evaluated by 1200 images from three other

datasets. We compare our proposed method with the one-dimensional CNN proposed

in [66] and the SAE model proposed in [64]. Figure 3.7 shows the comparison results.

In case 1, we use 2424 vibration images from the dataset A to train three models, in-

cludes 1-D CNN [66], SAE [64] and our proposed VI-CNN model. After that, 400 vi-

bration image samples from each data set B, C, and D (1200 in total) are used to test the

trained models. Case 2, 3, and 4 are conducted in the same way with case 1, but the

datasets are alternated.
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FIGURE 3.7: Performance under different loads

In all four cases, the SAE model has the worst performance with the lowest classifica-

tion accuracy. In case 2, the 1-D CNN model achieves the best performance with the

classification accuracy is 99.83%. In cases 1, 3, and 4, the VI-CNN model achieves the

best performance with the highest classification accuracy. Especially, in cases 1 and

3, VI-CNN model reaches 100% classification accuracy. Through the comparisons, we

can see that without retraining the whole model, our proposed method still works well

when the working condition changes.

3.3.4 Evaluate under different noise conditions

Besides the change of working conditions, the effect of noise is also a big problem which

decreases the performance of fault diagnosis. In real industrial environment, the sen-

sory signals are contaminated by noise. In this section, we consider the robustness and

accuracy of the proposed scheme under low signal-to-noise ratio (SNR) conditions, i.e.,

we try to detect the faults of bearings with noisy signals. The additive Gaussian white

noise (AGWN) with various standard variances are added to the original vibration sig-

nals to mimic the low SNR. The SNR is defined as follows:
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SNR = 10log10

(
Psignal

Pnoise

)
(3.3)

where Psignal and Pnoise are, respectively, the power of the signal and the noise in that

signal. Figure 5.9 shows the noisy signal made by adding an original signal with Gaus-

sian white noise.

0 100 200 300 400 500 600 700 800 900 1000
-1

-0.5

0

0.5

1

A
m

p
lit

u
d
e

Original signal

0 100 200 300 400 500 600 700 800 900 1000

-2

0

2

4

A
m

p
lit

u
d
e

Gaussian White noise

0 100 200 300 400 500 600 700 800 900 1000

Sample

-2

0

2

4

A
m

p
lit

u
d
e

Added noise signal

FIGURE 3.8: Noisy Signal with SNR = −10dB

The experiment is conducted as follows. The original vibration signal is added Gaus-

sian white noise to form the noisy signals. Then these noisy vibration signals are pre-

processed, split into segments, and transformed into vibration images by the same way

as mentioned in section 3.3.1. The classifier model will work with vibration image

datasets built from noisy signal.

Figure 3.9 shows the fault classification accuracy of the proposed scheme with the SNR

value in decibel (dB) varying from -10 dB to 0 dB. Obviously, the bigger noise power is,

the more difficult to diagnose faults. In these experiments with noisy signals, the 1-D

CNN shows the worst performance with very low accuracy. Under the noise condition

SNR = −4dB, three diagnosis models still achieve 100% accuracy. However, when the
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FIGURE 3.9: Performance under different noise conditions

noise condition becomes SNR = −10dB, the performances degrade significantly. With

SAE model, the accuracy is 95.5% and in the case of 1-D CNN is 90.75%. However, our

proposed CNN model using vibration image data still achieves satisfied performance

with the accuracy of 97.74%. The comparison results in this experiment show that the

proposed VI-CNN model has good robustness and can work well with noisy vibration

signals.

3.4 Conclusion

In this chapter, a new approach based on CNN is proposed for diagnosing faults of

rolling element bearings. By transforming 1-D vibration signals into 2-D images and

exploiting the effectiveness of CNN in image classification, the proposed method can

achieve 100% accuracy in CWRU bearing data set.

Compared to traditional machine learning based fault diagnosis, the main advantage

of the proposed method is that it does not require the feature extraction step, but still

achieves high classification accuracy. Furthermore, when the working load condition

Doctoral thesis - University of Ulsan



Chapter 3. Vibration Image and Convolutional Neural Network 33

is changed, without retraining the classifier, our proposed method still achieves satis-

fied performance with high accuracy. Moreover, without any denoising process, the

proposed method has the robustness and the capacity of tolerating noisy environment.

A simple procedure based on experiments was used to select hyper-parameters of the

CNN model. However, selecting appropriate hyper-parameters to design DL algo-

rithms for fault diagnosis is still a challenge.
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Chapter 4

Deep neural network and

information fusion

4.1 Introduction

Currently, vibration signals are the most popular method for machine health moni-

toring because of their ability to convey intrinsic information on the health conditions

of mechanical systems [71]. Vibration-signal measurement requires external vibration

sensors such as accelerometers to be mounted around the bearing housing. Normally,

the cost of vibration signal sensors is high, and the installation of vibration sensors

requires direct access to the machine [72]. With these disadvantages, vibration-signal-

based bearing fault monitoring is restricted to systems that are easily accessible. In

cases where process monitoring is necessary for nearly in-accessible locations or re-

mote locations, such as for centrifugal pumps, cryogenic pumps, etc., vibration-signal-

based fault diagnosis cannot be applied [27]. In industry, many induction motor-driven

equipment already have current monitoring for control purpose by frequency inverters

or protection purposes by current transformers [73]. Hence, the stator current of the

motor is often readily for fault diagnosis purpose, not require the installation of other

types of sensors. Even in the case of there are no existing frequency inverters or current

transformers, the stator current of motors can be easily measured by current transduc-

ers, which are accurate, noninvasive and cost-effective [74]. Therefore, motor current

signal analysis has been considered as a promising condition monitoring technique be-

cause of its low-cost requirement and noninvasive nature.
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Based on the position of the installation, we can distinguish two types of bearings: the

bearing which is installed inside the motor (internal bearing) and the bearing which

is installed outside the motor (external bearing). Fault diagnosis for internal bearings

has been extensively studied by researchers with both approaches: vibration-signal-

based [75, 76] and motor current-signal-based approach [77, 78]. In the case of exter-

nal bearing, the vibration signal-based approach achieves better accuracy compared to

the current-signal-based approach [13]. The defects of external bearings affect the mo-

tor current in an indirect way because its signatures have to be transmitted along the

drive train through torque vibrations [13]. Moreover, the effects of external bearings are

damped and overlapped with disturbances from the powered process, leading to noisy

and difficult to detect signals [79]. In [13], C. Lessmeier et al. used motor current signal

for external bearing diagnosis. From the raw signal, features are extracted from time

domain, frequency domain, and time-frequency domain. Fast Fourier Transform (FFT)

and power spectral density (PSD) are used to extracted features in frequency domain.

In the time-frequency domain, the wavelet packet decomposition is used to extracted

features. Totally, 23 features are extracted from each raw signal. Then a feature se-

lection technique which bases on the maximum separation distance between different

health states is employed to select 9 out of 23 features. Finally, the selected feature set

is classified by some machine learning algorithms. The classification accuracy is about

93.3%, which is an unsatisfactory performance. In [80], G. Karatzinis et al. proposed a

method using fuzzy cognitive networks (FCN) with functional weights. Motor currents

from two phases are extracted to obtain 8 features, all in time domain. The classification

accuracy of the FCN is about 91.42%.

From the literature review, we can see that traditional signal processing and feature ex-

traction techniques are unsuccessful when applied in external bearing fault diagnosis

with motor-current-signal. In recent years, deep learning (DL) has been widely ap-

plied to expedite the task of traditional intelligent fault diagnosis. DL algorithms are

machine learning ones that employ deep architectures with many layers of data pro-

cessing units [43]. With the ability of automatically learning multiple levels of data

abstraction, when applied to extract features from the raw signals in fault diagnosis
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applications, DL achieves high accuracy and outperforms other traditional signal pro-

cessing and feature extraction techniques [68, 81, 82]. Motivated by that observation, in

this chapter, I propose an advanced technique of extracting features from current signal

using DL.

Currently, single-sensor data are extensively used to diagnose bearing faults. However,

in machine systems which are installed multiple sensors, multiple-sensor signals have

been used for bearing fault diagnosis. In a system with multiple sensors are installed,

the signals measured by these sensors are disordered and correlated with multiple

sources [83]. Therefore, information fusion (IF) techniques are required to effectively

fuse information from multiple sensors. In the case of induction motor, theoretically,

the three phases of the motor are symmetrical. However, in real-time running, the

three phases are not totally symmetrical because of noise, disturbance, and imperfect

installation. Especially, when there faults or defects occur at any part of the system, the

asymmetric of the three phases is more serious. Therefore, it is high potential that each

phase of motor current can convey different information about the fault status of the

system. Motivated by this fact, in this paper, the authors develop a technique to effi-

ciently merge current features. This technique tries to eliminate duplicate information

from the current phases and supply richer information about the status of the system.

The goal of this chapter is to develop a bearing fault diagnosis method for rotary ma-

chine systems in which multiple-phase motor current signals are readily available, us-

ing DL-based feature learning and decision-level IF. The proposed method uses directly

raw signals from multiple phases of motor current as input, the signals from each

phase of the current are extracted features and classified separately by a correspond-

ing DL model. To enhance the classification accuracy, a novel decision-level IF tech-

nique is introduced to fuse information from all the used DL models. The problem of

decision-level IF is transformed into a simple pattern classification task, which is effec-

tively solved by familiar supervised learning algorithms such as multilayer perceptron

(MLP), support vector machine (SVM), and k-nearest neighbor (kNN). The proposed

bearing fault diagnosis method is verified through experiments carried out with a pub-

lic bearing data set supplied by the Kat-Data Center website of the Chair of Design and
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Drive Technology, Paderborn University, Germany [13].

4.2 Method development

4.2.1 Proposed decision-level information fusion method

IF is defined as a process of fusing information or data from different inputs to derive

information that is better that would be derived from each of the sources independently

[84]. This section explains the proposed decision-level IF algorithm. For the sake of

simply explain, we consider the problem of identifying the fault of bearing in a rotary

machine. Assuming that there are m types of faults, labeled as Fi, i = 1 : m. Assuming

that we have n feature sets extracted from n signal sources measured simultaneously

by n sensors on the machine. Each feature set consists of t samples as follows:

(1) Feature set X1 = [x1
1, x1

2, ..., x1
t ]

(2) Feature set X2 = [x2
1, x2

2, ..., x2
t ]

...

(n) Feature set Xn = [xn
1 , xn

2 , ..., xn
t ]

We need to classify m types of faults that may occur in that machine. At first, n feature

sets are classified by n different Softmax classifiers (SCs). The probability of class Fi, i =

1 : m based on the observation of SCk, k = 1 : n on the sample Xk
j , j = 1 : t of the feature

set Xk is:

Pk,j
i = probability(Fi|Xk

j , SCk) (4.1)

The output of SCk with all n samples in the feature set Xk is arranged in the matrix Pk

of the size m× t:

Pk =



pk,1
1 pk,2

1 . . . pk,t
1

pk,1
2 pk,2

2 . . . pk,t
2

...
...

. . .
...

pk,1
m pk,2

m . . . pk,t
m


(4.2)
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The outputs of all classifiers are merged to form a (m× n)× t matrix P:

P =



P1

P2

...

Pn


(4.3)

The P matrix is considered as a new feature set that is labeled as the same way with

all feature sets Xk. Now we consider the task of fusing n classifiers SCk as a task of

classifying the new feature set P. This classification task is then solved by supervised

learning algorithms such as MLP, SVM, and kNN. Finally, the output of the second

classification task is the final conclusion about the type of bearing fault in the machine

or the result of fusing n data sources.

4.2.2 Proposed bearing fault diagnosis method

In this chapter, the object is the external bearing which is distinguished from the inter-

nal bearing (inside the motor). The defects of external bearings affect the motor current

in an indirect way because its signatures have to be transmitted along the drive train

through torque vibrations. Moreover, the effects of external bearings are damped and

overlapped with disturbances from the powered process, leading to noisy and difficult

to detect signals. Therefore, to use the stator current as the input for the fault detector,

a more effective feature extractor must be developed.

Phase 1 motor
current

CNN with
softmax
classfier

Decision
level
data

fusion
Phase 2 motor

current
CNN with
softmax
classfier

Final decision
about bearing

fault

Rotary
machine

Gray image

Gray image

FIGURE 4.1: Proposed bearing fault diagnosis method

The schematic of the proposed bearing fault diagnosis method is shown in Figure 4.1.
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First, signals from multiple phases (at least two phases) of the motor current are mea-

sured simultaneously. These measured signals from each motor current phase are saved

as a separate data set, each data set will be processed independently in the next step.

For a given raw current signal of a phase, a sliding window is used to split that signal

into equal samples as shown in Figure 4.2. The length of the signal segments is selected

as a square number for the sake of ease for successive steps.

sample 1 sample 2 ... sample N 

FIGURE 4.2: Signal segmentation

The original measured signals are in one-dimensional (1− D) form. To be easily pro-

cessed with a 2 − D CNN, these signals are transformed into 2 − D form by simply

rearranging the array of signal amplitudes into a square matrix form. Assuming that

each signal sample is represented as an array of amplitudes 1 × n2, the result of the

transformation is an n× n matrix as in Equation 4.4:

[
a1 . . . an2

]
→



a1 a2 . . . an

an+1 an+2 . . . a2n
...

...
. . .

...

a(n−1)n+1 . . . . . . an2


(4.4)

Current signal Gray image

FIGURE 4.3: Gray image representation of current signal

In our proposed method, each segment of the current signal with the length of n2 is

rearranged in a square matrix n× n. The transformation transforms the current signal
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in 1-D form into 2-D form. This 2-D representation of the current signals can be con-

sidered as a gray image representation of the respective current signal. As a result, the

task of classifying current signals becomes the task of classifying images.

The outputs of each CNN model are the probabilities of each type of occurring fault

based on the observation of that CNN on the corresponding data source. Finally, the

proposed IF uses the results of all CNN models to make the final conclusion about the

bearing fault.

4.3 Experimental study

4.3.1 Signal pre-processing

TABLE 4.1: Three operating conditions

Working condition S (rpm) M (Nm) F (N)
A 1500 0.1 1000
B 900 0.7 1000
C 1500 0.7 400

In this work, three working conditions are considered as shown in Table 4.1. As shown

in Table 4.2, for each bearing condition, five different bearing codes were established

for data measurement. For each bearing code, 20 measurements were performed. Each

measurement was saved as a MATLAB file that contained the vibration signals (VS),

the phase 1 current signals (CS1), and the phase 2 current signals (CS2).

TABLE 4.2: Bearing codes used for experiments

Class Label Used bearing code
NF 1 K001, K002, K003, K004, K005
OF 2 KA04, KA15, KA16, KA22, KA30
IF 3 KI04, KI14, KI16, KI18, KI21

The data files are split into equal-length segments to be used as input samples for de-

signing the fault diagnosis models. The length of the signal segment (L) is selected

as follows. Firstly, we can see that the two values of rotary speed are 900 rpm and

1500 rpm, and all signals are sampled at the same sampling frequency (fs = 64 kHz).

For lower rotary speed, we will have less samples in each rotary circle. To select the

length of the signal segment that is suitable for signals measured at both speed values,
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the lower rotary speed value (S = 900 rpm) is considered. The number of samples per

rotary circle (spc) is calculated as follows:

spc =
f s× 1000× 60

S
=

64× 1000× 60
900

≈ 4266 (4.5)

The number of rotary circles corresponding to each signal segment is selected at value

1.5. Then we have the length of the signal segment:

L = 1.5× spc = 1.5× 4266 = 6399 (4.6)

To easily rearrange each sample into a 2− D square matrix form, the value of L should

be a square number, we select the nearest square number is 6400 (
√

6400 = 80).

TABLE 4.3: Data set corresponding to the operating condition A

Signal type Training samples Testing samples
Vibration 10500 750

Phase 1 current 10500 750
Phase 2 current 10500 750

Each signal sample was saved as a 1− D array with a size of 1× 6400. The process

described in Section 4.2.2 transformed the original signal samples into a 2− D form as

a matrix with a size of 80× 80. In total, we obtained 11250 samples for each data set

corresponding to each type of signal. Then each data set was split into a training set

and a testing set, the details of the data set A corresponding to the operating condition

(S = 1500 rpm, M = 0.1 Nm, F = 1000 N) are shown in Table 4.3.

4.3.2 Signal analysis

With the parameters of the test bearing of type 6203 are ball diameter (d = 6.75 mm),

pitch diameter (D = 28.55 mm), number of balls (n = 8), bearing contact angle (φ = 15◦)

and rotary speed (S = 1500 rmp), we can compute the critical frequencies as follows

[85].
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The rotary frequency of the shaft:

Fr =
S
60

= 1500/60 = 25 Hz (4.7)

The ballpass frequency, outer race:

Fo =
nFr

2

(
1− d

D
cos φ

)
=

=
8 ∗ 15

2
∗
(

1− 6.75
28.55

∗ cos(15◦)
)
= 46.3 Hz (4.8)

The ballpass frequency, inner race:

Fi =
nFr

2

(
1 +

d
D

cos φ

)
=

=
8 ∗ 15

2
∗
(

1 +
6.75
28.55

∗ cos(15◦)
)
= 73.7 Hz (4.9)

The envelope spectrum analysis is employed to analyze three types of current signals:

the normal bearing signal, the outer race fault signal, and the inner race fault signal.

The power spectrums of the envelope signals are shown in Figure 4.4. In can be ob-

served that in all three cases, the power spectrum of the electrical supply frequency

(Fe = 100 Hz) is shown clearly. However, the envelope spectrums in all cases do not

show any peaks at Fo and Fi. The weak indicators of the bearing faults in the current

signals are mainly due to the fact that the damage signatures have to be transmitted

indirectly through torque variations along the drive train. Therefore, they are damped

and masked with disturbances and noises. Consequently, it is difficult to extract fea-

tures from the current signal for external bearing fault diagnosis. As a result, to exploit

current signals for diagnosing the bearing fault, effective feature learning methods need

to be developed.

4.3.3 Experiment result

First of all, the configuration of the CNN is determined. To easily control the sizes of

feature maps, we will keep intact the sizes of the feature maps in all CLs and decreased
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FIGURE 4.4: Power spectrum analysis of three types of current signals
(phase 1 and 2)
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2 times that sizes in all PLs. Therefore, we apply zero-padding technique and stride

step 1 × 1 in all CLs and kernel size 2 × 2 with stride step 2 × 2 in all PLs. Hence,

after going through each pair of CL and its corresponding PL, the size of the feature

map will be reduced by 2. As determined in the previous section, the input data of

CNN (first feature map) has size 80× 80. We can see that 80 = 24 × 5. Thus we will

design the CNN with 4 CLs and 4 corresponding PLs. Next, we select the kernel size

in each CL. The kernel size 3 × 3 is a popular choice in designing CNN, this kernel

size will be applied for the last CL. We want each CL extracts more local features from

its preceding CL, so that from the first CL to the last CL, the kernel size is decreased

gradually. Therefore, we have kernel sizes 9× 9, 7× 7, 5× 5, and 3× 3 in CL1, CL2,

CL3, and CL4 respectively.

The CL1 is fixed with 5 kernels. We increase the number of kernels by 5 after each

layer. However, we regulate the number of kernels in the CL4 30 kernels to obtain

better training performance. The number of kernels in each PL is equal to that of its

corresponding CL.

We use 1 FL to flatten the last feature map from 2-D form into 1-D form, therefore,

the size of FL is 5*5*30 = 750. The Softmax layer has three outputs corresponding to 3

types of bearing fault need to be classified. The final configuration of the CNN model

is shown in Table 4.4.

TABLE 4.4: CNN structure

Layer Kernel size Kernel number Input size Output size
CL1 9× 9 5 80× 80 80× 80
PL1 2× 2 5 80× 80 40× 40
CL2 7× 7 10 40× 40 40× 40
PL2 2× 2 10 40× 40 20× 20
CL3 5× 5 15 20× 20 20× 20
PL3 2× 2 15 20× 20 10× 10
CL4 3× 3 30 10× 10 10× 10
PL4 2× 2 30 10× 10 5× 5
FL 5× 5 750

Softmax 750 3

As described in the Introduction, the main goal of this paper is to propose a bearing

fault diagnosis method using CS that is accurate as the methods that use VS. First,
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we evaluate the fault detection accuracy of a CNN with input VS as input data. The

procedure of this experiment is shown in Figure 4.5.

Testing
set

Vibration
signal
dataset

Training
set

training

trained
CNN

CNN

testing Fault
prediction

FIGURE 4.5: Vibration signal-based fault diagnosis

FIGURE 4.6: Training process of CNN with current signals

FIGURE 4.7: Training process of CNN with vibration signals
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The training processes of the CNNs with current signals and vibration signals are

shown in Figure 4.6 and Figure 4.7, respectively. Both networks have the same struc-

ture and configuration. In the case of the CNN with vibration signal input, the training

process is implemented with the stochastic gradient descent with momentum (SGDM),

the learning rate α = 0.0012, and the momentum γ = 0.9. The CNN quickly converges

and easily achieves the training accuracy of 100 %. In the case of the current signal,

the training process is implemented with the adaptive moment estimation (Adam) op-

timizer, the learning rate α = 0.01, the gradient decay factor β1 = 0.9, and the squared

gradient decay factor β2 = 0.99. Training the CNN with current signal input takes

much time to converge and the accuracy is not as high as the training accuracy of the

CNN with vibration signal input.

Initially, 10500 signal samples of the training set were used to train the CNN. Then the

trained CNN was evaluated by testing with 750 samples of the testing set. The accuracy

of this vibration signal-based fault diagnosis experiment was 99.47 % - a high accuracy

and a satisfying result that can have real applications in industry.

Then we investigated the CS-based fault diagnosis method. Two different CNN models

were used to deal with phase 1 and phase 2 current-signals (CS1 and CS2). Each CNN

was trained by 10500 samples of the corresponding training set. After the training

phase, two testing sets were used to evaluate the accuracy of the trained CNNs. With

the CS1 and CNN1, the classification accuracy was 95.2 %. With the CS2 and CNN2,

the classification accuracy was 93.07 %. In both cases, the accuracy results were very

low compared to the results of the VS-based method in the previous experiment.

To improve the performance of the CS-based methodology, we then used the proposed

IF technique to enhance the fault detection accuracy. Since the proposed IF technique

is based on supervised learning, we built separate training and testing sets for this

problem. When all samples of the training set 1 (CS1 data set) were fed into the corre-

sponding diagnosis model CNN1, we obtained the following probability matrix:
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Ptraining 1 =


p1,1

1 p1,2
1 . . . p1,10500

1

p1,1
2 p1,2

2 . . . p1,10500
2

p1,1
3 p1,2

3 . . . p1,10500
3

 (4.10)

Similarly, we obtained the probability matrix of training set 2 and CNN2:

Ptraining 2 =


p2,1

1 p2,2
1 . . . p2,10500

1

p2,1
2 p2,2

2 . . . p2,10500
2

p2,1
3 p2,2

3 . . . p2,10500
3

 (4.11)

With the testing set, we had:

Ptesting 1 =


p1,10501

1 p1,10502
1 . . . p1,11250

1

p1,10501
2 p1,10502

2 . . . p1,11250
2

p1,10501
3 p1,10502

3 . . . p1,11250
3

 (4.12)

and:

Ptesting 2 =


p2,10501

1 p2,10502
1 . . . p2,11250

1

p2,10501
2 p2,10502

2 . . . p2,11250
2

p2,10501
3 p2,10502

3 . . . p2,11250
3

 (4.13)

Merging Ptraining 1 with Ptraining 2, and Ptesting 1 with Ptesting 2, we obtained the following

matrices:

Ptraining =



p1,1
1 p1,2

1 . . . p1,10500
1

p1,1
2 p1,2

2 . . . p1,10500
2

p1,1
3 p1,2

3 . . . p1,10500
3

p2,1
1 p2,2

1 . . . p2,10500
1

p2,1
2 p2,2

2 . . . p2,10500
2

p2,1
3 p2,2

3 . . . p2,10500
3


(4.14)
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Ptesting =



p1,10501
1 p1,10502

1 . . . p1,11250
1

p1,10501
2 p1,10502

2 . . . p1,11250
2

p1,10501
3 p1,10502

3 . . . p1,11250
3

p2,10501
1 p2,10502

1 . . . p2,11250
1

p2,10501
2 p2,10502

2 . . . p2,11250
2

p2,10501
3 p2,10502

3 . . . p2,11250
3


(4.15)

This resulted in the training set Ptraining of size 6× 10500 and the testing set Ptesting of

size 6× 750. The problem of the fusing decisions of the two classifiers CNN1 and CNN2

was considered as a new classification problem as follows:

• Three classes need to be classified: NF, OF, and IF corresponding to labels: 1, 2,

and 3.

• Input: Ptraining and Ptesting

This classification problem is simple, with only three classes and the dimension of the

feature size is 6. We solved this problem with three familiar supervised learning al-

gorithms are MLP, SVM, and kNN. The results are shown in Table 4.5. By using the

proposed IF technique, the diagnosis accuracy increased from 95.2 % (CS1 based exper-

iment) and 93.07 % (CS2 based experiment) to 98.3 %. Compared to the performance

of the VS-based method in the first experiment (99.47 %), this result (98.3 %) was quite

high and acceptable.

TABLE 4.5: IF based diagnosis results

Algorithm Configuration Accuracy (%)
MLP 1 hidden layer with 5 neurons 98.3
SVM linear kernel function 98.0
kNN k = 2 97.07

To show the effectiveness of the proposed feature learning method, the t-distributed

Stochastic Neighbor Embedding (tSNE) [86] which is a data visualization technique is

employed. The idea of this algorithm is to embed high-dimensional data points in low

dimensions in a way that respects similarities between points. The tSNE technique is

applied to three data sets: the raw current signal phase 1, the raw current signal phase
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2, and the feature set extracted by the proposed method. The 2-D embedding of three

data sets are shown in Figure 4.8. The visualization of the raw current signals phase

1 and phase 2 do not show the clear distinction of three types of labels: NF, OF, and

IF. Those data points are almost mixed up and they are unable to be distinguished.

The visualization of the features extracted from the raw current signals phase 1 and

phase 2 are shown in the third figure. It can be observed that the data points in this

visualization are clearly separated. Consequently, using the features extracted by the

proposed network will be easy to recognize the labels of the data points.

-50 0 50

-80

-60

-40

-20

0

20

40

60

80
Current signal phase 1

N

O

I

-50 0 50

Current signal phase 2

N

O

I

-50 0 50

Features extracted by CNNs

N

O

I

FIGURE 4.8: Feature visualization

To more deeply evaluate this proposed bearing fault diagnosis method, we considered

three more operating conditions of the test-bed. Three data sets A, B, and C are ob-

tained from three operating conditions as in Table 4.1. Data set A corresponding to the

operating condition No. 1 was used in the previous experiments. We then conducted

the same experiments with data sets B and C. The experimental results are shown in

Figure 4.9 and Table 4.6.

TABLE 4.6: Results of fault diagnosis in different data sets

Accuracy (%)
Diagnosis method A B C

co Use CS1 signal 95.2 90.93 87.6
co Use CS2 signal 93.07 86.53 93.06
co Use CS1 & CS2 signal, MLP based IF 98.3 96.7 96.8
co Use CS1 & CS2 signal, SVM based IF 98 96.13 97.86
co Use CS1 & CS2 signal, kNN based IF 97.07 96.13 96.8
co Use vibration signal 99.47 98.8 98.93

It can be observed that, in the current-signal-based approach, if the single current phase
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FIGURE 4.9: Fault diagnosis accuracy in three data sets

1 or phase 2 is used separately, the fault detection accuracy is low, the average value

is just about 91.07 %. However, if the IF technique is used to merge information from

two phases of the current signal, the accuracy increases significantly, up to 98.3%. Com-

pared to the vibration signal-based method whose accuracy is up to 99.47 %, the per-

formance of our proposed method is slightly lower.

Compared to other existing works based on the motor current signal in [13] and [80],

our proposed method has much better performance. As mentioned in section 4.1, using

the same bearing data source as that one used in this paper, these works employed the

traditional feature extraction methods and could not achieve satisfactory performance

(the fault detection accuracy are 93.3 % and 91.42 % respectively).

4.4 Conclusion

Since the existing current-signal-based works can not supply satisfactory performance,

external bearing fault diagnosis often employed the vibration-signal-based approach.

However, the vibration-signal-based approach has two major drawbacks: requiring ex-

ternal expensive vibration sensors and requiring direct access to the machine. This
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chapter presents a current-signal-based bearing fault diagnosis using a DL algorithm -

CNN and a novel decision-level IF technique. The proposed method is not only cost-

effective and noninvasive but also achieves satisfactory performance. Moreover, the

use of DL to extracting features from the raw signals does not require hand-craft fea-

ture extraction. With these advantages, the proposed bearing fault diagnosis method is

promising to be applied in actual applications.
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Chapter 5

Wide Deep Neural Network

Structure

5.1 Introduction

In traditional signal-based fault diagnosis, extracting fault features from multiple do-

mains of signals is a popular approach. In can be observed that one common point in

current DL based fault diagnosis methods is that their DNN models only attempt to

extract features from a single domain of vibration signals, such as time domain [87],

frequency domain [64], or time-frequency domain [22]. This point may be a drawback

since the goal of feature extraction is to extract as much information as possible from

the signal. Moreover, it is shown that multiple domain feature models can achieve

better performance compared to single domain feature models [88]. Based on this ob-

servation, in this paper, a bearing fault diagnosis method based on the multiple domain

feature model approach is proposed. First, a new method transforming the vibration

signals into high dimensional data is proposed. In this method, the vibration signals

are simultaneously converted into time domain images and time-frequency images.

This representation type of vibration signal is named here as multiple-domain image-

representation (MDIR) data. A CNN based deep model named wide deep neural net-

work (WDNN) is proposed to classify the MDIR data. The proposed DNN has two

main characteristics. Firstly, it inherits the deep learning ability of DL. Secondly, it has

a wide structure to extract features from multiple domains of signals simultaneously.

More details of the MDIR data and the WDNN are explained in sections 5.2.1 and 5.2.2
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of this paper. The task of signal-based fault diagnosis is now considered as the task of

image classification.

5.2 Method development

5.2.1 Multiple-domain image-representation of vibration signal

Originally, the vibration signal is time-series data, which is a 1-D data form. A new

method to represent vibration signals in high dimension is proposed. It is motivated

by the three following facts:

1. It may be easier to understand and mine information in high dimensional data

[68].

2. CNN and its variants are suitable for the task of recognizing two-dimensional

visual patterns [67].

3. By transforming the signal into visual data, the task of fault diagnosis can be

converted into the task of image classification.

The vibration signal will be transformed into a time domain image by a simple method

proposed by D. Nguyen et al. in [69]. Consider a signal x(i) with the number of samples

is n2, all samples in the signal are rearranged into a square matrix with a size of n× n

as follows:

[
x1 . . . xn2

]
→



x1 x2 . . . xn

xn+1 xn+2 . . . x2n
...

...
. . .

...

x(n−1)n+1 . . . . . . xn2


(5.1)

Then the obtained square matrix is normalized to range [0.0− 1.0] by the linear nor-

malization:

Iij =
Xij −min(X)

max(X)−min(X)
(5.2)

The normalized sample Iij, i, j ∈ [0, n] is placed at the row i, column j of the matrix.

The corresponding time domain image consists of pixels that are normalized samples

of the corresponding signal as shown in Figure 5.1.

Doctoral thesis - University of Ulsan



Chapter 5. Wide Deep Neural Network Structure 54

normalize

n x n matrix time domain image

FIGURE 5.1: Time domain image transformation

The time-frequency image representation is based on the continuous wavelet transform

(CWT). A mother wavelet is a function ψ(t) with zero average (i.e.
∫

R ψ− 0), normal-

ized (i.e. ||ψ|| = 1), and centered in the neighborhood of t = 0 [89]. Scaling ψ(t) by a

positive quantity s, and translating it by y ∈ R, a wavelet family can be defined as:

ψu,s(t) :=
1√

s
ψ

(
t− u

s

)
, u ∈ R, s > 0 (5.3)

Given x(t) ∈ L2(R), the continuous wavelet transform of x(t) at time u and scale s

(which inversely relate to frequency) is defined as:

W(s, u) := 〈x(t), ψs,u〉 =
1√

s

∫
x(t)ψ∗

( t− u
s

dt
)

(5.4)

where ψ∗ denotes the complex conjugate of ψ. CWT decomposes the input signal x(t)

into a series of wavelet coefficients. The scalogram of x(t) is defined by the function:

S(s) := ||W(s, u)|| =

√∫ +∞

−∞
|W(s, u)|2du (5.5)

If a time interval [t0, t1] needs to be considered, the corresponding windowed scalogram

is defined by the function:

S[t0,t1](s) := ||W(s, u)||[t0,t1] =

√∫ t1

t0

|W(s, u)|2du (5.6)
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In other words, the scalogram is the absolute value of the CWT of a signal, plotted as a

function of time and frequency, as shown in Figure 5.2.

FIGURE 5.2: Scalogram of vibration signal

By combining two transformation, each vibration signal is transformed simultaneously

into image form: the time domain image and the time-frequency domain image is

shown in Figure 6.2. This representation of vibration signal is named as multiple-

domain image-representation (MDIR). By using MDIR data, the problem of fault diag-

nosis based on vibration signal now can be considered as a task of image classification.

Sc
ale

MDIR data

FIGURE 5.3: MDIR data of vibration signal

5.2.2 Proposed wide deep neural network

In the previous section, the multiple-domain image-representation (MDIR) of the vibra-

tion signal has been described. To handle the MDIR data, a wide deep neural network

(WDNN) is proposed. The structure of WDNN is shown in Figure 5.4.

The proposed WDNN consists of several types of layers, includes convolutional layer,

batch normalization layer, pooling layer, feature fusing layer, dense layers, and softmax
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FIGURE 5.4: Wide deep neural network

layer.

Convolutional layer based on the convolution operation is the most important layer

type which has been employed in many well-known DNN models such as LeNet [90],

AlexNet [46], VGGNet [91], ResNet [92], and DenseNet [93]. The convolutional layer

convolves the input with its kernels and feeds the obtained result into the activate func-

tion to generate the output. Consider a convolutional layer with m kernels, the input

has n feature maps. The output of that layer can be calculated as follows:

yi = f
( n

∑
j=1

wi ⊗ xj + bi

)
, i = 1 : m (5.7)

where f denotes the activate function. Nowadays, Rectified Linear Unit (ReLU) is ex-

tensively used in DNNs as activate function since it is simple and easy to compute. The

equation of ReLU function is as follows

f (x) = max(0, x) (5.8)

Batch normalization layer exploited batch normalization technique proposed in [94]

to improve the training process of DNNs. Consider the input with n feature maps

x = (xi, ..., xn). First, the input feature maps are normalized independently to have the

zero mean and one variance.

x̂i =
xi − E[xi]√

Var[xi]
(5.9)
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then the output is calculated by:

yi = γi x̂i + βi (5.10)

where γi and βi are introduced to scale and shift the normalized the input feature maps.

Batch normalization ensures the transformation inserted in the network by represent-

ing the identity transform.

Pooling layer reduces the dimension of the input feature maps. The dimension reduc-

tion operation can be conducted by max or average operation. Pooling layer computes

the max value or average value of a group of neurons at the previous layer.

Three layers including one convolutional layer, one batch normalization layer, and one

pooling layer are grouped successively to construct a CBP module. Assume that a CBP

module with a convolutional layer with m kernels. With the input feature map xn×k×k,

the output of the CBP module will be ym×t×t where t = k/2.

As shown in Figure 5.4, the proposed WDNN has two branches. While branch I han-

dles the time domain images, branch II handles the time-frequency domain images of

the vibration signals. Each branch consists of several CBP modules. Two branches si-

multaneously extract features from the input MDIR data, generate two types of feature

maps. After that, the feature fusing layer will fuse these feature maps to generate a

single one and forward it to the next part of the network. The operation of the feature

fusing layer is described as follows:

x = C(xt, x f ) (5.11)

where C denotes the fusing operation of the layer; xt, x f are the feature maps extracted

by branches I and II, respectively. Assume that xt and x f has sizes m × (n × n) and

a× (b× b), respectively. First, the two feature maps will be flattened to have size 1×

(m ∗ n2) and 1× (a ∗ b2), respectively. The output of this layer x will have size 1× (m ∗

n2 + a ∗ b2).

Dense layer is a traditional perception neural network. The purpose of using a dense

layer is to collect all features from the previous feature map. The generated feature map
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of this layer will be used for the classification task, which will be done by the softmax

layer. With an input feature map x, the softmax layer computes the probabilities:

pj =
exp(wi ∗ x)

∑N
j=1 exp(wi ∗ x)

(5.12)

where N is the number of classes in the classification task. The softmax function calcu-

lates the probabilities of each target class over all target classes.

The loss function of WDNN is calculated by cross entropy loss as follows:

L(q, p) = −
N

∑
j

qj log(pj) (5.13)

where q is the true label of the input data, p is the output of softmax function. N is the

number of classes in the classification task.

Testing
set

Vibration
signal
dataset

Training
set

training

trained
CNN

CNN

testing Fault
prediction

FIGURE 5.5: Diagram of proposed bearing fault diagnosis method

Using the MDIR data and WDNN, the proposed fault diagnosis method is illustrated

as in Figure 6.1. As shown in the diagram, the original fault signals are transformed

into MDIR data. Then the obtained dataset is split into training set and testing set.

The WDNN is trained with the training set by back-propagation algorithm. Using the

stochastic gradient descent with momentum, the weights of WDNN are updated by the

equations

vt = βvt−1 + (1− β)∇wL (5.14)

w = w− αvt (5.15)

where α denotes the learning rate, β is the momentum parameter.
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5.3 Experimental study

5.3.1 Signal pre-processing

In the data source supplied by CWRU, each bearing condition fault signal is measured

and stored in a single file. Then there are 10 different signal files corresponding to

10 bearing conditions. In the intelligent fault diagnosis approach, classifiers require

data samples to be trained. Therefore, the original signal files are split into equal sig-

nal samples. Each signal sample must contain enough sampling points to convey the

information of the bearing status, that is, if the length is too short, the signal sample

can not reflect the bearing health status. Normally, the sample length is selected to be

equal to one revolution of the rotary shaft. In this work, the rotary speed of the shaft is

S = 1796 rpm. Accordingly, the rotary frequency is S f = 1796
60 ≈ 30 Hz. In the CWRU

test-bed, the sampling frequency F = 12000 Hz. The minimum value of the sample

length is F
S f

= 400 (sampling point). As mentioned in Section 5.2.2, in the proposed

method, there is a step where signal samples are transformed into gray images and ap-

ply CNN-liked neural network to classify. Therefore we aim to make a MNIST-liked

data set where each image has a size of 1 × 28 × 28. Therefore, the length of signal

samples is selected at the value of 28× 28 = 784. The time domain image has the size

of 1× 28× 28.

The time-frequency domain image conversion exploits CWT using the Morse wavelet

function. To deal with the time-frequency domain image, the obtained time-frequency

images are scaled to a size of 3× 224× 224. The MDIR data of the vibration signals

with ten labels are obtained as shown in Figure 5.6.

From each original signal files, 300 data samples are obtained. Accordingly, the 10-class

classification task is balance since each class have 300 data samples. For each label, the

image data are split randomly with the ratio 7:3 for the training set and the test set.

5.3.2 Design and train the proposed DNN

The structure of the proposed WDNN is designed as follows. First of all, the number of

branches is 2 corresponding to two types of input images. The input sizes of branches
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FIGURE 5.6: MDIR data of vibration signals

have to be suitable for the input images. Therefore, the first branch has the input size

of 1× 28× 28, the second branch has the input size of 3× 224× 224. The kernel sizes of

convolutional layers and pooling layers are 3× 3 and 2× 2 respectively. The number of

kernels in convolutional layers are selected by a simple rule. Start with a small number

of kernels in the first layer and double that number in the next layer. The first convolu-

tional layer has 8 kernels, the second layer has 16 kernels, the third layer has 32 kernels,

and so on. Each module CBP consists of 1 convolutional layer, one batch normalization

layer, and one pooling layer. Since we use the zero padding method in convolutional

layers and the kernel size of 2× 2 in pooling layers, after each module CBP, the size

of data will decrease by the factor of 2. The number of CBP modules is increased by 1

until the size of the output data is an odd number. In the first branch, 2 module CBPs

are used. In the second branch, 5 module CBPs. The proposed WDNN has the config-

uration as shown in Figure 5.7. Branch I that consists of two CPB modules handles the

time domain images. Branch II uses five CBP modules to handles the time-frequency

domain images. The output of branch I has a size of 16× 7× 7. The output of branch

II has a size of 128× 7× 7. These two outputs are fed into the feature fusing layer to
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FIGURE 5.7: Configuration of WDNN

generate the output data with size of 1× 7056. Then three successive dense layers are

used to learn from the fused feature map. Finally, a softmax layer with ten outputs is

used to classify the feature map generated by the third dense layer.

The WDNN is trained by mini batch stochastic gradient descent with momentum algo-

rithm, the learning rate α = 0.001, the momentum β = 0.9, and the batch size b = 10.

The training-testing process of the network is conducted using the k-fold validation

method where k = 5.
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5.3.3 Fault diagnosis result

Three other bearing fault diagnosis methods are adopted to make comparisons with the

proposed method as follows. The first method is published in [22]. In this method, the

deep transfer learning technique is utilized to transfer the very deep neural network

(Alexnet) pre-trained in the image classification domain into the domain of bearing

fault diagnosis. The vibration signals are transformed into image form by using CWT.

The second method is published in [87]. This method using Lenet-5 which is a classi-

cal type of CNN in [95]. In this method, each sample of vibration signal is rearranged

into a square matrix. The third method is published in [66]. This method utilizes the

1-D form of CNN, which can process the vibration signal samples directly in 1-D form

without any transformation. All methods are trained and tested with the 5-fold valida-

tion scenario with the same bearing data source. Under each operating condition of the

bearing test-bed, one corresponding bearing data set is obtained. Accordingly, a total

four bearing data sets are prepared to evaluate the bearing fault diagnosis methods.

TABLE 5.1: Accuracy of Compared Methods Using 5-fold Validation Un-
der Different Load Conditions

Proposed method Method in [87] Method in [22] Method in [66]
Fold 0 hp 1 hp 2 hp 3 hp 0 hp 1 hp 2 hp 3 hp 0 hp 1 hp 2 hp 3 hp 0 hp 1 hp 2 hp 3 hp

1 99.67 100 100 100 100 99.67 100 99.83 99.17 99.83 100 99.0 95.83 99.17 99.67 98.33
2 100 99.67 99.67 100 100 99.83 100 100 98.5 99.83 100 99.83 99.5 96.83 98.5 96.83
3 100 99.33 100 99.67 100 100 99.83 100 99.83 99.67 99.67 97.83 95.67 95.5 95.5 99.33
4 100 99.67 99.33 100 100 99.67 99.5 100 99.67 99.83 99.33 99.67 98.83 96.33 95.5 99.33
5 99.83 99.83 100 100 99.0 100 100 100 99.33 99.33 98.67 99.5 98.55 95.67 98.67 98.33

Mean 99.9 99.7 99.8 99.93 99.8 99.83 99.87 99.97 99.3 99.7 99.53 99.17 97.68 96.7 97.57 98.43
Std 0.13 0.22 0.27 0.13 0.4 0.15 0.19 0.07 0.46 0.19 0.5 0.72 1.6 1.32 1.73 0.92

The accuracy of all methods is shown in Table 5.1 and Figure 5.8. It can be observed

that in all cases of load conditions, the proposed method and the Alexnet-based method

in [22] achieve the best performance. The two methods have high mean accuracy and

small standard deviation. The Lenet5-based method in [87] has a little lower accuracy.

The CNN1D-based method in [66] has the poorest performance with low mean accu-

racy and big standard deviation.

Deep neural networks often consist of a huge number of trainable parameters. There-

fore, the training and validating of deep neural networks require a considerable amount

of time. However, the training and validating time is not a big problem thanks to the

popularity of powerful computing hardware and this process can be conducted offline.
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FIGURE 5.8: Mean accuracy (%) of methods under different load condi-
tions

The more important aspect should be considered is the processing time. This time is

defined as the amount of time for a trained model processes a signal sample to predict

the label of that sample. The processing time reflects the ability of the model in detect-

ing bearing faults in real time. As shown in Table 5.2, the proposed model consists of

2 branches with over 7.3 millions trainable parameters. The model in [22] has the most

parameters - over 61 millions. The processing time measured in millisecond (ms) of

all methods are not much different. Obviously, the model in [22] requires the longest

processing time since it consists of a huge number of parameters.

TABLE 5.2: Comparison of Model Complexity

Model Proposed model [87] [22] [66]
Branch 2 1 1 1
Parameter 7,338,842 61,100,840 3,028,426 566,670
Time (ms) 2.98 3.59 2.12 2.23
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5.3.4 Evaluation under noisy conditions

The bearing data set supplied by CWRU has been extensively employed as a bench-

mark for evaluating bearing fault diagnosis methods. Recently, the proposed fault di-

agnosis methods with advantage signal processing and feature learning techniques can

achieve very high accuracy. It is not easy to highlight the performance of the newly

proposed fault diagnosis methods. Therefore, noise signals are often added into the

original signals to evaluate methods. This way can help to evaluate the robustness of

fault diagnosis methods under more challenging conditions. In this scenario of eval-

uating diagnosis methods, Gaussian white noise (AGWN) is added into the original

vibration signals as in Figure 5.9.
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FIGURE 5.9: Noise signal

The signal-to-noise ratio (SNR) is defined to measure the level of the obtained noisy sig-

nal to the level of the additional Gaussian noise. The SNR of a noisy signal is computed

as follows:

SNR = 10 log
(

Psignal

Pnoise

)
(5.16)

where Psignal and Pnoise are the power of signal and noise, respectively. Eight noise levels

Doctoral thesis - University of Ulsan



Chapter 5. Wide Deep Neural Network Structure 65

(dB) in the range of [−8,−7, ...,−1] are taken into account. The comparison is illustrated

in Figure 5.10.

In the previous Section, all compared methods achieved very high diagnostic accuracy

when the inputs are the original signals. However, when the input signals are trans-

formed by adding noisy signals, their performance decreases dramatically. Obviously,

the noise makes it harder to extract fault signatures from the signals. It can be observed

that, at the severest case (-8 dB), the methods in [87] and [66] are totally fail since their

accuracy are under 50%. The trend of all methods’ performance is, higher the noise

level, lower the accuracy of the diagnosis result. Among all methods, the proposed

one achieves the best performance with good robustness against noise. Even under the

worst noise case (-8 dB), it achieves the accuracy of 57 %. Comparing the structures of

all methods, we can see that the method in [22] only takes care of the time-frequency

domain features; the methods in [87] and [66] only consider the time domain features.

The difference of the proposed methods is that it can receive multiple feature domains.

As a result, the proposed method can extract more robust features from signals in noise

conditions. So it can be concluded that the proposed network with a wide deep struc-

ture can extract fault features more effectively even under severe noise conditions. That

leads to better diagnostic performance compared to other DNNs.

5.4 Conclusion

This chapter proposed a novel method of bearing fault diagnosis based on the vibra-

tion signals. By using simple transformation methods, time-series vibration signals are

transformed into high dimensional data form (MDIR). By using this transformation, the

task of fault diagnosis becomes the task of image classification. A novel DNN with wide

structure is proposed to handle the MDIR data of vibration signal, named WDNN. The

proposed WDNN inherits the advantages of CNN in processing high dimensional data.

In addition, WDNN has a wide structure with two branches, which can simultaneously

extract features from time domain and time-frequency domain.
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FIGURE 5.10: Diagnosis accuracy of 4 methods under different noise lev-
els (load condition: 2 hp)
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Chapter 6

Transfer Learning

6.1 Introduction

Transfer learning (TF) is a method in ML where a model designed for a task is reused

for another task. Designing and training a new DNN model from scratch is difficult and

requires a huge number of labeled data. Using TF in ML applications does not require

much labeled data for training since it can utilize DNN models from another domain.

As a result, TF helps to save time for designing and training DNNs from scratch.

Motivated by the advantages of TF, this chapter proposed a signal-based bearing fault

diagnosis using TF. The well-known Squeezenet [96] which was trained on the image

classification domain, is utilized to extract fault features from vibration signals mea-

sured by multiple sensors. From each signal source, a corresponding fault feature set

is obtained. Then each feature set is classified to generate a conclusion about the fault

type. The conclusions from multiple feature sets may be different. At the final step, the

Dempster-Shafer theory is employed to combine all classification results to generate a

final conclusion about the bearing type.

6.2 Method development

6.2.1 Transfer learning

Transfer learning is a ML technique that involves transferring the knowledge learned

in a domain to another domain. In practice, it is common to pre-train a network on a
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data set, then use that network either as an initialization or a fixed feature extractor for

the task of current interest [97]. There are two main scenarios of transfer learning as

follows:

(a) Fine-tuning the pre-trained network by continuing the back-propagation training

process with the data set of the new task. It is possible to fine-tune all layers of

the network or to fine-tune only some selective layers of the network.

(b) Only using the design of the network and train the whole network from scratch

with the data set of the new task. This scenario often requires much more time for

training compared to the fine-tuning scenario.

(c) Using the pre-trained network as a fixed feature extractor by freezing all layers of

the network except the final layer but replacing the last one with a new one that

respects the number of classes in the new task.

6.2.2 Dempster-Shafer evidence theory

Dempster-Shafer evidence theory (DSET) provides a method to combine information

from multiple sources and measure the confidence that a given event occurs. Consider

a set of n events Θ = {θ1, θ2, , ..., θn}. The power set of Θ which consists of all its

subsets is denoted by 2Θ. The basic probability assignment (BPA) of Θ is defined as a

mapping m : 2Θ → [0, 1] which satisfies:

m(∅) = 0

∑
A⊂Θ

m(A) = 1
(6.1)

The BPA function m(A) reflects the confidence or the degree of evidence supporting the

proposition A. Accordingly, the belief function BEL(A) and the plausibility function

PL(A) reflect the trust and the doubted degree of A, respectively, are defined as follows:

BEL(A) = ∑
A⊂Θ

m(A) (6.2)
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PL(A) = ∑
A 6⊂Θ

m(A) (6.3)

Consider two BPA functions m1 and m2 obtained from two information sources, the

DSET based fusion algorithm is defined as:

m(∅) = 0 (6.4)

m(A) =
1

1− K ∑
B∩C=A

(6.5)

where K represents the amount of conflict between the two sources computed by:

K = ∑
B∪C=∅

m1(B)m2(C) (6.6)

6.2.3 The proposed bearing fault diagnosis method

In this work, a bearing fault diagnosis method using TF and DSET is proposed. The

overall procedure is illustrated in Figure 6.1.

Pre-trained
Squeezenet

SqueezenetVibration signal
from sensor 1

Time-frequency
representation

Vibration signal
from sensor n

Time-frequency
representation Squeezenet

Classification
result 1

Classification
result n

DS
evidence

theory
Final

conclusion

FIGURE 6.1: The proposed fault diagnosis method

As shown in Figure 6.1, Squeezenet is adopted to transfer to the fault diagnosis task.

Squeezenet is a DNN model initially proposed for the image classification task [96]. The

network consists of 18 layers can classify images into 1000 different labels. The network

is trained on a data set of more than a million images from the ImageNet database [98].

As mentioned in 6.2.1, there are three ways to apply TF including training the network

from scratch, fine-tuning the pre-trained network, and freezing the network to use it

as a fixed feature extractor. In this current work, the source task of the network is
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image classification, while the target task is fault diagnosis. The two tasks are quite

different domains. Therefore, the scenario of fine-tuning the network by the data set

bearing fault signal is selected. The last layer of Squeezenet is replaced with a new

one that suitable for the number of fault types of bearing. Originally, the inputs of

Squeezenet are images with a size of 224 × 224 × 3. To use the network in the fault

diagnosis task, the fault signals which are time-series data are pre-processed to have

the size that suitable for the receptive input of Squeezenet. Wavelet transform (WT)

is exploited to represent the time series data into 2-D form. The wavelet transform

WTx(b, a) of a signal x(t) can be described as [99]:

WTx(b, a) =
1√
a

∫ +∞

−∞
x(t)φ(

t− b
a

)dt, (6.7)

where a is a scale parameter, b is the time parameter, and φ is the mother wavelet.

Figure 6.2 shows a time-frequency representation of a bearing vibration signal.

FIGURE 6.2: Time-frequency representation of vibration signal by
wavelet transform

The new data sets obtained by WT are used to fine-tune the pre-trained Squeezenet.

After being fine-tuned, each network has its own prediction about the label of the in-

put data. For the sake of simplicity in explaining the proposed method, assume that

there are two different sensors that measure the fault signals. From each signals source,
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each fine-tuned network will have a prediction about the probability of fault occur-

ring. Assume that there are N types of faults labeled as F1, F2, ..., FN . The first fine-

tuned network will generate the probabilities p1(Fi) that satisfy ∑N
i=1 p1(Fi) = 1. Sim-

ilarly, the second fine-tuned network will generate the probability p2(Fi) that satisfy

∑N
i=1 p2(Fi) = 1. To employ DSET fusion, the probabilities p1 and p2 are considered

as two BPA functions m1 and m2, respectively. Then the equations 6.4, 6.5, and 6.6 are

used to compute the fused BPA functions m(Fi). The final conclusion is generated by

finding the value max(m(Fi)).

6.3 Experimental study

6.3.1 Pre-processing vibration signal

Vibration signals are measured by accelerometers attached to the housing with mag-

netic bases. Obtained signals are sampled at frequency 12000 Hz. Ten types of vibration

signals are recorded and labeled as in Table 6.1.

TABLE 6.1: Signal labels

Bearing condition Fault size (mils) Label
Normal 0

Inner race fault 7 1
Inner race fault 14 2
Inner race fault 21 3

Ball fault 7 4
Ball fault 14 5
Ball fault 21 6

Outer race fault 7 7
Outer race fault 14 8
Outer race fault 21 9

Two different accelerometers are installed at the fan end (FE sensor) and the driver end

(DE) sensor to measure vibration signals. Ten types of bearing vibration signals of four

types of bearing conditions with different fault sizes are shown in Figure 6.3. Each

sample signal is transformed into time-frequency representation. This type of time-

frequency representation can be considered as an RGB image with a size of 224× 224×

3. After the transformation of all signal samples into time-frequency images, the image

data set consisting of 3000 images is obtained. The image data set is split randomly
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FIGURE 6.3: Vibration signals (DE sensor)

by each class into three subsets: the training data set (2400 images) and testing data

set (600 images). The same time-frequency samples of vibration signals are shown in

Figure 6.4.

FIGURE 6.4: Time-frequency representation of vibration signals (DE sen-
sor)
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6.3.2 Fine-tuning pre-trained Squeezenet

The last layer of Squeezenet is replaced by a new layer with 10 outputs corresponding

with 10 types of bearing signals need to be classified. Two scenarios are considered:

fine-tuning the pre-trained network and training the network from scratch. Two sce-

narios use the same mini-batch stochastic gradient descent with the learning rate of

0.001, the momentum of 0.9, and the batch size of 10. The training processes are shown

in Figure 6.5. It can be observed that, if the pre-trained network is fine-tuned, it quickly

converges in both cases of using DE data and FE data. On the other hand, if the network

is trained from scratch, the networks converge slowly.
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FIGURE 6.5: Fine-tuning and training loss

6.3.3 Experiment result

In actual applications, especially in the industry, the measured signals are severely con-

taminated by noise. Noise component in measured signals makes it is difficult to extract

the feature and reduce the fault detection accuracy. There, the robustness in the noisy

environment of fault diagnosis methods is worth to study. Therefore, in experiments,

the additive Gaussian white noise (AGWN) is added into the original vibration signals

to mimic the noisy environment. After being added AGWN, the signal-to-noise ratio
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(SNR) of the signal is defined as:

SNR = 10 log10

(
Psignal

Pnoise

)
(6.8)

where Psignal and Pnoise are the power the signal and the AGWN, respectively. Eight

levels of SNR from −8 dB to −1 dB are considered.

The proposed method is compared with several other fault diagnosis methods. The

first method uses a convolutional neural network (CNN) to classify a time-frequency

image representation of vibration signals. The second method uses neural networks

(NNs) to classify the feature sets extracted by WT in time-frequency domain of vibra-

tion signals. This method also uses DSET to fuse the results of two NNs to generate a

final conclusion. The classification accuracy of all methods are shown in Figure 6.6. It

can be observed that with the original signals (no adding AGWN), all methods achieve

very high accuracy, almost 100 %. However, the more severe the noise level, the lower

accuracy of all methods. It is easy to see that the CNN method has the worst robustness.

In the worst case where SNR = −8 dB, the CNN method with both case DE and FE

sensors only achieves the accuracy of about 30 %. The proposed method using TF with

single sensor DE of FE (without DSET based fusion) achieves quite good performance.

In the case of using DSET, the best performance is achieved. In can be observed that,

even in the worst case where SNR = −8 dB, the proposed methods with TF and DSET

achieve the accuracy of about 82 %.

6.4 Conclusion

In this chapter, a bearing fault diagnosis method based on transfer learning and DS

evidence theory is proposed. The proposed fault diagnosis method achieves very high

accuracy. In addition, the proposed method has very good robustness against noise sig-

nals. The experiment in this work is conducted with multiple vibration signal sources

which are measured by two different accelerometers. However, the proposed method

also has the ability to be applied for different types of signal together, such as acoustic

emission signals, current signals, and so on.
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FIGURE 6.6: Fault diagnosis accuracy under noisy environments
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Chapter 7

Conclusion

The ultimate goal of this study is to enhance the ability and performance of deep lean-

ing and deep neural networks in bearing fault diagnosis. Several novel diagnosis meth-

ods are proposed. During this research, the following findings are successfully applied

for bearing fault diagnosis.

• Automatically feature learning by deep neural network overcomes the conven-

tional hand-crafted feature engineering in the accuracy aspect. Moreover, deep

neural network feature learning does not require knowledge domain expert and

human labor.

• By transforming bearing signals (vibration or current) into higher dimensional

data (vibration image, multiple-domain image-representation), the task of bear-

ing fault diagnosis is transformed into the task of visual data classification, which

can utilize the power of convolutional neural networks.

• Not only deep neural network (more number of network layers), but also wide

neural network (more number of input layers) can enhance the feature learning

ability of neural networks.

• Information fusion can distill and fuse multiple neural networks. As a result, the

fault diagnosis actuary is increased.

• Transfer learning can partly solve the difficulty of designing and training a new

DNN model from scratch.

The following issues should be considered in future work:



Chapter 7. Conclusion 77

• Extend the application of deep learning to another type of signals, such as acoustic

emission, temperature signals.

• Condition monitoring is the process of monitoring the current condition and pre-

dicting the future condition of machines while in operation. In this thesis, only

the fault detection and classification problems were studied. It means only the

current condition is observed. Predicting the future condition is referred as fault

prognostics. Prognostics of machine faults have the potential to give the great-

est economic benefit from condition monitoring. Thus, the fault prognostic for

machines should be focused on in future work.
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