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Abstract

The study reported in this thesis develops TSMCs for uncertain nonlinear systems and
their applications to robotic manipulators that plays a very critical role in modern con-
trol technology. The central motivation of this thesis is to significantly improve trajectory
tracking precision and to overcome the limitations of SMC-based methods and TSMC-
based methods for several classes of uncertain nonlinear systems in presence of external
disturbances and uncertain dynamics, or even undesired faults. These proposed control
methodologies are developed based on SMC, SC, TSMC, NFTSMC, FLS, STA, NNs,
observer-based controllers, and AC. The fundamental theoretical procedure is the foun-
dation of the asymptotic stability based Lyapunov theory underpinned by the Lipschitz
condition in the ordinary differential equations and finite time control method. The main
applications of the proposed control methodologies are to apply to uncertain mechanical
systems and robotic systems, in which external disturbances and uncertain dynamics are
required to be bounded and to satisfy the suitable condition.
The proposed control algorithms are designed to achieve the following major advan-

tages such as simple design, fast transient response, defined time convergence, robustness
against uncertainties, high tracking accuracy, and stabilization with small steady-state
errors. These proposed control algorithms can reject some/all of the limitations in con-
ventional SMC or TSMC such as reaching phase glitch and the singularity problem. They
can also avoid/ eliminate/ attenuate the effects of chattering behavior and the require-
ment for prior information about the upper bound of external disturbances and uncertain
dynamics as well as the necessity for an exact mathematical model. Especially, some the
designed controllers have estimate ability and fault tolerance.
The proposed control algorithms were applied for trajectory tracking control and FTC

of parallel and serial robotic manipulators, or synchronization problem in motion control-
ling. The computer numerical simulation and experiment results are performed for 2-DOF
planar parallel manipulator, 3-DOF planar parallel manipulator, 2-DOF serial robotic ma-
nipulator, and 3-DOF Puma560 robot manipulator to demonstrate the effectiveness and
applicability of the proposed systems and to validate the theoretical derivation. More-
over, the designed control methodologies can be extended their applications to uncertain
high-order MIMO systems.
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Chapter 1

Introduction

1.1 Introduction

The faster the development of modern production systems is, the greater the requirements
are for speed, accuracy, reliability, and safety. Further, the more complex a technology
is, the more it needs to adopt more advanced technical systems, especially in mechanical
structures, sensor systems, electronic systems, and a significant drawback worthy of con-
cern is the delay of the mechanical system generated by friction. If uncertainty parameters
of a system are not accurately calculated and thoroughly resolved, they can reduce the
system performance [1–3]. Moreover, almost real applications express nonlinear dynamic
behavior, thus, the certainty is a subject that continues to challenge researchers and is
of practical promising importance for instantaneous and extensive applications. To deal
with all of the above constraints is a difficult challenge, requiring researchers to propose
solutions for performance enhancement. In detail, robust controllers with the ability to
counteract or compensate for undesirable terms disturbing the system needs to be devel-
oped. Once developed, the system’s performance, reliability, and safety will be enhanced.
The control problem of nonlinear systems is difficult for SISO. For MIMO nonlinear sys-
tems, the design of a controller is very complex due to the couplings among various inputs
and outputs. In general view, it is a real challenge to handle because of the effects of ex-
ternal disturbances and uncertain dynamics, which is not easy to know in advance [1–3].
During recent decades, considerable research efforts have been devoted to investigating
nonlinear control systems, and it has become an important topic. As reported in the
literature, several control algorithms have been successfully adopted to control uncer-
tain nonlinear systems. Noteworthy examples such as PD, PID controllers [4], [5], or
CTC [6, 7] for robotic manipulators. Those mentioned controllers were highlighted as
simple and monotonic methods for robot control. Unfortunately, those controllers do not
exhibit good control performance of highly nonlinear and uncertain control systems. Ac-
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cordingly, to handle external disturbances and uncertain dynamics and to improve the
control performance, recently, many nonlinear control methods have been proposed for
nonlinear systems such as the intelligent controllers [8–10], AC [11, 12], SC [13, 14], and
SMC [15–17] have been cited. These methods have the capability to achieve the control
target in spite of the existence of external disturbances and uncertain dynamics in the
controlled systems. Among these control approaches, SMC has the best properties to
control strongly against external disturbances and system uncertainties.
The SMC has been launched from VSS theory and developed by many researchers

[18–20]. The SMC has been a useful and impressive robust control methodology to cor-
rect deficiency from any kind of uncertainties or external disturbances for both linear and
nonlinear systems. Moreover, it has a fast dynamic response and a simple design. Con-
sequently, it has been widely applied in various real applications such as motors, DC-DC
converters, helicopter, aircraft, and robotic manipulators [21–24]. The design of SMC
control method includes two steps [16, 18]: firstly perform suitable sliding surfaces that
ensure the desired dynamics and then build up a discontinuous control principle that ob-
ligates the controlled variables to attain and maintain the sliding surface. Generally, the
operation of the conventional SMC includes two phases. In the first phase, the system is
forced to reach the sliding surface; this phase is usually called as reaching phase. Then,
in the second phase, the system is kept to maintain in the sliding surface in infinite time.
With the reaching phase in conventional SMC, the system state is driven from any initial
values to approach the sliding surface, in which the system is formed into the sliding
motion on the sliding surface. In this processing stage, the tracking control performance
can be reduced because the invariance properties against parameter variations cannot be
assumed during the reaching phase [18, 20]. Furthermore, this algorithm only stabilizes
the system asymptotically in the sliding phase following a linear sliding manifold method-
ology. From this point of view, the controlled variables cannot obtain the desired values
within a finite amount of time.
In 1990s, a new category of SMC called TSMC was originally published by Venkatara-

man and Gulati [25] and then advanced by Zhihong et al. [26] and Wu et al. [27]. Con-
trary to linear sliding surfaces, nonlinear sliding hyperplanes have exposed some advanced
properties in terms of high robustness, fast transient response, high tracking positional
accuracy, and finite-time convergence. Therefore, many applications have been developed
based on the TSMC method such as robotic control [26, 28], motor control [29], DC-AC
converter [30], spacecraft [31], TSMO [32], SOSMC, and so on [33–35]. Nonetheless,
this control algorithm does not exhibit good convergence when the controlled variables
are distant from the desired values. Specifically, the TSMC algorithm has encountered
the singularity drawback that causes complex-value, exponent, and a greater control ef-
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fort. Both of the above problems have been resolved in [36, 37]. The method in [38] not
only avoids the singular problem, but also entirely eliminates the reaching phase prob-
lem [18, 20] regardless of the initial states. Therefore, the system always in the sliding
mode, and the invariance property is guaranteed at all time. Moreover, the tracking error
convergence time to zero in a finite time that can be set arbitrarily. However, this method
has never been implemented in any real system.
Over the past decade, the finite-time control methods have attracted a great deal of

attention in the research community. To increase convergence speed once the controlled
variables are significantly different from the desired values, Yu and Zhihong [39] and Yang
and Yang [36] presented FTSMC. However, both of the above methods still encounter the
singularity drawback. So, to deal with this obstacle, several Non-singular TSM (NTSM)
methods [36, 37, 40] based on TSMC have been established. These techniques give faster
and finite-time convergence, and also impart advanced properties such as better robustness
against external disturbances and uncertain dynamics and higher precision performance
[41, 42]. Some control method have been proposed based on TSMC techniques [43, 44]
in addition, the combination of asymptotic stability and homogeneous properties results
in control methods with the finite-time stability [45, 46]. Practically, however, methods
based on FTSMC or NTSMC have only addressed one limitation, skipping the other
issues that limit conventional SMC. Therefore, NFTSMC [47–49] has been introduced.
With NFTSMC, the system states achieve fast finite-time convergence and avoid the
singularity problem. Another approach to improve the transient response of conventional
SMC is to use ISMC [50, 51]. One of the goals of this research is to achieve both finite
time convergences and fast transient response speed. Therefore, ISMC and TSMC can
be combined to establish ITSMC [52, 53]. However, ITSMC still has the drawbacks of
conventional SMC because the TSMC scheme is still included in the design of ITSMC.
It should be mentioned that two of the major challenges in designing a control system

according to SMC or TSMC is knowing the bounds of modelling disturbances and dynamic
uncertainties and computing an exact dynamic model, which is not known in advance for
practical systems. However, in traditional SMC and traditional TSMC, the drawbacks
have been considered individually or ignored. To approximate this unknown model, sev-
eral computing attempts have been proposed, such as NNs [8, 54–56] and FLSs [57, 58],
due to their approximation abilities. Moreover, many kinds of SMC and TSMC methods
using adaptive control have been introduced for the estimation of sliding gains [59–61]
because of the estimated ability of the adaptive laws without the need for unrealistic
assumptions.
Chattering behavior is an undesired issue in practical applications that rely on TSMC,

FTSMC, NTSMC, or NFTSMC with a high-frequency switching control term. This chat-
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tering behavior affects the control performance or can lead to instability of the control
system [20, 62, 63]. Therefore, some methods have been proposed to address this prob-
lem such as BLT [60, 64], HOSMC [64, 65], and DO [66] have been reported to cause a
reduction in chattering. Some of the techniques cause the loss of robustness and degrade
performance when eliminating the effects of the chattering behavior. And some other
intelligent control-based techniques are even quite complicated and only suitable to sim-
ple systems. Accordingly. the selection of suitable methods in rejecting the chattering
phenomenon is a significant challenge in this thesis.

1.2 Objective of the Thesis

Motivated by the above discussion, this thesis presents some advanced control methods for
nonlinear systems in presence of uncertainties and external disturbances based on TSMC/
NN/ SC/ STA/ FOSMC/ ISMC/ HOSMC/ AC/ FTC and Lyapunov theory to solve the
main purpose like ”tracking error convergence/stabilization/error synchronization of zero”
and simultaneously some/ all the following purposes:

• Avoiding the reaching phase problem as well as the singularity issue;

• Avoiding/Eliminating/Attenuating the effects of the chattering phenomena;

• Eliminating the need for a priori knowledge of the upper bounds of the system
uncertainties and an exact mathematical model;

• Applying the proposed control methods for various robotic manipulators;

• Estimate ability and fault tolerance.

• Designing the active, robust, simple, and adaptive control methodologies for real
applications.

• Extends the applicability for some classes of uncertain nonlinear systems;

• The convergence, the defined time stability, and the stability of the control system
can be confirmed by the Lyapunov criterion.

1.3 Outline of the Thesis

The thesis is organized as follows

• In chapter 1, Introduction, the research objectives and contributions are outlined.
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• Chapter 2 introduces a chattering-free, adaptive, robust tracking control scheme
for a class of second-order nonlinear systems with uncertain dynamics.

• Chapter 3 reports an adaptive neural integral full-order terminal sliding mode
control for an uncertain nonlinear system.

• Chapter 4 presents an adaptive terminal sliding mode control for robot manipula-
tors with non-singular terminal sliding surface variables.

• Chapter 5 suggests a new finite-time control solution for robotic manipulators
based on non-singular fast terminal sliding variables and the adaptive super-twisting
scheme.

• Chapter 6 proposes an adaptive neural non-singular fast-terminal sliding-mode
control for industrial robotic manipulators.

• Chapter 7 designs a neural integral non-singular fast terminal synchronous sliding
mode control for uncertain 3-DOF parallel robotic manipulators.

• Chapter 8 develops a novel fault-tolerant control method for robot manipulators
based on non-singular fast terminal sliding mode control and disturbance observer.

• Chapter 9 contains the conclusion of the thesis and further directions for future
research are suggested.
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Chapter 2

A Chattering-Free, Adaptive, Robust
Tracking Control Scheme for
Nonlinear Systems with Uncertain
Dynamics

2.1 Introduction

As reported in the literature, several control algorithms have been successfully adopted
to control uncertain nonlinear systems. Noteworthy examples such as PD or PID con-
trollers [4, 5], intelligent controllers [8, 10], adaptive controllers [11, 12], synchronization
controllers [13, 14], and SMC [15, 16] have been cited. Among these control approaches,
SMCs have the best properties to control strongly against perturbations and system uncer-
tainties. However, the classical SMC still has several weaknesses (e.g., significant chatter-
ing behavior due to the way to eliminate the chattering in SMC is still missing, undefined
time convergence, and ineffective adaptation with rapid variations of perturbations or
faults). To treat those obstacles, several recently improved controllers have been sug-
gested and adopted using a nonlinear sliding function in place of a linear sliding function.
Those control methodologies are called as TSMC [25,26,40]. Technically, TSMC carries a
defined time convergence but attaches a singularity matter. Additionally, when the state
variables are far from the desired path, TSMC provides a slower convergence time than
SMC. To treat the singularity matter thoroughly, NTSMC was established and success-
fully adopted in an effort to control nonlinear systems [37,67]. The remaining weak point
was fast convergence time, which led to FTSMC being applied to controlling uncertain,
nonlinear second-order systems [39,68,69]. Unfortunately, the methods based on NTSMC
and FTSMC only treat specific systems. Hence, to treat both singularity and fast con-
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vergence time simultaneously, NFTSMC system has been developed [36, 48, 59, 70]. As a
special consideration, undesired chattering occurred in practical systems whenever all the
above control approaches (e.g., TSMC, FTSMC, NTSMC, NFTSMC) were applied with a
large control gain in the corresponding reaching control law. A large amount of chattering
can limit the robust behavior of the control system and attenuate performance signifi-
cantly. For this reason, several capable algorithms such as BLT [60,64], HOSMC [64,65],
and DO [66] have been reported to cause a reduction in chattering. The weaknesses of the
above-mentioned techniques sometimes present a challenging trade-off between chattering
behavior attenuation and trajectory tracking accuracy, or else demanding an unrealistic
magnitude of initial control input. However, there is an effective method to eliminate
chattering behavior without the attenuation of the precision of the controlled system; the
method applies an integral of a switching term to give chattering-free behavior such as
FOSM [71]. It should be mentioned that all of the above-stated methods require prior
knowledge of the bounded value of the uncertainties. To overcome this dependence, many
kinds of SMC and TSMC methods using adaptive control have been introduced for the
estimation of sliding gains [60, 61] because of the estimated ability of the adaptive laws
without the need for unrealistic assumptions. Consequently, the motivation of our article
is to propose a chattering-free, robust tracking control method that simultaneously elim-
inates the disadvantages of SMC and TSMC methods. In detail, a robust controller for
uncertain nonlinear second-order systems must perform as follows:

• Removes the singularity weakness, provides fast convergence time, and states error
with small oscillation along with robust behavior.

• Removes the dependency on essential knowledge of the upper bounded constants of
unknown, uncertain terms.

• Gives chattering-free behavior without losing the robust behavior by adopting an
integral of a switching term and an adaptive updating law.

• The convergence, the defined time stability, and the suggested adaptive adjustment
law of the control system can be confirmed by the Lyapunov criterion.

The rest of this chapter is presented as follows. The problem statements facilitated for the
proposed PID-NFTSM function and the control law are presented in Section 2. Section 3
explains the design process of the suggested control method to obtain the desired output
performance and to reject chattering behavior from the classic SMC. In Section 4, the
suggested control method is applied to an uncertain nonlinear system [72]. Its simulated
performance tracks a desired path to be compared to those methods based on the classi-
cal SMC [15], [16] and TSMC [40] methods to investigate positional errors, convergence
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time, rapid response, and chattering behavior reduction. Finally, Section 5 gives some
conclusions of this paper.

2.2 Preliminaries and Problem Statements

This section presents some preliminary information and the problem statement, which is
necessary for the controlling design.
Lemma 2.1: [41]: Suppose that a continuous positive-definite function Λ (t) satisfies the
following inequality:

Ż (t) ≤ −αZ (t) , ∀t ≥ t, Z (t) ≥ 0, (2.1)

in which α > 0, 0 < γ < 1 are positive coefficients. Then for any given t0, Z(t0) the
following inequality is satisfied:

Z1−γ (t) ≤ Z1−γ (t0)− α (1− γ) (t− t0) , t0 ≤ t ≤ t1 (2.2)

with Z (t) = 0, ∀t ≥ t1, and t1 is computed by:

t1 = t0 +
1

α (1− γ)
Z1−γ (t0) . (2.3)

Lemma 2.2: ( [73], Jensen’s inequality). The following expression holds:

(
k∑
i=1

ϑβ2i

)1/φ2

≤

(
k∑
i=1

ϑβ1i

)1/φ1

, 0 < φ1 < φ2 (2.4)

with ϑi ≥ 0, 1 ≤ i ≤ k.

Consider the following general nonlinear second-order system with disturbances and/or
uncertainties ( [71]): {

Ẋ = X2

Ẋ2 = Π (X, t) + Φ (X, t)u∗ (t) + δ (X, t)
, (2.5)

where X =
[
X1, X2

]
∈ Rn denotes the system state vector. Π (X, t) ∈ Rn and

Φ (X, t) ∈ Rn×n are dynamic nonlinear smooth functions that have the corresponding
expression as Π (X, t) = Πn (X, t) + ∆Π (X, t) with Π (0) = 0, and Φ (X, t)u∗ (t) =

Φ (X, t)u (t) + Φ (X, t) ∆u (t). The term ∆Π (X, t) indicates structural variation of the
dynamic system, which is an uncertain term. The term of δ (X, t) indicates the distur-
bances and uncertainties, u∗ (t) is the actuation control input, u (t) is the designed control

9



CHAPTER 2. A CHATTERING-FREE, ADAPTIVE, ROBUST TRACKING
CONTROL SCHEME FOR NONLINEAR SYSTEMS WITH UNCERTAIN
DYNAMICS

value, and ∆u is the input signal uncertainty.
In this chapter, all anonymous terms are a function L (X,∆u, δ, t), which is termed as

the lumped system uncertainty and defined as:

L (X,∆u, δ, t) = ∆Π (X, t) + Φ (X, t) ∆u (t) + δ (X, t) . (2.6)

From Eq. (2.6), the dynamics system of Eq. (2.5) can be represented as:{
Ẋ1 = X2

Ẋ2 = Πn (X, t) + Φ (X, t)u (t) + L (X,∆u, δ, t)
. (2.7)

The central motivation of this chapter is that the proposed control system can provide
high tracking precision for the system (2.7). Here, stated variables in Eq.(2.7) can ap-
proach the sliding function in a defined time. Then, those variables converge along the
sliding function to the stable point regardless of disturbances and uncertainties.

The following constraint is assumed for the control approach design.
Assumption 2.1: There exists a known positive coefficient Γd such that the derivative
of the Ω (X,∆u, δ, t) function is bounded by∥∥∥∥ ddt (Ω (X,∆u, δ, t))

∥∥∥∥ ≤ Γd, (2.8)

where Ω (X,∆u, δ, t) will be explained after Eq. (2.15).

2.3 Design a Chattering-Free, Adaptive Robust

Controller Using The PID-NFTSM Function

This section presents the approach to investigate the good features of both the PID and
the NFTSM controllers as well as adaptive controllers. First, a new form of the sliding
function is introduced. Second, a control method with an integral of a switching term
and an adaptive updating law is designed to obtain the desired performance.
In this work, the PID sliding function is proposed as:

σ = KP s+KI

t∫
0

sdφ+KDṡ, (2.9)

where KP , KI , and KD correspond to the proportional, integral, and derivative gain,
respectively. σ ∈ Rn is the PID-NFTSM sliding function, s is the first order NFTSM
variable, and s is defined as [40]:
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s = X2 + κ1X1 + κ2 (X1)[ϕ] (2.10)

with 0 < ϕ < 1 a constant, κ1 = diag
(
κ11 ... κ1n

)
, κ2 =

(
κ21 ... κ2n

)
, (X1)[ϕ] =

sign (X1)ϕ, and sign (X1)ϕ is defined as [40]:
sign (X)ϕ1 =

[
|X1|ϕ1 sign (X1) ..., |Xn|ϕn sign (Xn)

]
, i = 1, 2.

The kth element of the sliding surface of Eq. (2.10) is expressed as:

sk = X2k + κ1kX1k + κ2k |X1k|ϕk sign (X1k) . (2.11)

The first derivative of the first order NFTSM variable (2.10) is calculated as:

ṡk = Ẋ2k + κ1kX2k + κ2kXqk, (2.12)

where

Xqk =

{
ϕk |X1k|ϕk−1 Ẋ1k, if X1k 6= 0

0, if X1k 6= 0
. (2.13)

Furthermore, Eq. (2.12) can be rewritten in the vector form as ṡ = Ẋ2 + κ1X2 + κ2Xq.
The PID sliding function (2.9) is based on the NFTSM variables of Eq. (2.10), and thus

it owns the values of both algorithms such as non-singularity, quick response, defined time
convergence, robustness with uncertainties, and small steady-state error. These features
are suitable and crucial for the controlling design because of its capability to compensate
and quickly stabilize uncertain systems.
Substituting the derivative of the NFTSM variable (2.11) into (2.9) gives:

σ = KP s+KI

∫
s+KD

(
Ẋ2 + κ1X2 + κ2Xq

)
. (2.14)

Substituting system (2.7) into (2.14) gives:

σ = KP s+KI

∫
s+KD

(
Πn (X, t) + Φ (X, t)u (t)

+L (X,∆u, δ, t) + κ1X2 + κ2Xq

)

= KP s+KI

∫
s+KD (κ1X2 + κ2Xq) +KD (Πn (X, t) + Φ (X, t)u (t) + L (X,∆u, δ, t))

= Ξ (X, s) + Ω (X,∆u, δ, t) +KD (Πn (X, t) + Φ (X, t)u (t))

,

(2.15)
where Ξ (X, s) = KP s+KI

∫
s+KD (κ1X2 + κ2Xq), and Ω (X,∆u, δ, t) = KDL (X,∆u, δ, t)

indicates the anonymous terms in the system.
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The following control law is developed for system (2.7) to achieve the desired perfor-
mance:

u = −Φ∗ (X, t)
(
ueq −K−1

D ure
)
, (2.16)

where Φ∗ (X, t) = ΦT (X, t)
[
Φ (X, t) ΦT (X, t)

]−1 is pseudoinverse. The equivalent control
law is constructed as:

ueq = K−1
D Ξ (X, s) + Πn (X, t) , (2.17)

and the continuous reaching control law is

u̇re + Λure = ω, (2.18)

and

ω = − (Γd + ΓT + ρ) sign (σ) . (2.19)

The initial value of ure (0) is chosen to be zero, Γd is a constant value which was stated
as (2.8), and ρ is a small positive coefficient. Λ > 0 and ΓT are chosen such that:

ΓT > ΛLd. (2.20)

Remark 2.1: From (2.18)–(2.19), ure is obtained by adopting an integral of a switching
term. Accordingly, the control system will achieve the chattering-free behavior.
Regarding the upper-bounded constants of both disturbances and uncertainties, an

adaptive adjustment law is adopted to estimate those upper bounded values. Therefore,
the system performance is always assured regardless of disturbances, uncertainties, and
unknown terms influencing the control system.
A continuous adaptive reaching control law is designed as:

u̇re + Λure = ωa, (2.21)

and

ωa = −
(

Γ̂a + ρ
)
sign (σ) , (2.22)

in which Γ̂a is the estimating value of the bounded constants Γd + ΓT . Γ̂a is adopted by
the following updating law:

˙̂
Γa =

1

µ
|σ| , (2.23)
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where µ > 0 indicates the adaptive gain.
Theorem 2.1: The uncertain nonlinear system (2.7) will quickly approach the slid-
ing function in the defined time and then stabilize around zero within the defined time(
T ≤ 2V

1/2
2 (0) /Υ

)
; if the satisfactory sliding function is proposed as (2.9), the control

input signal is designed as (2.16)–(2.17), (2.21)–(2.22) with its corresponding adaptive
adjustment law as (2.23), and there exist a bounded constant satisfying the constraint
(2.24).

Γ̂a 6 Γ∗ (2.24)

This means that the robustness stability and the desired performance of the system
(2.7) are always assured.
Proof : Adopting the control laws (2.16)–(2.17) and (2.21)–(2.22) to the sliding function
(2.15) obtains:

σ = Ξ (X, s) + Ω (X,∆u, δ, t) +KD

(
Πn (X, t)− Φ (X, t) Φ∗ (X, t)

×
(
K−1
D Ξ (X, s) + Πn (X, t)−K−1

D ure
))

= ure + Ω (X,∆u, δ, t)

. (2.25)

The result of Eq. (2.18) is presented by:

ure (t) = (ure (t0) + (1/Λ) (Γd + ΓT + ρ) sign (σ)) et−t0 − (1/Λ) (Γd + ΓT + ρ) sign (σ) .

(2.26)

Considering (2.20), (2.25)–(2.26) and the condition ure (0) = 0, the following inequali-
ties are achieved:

ΓT > ΛLd > Λ |ure (t)|max > Λ |ur (t)| . (2.27)

With (2.21)–(2.22), the derivative of the sliding variable (2.25) gives:

σ̇ = −
(

Γ̂a + ρ
)
sign (σ)− Λure + Ω̇ (X,∆u, δ, t) . (2.28)

The estimated error is described as:

Γ̃a = Γ̂a − (Kd +KT ) . (2.29)

The positive-definite Lyapunov functional is defined as:
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V1 =
1

2
σTσ +

µΓ̃Ta Γ̃a
2

. (2.30)

Utilizing the adaptive adjustment law (2.23), the derivative of sliding function (2.28),
and the estimated error (2.29), the time derivative of the Lyapunov function (2.30) gives:

V̇1 = σT σ̇ + µ
(

Γ̂a − (Γd + ΓT )
)

˙̂
Γa

σT

−(Γ̂a + ρ
)
sign (σ)

−Λure + Ω̇ (X,∆u, δ, t)

+
(

Γ̂a − (Γd + ΓT )
)
|σ|

= (−Λureσ − ΓT |σ| − ρ |σ|) +

(
Ω̇ (X,∆u, δ, t)σ

−Γd |σ|

)
6 −ρ |σ|

. (2.31)

The parameter ρ is assigned to be greater than zero, and thus, V̇1 will be negative.
According to the Lyapunov principle, because V̇1 is negative σ and Γ̃a will reach zero.
This means that the estimated value of Γ̂a has a bounded constant in Eq. (2.24). Next,
it will be proved that system (2.7) will approach the sliding function within the defined
time.
Consider the following Lyapunov function candidate as:

V2 =
σTσ

2
+
ξΓ̃Ta Γ̃a

2
, (2.32)

where ξ is a positive coefficient. With Eq. (2.24), the time derivative of Eq. (2.32) is
derived similarly to obtain V̇1 as:

V̇2 = σT σ̇ + µ
(

Γ̂a − Γ∗
)

˙̂
Γa

= σT

−(Γ̂a + ρ
)
sign (σ)

−Λure + Ω̇ (X,∆u, δ, t)

+
ξ

µ

(
Γ̂a − Γ∗

)
|σ|

= (−Λureσ − ΓT |σ| − ρ |σ|) +
(

Ω̇ (X,∆u, δ, t)σ − Γd |σ|
)

+
ξ

µ

(
Γ̂a − Γ∗

)
|σ|

6 −ρ |σ|+ ξ

µ

(
Γ̂a − Γ∗

)
|σ|

. (2.33)

Because the estimated value Γ̂a is bounded by Γ∗, 2.33 yields:

V̇2 6 −ρ |σ|+
ξ

µ

(
Γ̂a − Γ∗

)
|σ| 6 0. (2.34)
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The parameters ρ, ξ are assigned to be greater than zero, so V̇2 will be negative:

V̇2 6 −ρ |σ| − ρ1

∣∣∣Γ̂a − Γ∗
∣∣∣

6 −
√

2ρ
|σ|√

2
− ρ1

√
2

ξ

√
ξ

∣∣∣Γ̂a − Γ∗
∣∣∣

√
2

6 −min

{√
2ρ, ρ1

√
2

ξ

}
·

 |σ|√
2

+
√
ξ

∣∣∣Γ̂a − Γ∗
∣∣∣

√
2


, (2.35)

where ρ1 = ξ
µ
|σ|.

By using Jensen’s inequality in Lemma 2.2 and assigning Υ = min
{√

2ρ, ρ1

√
2
ξ

}
, the

following inequality can be achieved:

V̇2 6 −Υ

 σTσ(√
2
)2 +

(√
ξ
)2

(
Γ̂a − Γ∗

)T (
Γ̂a − Γ∗

)
(√

2
)2


1
2

6 −ΥV
1/2

2

. (2.36)

Based on Lemma 2.1, it can be proved that the sliding variables in Eq. 2.9 will approach
the PID-NFTSM function within the defined time

(
T ≤ 2V

1/2
2 (0) /Υ

)
. Additionally,

when the PID-NFTSM function approaches zero, then the state variable system 2.10 will
also stabilize around 0 in the defined time. This completes the proof of Theorem 2.1.
Remark 2.2: Once the PID-NFTSM function quickly approaches the stable point, the
NFTSM variables will approach zero. For sliding variables defined by 2.10 s = X2 +

κ1X1 + κ2 (X1)[ϕ], X1 is the system’s terminal attractor. The attaining time ts that is
taken to travel from X1 (tr) 6= 0 to X1 (tr + ts) = 0 has been defined as [40]:

ts =
1

κ1 (1− ϕ)
ln
κ1V

1−ϕ (X0) + κ2

κ2

, (2.37)

where V is an extended Lyapunov description of the finite-time convergence, which can
be given by V̇ (X) + κ1V (X) + κ2V

ϕ (X) 6 0, 0 < ϕ < 1, with tr defined as in [36].
Remark 2.3: In practical systems, the parameter drift matter has usually happened
under the updating law 2.23. Therefore, the bounded method is performed to set up the
updating law as:

˙̂
Γa =


0 if |σ| 6 υ

1

µ
|σ| if |σ| > υ

, (2.38)

whereas υ > 0 is an arbitrary positive value.
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Remark 2.4: In this work, two control methodologies (PID-SMC and TSMC [40] shown
in Appendix) used a boundary layer technique [60, 64, 74] to reject chattering behavior.
This technique adopts a saturation function in the reaching control law instead of adopting
a function:

sat

(
σ

χ

)
=

{
sign (σ) if |σ| > χ

σ
χ

if |σ| < χ
, (2.39)

in which χ is a minor positive coefficient. However, in some cases, the tracking error
accuracy will be significantly reduced by using this technique. This technique will be
analyzed in detail with numerical simulations.

2.4 Numerical Simulations

The suggested control algorithm can be applied to many systems, such as robotic ma-
nipulators, magnetic levitation systems, chaotic systems, etc. In the simulation section,
some position tracking computer simulations for a three-link robot manipulator have been
performed to confirm the effectiveness of the proposed methodology.

For an n-link rigid robotic manipulator, the corresponding dynamic equation is given
as ( [75], [40]):

M (θ) θ̈ + Cm

(
θ, θ̇
)
θ̇ +G (θ) = τ (t) + τd (t) , (2.40)

where θ (t), θ̇ (t), θ̈ (t) ∈ Rn denote the system’s state vectors. M (θ) = M0 (θ) +

∆M (θ) ∈ Rn×n is the positive definite inertia matrix and is symmetric, Cm
(
θ, θ̇
)

=

C0

(
θ, θ̇
)

+ ∆Cm

(
θ, θ̇
)
∈ Rn×1 indicates Coriolis and centrifugal forces, G (θ) =

G0 (θ) + ∆G (θ) ∈ Rn×1 indicates gravitational force terms, τ (t) ∈ Rn×1 indicates
the control input torque, and τd (t) ∈ Rn×1 indicates unknown disturbances. Here
M0 (θ) , C0

(
θ, θ̇
)
, G0 (θ) are nominal terms, whereas ∆M (θ) , ∆Cm

(
θ, θ̇
)
, ∆G (θ) are

dynamic uncertainties. Then, Eq. (2.40) can be represented as:

M0 (θ) θ̈ + C0

(
θ, θ̇
)
θ̇ +G0 (θ) = τ (t) + τd (t) + F

(
θ, θ̇, θ̈

)
, (2.41)

whereas F
(
θ, θ̇, θ̈

)
= −∆M (θ) θ̈ −∆Cm

(
θ, θ̇
)
θ̇ −∆G (θ) ∈ Rn.

Eq. (2.41) can be rewritten as:
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θ̈ = M−1 (θ)
[
−C0

(
θ, θ̇
)
θ̇ −G0 (θ)

]
+M−1 (θ) τ (t) +M−1 (θ)

[
τd (t) + F

(
θ, θ̇, θ̈

)]
.

(2.42)
To simplify the analysis and design in subsequent development, (2.42) can be expressed

as:

θ̈ = Π
(
θ, θ̇
)

+ Φ (θ) τ (t) + δ
(
θ, θ̇, t

)
, (2.43)

where Π
(
θ, θ̇
)

= M−1 (θ)
[
−C0

(
θ, θ̇
)
θ̇ −G0 (θ)

]
, Φ (θ) = M−1 (θ), and δ

(
θ, θ̇, t

)
=

M−1 (θ)
[
τd (t) + F

(
θ, θ̇, θ̈

)]
. u∗ (t) = τ (t) is assigned to be the control input torque,

and X = [X1, X2]T is the state variable vector with X1, Xcorresponding to θ, θ̇ ∈ Rn×1.
Therefore, the robotic dynamic system (2.43) can be presented as:{

Ẋ1 = X2

Ẋ2 = Π (X, t) + Φ (X, t)u∗ (t) + δ (X, t)
, (2.44)

where Φ (X, t) ∈ Rn×n and Π (X, t) are the smooth nonlinear vector fields and δ (X, t)

represents the disturbances and uncertainties.
It can be seen that (2.44) is exactly the same form of the general nonlinear second-order

system (2.5). Consequently, the proposed control method can be directly applied to the
robotic system (2.40).
In this work some position tracking computer simulations for a three-link robot manipu-

lator were performed to show practicality and effectiveness of the suggested methodology.
The dynamical model and crucial parameters of the robot was reported previously [72].
All simulation studies were implemented in the MATLAB/Simulink software with a fixed-
step size of 10−3s. The Robot was only inspected when the first three joints and the last
three joints were locked.
The reference joint paths for the position tracking are

θd1 = cos

(
t

5π

)
− 1

θd2 = sin

(
t

5π
+
π

2

)
− 1

θd3 = sin

(
t

5π
+
π

2

)
− 1

. (2.45)

Disturbances τd (t) and the dynamic uncertainties F
(
θ, θ̇, θ̈

)
at each joint are assumed

to be
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τd1 + F1 = 7.3 sin

(
θ̇1

)
+ 7.5sign

(
3θ̇1

)
+ 6.2θ̇1

τd2 + F2 = 6.5 sin
(
θ̇2

)
+ 8.3sign

(
2θ̇2

)
+ 9.3θ̇2

τd3 + F3 = 5.5 sin
(
θ̇3

)
+ 3.5sign

(
2θ̇3

)
+ 4.5θ̇3

. (2.46)

The initial state variables of the robotic system were chosen as θ1 (0) = −0.5; θ2 (0) =

−0.5; θ3 (0) = −0.5, θ̇1 (0) = θ̇2 (0) = θ̇3 (0) = 0. The parameters of the PID-FTSM
function (2.9)-(2.10) were experimentally chosen as KP = 15, KI = 0.1, KD = 0.5, κ1 =

0.1, κ2 = 2.2, and ϕ = 0.5. The controlling input (2.16)-(2.17) and (2.21)-(2.22) are ex-
perimentally chosen with ρ = 0.02, Λ = 0.5 and other related parameters of the controller
were chosen as same as the PID-FTSM function. The initial value of adaptive control
law was chosen as Γ̂a (0) = 0, µ = 0.05, and υ = 0.01 to compensate and quickly stabilize
uncertain systems.

To present the best capability of the proposed control algorithm, its reference trajectory
performances were compared with PID-SMC that was based on the classical SMC [15], [16]
and the TSMC [40] to inspect positional errors, convergence time, rapid response, and
chattering-free behavior. These controllers for comparison have been briefly presented in
Appendix.

The parameters of the sliding function and the PID-SMC were suitably selected from
the simulated experiment as KP = 6.5, KI = 0.01, KD = 0.5, Γ = 10, and ρ = 0.02

to similarly assign the initial control input magnitude and to achieve good simulation
performance.

The parameters of the control method in [40] were suitably selected from the simulated
experiment as β = diag (0.5, 0.5, 0.5) , γ = 1.67, k1 = diag (38, 65, 15), Γ = 10, and ρ =

0.02 to similarly assign the initial control input magnitude and to achieve good simulation
performance.

The examples were simulated in two situations to analyze the effectiveness of the control
methods in terms of both their chattering phenomenon and positional accuracies.

Situation 1: Each of three control methods has the sign (∗) function in its reaching
control term.

Situation 2: The proposed control methodology has the sign (∗) function in its the
reaching control law compared to both PID-SMC and TSMC [40] adopting Remark 2.4.

In Situation 1, the reference tracking positions and the corresponding tracking errors
of the first three joints under all controllers are shown in Figs. 2.1-2.2. From Figures
2.1-2.2, it can be observed that all three control methods can reach and maintain the
desired path. However, TSMC [40] and PID-SMC are less robust against large assumption
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Figure 2.1: Tracking Positions in situation 1: (a) at Joint 1, (b) at Joint 2, and (c) at
Joint 3.

uncertainties, while the suggested methodology has smaller position errors, (with 10−6

– 10−7 rad) compared to both mentioned controllers, by an order of 10−3 – 10−4 rad.
Regarding chattering issues, a comparison of the control inputs in terms of the chattering
phenomena is shown in Fig. 2.3. To obtain good simulation performance with the TSMC
[40] and PID-SMC, the reaching control term required a large sliding gain that led to a
significant chattering behavior. The chattering behavior from the suggested methodology
was eliminated because this method applies a PID-FTSM function and an integral of a
switching term.

The simulation results of Situation 2 verify the expected results illustrated in Figs.
2.4-2.5-2.6. In this Situation, the saturation function has been adopted in two control
algorithms (PID-SMC and TSMC [40]) instead of the function to reduce the chattering
phenomena while the proposed methodology still adopts an integral of a switching term.
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Figure 2.2: Tracking Errors in situation 1: (a) at Joint 1, (b) at Joint 2, and (c) at Joint
3.

However, as stated above, this technique decreases chattering behavior along with de-
creasing the robustness of the controllers. From Figs. 2.4-2.5-2.6, it is easy to anticipate
that all three controllers will have a continuous control signal. It is noteworthy that the
suggested control algorithm guarantees robustness with small steady-state errors, which
are on the order of rad, and chattering-free behavior, while those of the other controllers
are worse, on the order of 10−2 – 10−3 rad.

Considering the bounded value of the uncertainties, the PID-SMC and TSMC control
methods require prior knowledge of those bounded constants, but our suggested method-
ology does not. Therefore, the suggested methodology will be more optimal than the
other controllers. The variations of the approximated value are shown in Fig. 2.7. It can
be observed that the values are approximated according to the variation of the unknown
disturbances and uncertainties, and these approximated values will approach constant
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Figure 2.3: Control Input Signals in situation 1: (a) at Joint 1, (b) at Joint 2, and (c) at
Joint 3.

values along with the state variables reach to the PID-FTSM function.
The response time of the sliding surface is shown in Fig. 2.8.
From the simulation results, it is concluded that the suggested control methodology

exhibits the best performance among the three control methods, including higher position
precision, lower steady-state error, faster response, and chattering-free behavior.

2.5 Conclusions

This chapter develops a chattering-free, adaptive, robust tracking control algorithm for
a class of second-order nonlinear systems. In our algorithm, a novel sliding function,
termed as a PID-NFTSM function, is proposed to incorporate the good features of both
the PID and the NFTSM approaches. Our proposed sliding function inherits some ap-
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Figure 2.4: Tracking Positions in situation 2: (a) at Joint 1, (b) at Joint 2, and (c) at
Joint 3.

proaches in the field such as PID, NTSMC, and FTSMC to achieve non-singularity, fast
response, defined time convergence, and stability with small steady-state error. To obtain
a chattering-free behavior, a continuous method (with an integral of a switching term
and adaptive updating law) have been applied to compensate for all of the anonymous
uncertain components in the control system, such as disturbances, unmodeled dynam-
ics, nonlinearities, and unmeasurable noise. Accordingly, the suggested method does not
need prior information about the bound values of those anonymous components, along
with chattering-free behavior, compared to other controllers. The experimental results
for a PUMA560 robot manipulator confirm that the suggested methodology has more
capability to adapt to many uncertain nonlinear systems with high accuracy.
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Figure 2.5: Tracking Errors in situation 2: (a) at Joint 1, (b) at Joint 2, and (c) at Joint
3.
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Figure 2.6: Control Input Signals in situation 2: (a) at Joint 1, (b) at Joint 2, and (c) at
Joint 3.

Figure 2.7: The response time of the estimating parameter.
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Figure 2.8: The response time of the proposed Sliding Surfaces: (a) at Joint 1, (b) at
Joint 2, and (c) at Joint 3.
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Appendix A

Design PID-SMC.

The PID based on SMC for the robotic manipulator (2.40) can be constructed as follows
[15,16].
Let e (t) = θ (t)− θd (t) be the tracking positional error, θd with indicating the desired

reference trajectory.
The following sliding function is considered as:

s = KP e+KI

t∫
0

e (t) dt+KDė, (A.1)

in which Kp, KI ,and KD are proportional gain, integral gain, and derivative gain matrices,
respectively. The time derivative of Eq. (A.1) is computed as:

ṡ = KP ė+KIe+KDë. (A.2)

To guarantee that the controlled variables of Eq. (A.1) converge to sliding variables, the
following relations must be satisfied: s = 0 and ṡ = 0. The following proposed controller
is based on the sliding mode design procedure:

τ (t) = τeq (t) + τre (t) . (A.3)

The term of the equivalent control of τeq (t) holds the trajectory of the error state
variables on the sliding function, and it is computed with ṡ = 0 and δ

(
θ, θ̇, t

)
= 0.

ṡ = KP ė+KIe+KD

(
Π
(
θ, θ̇
)

+ Φ (θ) τ (t) + δ
(
θ, θ̇, t

)
− θ̈d

)
. (A.4)

Therefore, the term of the equivalent control of τeq (t) is designed as:

τeq (t) = −Φ−1 (θ)

((
Π
(
θ, θ̇
)
− θ̈d

)
+
KI

KD

e+
KP

KD

ė

)
, (A.5)

and the reaching control term is designed as:
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τre (t) = −Φ−1 (θ) (Γ + ρ) sign (s) . (A.6)

Design TSMC

The control algorithm based on TSMC [40] for the robotic manipulator (2.40) can be
constructed as follows [40, 76]. Let e (t) = θ (t) − θd (t) be the tracking positional error,
with θd indicating the desired reference trajectory. The sliding function can be considered
as:

s = e+ βsig (ė)γ , (A.7)

where β = diag (β1, β2, · · · , βn) with βi > 0 and 1 < γ < 2 and
sig (ė)γ = (|ė1|γ sign (ė1) , |ė2|γ sign (ė2) , · · · , |ėn|γ sign (ėn)).

The time derivative of Eq. (A.7) is computed as:

ṡ = ė+ βγ |ė|γ−1 ë. (A.8)

To guarantee that the controlled variables of Eq. (A.7) converge to sliding variables,
the following relations must be satisfied: s = 0 and ṡ = 0.
The following proposed controller is based on the sliding mode design procedure:

τ (t) = τeq (t) + τre (t) . (A.9)

The term of the equivalent control of τeq (t) holds the trajectory of the error state
variables on the sliding function, and it is computed with ṡ = 0 and δ

(
θ, θ̇, t

)
= 0.

ṡ = ė+ βγ |ė|γ−1 ë

= ė+ βγ |ė|γ−1
(

Π
(
θ, θ̇
)

+ Φ (θ) τ (t) + δ
(
θ, θ̇, t

)
− θ̈d

). (A.10)

Therefore, the term of τeq (t) the equivalent control of is designed as:

τeq (t) = −Φ−1 (θ)

(
Π
(
θ, θ̇
)
− θ̈d +

β−1

γ
|ė|2−γ

)
, (A.11)

and the fast TSM reaching control term is designed as:

τre (t) = −Φ−1 (θ) (k1s+ (Γ + ρ) sign (s)) (A.12)

in which k1 = diag (k11, k12, k13) , k1i, Γ, and ρ are positive coefficients.
Therefore, the TSM controller has the control input as:

28



APPENDIX A

τ (t) = −Φ−1 (θ)

(
Π
(
θ, θ̇
)
− θ̈d +

β−1

γ
|ė|2−γ + k1s+ (Γ + ρ) sign (s)

)
. (A.13)
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Chapter 3

Adaptive Neural Integral Full-Order
Terminal Sliding Mode Control for
an Uncertain Nonlinear System

3.1 Introduction

The increasingly rigorous performance requirements of industrial applications highlight
the importance of enhanced control systems developed for uncertain nonlinear systems
that are normally subject to various nonlinearities, external disturbances, and uncer-
tainties. Studies on the class of general nonlinear second-order systems have proposed
many control methods focused on attaining the desired performance against various un-
certainties, including external disturbances. SMC has been validated to provide high
robustness against uncertainties and disturbances for nonlinear systems [77, 78]. Accord-
ingly, SMC is usually applied to industrial application systems [8,15,16,58]. Nonetheless,
several challenges of the traditional SMC still exist such as the requirement of an exact
dynamic model, singularity, chattering occurrence, and unidentified convergence time.
Various studies have focused on treating these challenges. For the system state variables
to reach the prescribed SMC surface within a definite time, TSMC, based on the non-
linear sliding mode function, has been used [27, 79]. However, the TSMC convergence
time is slower than the traditional SMC convergence time, and still encompasses a sin-
gularity phenomenon. To handle convergence time and a singularity glitch, numerous
FTSMC [68, 69] and NTSMC [80] systems have been applied to magnetic levitation sys-
tems [81], chaos control [67, 82], and robotic manipulators [49, 83, 84]. Private control
manners such as FTSMC or NTSMC have only focused on the resolution of individual
weaknesses or neglected to handle the other weaknesses of the traditional SMC. For that
reason, NFTSMC has been developed for controlling uncertain nonlinear second-order
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systems [8,83,85–87]. NFTSMC can deal with several drawbacks of the traditional SMC
or other control systems based on TSMC. Nonetheless, chattering is not removed by ap-
plying a high-frequency reaching control term to the control input of the above systems,
which include TSMC, FTSMC, NTSMC, and NFTSMC. As a result, several useful control
systems have been proposed by applying FOSMC [71,88], or HOSMC [64,89].

Two of the major challenges in designing a control system according to SMC or TSMC
is knowing the bounds of modelling disturbances and dynamic uncertainties and comput-
ing an exact dynamic model, which is not known in advance for practical systems. To
approximate this unknown model, several computing attempts have been proposed, such
as NNs [8, 54–56] and FLSs [57, 58], due to their approximation abilities. In traditional
SMC and traditional TSMC, the drawbacks have been considered individually or ignored.
In response, this work focuses on the synchronized resolve of SMC and TSMC draw-
backs, including the condition for an exact dynamic model, the existence of a singularity,
chattering occurrence, and finite-time convergence.

Consequently, the objective is to develop a controller for the class of general nonlinear
second-order systems. The suggested system has the following major advantages: 1) it in-
herits the benefits of RBFNN and IFOSMC, including good performance with minimum
position errors, robustness against uncertainties, and work without a precise dynamic
model; 2) it consists of a control input system with chattering reduction; 3) compared to
RBFNN-SMC and RBFNN-TSMC, ARBFNN-IFOSMC provides better performance and
stronger resistance against disturbances and uncertainties; and 4) stability and tracking
error convergence of the class of general nonlinear second-order systems was fully con-
firmed by the Lyapunov benchmark.

The remainder of this chapter is arranged as follows. After the introduction, the pre-
liminaries and problem formulations are stated, followed by the design approach for the
proposed controller, where the proposed system is applied to allow position pathway
tracking control simulation for a 2-DOF parallel manipulator. The tracking performance
is compared with those of the RBFNN-SMC and RBFNN-TSMC to evaluate the effec-
tiveness of the proposed control system. Finally, conclusions are provided.

3.2 Problem Formulations

A class of general nonlinear second-order systems is considered as follows:{
ẋ1 = x2

ẋ2 = F (x, t) +D (x, t) +Q (x, t)uin
, (3.1)
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where x =
[
x1 x2

]T
represents the system state vector, F (x, t) ∈ Rn×1, Q (x, t) ∈ Rn×n

are the smooth nonlinear vector fields, and D (x, t) ∈ Rn×1 represents the disturbances
and uncertainties.

The target of this chapter is to develop a control system such that the controlled
variables of the system follow the designated trajectory with minimum position errors,
robustness against uncertainties, and work without a precise dynamic model. Accordingly,
the tracking positional error is defined as:

e1 = x1 − xd. (3.2)

The following assumption is essential for developing the control algorithm in the next
part.
Assumption 3.1: We assume that the lumped uncertain components are first-order dif-
ferentiable and have the existence of the defined positive constant satisfying the following
condition:

∥∥∥Ḋ (x, t)
∥∥∥ 6 Ξ (3.3)

where Ξ is the defined positive constant.

3.3 Design Synthesis of The Control System

In this part, a control method is developed for the class of general nonlinear second-order
systems, which is described by in the two following steps.

3.3.1 Design of IFOTSM Surface

First, with the tracking position error from Eq. (3.2), an IFOTSM surface is proposed as:

s = ė2 +

∫ t

0

(
ω1e

[µ1]
1 + ω2e

[µ2]
2

)
dσ, (3.4)

where s = [s1, s2, . . . , sn]T ∈ Rn×1 is a sliding variable, ω1, ω2 are positive constants,
0 < µ < 1, µ2 = 2µ1/ (1 + µ1), e1 = [e11, e12, . . . , e1n]T ∈ Rn×1 represents the tracking
position errors, e2 = [e21, e22, . . . , e2n]T ∈ Rn×1 represents the tracking velocity error, ė2

is the time derivative of e2, and e[µ(•)] is defined as follows:

e[µ(•)] = |e|µ(•) sign [e] (3.5)
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where µ1 > 0, µ2 > 0 and sign [e] =


1 if e > 0

−1 if e < 0

0 if e = 0

.

With Eq. (3.2), Eq. (3.1) can be expressed in the following error state space form as:{
ė1 = e2

ė2 = F (x, t) +D (x, t) +Q (x, t)uin − ẍd
. (3.6)

Substituting Eq. (3.6) into the IFOTSM surface (3.4) yields:

s = F (x, t) +D (x, t) +Q (x, t)uin − ẍd +

∫ t

0

(
ω1e

[µ1]
1 + ω2e

[µ2]
2

)
dσ. (3.7)

3.3.2 Design of IFOTSMC

For system (3.1) to operate with quality performance, the control input system is designed
as follows:

uin = −Q−1 (x, t) (ueq + usw) . (3.8)

Here, the equivalent control term is designed as:

ueq = F (x, t)− ẍd +

∫ t

0

(
ω1e

[µ1]
1 + ω2e

[µ2]
2

)
dσ, (3.9)

and the switching control term is designed as:

u̇sw = (Ξ +$) sign (s) . (3.10)

Accordingly, the following theorem is formed to complete the proof.
Theorem 3.1: Consider a class of general nonlinear second-order systems (3.1). If the
proposed control input system is designed for system (3.1) as Eqs. (3.8)–(3.10), then
system (3.1) is guaranteed to have stability.
Proof : Applying the control input system (3.8)–(3.10) to Eq. (3.7) gives:

s = F (x, t) +D (x, t)−

usw + F (x, t)− ẍd

+

∫ t

0

(
ω1e

[µ1]
1 + ω2e

[µ2]
2

)
dσ

− ẍd +

∫ t

0

(
ω1e

[µ1]
1 + ω2e

[µ2]
2

)
dσ

= D (x, t)− usw

.

(3.11)
Taking the time derivative of Eq. (3.11) gives:
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ṡ = Ḋ (x, t)− u̇sw
= Ḋ (x, t)− (Ξ +$) sign (s)

. (3.12)

Consider the following Lyapunov function as follows:

L =
sT s

2
. (3.13)

With the result of Eq. (3.12), the time derivative of Eq. (3.13) is derived as:

L̇ = sT ṡ

= sT
(
Ḋ (x, t)− (Ξ +$) sign (s)

)
=
(
Ḋ (x, t) s− Ξ |s|

)
−$ |s| 6 −$ |s|

. (3.14)

Based on Eq. (3.14), the requirement for the Lyapunov stability benchmark [90] is
guaranteed, wherein proof of stability is confirmed.
Nonetheless, the design approach requires an exact dynamic mode of F (x, t) and sat-

isfies Assumption 1. It is not trivial to precisely estimate dynamic uncertainties, external
disturbances, and provide an exact dynamic function in the control system. To handle
these challenges, a robust control approach will be developed for the class of general
nonlinear second-order systems based on an IFOTSM surface and RBFNN. Here, two
nonlinear terms in the IFOTSM surface and an adaptive compensator will be used to
compensate for the effects of the dynamic uncertainties, disturbances, and error from the
RBFNN, while an RBFNN will be utilized to approximate an unknown dynamic model.

3.3.3 Radial Basis Function Neural Network

RBFNNs have major advantages, including a highly parallel structure, robust tolerance to
external disturbances and uncertainties, nonlinear function approximation [91], and online
adaptation capability. Compared to other neural networks, RBFNN has a simpler and
quicker convergence rate. An RBFNN includes three layers, input, hidden and output,
which are shown in Figure. 3.1
The following RBFNN output is defined as:

H (µ) = θTΨ (µ) + ε (µ) , (3.15)

where µ ∈ Rn and H (µ) correspond to the RBFNN input and output. θT ∈ Rn×m rep-
resents the weight matrix linking the hidden layer and the output layer, Ψ (µ) represents
the nonlinear function of the hidden nodes, and ε (µ) ∈ Rn represents an approximation
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Figure 3.1: The architecture of an RBFNN.

error.
A Gaussian function is defined for the nonlinear function as follows:

Ψ (µ) = exp
(
− (µ− ηl)T (µ− ηl) /d2

l

)
, l = 1, 2, . . . ,m, (3.16)

where d and η correspond to the width and center of the Gaussian function.

3.3.4 Design of ARBFNN-IFOTSMC

In this report, RBFNN is used to approximate the unknown dynamic model as follows:

h (x) = F (x, t) . (3.17)

Define ĥ (x) as an approximated function of h (x). ĥ (x) can be described by a RBFNN,
as follows:

ĥ (x) =

∫ t

0

θ̂TΨ (x) dt. (3.18)

Here, θ̂ is the adaptable parameter vector.
The optimal parameter can be described as follows:

θ∗H = arg min

{
sup
x∈Θx

∣∣∣h (x)− ĥ
(
x, θ̂
)∣∣∣} . (3.19)

Accordingly, RBFNN (3.18) can exactly approximate the arbitrary value of h (x), which
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is given by the following Lemma [91].
Lemma 3.1: For arbitrary positive constant ε > 0 and any real continuous function
h (X) on the compact set ΘX ∈ Rn, there is a neural approximator existence ĥ (X) that
holds a similar form as Eq. (3.18), such that:

sup
X∈ΘX

∣∣∣h (X)− ĥ
(
X, θ̂

)∣∣∣ < ε. (3.20)

Consequently, the unknown dynamic model can be described as:

ė2 =

∫ t

0

θ∗TΨ (x) dt+Q (x, t)uin − ẍd + Γ, (3.21)

where Γ = D (x, t) + ε is the lumped uncertainty, including disturbances, dynamic un-
certainties, and NN approximation error. To facilitate the next design step, the time
derivative of the lumped uncertainty is assumed to be bounded by an unknown positive
constant,

∥∥∥Γ̇
∥∥∥ ≤ Π.

The proposed control law is designed as follows:

uin = −Q−1 (x, t) (ueq + uasw) . (3.22)

Here, the equivalent control law is constructed as:

τeq (t) =

∫ t

0

θ̂TΨ (x) dt− ẍd +

∫ t

0

(
ω1e

[µ1]
1 + ω2e

[µ2]
2

)
dσ, (3.23)

and uasw is an adaptive compensator for substituting the control term of usw in Eq. (3.12),
describing uasw as:

u̇asw =
(

Π̂ +$
)
sign (s) . (3.24)

The adaptive laws are designed as:

˙̂
Π = γ−1 |s| , (3.25)

˙̂
θ = κ−1sΨ (x) , (3.26)

where Π̂ is the estimated value of the design parameter Π, $ is a positive constant, and
γ, κ indicate the adaptive parameters.
The control design approach for the robot system is described in Theorem 3.2 below.

Theorem 3.2: For the system (3.1), if suitable IFOTSM surfaces are proposed as (3.4)
and the control input signal is constructed as (3.22)–(3.24) with its parameter updating
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rules designed as (3.25) and (3.26), then the stability of the system (3.1) is secured with
the desired performance, and the tracking errors reach zero.
Proof : Identify the adaptive estimation error and NN weight approximation error, re-
spectively, as follows:

Π̃ = Π̂− Π, (3.27)

θ̃ = θ∗ − θ̂. (3.28)

The sliding surface in Eq. (3.7) is rewritten as:

s =

∫ t

0

θ∗TΨ (x) dt+Q (x, t)uin − ẍd + Γ +

∫ t

0

(
ω1e

[µ1]
1 + ω2e

[µ2]
2

)
dσ. (3.29)

Substituting control laws (3.22)–(3.24) into Eq. (3.29) provides:

s =

∫ t

0

θ̃TΨ (x) dt− uasw + Γ. (3.30)

Taking the time derivative of Eq. (3.30) gives:

ṡ = θ̃TΨ (x)−
(

Π̂ +$
)
sign (s) + Γ̇. (3.31)

The positive-definite Lyapunov functional is selected as:

L2 =
sT s

2
+
γΠ̃T Π̃

2
+
κθ̃T θ̃

2
. (3.32)

With the result of Eq. (3.31), the time derivative of Eq. (3.32) is derived as:

L̇2 = sT ṡ+ γΠ̃T ˙̃Π− κθ̃T ˙̂
θ

= sT
(
θ̃TΨ (x)−

(
Π̂ +$

)
sign (s) + Γ̇

)
+ γ

(
Π̂− Π

)
˙̂
Π− κθ̃T ˙̂

θ

= sT θ̃TΨ (x)− Π̂ |s| −$ |s|+ Γ̇s + γ
(

Π̂− Π
)

˙̂
Π− κφ̃T ˙̂

θ

. (3.33)

Applying the updating laws (3.25)–(3.26) to (3.33) yields:

L̇2 = −Π̂ |s| −$ |s|+ Πs +
(

Π̂− Π
)
|s|

= −$ |s|+
(

Γ̇s− Π |s|
)

6 −$ |s|

. (3.34)

As shown in Eq. (3.34), if the constant of $ is selected to be greater than zero, L̇2 will

38



CHAPTER 3. ADAPTIVE NEURAL INTEGRAL FULL-ORDER TERMINAL
SLIDING MODE CONTROL FOR AN UNCERTAIN NONLINEAR SYSTEM

Figure 3.2: Block diagram of the proposed control scheme.

be negative-definite. According to the Lyapunov benchmark [90], L̇2 becoming negative-
definite implies that s and Π̃ reach zero, and the tracking error variables thus approach
zero as well. Therefore, Theorem 3.2 is proven.

3.4 Numerical Simulation Results

While the ARBFNN-IFOTSMC can be applied for a class of second-order nonlinear system
such as serial robotic manipulators, parallel robotic manipulators, spacecraft, we consider
a five-bar manipulator acting on a horizontal plane as an example that was presented
in [6,92] and its kinematic illustration was shown in Fig. 3.3. The dynamic model of the
planar five-bar manipulator is given by [92]:

M̂aθ̈a + Ĉaθ̇a + ∆τa = τa, (3.35)

where θa =
[
θa1, θa2

]T
is the active joint angle vector; θ̇a =

[
θ̇a1, θ̇a2

]T
is the active

joint velocity vector; θ̈a =
[
θ̈a1, θ̈a2

]T
is the active joint acceleration vector; M̂a ∈ R2×2
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Figure 3.3: Block diagram of the proposed control scheme.

is the estimated inertia matrix; Ĉa ∈ R2×2 is the estimated centripetal Coriolis matrix;
∆τa is the vector of modeling errors and uncertainties; and τa ∈ R2×1 is the actuator
output related to the control input uin. The detailed computations of M̂a and Ĉa were
presented in [92]. The vector ∆τa from Eq. (3.35) is presented as the following:

∆τa = ∆Maθ̈a + ∆Caθ̇a + Fa, (3.36)

where ∆Ma and ∆Ca are the bounded modeling errors and Fa is the friction force.
The robot in Eq. (3.35) is rewritten with the following expression:

θ̈a = M̂−1 (θa)
[
τa − Ĉaθ̇a − ∆τa

]
. (3.37)

Then, we assign uin = τa as the control input, x = [x1, x2]T as the state vector in which
x1, x2 are corresponding to θa, θ̇a ∈ R2×1. The robotic dynamic of Eq. (3.35) can be
described in the following state space form as:{

ẋ1 = x2

ẋ2 = F (x, t) +D (x, t) +Q (x, t)uin
, (3.38)

where F (x, t) = M̂−1 (θa)
[
−Ĉaθ̇a

]
∈ R2×1, Q (x, t) = M̂−1 (θa) ∈ R2×2 are the smooth

nonlinear vector fields and D (x, t) = M̂−1(θa)[−∆τa] ∈ R2×1 presents the disturbances
and uncertainties.
To evaluate the effectiveness of ARBFNN-IFOTSMC, its performance is compared with
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Table 3.1: Parameters of the Mechanical Model

Depiction Parameters Value

Link lengths
l11 = l21 0.102(m)

l12 = l22 0.18(m)

l0 0.132(m)

Distances from the joint to the center of mass of the links
r11 0.05(m)

r21 0.055(m)

r12 = r22 0.09(m)

Masses of the links

m11 0.8(kg)

m21 0.78(kg)

m12 1.17(kg)

m22 1.2(kg)

Inertia tensors of the links
Iz11 0.0027(kg.m2)

Iz21 0.0031(kg.m2)

Iz12 = Iz22 0.0013(kg.m2)

those of RBFNN-SMC and RBFNN-TSMC. The design of RBFNN-SMC and RBFNN-
TSMC are represented in Appendix B, respectively. Simulation studies were performed
on a MATLAB–Simulink environment with a fixed-step size of 10−3s and the mechanical
model of the 2-DOF parallel manipulator is built using a SimMechanics toolbox. This
2-DOF parallel manipulator operates on the horizontal plane. Hence, the end-effector of
the parallel manipulator is controlled to track a circular path on the XY plane. The link
parameters in the mechanical model are set as Table 3.1.

To establish the modeling errors ∆Ma, ∆Ca simulations were performed with different
parameters, both in the mechanical model of the robot as well as in the controllers:
r̂i1 = 0.9ri1 and r̂i2 = 0.9ri2 in which r̂i1, r̂i2 (i = 1, 2) are utilized for determining
M̂a, Ĉa.

In the mechanical model, the frictions of the system involve viscous friction and Coulomb
friction torques that are computed from the following formula:

fai = Fcisign
(
θ̇ai

)
+ Fviθ̇ai, (i = 1, 2), (3.39)

where the coefficients are selected as Fc1 = Fc2 = 0.3, and Fv1 = Fv2 = 0.7.

In addition, the 2-DOF parallel manipulator system is also troubled by external distur-
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Table 3.2: Selected Parameters of the Control Methods.

Control Method Control Parameters Control Parameter Values

RBFNN-SMC (B.7) α,K,KV 10, 5, diag (20, 20)

RBFNN-TSMC (B.15) α, (1/β) 0.8, diag (2, 2)

KV , $,Ξ diag (20, 20) , 0.1, 5

The Proposed Method (3.22)-(3.26) ω1, ω2, µ1, µ2 20, 7, 0.5, 0.6

$, γ, κ 0.1, 0.05, 0.5I7×7

bance forces da (t) =
[
da1 (t) , da2 (t)

]T
=
[

2, 2
]T

at t = 3.0s.

The selected control parameters of three different control methodologies: RBFNN-SMC,
RBFNN-TSMC, and ARBFNN-IFOTSMC are stated in Table 3.2.

The RBFNN had ten neurons in the input layer, seven neurons in the hidden layer, and
two neurons in the output layer. The weight of RBFNN is initialed with a zero value.

The simulation studies were performed to compare the control methods in two terms of
their positional accuracies and the resulting chattering phenomenon in their control input
systems when the parallel manipulator tracked a desired circular path. Fig. 3.4 illustrates
performance comparison of the position trajectory tracking when using three different
control methodologies: RBFNN-SMC, RBFNN-TSMC, and ARBFNN-IFOTSMC. The
end-effector of the robot manipulator has the initial position at the top of the designated
circular path. For that reason, the initial position of the end effector of the robot manipu-
lator is not on the specified circular trajectory, the real path of the robot in the operation
had a malfunction at the starting of motion. The simulation results of the tracking errors
of the end-effector on the X-direction and Y-direction are depicted in Figs. 3.5 and 3.6,
respectively. These controllers can be used to track the specified trajectory. The tracking
accuracy of the ARBFNN-IFOTSMC had the least amount of tracking errors, on the
order of 10−6 − 10−7 rad, in the presence of uncertainties and external disturbances.

The control input signals for all control types, including RBFNN-SMC, RBFNN-TSMC,
and ARBFNN-IFOTSMC are depicted in Fig. 3.7. In Figs 3.7a and 3.7b, the RBFNN-
SMC and RBFNN-TSMC offer a discontinuous control signal with serious chattering
behavior. On the contrary, ARBFNN-IFOTSMC offers a continuous control signal for
the robot manipulator, as depicted in Fig. 3.7c.

The adaptive parameters of the adaptive compensator in the proposed system are de-
picted in Fig. 3.8; alteration of the influences of external disturbances and uncertainties
leads to adaptive parameters with corresponding alteration. These adaptive parameters
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Figure 3.4: The desired trajectory and real trajectory of the end-effector.

will converge to constant values along with the system converging to the IFOTSM surface.
Remark 3.1: Throughout simulation analyses and comparison among those of RBFNN-
SMC, RBFNN-TSMC, and ARBFNN-IFOTSMC, the simulated results and tracking per-
formance comparison could be expected to exhibit the effectiveness and viability of our
proposed control algorithm. In future studies, the ARBFNN-IFOTSMC will be applied
to the real robot manipulator and compared with other state-of-the-art control systems
to validate the effectiveness of this control methodology. We will also consider the effects
of the measurement devices and errors associated with it.

3.5 Conclusions

This study reports the design of the control system for the class of general nonlinear
second-order systems. The suggested system has the following major advantages: 1)
it receives the advantages of both RBFNN and IFOSMC, including good performance
with minimum position errors, robustness against uncertainties, and work with a precise
dynamic model; 2) it consists of a control input system with chattering reduction; 3)
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Figure 3.5: The tracking errors of the end-effector in the X-direction.

Figure 3.6: The tracking errors of the end-effector in the Y-direction.

ARBFNN-IFOSMC provides better performance and stronger resistance against distur-
bances and uncertainties compared to RBFNN-SMC and RBFNN-TSMC; and 4) stability
and tracking error convergence of the class of general nonlinear second-order systems was
fully confirmed by the Lyapunov benchmark.
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Figure 3.7: Control input signals: (a) RBFNN-SMC, (b) RBFNN-TSMC, and (c)
ARBFNN-IFOTSMC.

Figure 3.8: Variation of the adaptive gains at Joint 1 and Joint 2.
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DESIGN RBFNN-SMC

Set e = x1 − xd as the tracking positional error and xd as the desired trajectory values.
Then, define the sliding variable and time derivative of the sliding variable as follows:

s = ė+ αe, (B.1)

ṡ = ë+ αė, (B.2)

where α is a positive constant.
With Eq. (3.38), Eq. (B.2) can be expressed as follows:

ṡ = ẋ2 − ẍd + α (ẋ1 − ẋd)

= F (x, t) +D (x, t) +Q (x, t)uin − ẍd + α (ẋ1 − ẋd)
. (B.3)

To obtain the desired performance for the robot system, the controller is designed as
follows:

uin = −Q−1 (x, t) (ueq + usw) . (B.4)

The equivalent control signal of ueq is computed in the case of ṡ = 0 and D (x, t) = 0.
Consequently, the term of the equivalent control is designed as follows:

ueq = F (x, t)− ẍd + α (ẋ1 − ẋd) +KV s, (B.5)

and the switching control term is designed as:

usw = Ksign (s) , (B.6)

where K is a positive constant and KV is a diagonal matrix.
We will utilize a neural network to approximate the nonlinear unknown dynamic func-

tion of the robotic system F (x, t) . Accordingly, the controller of Eq. (B.4) becomes
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uin = −Q−1 (x, t)
(
θ̂TΨ (x)− ẍd + α (ẋ1 − ẋd) +KV s+ gsgn (s)

)
. (B.7)

DESIGN RBFNN-TSMC

The following is the design approach of RBFNN-TSMC.
e = x1− xd is the tracking error and ė = ẋ1− ẋd is the tracking velocity error. Then, the
NFTSM surface was selected:

s = e+ β−1sig (ė)α , (B.8)

where s =
[
s1, s2

]T
∈ R2×1 is the sliding surface, sig (ė)α = (|ė1|α sgn (ė1) , . . . , |ėn|α sgn (ėn)),

1 < α < 2.
For system (3.35) to operate with the desired performance, the controller is designed

as follows:

uin = −Q−1 (x, t) (ueq + usw) . (B.9)

The equivalent control signal of ueq is computed in the case of ṡ = 0 and D (x, t) = 0.
Therefore, the time derivative of the sliding surface is described as follows:

ṡ = ė+ αβ−1 |ė|α−1 ë. (B.10)

From Eq. (3.38), ë can be express as:

ë = F (x, t) +D (x, t) +Q (x, t)uin − ẍd. (B.11)

Substituting (B.11) into (B.10) gives:

ṡ = ė+ αβ−1 |ė|α−1 (F (x, t) +D (x, t) +Q (x, t)uin − ẍd) . (B.12)

Once the robot model F (x, t) is exactly calculated, then the ueq control input signal
can be defined as follows:

ueq = F (x, t)− ẍd + βα−1ė2−α +KV s. (B.13)

The switching control term is designed as:

usw = (Ξ +$) sgn (s) , (B.14)
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where KV is a diagonal matrix.
We will utilize a neural network to approximate the nonlinear unknown dynamic func-

tion of the robotic system F (x, t) . Accordingly, the controller of Eq. (B.9) becomes

uin = −Q−1 (x, t)

(
θ̂TΨ (x)− ẍd + β

1

α
ė2−α +KV s+ (Ξ +$) sgn (s)

)
. (B.15)
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Chapter 4

An Adaptive Terminal Sliding Mode
Control for Robot Manipulators with
Non-singular Terminal Sliding
Surface Variables

4.1 Introduction

During recent decades, considerable research efforts have been devoted to investigating
robot manipulator control systems. To achieve higher-precision tracking performance, nu-
merous control methods have been constructed for motion control of robot manipulators,
such as PID controller [93] and CTC [94]. Those mentioned controllers were highlighted
as simple and monotonic methods for robot control. Generally, dynamic models of robot
manipulators have been challenged with various parametric uncertainties consisting of
friction, perturbation, payload parameters, and sensor noise. Unfortunately, those con-
trollers do not exhibit good control performance of highly nonlinear and uncertain control
systems. Accordingly, to handle the uncertainty of robotic systems and to improve the
control performance, recently, many nonlinear methods have been suggested for robot ma-
nipulators such as AC [1,95], FLS [58,96], OC [97], NN [54,98], and SMC [15,16,99,100].

SMC has been a useful and impressive robust control methodology to correct deficiency
from any kind of uncertainties or perturbation for both linear and nonlinear systems.
The scheme of SMC is to firstly perform a sliding manifold and then build up a control
principle that obligates the controlled variables to attain and maintain the sliding surface.
Nonetheless, in real systems, the primary weakness of SMC is an undesirable chattering
behavior caused by high-frequency switching. Furthermore, this algorithm only stabilizes
the system asymptotically in the sliding phase following a linear sliding manifold method-
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ology. From this point of view, the controlled variables cannot obtain the desired values
within a finite amount of time.
In 1990s, a new category of SMC called as TSMC was originally published by Venkatara-

man S and Gulati S. [25] and then advanced by Zhihong M et al. [76] and Wu Y et
al. [27]. Contrary to linear sliding surfaces, nonlinear sliding hyperplanes have exposed
some advanced properties in terms of high robustness, fast transient response, high track-
ing positional accuracy, and finite-time convergence. Therefore, various uses of the TSMC
method have been established (e.g., robot control [28,76], motor control [29], TSMO [32].)
Nonetheless, this control algorithm does not exhibit good convergence when the controlled
variables are distant from the desired values. Specifically, the TSMC algorithm has en-
countered the singularity drawback that causes complex-value, exponent, and a greater
control effort. To increase convergence speed once the controlled variables are significantly
different from the desired values, Yu X et al. [39] and Yang L and Yang J [85] presented
FTSMC. However, both of the above methods still encounter the singularity drawback.
So, to deal with this obstacle, several NTSM methods [40,85] based on TSMC have been
established.
In addition, those above-mentioned control algorithms require information regarding

the upper bound of the uncertainties in the robot system, eliminating them from control
input signals. In general, it is not easy to precisely define the upper bound of the uncer-
tainty. Some control methods, which are based on an integration of AC law, FL control,
NN control, or SC into TSMC or NTSMC to overcome above issue, have been presented
( [101–107] reference therein). In those papers, adaptive laws were used only to determine
unidentified parameters. These methods still required information on the upper bound
of the unidentified parameters, but no attention was paid to disturbances and uncer-
tainties. Other approaches [37, 39, 40, 85] utilized TSM manifolds, but also encountered
the singularity drawback. To prove convergence in finite-time, those algorithms ordered
the approximately large estimated parameters to generate initial values. However, such
techniques are not practically possible since the magnitude of the generated control input
seems to be not suitable in terms of motor torque saturation during the period of mani-
fold switching, and . Another critical problem is that a chattering phenomenon occurred
by applying high-frequency control switching, which reduces the tracking control perfor-
mance. Some procedures have also used a function, sometimes called a relay function,
but those techniques reduce tracking positional accuracy and increase steady-state errors.
So, the robustness and performance of the control algorithm will be degraded.
Purposed by the above analysis, the target of our chapter is to propose a novel tracking

control algorithm for robot manipulators. The benefits of our control methodology are
highlighted as:
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• Satisfies updating rules to control the system’s controlled variables, attains the slid-
ing manifold, and converges to the balanced point in finite-time, as well as guarantees
asymptotic stability of the robot system with a fast transient response rate.

• Not only prevents the singularity problem by presenting a modified NTSM surface,
but also avoids the reaching phase issue.

• Eliminates the requirement for prior information about the upper bounds of para-
metric uncertainties existing in a real robotic system.

• Rejects the effect of chattering behavior in control input.

• Finite time convergence characteristic and asymptotic stability of the robot system
are proved by the Lyapunov criterion.

The rest of this chapter is arranged as follows. The problem statements required for the
proposed non-singular sliding surface and control are presented in Section 2. The struc-
tural procedure of the suggested control algorithm is reported in Section 3. In Section
4, the proposed control algorithm is applied to the joint position tracking control simula-
tion for a 3-DOF PUMA560 robot. Further, the proposed algorithm’s trajectory tracking
performance is compared with those of the conventional TSMC and conventional SMC.
Lastly, several concluding remarks are presented in Section 5. Several symbols are utilized
throughout the article, ‖∗‖and |∗|correspond to the Euclidean norm and modulus, while
N and R correspond to the spaces of natural numbers and real numbers, respectively.

4.2 Problem Formulations

For an n-link rigid robotic manipulator, the corresponding dynamic equation can be given
as ( [40]):

M (θ) θ̈ + Cm

(
θ, θ̇
)
θ̇ +G (θ) + F

(
θ̇
)

+ τD = τ (4.1)

in which θ, θ̇, θ̈ ∈ Rn are defined as the system’s state vector. M (θ) ∈ Rn×n is the inertia
matrix, Cm

(
θ, θ̇
)
∈ Rn×1 is defined as the matrix resulting from Coriolis and centrifugal

forces, G (θ) ∈ Rn×1 is the gravitational force term, Fr
(
θ̇
)
∈ Rn×1 is the friction matrix,

τ ∈ Rn×1 is the torque produced by actuators, and τD ∈ Rn×1 is a load disturbance
matrix.
From Eq. (4.1), we have:

θ̈ = M−1 (θ)
[
τ − Cm

(
θ, θ̇
)
θ̇ − Fr

(
θ̇
)
−G (θ)− τD

]
(4.2)
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To simplify the analysis and design in next section, Eq. (4.2) can be given as:

θ̈ = H
(
θ, θ̇
)

+D
(
θ, θ̇, t

)
+Q (θ) τ (4.3)

in which H
(
θ, θ̇
)

= M−1 (θ)
[
−Cm

(
θ, θ̇
)
θ̇ −G (θ)

]
, Q (θ) = M−1 (θ), and D

(
θ, θ̇, t

)
=

M−1 (θ)
[
−Fr

(
θ̇
)
− τD

]
.

Next, we employ u (t) = τ as the control input and x = [x1, x2]T as the state vector
in which x1, x2 correspond to θ, θ̇ ∈ Rn×1. The robotic dynamic of Eq. (4.3) can be
described in the following state space form as:{

ẋ1 = x2

ẋ2 = H (x, t) +D (x, t) +Q (x, t)u (t)
, (4.4)

in which H (x, t) ∈ Rn×1 and Q (x, t) ∈ Rn×n are smooth nonlinear vector fields, and
D (x, t) ∈ Rn×1 presents the disturbances and uncertainties.

The sliding motion in finite-time can occur with no prior information regarding the up-
per bounds of undefined parameters (e.g., friction, disturbances, and uncertainties), and
the following assumption is necessary for designing a control scheme in the next section.
Assumption 4.1: There exists a bounded function of D (x, t) presenting undefined pa-
rameters (e.g., friction, disturbances, and uncertainties), which satisfies the following
condition:

‖D (x, t)‖ ≤ Ψ (4.5)

where Ψ is a positive constant.

The control target in our article is to construct a suggested control algorithm such
that the system’s controlled variables of x1 attain the desired values of xd within a finite
amount of time with no prior information about upper bounds of undefined parameters.
Accordingly, the tracking positional error is defined as follows:

e = x1 − xd (4.6)

To achieve this target, this chapter presents two main tasks: (1) construct apposite
NTSM manifolds including the desirable dynamic features and (2) establish a control
algorithm to guarantee the sliding movement and the system’s controlled variables to
achieve the desired trajectory within a finite-time.
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4.3 Design Procedure of the Control Algorithm

In this section, a novel control algorithm is proposed for the robot manipulator of Eq.
(4.1) and is expressed by following two main tasks.

4.3.1 Design of NTSM Surface

First, with the tracking error in Eq. (4.6), the following NTSM surface variables are
suggested:

s = ė+
t

∫
0

(
g0e

[γ] + g1e+ g2e
3 + g3ė

[β]
)

(4.7)

in which s = [s1, s2, . . . , sn]T ∈ Rn×1 is the sliding variable; g0, g1, g2, g3 are positive
coefficients; 0 < γ < 1, β = 2γ

(1+γ)
, and e = [e1, e2, . . . , en]T ∈ Rn×1 are tracking errors;

and ė = [ė1, ė2, . . . , ėn]T ∈ Rn×1 is the time derivative of the tracking error of e.
In addition, e[γ] and ė[β] are defined as ( [90]):

e[γ] = |e|γ sign [e] ;
d

dt
e[β] = β |e|β−1 ė (4.8)

in which γ > 0, β > 0 and sign [e] =


1 if e > 0

−1 if e < 0

0 if e = 0

.

Remark 4.1: The converging speed property of the NTSM variable has been explained
in [85]. Once the tracking positional error of |e| is much greater than 1, g0e

[γ] + g1e+ g2e
3

conveys a fast convergence rate. While the tracking positional error of |e| is much smaller
than 1, g3ė

[β] conveys the role of defining finite-time convergence.
According to the SMC principle, when the system’s tracking positional error runs in

sliding mode, the following equation should be satisfied ( [16]):

s = 0; ṡ = 0 (4.9)

Accordingly, from Eq. (4.7) and Eq. (4.9), it is obtained that

ë+ g0e
[γ] + g1e+ g2e

3 + g3ė
[β] = 0 (4.10)

Therefore, the following dynamic system of the sliding mode can be acquired as:

ë = −g0e
[γ] − g1e− g2e

3 − g3ė
[β] (4.11)

Consequently, the following theorem is generated to complete the proof of convergence
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within a known finite-time.
Theorem 4.1: For the following dynamic system of Eq. (4.11), the original points
ei = 0, (i = 1, 2, . . . , n) are globally balanced points in finite-time.
Proof : Defines the following Lyapunov function candidate as:

V1 =
g0

γ + 1
|e|γ+1 +

g1

2
e2 +

g2

4
e4 +

1

2
ė2 (4.12)

With Eq. (4.11) the time derivative of Eq. (4.12) is derived as:

V̇1 = g0 |e|[γ] ė+ g1eė+ g2e
3ė+ ėë

= g0 |e|[γ] ė+ g1eė+ g2e
3ė

+ė
(
−g0e

[γ] − g1e− g2e
3 − g3ė

[β]
)

= −g2 |ė|1+β 6 0

(4.13)

As a result, the condition for the Lyapunov stability principle is fulfilled. Next, the
original point of the system in Eq. (4.11) is needed to prove a point as globally stable in
finite-time.

From the system in Eq. (4.11), this can be given as:

ė = ψ (e) + ψ̂ (e) (4.14)

with

ψ (e) =

(
ė

−g0e
[γ] − g2ė

[β]

)
, ψ̂ (e) =

(
ψ̂1 (e)

ψ̂2 (e)

)
=

(
0

−g1e− g2e
3

)
(4.15)

when ψ̂ (e) = 0; the system in Eq. (4.14) becomes the form of the system under the
feedback control law (C.6)-(C.7). It is a globally stable solution in finite-time, according
to Lemma 4.2 shown in the Appendix C.

Accordingly, using Lemma 4.1 in the Appendix C, the original point of the dynamic
system of Eq. (4.14) is a globally balanced point in case Eq. (C.5) that is satisfied with
a disturbance vector ψ̂ (e).

Based on Definition 4.2 shown in the Appendix C, the system of ė = ψ (e) is homoge-
neous of negative degree p = γ − 1 < 0 with respect to the dilation (r1, r2) = (2, 1 + γ).
It is sure that r1 − r2 − p > 0. Hence,

lim
λ→0

ψ̂2 (λr1e, λr2 ė)

λr2+p
= lim

λ→0

−g1λ
r1e− g2λ

3r1e3

λr2+p
= 0,∀e 6= 0 (4.16)
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Accordingly, ψ̂ (e) = 0 satisfies the condition from Lemma 4.1 shown in the Appendix
C; hence, the original point of the dynamic system (e = 0) is a locally balanced point in
finite-time.

Proof of stability has been fulfilled.

Given the suitable NTSM surfaces have already been selected, the next task is designing
a controller such that the sliding mode motion occurs in finite-time.
Remark 4.2: The NTSM surfaces proposed in Eq. (4.7) are totally different from the
previously proclaimed surfaces referenced by TSM [25,27,76] and Fast TSM [39,85]. Their
sliding surfaces are expressed respectively in the form of the following equations:

s = ė+ µe
q
l ,

s = ė+ ρe+ µe
q
l .

(4.17)

in which ρ and µ are defined positive coefficients, and l, q are positive odd integers that
satisfy the condition 1 < l

q
< 2. It can be clearly observed that, for e < 0, the fractional

power l
q
can cause the component of e

q
l /∈ R.

Additionally, the control input in [39] encompasses e
q
l
−1ė, which may cause a singularity

in cases e2 6= 0 and e1 = 0.

To overcome obstacles of the complex-valued problem in Eq. (4.17), Yu et al. [40]
suggested another form of TSM surface as:

s = ė+ µ |e|γ sign (e) ,

s = ė+ ρe+ µ |e|γ sign (e) .
(4.18)

With the sliding surface of Eq. (4.18), the complex-valued number problem has been
solved, but the control input has also encountered the singularity drawback in cases of
e2 6= 0 and e1 = 0.

In recent years, some new forms of NTSM surfaces were proposed to deal with the
singularity obstacle [37, 40,85]:

s = e+
1

µ
ė
l
q (4.19)

Nonetheless, the restriction of this sliding surface is that q and l must be positive odd
integers. Accordingly, the proposed NTSM surface in this paper has not encountered the
singularity drawback as discussed above.
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4.3.2 Design of the Proposed Control Algorithm

As mentioned before, the appropriate finite-time NTSM surface in the form of Eq. (4.7)
has been selected, and the next task is to construct a control algorithm satisfying the
control target in Section 2. Further, to obtain the desired performance for System (4.4)
with Assumption 4.1, the following control law is presented in Theorem 4.2.
Theorem 4.2: For the dynamic system in state space as shown in Eq. (4.4), if the
control input signal is constructed as (4.20)-(4.22), a suitable finite-time NTSM surface
is selected as shown in Eq. (4.7), and positive coefficients of Ψ satisfying Assumption 4.1
exist. This means that the system tracking position x1 will reach the desired trajectory
values xd in finite-time. Accordingly, the goal of achieving global stability in finite-time
is guaranteed.

The proposed controller based on the NTSM surface variable is designed as:

u (t) = −Q (x, t)+ (ueq (t) + us (t)) (4.20)

ueq (t) =
(
H (x, t)− ẍd + g0e

[γ] + g1e+ g2ė
[β] + Υs

)
(4.21)

us (t) = (Ψ + η) sign (s) (4.22)

where Q+ (x, t) = QT (x, t)
[
Q (x, t)QT (x, t)

]−1. Υ, η and Ψ are positive constants.
Proof : With System (4.4), ë is present as:

ë = ẋ2 − ẍd
= H (x, t) +D (x, t) +Q (x, t)u (t)− ẍd

(4.23)

Inserting (4.23) into the time derivative of the NTSM variable of (4.7) gives:

ṡ = ë+ g0e
[γ] + g1e+ g2e

3 + g3ė
[β]

= H (x, t) +D (x, t) +Q (x, t)u (t)

−ẍd + g0e
[γ] + g1e+ g2e

3 + g3ė
[β]

(4.24)
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Applying the control law (4.20)-(4.22) to (4.24) obtains:

ṡ = H (x, t) +D (x, t) + g0e
[γ] + g1e+ g2e

3 + g3ė
[β]

+Q (x, t)
(
−Q (x, t)+ (ueq (t) + us (t))

)
− ẍd

= H (x, t) +D (x, t)− ẍd + g0e
[γ] + g1e+ g2e

3 + g3ė
[β]

−

((
H (x, t)− ẍd + g0e

[γ] + g1e

+g2e
3 + g3ė

[β] + Υs

)
+ (Ψ + η) sign (s)

)
= −Υs+D (x, t)− (Ψ + η) sign (s)

(4.25)

Let us define the following Lyapunov function candidate as:

V2 =
1

2
sT s (4.26)

From (4.25), the time derivative of Eq. (4.26) is then derived as:

V̇2 = sT ṡ

= sT (−Υs+D (x, t)− (Ψ + η) sign (s))

= −ΥsT s+D (x, t) s−Ψs− η |s|

(4.27)

Using Assumption 4.1, the following inequality is obtained as:

V̇2 6 −ΥsT s− η |s| 6 0 (4.28)

According to the Lyapunov stability criterion [90, 108], the stability and convergence
of the error variables have been secured despite terrible conditions such as disturbances,
dynamic uncertainties, or faults. It also means positive coefficients of Ψ exist, which
satisfying the condition of Eq. (4.5). Hence, Theorem 4.2 has been proved.

In comparison with Theorem 4.2 that is subject to the traditional SMC in terms of
chattering behavior, the suggested system has significantly less chattering behavior in the
control input. Both methods demand prior information regarding the upper bounds of
the uncertainty terms; unfortunately, this prior information is not always accessible in
real systems. In an unknown bound case, for (4.27) to be ensured, the design parameters
selected in control law should be greater than the upper-bounds uncertainties. One weak
point is that greater design parameters yield more serious chattering behavior. To over-
come these control performance limitations, our method applies an adaptive technique
to approximate the design parameters of the reaching control law and obtain the desired
control algorithm.
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Therefore, the proposed controller based on the NTSM surface variable and adaptive
technique as depicted in Fig. 4.1 is designed as:

u (t) = −Q (x, t)+ (ueq (t) + uas (t)) (4.29)

where ueq (t) is constructed the same as the equivalent control term in Eq. (21), and the
adaptive control term is constructed as:

uas (t) =
(

Ψ̂ad + η
)
sign (s) (4.30)

where ueq (t) is constructed identically to the equivalent control term in Eq. (21), and the
adaptive control term is constructed as:

˙̂
Ψad =

1

κ
|s| (4.31)

where κ > 0 indicates the adaptive gain.

The following theorem is formulated for the proposed controller to achieve the control
objective for the robotic system of Eq. (4.4).
Theorem 4.3: For the dynamic system in state space as Eq. (4.4), if the control input
signal is constructed (4.29)-(4.30) with its parameter updating law as in Eq. (4.31) and a
suitable finite-time NTSM surface is selected as in Eq. (4.7), the estimating value of Ψ̂ad

has an upper limit. It means that there exists a positive coefficient of Ψ̂ad satisfying the
following condition:

Ψ̂ad ≤ Ψ∗ (4.32)

Furthermore, this means that the system tracking position x1 will reach the desired
trajectory values xd in finite-time. Accordingly, the goal of achieving global stability in
finite-time is guaranteed.
Proof : Proof of stability will be done according to the following approach.

Firstly, it will be shown there exist positive coefficients Ψ∗ satisfying the condition of
Eq. (4.32), which causes the system tracking position x1 to reach the desired trajectory
values xd.

The following positive-definite Lyapunov functional is considered:

V3 =
1

2
sT s+

1

2
κ
(

Ψ̂ad −Ψ
)T (

Ψ̂ad −Ψ
)

(4.33)

where κ is a positive constant. Utilizing the same method employed to obtain (4.25), the
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time derivative of Eq. (4.33) is derived as:

V̇3 = sT ṡ+ κ
(

Ψ̂ad −Ψ
)T ˙̂

Ψad

= sT

−Υs+D (x, t)

−
(

Ψ̂ad + η
)
sign (s)

+ κ
(

Ψ̂ad −Ψ
)

˙̂
Ψad

(4.34)

Inserting the adaptive rule (4.31) into (4.34) yields:

V̇3 = −ΥsT s+D (x, t) s− Ψ̂ad |s|

−η |s|+
(

Ψ̂ad −Ψ
)
|s|

(4.35)

Applying Assumption 4.1, the following inequality is obtained as:

V̇3 = −ΥsT s+D (x, t) s− Ψ̂ad |s| − η |s|+
(

Ψ̂ad −Ψ
)
|s|

= −ΥsT s+D (x, t) s−Ψ |s| − η |s|

6 −ΥsT s− η |s| 6 −η |s| 6 0

(4.36)

According to the Lyapunov stability criterion [90,108], the estimating parameter of Ψ̂ad

is limited. It means that there exist positive coefficients of Ψ∗ satisfying the condition of
Eq. (32). Thus, Eq. (4.32) is proved.

Then, the method will continue to show that the system of Eq. (4.4) will attain the
NTSM surfaces s = 0 in a finite-time.

We use the following proof procedure ( [99]).

Consider the following Lyapunov function candidate as:

V4 =
1

2
sT s+

1

2
vΨ̃T Ψ̃ (4.37)

where ν is the positive coefficient, Ψ̃ = Ψ̂−Ψ∗.

The time derivative of Eq. (4.37) is derived as:

V̇4 = sT ṡ+ vΨ̃T ˙̃Ψ

= sT
(
−Υs+D (x, t)−

(
Ψ̂ad + η

)
sign (s)

)
+ v

(
Ψ̂ad −Ψ∗

)
˙̂
Ψad

(4.38)
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Inserting the adaptive rule (4.31) into (4.38) and using (4.32) yields:

V̇4 = sT
(
−Υs+D (x, t)−

(
Ψ̂ad + η

)
sign (s)

)
+ v

(
Ψ̂ad −Ψ∗

) 1

κ
|s|

= −ΥsT s+D (x, t) s− Ψ̂ad |s| − η |s|+
v

κ

(
Ψ̂ad −Ψ∗

)
|s|

6 −ΥsT s+ Ψs− Ψ̂ad |s| − η |s|+
v

κ

(
Ψ̂ad −Ψ∗

)
|s|

6 Ψs− Ψ̂ad |s|+
v

κ

(
Ψ̂ad −Ψ∗

)
|s|+ Ψ∗ |s| −Ψ∗ |s|

= − (Ψ∗ −Ψ) |s|+ v

κ

(
Ψ̂ad −Ψ∗

)
|s| −

(
Ψ̂ad −Ψ∗

)
|s|

= − (Ψ∗ −Ψ) |s| −
(
− |s|+ v

κ
|s|
) ∣∣∣Ψ̂ad −Ψ∗

∣∣∣

(4.39)

For a simpler description, some symbols are defined as:Λ0 = (Ψ∗ −Ψ)

Λ1 =
(
− |s|+ v

κ
|s|
) (4.40)

Ψ∗, and ν must be selected to satisfy the conditions that Ψ∗ > Ψ and v > κ. It follows
that Λ0 > 0 and Λ1 > 0.

Therefore, the following result is obtained:

V̇4 6 −Λ0 |s| − Λ1

∣∣∣Ψ̂ad −Ψ∗
∣∣∣

6 −
√

2Λ0
|s|√

2
− Λ1

√
2

v

√
v

∣∣∣Ψ̂ad −Ψ∗
∣∣∣

√
2

6 −min

{
√

2Λ0,Λ1

√
2

v

}
·

 |s|√
2

+
√
v

∣∣∣Ψ̂ad −Ψ∗
∣∣∣

√
2


(4.41)

Using Jensen’s inequality of Lemma 5.4 shown in the Appendix C and defining that
Λ = min

{√
2Λ0,Λ1

√
2
v

}
, the following results are consequently obtained:

V̇4 6 −Λ

 sT s(√
2
)2 +

(√
v
)2

(
Ψ̂ad −Ψ∗

)T (
Ψ̂ad −Ψ∗

)
(√

2
)2


1
2

6 −ΛV
1
2

4

(4.42)

Based on Lemma 4.3 shown in the Appendix C, it is shown that the controlled vari-

ables in Eq. (4.4) reach the NTSM variable in a known amount of time T 6 2V
1
2

4 (0)

Λ
.
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Furthermore, once the NTSM surface converges to zero, then the tracking error of the
robot system will also become zero. This completes the proof of Theorem 4.3.
Remark 4.3: In real systems, the parameter drift matter usually occurs under adaptive
law (4.31). Therefore, the bounded method is performed to set up the adaptive law as:

˙̂
Ψad =

 0 if |s| 6 υ

1

κ
|s| if |s| > υ

(4.43)

in which υ is an arbitrary positive value.
Theoretically, the proposed control algorithm contains the discontinuous term

(
Ψ̂ad + η

)
sign (s)

that may cause chattering phenomenon from an infinite switching frequency of a discon-
tinuous term. To reject the possible chattering phenomenon, some procedures have been
used. For example, the function of s

(|s|+ε∗) can be utilized to approximate the function of
sign (s) (in which ε∗ is a minor positive coefficient) or another technique is applied in this
paper, which is summarized in Remark 4.4.
Remark 4.4: [40] The chattering phenomenon can be significantly alleviated by replacing
the sign (s) function with a saturation function in the control input signal, such as:

sat
( s
ε∗

)
=

{
sign (s) if |s| > ε∗

s
ε∗

if |s| < ε∗
(4.44)

in which ε∗ is a minor positive coefficient.

4.4 Numerical Simulation Results

We consider a 3-DOF PUMA560 robot [72] with the first three joints and the last three
joints blocked. Its kinematic illustration is shown in Fig. 4.2. The uncertainties in this
simulation are assumed as follows. The friction Fr

(
θ̇
)
and disturbance τD are assumed

to be

Fr

(
θ̇
)

+ τD =


2.1θ̇1 + 2.02sign

(
3θ̇1

)
4.2θ̇2 + 2.2sign

(
2θ̇2

)
1.1θ̇3 + 1.15sign

(
2θ̇3

)
+


7.2sin

(
θ̇1

)
6.1sin

(
θ̇2

)
4.15sin

(
θ̇3

)
 (4.45)

The desired joint trajectories are

θd =
[

cos
(
t

5π

)
− 1 sin

(
t

5π
+ π

2

)
− 1 sin

(
t

5π
+ π

2

)
− 1

]T
(4.46)

The parameters for the NTSM surface in Eq. (4.7) and the controlling input (4.29)-
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Figure 4.1: Block diagram of the proposed control method.

(4.31) are experimentally selected as g0 = 15, g1 = 6, g2 = 3, g3 = 10, γ = 0.2, β = 0.6,
Υ = 20, κ = 0.1, ε∗ = 0.15 and η = 0.2. The initial values of the system are chosen as
θ1 (0) = −0.5, θ2 (0) = −0.5, and θ3 (0) = −0.5. The initial value of adaptive control law
is selected as Ψ̂ad (0) = 0.

To show the effectiveness of the proposed control algorithm, its trajectory tracking
performances are compared with those of the conventional SMC [15, 16, 99, 100] and the
NTSM controller [37,40,85]. These control methods for comparison are briefly explained
as follows.

The conventional SMC [15] has the control input:

u (t) = −Q (x, t)−1 [H (x, t) + ϕ (x2 − ẋd)− ẍd + (Ψ + η) sign(s)] (4.47)

in which s = ė+ ce is the linear sliding surface.

The parameters of the controller in Eq. (4.47) were selected as Ψ = 19.8, η = 0.2, c = 2

and ϕ = 2 to obtain good simulation results.
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Figure 4.2: 3-DOF PUMA560 robot manipulator.

Further, the NTSM controller [37] has the control input:

u (t) = −Q (x, t)−1
[
H (x, t) + µ

q

l
ė2− l

q − ẍd + (Ψ + η) sign (s)
]

(4.48)

in which s = e+ µ−1ė
l
q is a nonlinear sliding surface.

The parameters of the controller in Eq. (4.48) were selected as q = 3, l = 5, η = 0.2,Ψ =

19.8 and µ = 2.0 to obtain good simulation results.

The simulations were carried out in the following two cases to compare the controllers
in terms of both positional accuracy and the resulting chattering behaviors in their control
inputs.

Case 1: Each of three controllers has the discontinuous term of sign (s) in its control
input signal.

Case 2: Each of three controllers applied Remark 4.4 in which the discontinuous term
of sign (s) is replaced with a saturation function in its control input signal.

In Case 1, the tracking positions and tracking errors of the three joints with three
control methods are given in Fig. 7.3 and Fig. 7.4, respectively. All three controllers
offer similar good trajectory tracking performances. However, the tracking errors of the
proposed controller are smaller than those of the other control methods by the order of
10−6 rad. The tracking errors of the other control methods are on the order of 10−4 ∼ 10−5
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Figure 4.3: Tracking Positions with a sign function: (a) at Joint 1, (b) at Joint 2, and (c)
at Joint 3.

rad. The more interesting finding involves comparison of the control inputs in terms of
the chattering phenomena, shown in Fig. 7.5. The chattering behavior from the proposed
NTSM surface and control law was shown as significantly less than those of the other
control methods.

To reduce chattering, the saturation function has been adopted in SMC methods instead
of the sign function. In this case, it is easily expected that reducing chattering often
reduces positional accuracy. The simulation results of Case 2 confirm the expectant results
shown in Figs. 7.6-4.8. Noteworthy is that the degradation of the tracking positional
accuracies of the proposed control method is the smallest among the three controllers,
while the chattering of the control inputs is in the allowable range. The tracking errors
of the proposed controller are on the order of 10−6 rad, while those of the other control
methods are worse, on the order of 10−3 rad. Furthermore, the required initial control
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Figure 4.4: Tracking Errors with a sign function: (a) at Joint 1, (b) at Joint 2, and (c) at
Joint 3.

input of the proposed control method seems to be an affordable magnitude, while those
of the other control method seems to be too high and lead to motor torque saturation as
shown in Fig. 4.8.

The response time of the sliding surface in two cases is shown in Figs. 4.9-4.10. It is
shown that the proposed NTSM surface allows a faster finite-time convergence trajectory
than the old-style SMC and conventional NTSM surfaces. The transient response of the
proposed NTSM surface has been improved and quickly responded to the fast variation
of influences of the external disturbances or uncertainties.

The variations of the estimated parameter of Ψ̂ad in two Case are shown in Figs. 4.11-
4.12. The parameters are estimated according to the variation of the undefined parame-
ters, and this estimated parameter will reach a constant when the system state variables
converge to the non-singular sliding surfaces.
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Figure 4.5: Control inputs with a sign function: (a) at Joint 1, (b) at Joint 2, and (c) at
Joint 3.

From the simulation results, it can be concluded that the proposed controller shows the
best performance among the three in terms of tracking positional accuracy, small steady
state error, fast response speed, and weak chattering behavior.
Remark5.5 : The robustness issue and the finite-time convergence of the suggested sys-
tem are totally confirmed by the Lyapunov stability principle. Through simulation studies
and comparison among those of the conventional SMC [15,16,99,100] and the NTSM con-
troller [37,40,85], the experimental results and performance comparison could be expected
to show the effectiveness and viability of our proposed scheme for the joint position track-
ing control of a 3-DOF PUMA560 robot. In the next work, authors will apply the proposed
controller to the real robot system and compare with other state-of-the-art controllers to
demonstrate the effectiveness of this control method.
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Figure 4.6: Tracking positions with a saturation function: (a) at Joint 1, (b) at Joint 2,
and (c) at Joint 3.

4.5 Conclusions

In this paper, an adaptive continuous finite-time TSMC algorithm is presented for robot
manipulators. From the simulation and performance comparison with two other control
methods for a 3-DOF PUMA560 robot, the suggested control method shows the best
performance among the three controllers in terms of tracking positional accuracy, small
steady state error, fast response speed, and weak chattering behavior. We think that
the proposed control algorithm has the following important characteristics: 1) the NTSM
surface allows finite-time convergence without singularity, 2) requires no prior information
of the upper limits of uncertainties, 3) shows tremendously less chattering behavior, and
4) the magnitude of the generated control input seems to be more suitable in terms of
motor torque saturation compared with those of the other control methods.
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Figure 4.7: Tracking errors with a saturation function: (a) at Joint 1, (b) at Joint 2, and
(c) at Joint 3.
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Figure 4.8: Control inputs with a saturation function: (a) at Joint 1, (b) at Joint 2, and
(c) at Joint 3.
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Figure 4.9: Non-singular terminal sliding surfaces with a sign function: (a) at Joint 1, (b)
at Joint 2, and (c) at Joint 3.
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Figure 4.10: Non-singular terminal sliding surfaces with a saturation function: (a) at Joint
1, (b) at Joint 2, and (c) at Joint 3.

Figure 4.11: The response time of the estimating parameters with a sign function: (a) at
Joint 1, (b) at Joint 2, and (c) at Joint 3.
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Figure 4.12: The response time of the estimating parameters with a saturation function:
(a) at Joint 1, (b) at Joint 2, and (c) at Joint 3.
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Appendix C

Some preliminary definitions applied in the progress of the control scheme are introduced
in this part.
Consider the following system as

ẋ = ψ (x) ;ψ (x) = 0 (C.1)

where x ∈ Ω ⊂ Rn, x (0) = x0.
Definition 4.1: [42] The original point is termed a globally balanced point of the system
(C.1) in finite time in the case of an open neighborhood N ⊆ Ω of the original point and a
function T : N\ {0} → (0, \∞), termed the settling time, such that the following criterion
holds:
Finite time convergence property: For every x0 ∈ N\{0}, every solution x (t, x0) is defined
for t ∈ [0, T (x0)) , x (t, x0) ∈ N\ {0}, for t ∈ [0, T (x0)) and, lim

t→T (x0)
x (t, x0) = 0.

The Lyapunov stability criterion: For every open set Us such that 0 ∈ Us ⊆ N , there
exists an open set Uδ such that and such that, for every x0 ∈ Uδ\ {0} , x (t, x0) ∈ Us for
all t ∈ [0, T (x0)).
The original point is defined as a globally balanced point in finite time in the case that it
is a finite-time balanced point and Ω = N = Rn.
Definition 4.2: A family of dilations Cr

ε is a mapping that designates to every real λ > 0

a diffeomorphism

Cr
λ (x1, x2, . . . , xn) = (λr1x1, λ

r2x2, . . . , λ
rnxn) (C.2)

where x1, x2, . . . , xn are appropriate coordinates on Rn, and r = r1, r2, . . . , rn with the
dilation coefficients r = r1, r2, . . . , rn are positive real numbers.
A vector field ψ (x) = [ψ1 (x) , ψ2 (x) , . . . , ψn (x)]T is homogeneous to the degree p ∈ R

with respect to the family of dilations for all λ > 0

ψl (λ
r1x1, λ

r2x2, . . . , λ
rnxn) = λp+rlψl (x) , l = 1, 2, . . . , n (C.3)

The system of Eq. (C.1) is named homogeneous in the case its vector field λ is homo-
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geneous.
Lemma 4.1: [45] The following non-linear system is considered:

ẋ = ψ (x) + ψ̂ (x) , x ∈ Rn (C.4)

where ψ (x) is an n-dimensional continuous homogeneous vector field of degree p < 0 with
dilation (r1, r2, . . . , rn) satisfying ψ (0) = 0 , and ψ̂ is a continuous vector field satisfying
ψ̂ (0) = 0 . Assume x = 0 as an asymptotic balanced point of the system ẋ = ψ (x).
Then, the zero solution of Eq. (C.4) is a locally finite time stable result if

lim
λ→0

(
ψ̂l (λ

r1x1, λ
r2x2, . . . , λ

rnxn)
)

λp+rl
= 0

l = 1, 2, . . . , n, ∀x 6= 0

(C.5)

Lemma 4.2: [45, 109] The following system is considered as:{
ẋ1 = x2

x2 = u
(C.6)

The original point of the system of Eq. (C.6) is a globally balanced point in finite time
according to the principle of feedback control:

u = −µ1 |x1|ϑ1 sign (x1)− µ2 |x2|ϑ2 sign (x2) (C.7)

in which ϑ1, ϑ2 are positive coefficients, and ϑ1, . . . , ϑn satisfy ϑi−1 = ϑiϑi+1

2ϑi+1−ϑi , i =

2, . . . , n, with ϑi+1 = 1 and ϑi = ϑ.
Lemma 4.3: [79] Suppose that a continuous positive-definite function ∆ (t) satisfies the
differential inequality:

∆̇ (t) 6 −α∆δ (t) , ∀t > t0, ∆ (t0) > 0 (C.8)

in which δ > 0, 0 < δ < 1 are coefficients. Then, for any given t0,∆ (t), the following
inequality is satisfied:

∆1−δ (t) 6 ∆1−δ (t0)− α (1− δ) (t− t0) , t0 6 t 6 t1 (C.9)

with ∆ (t) = 0, ∀t ≥ t1, where t1 is calculated by:

t1 = t0 +
1

α (1− δ)
∆1−δ (t0) (C.10)
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Lemma 4.4: ( [73], Jensen’s inequality). It has the following form:

(
m∑
i=1

φa2i

) 1
a2

6

(
m∑
i=1

φa1i

) 1
a1

, 0 < a1 < a2 (C.11)

with φi ≥ 0, 1 ≤ i ≤ m.
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Chapter 5

A New Finite-time Control Solution
for Robotic Manipulators Based on
Non-singular Fast Terminal Sliding
Variables and the Adaptive
Super-Twisting Scheme

5.1 Introduction

In the literature related to robot manipulators, numerous control algorithms have been
designed to achieve good performance and reliability with uncertainties and external
noises. Several methods have been proposed to control the motion of robot manipu-
lators, such as using PD controller [110], a nonlinear PD controller [111], an ASL-PD
control scheme [112], and a PID controller [4,5]. These controllers are highlighted as sim-
ple and monotonic ways to achieve control. However, they cannot always achieve good
performance results. Other competitive methods have also been presented to track the
motion of robot manipulators, including FLS [113,114] and NN control [91,115,116]; how-
ever, these require higher computation costs and the effectiveness of each method is still
limited. When designing a control scheme based on the robot dynamic model, the whole
dynamics of the robotic system are determined and compensated for explicitly. Some
advanced control methods have also been presented, including CTC [6, 7], OC [97, 117],
AC [118], and RC [97,119]. Among these controllers, robust control algorithms have been
verified to provide higher robustness, and they are also capable of rejecting uncertainties
and perturbations.
SMC is a well-known robust control scheme, which is one of the most powerful method-
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ologies for resolving nonlinear systems with external perturbation and uncertainty. SMC
has been successfully applied to both serial and parallel robotic manipulators [15, 16].
Conventional SMC, however, still has several main drawbacks. (1) Conventional SMC
commonly uses a linear sliding variable, which can only guarantee the asymptotic stabil-
ity of the system but cannot converge the controlled variables to the desired values in a
finite amount of time. (2) The inclusiveness of a discontinuous control input generates
large chattering behavior. (3) For bigger perturbations and uncertainties, a large discon-
tinuous control input must be used. Those control gains are determined based on essential
knowledge related to the upper bound values of the perturbations and uncertainty, which
are too complicated to estimate in a practical system. (4) It may encounter difficulties
handling the fast variation effects of perturbations.
Motivated by these issues, research efforts have been implemented to reduce the limita-

tions of SMC. To converge the system states within a finite amount of time on the sliding
variable, TSMC based on a nonlinear sliding variable has been presented [120,121]. How-
ever, TSMC has a slower convergence speed than conventional SMC, and TSMC also
suffers from a singularity problem. To handle this singularity problem, FTSMC [68, 69]
and NTSMC [122, 123] methods have been investigated. Practically, however, methods
based on FTSMC or NTSMC have only addressed one limitation, skipping the other
issues that limit conventional SMC. Therefore, NFTSMC [47, 48] has been introduced.
With NFTSMC, the system states achieve fast finite-time convergence and avoid the sin-
gularity problem. Another approach to improve the transient response of conventional
SMC is to use ISMC [50, 51]. One of the goals of this research is to achieve both finite-
time convergences and fast transient response speed. Therefore, ISMC and TSMC can
be combined to establish ITSMC [52, 53]. However, ITSMC still has the drawbacks of
conventional SMC because the TSMC scheme is still included in the design of ITSMC.
Chattering behavior is an undesired issue in practical applications that rely on TSMC,

FTSMC, NTSMC, or NFTSMC with a high-frequency switching control term. Therefore,
some effective algorithms have been developed to handle this issue via the saturation
function or hyperbolic and relay function. However, such techniques reduce the robustness
and tracking positional accuracy, and they sometimes require too much initial control
input. While each limitation of conventional SMC and TSMC has been handled on its
own, this paper attempts to solve all of the limitations of SMC and TSMC, including
chattering, fast finite-time convergence, and unknown knowledge of the upper bounds of
the uncertainty and perturbation, simultaneously.
Thus, the main goal of our paper is to propose a new finite-time tracking control

algorithm based on non-singular fast terminal sliding variables and the adaptive super-
twisting method for robotic manipulators. The major benefits of the proposed control
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solution are given as:

• Inherits the advantages of NFTSMC in terms of its high robustness, fast transient
response speed, finite-time convergence, and ability to avoid the singularity draw-
back.

• The upper limit of the convergence time can be set beforehand.

• Does not demand essential information of the upper limits for perturbations and
uncertainties.

• Generates control inputs with smooth and chattering-free behavior.

• Robustness and finite-time stability problem of the robot system have been verified
fully by the Lyapunov principle.

The remainder of this chapter is organized as follows. The problem statements required
for the proposed nonsingular fast sliding variables and control are presented in the second
section. The third section gives the design procedure of the suggested control solution. In
the fourth section, the suggested control solution is applied to the joint position tracking
control simulation for a 3-DOF PUMA560 robot, and its trajectory tracking performance
is compared with those of SMC and TSMC, as shown in [16,37]. Finally, some conclusions
are described in the last section.
Notation: Several types of notation are utilized in the article. denote the Euclidean
norm and modulus, respectively. denotes the space of real numbers.

5.2 Problem Statement

For an n-link rigid robotic manipulator, the corresponding dynamic model can be defined
in joint space as (see [37, 40]):

M (q) q̈ + Cm (q, q̇) q̇ +G (q) + Fr (q̇) = τ − τp. (5.1)

Here, q, q̇, q̈ ∈ Rn correspond to the position, velocity, and acceleration of the robot
manipulator, respectively, and M (q) ∈ Rn×n is the inertia matrix, Cm (q, q̇) ∈ Rn×1 is
the matrix from the centrifugal force and Coriolis, G (q) ∈ Rn×1 is the gravitational force
matrix, Fr (q̇) ∈ Rn×1 is the matrix resulting from friction, τ ∈ Rn×1 is the control input
torque, and τp ∈ Rn×1 is a load perturbation matrix.
To simplify the design and analysis in the next part, Eq. (5.1) can be rewritten as:

Ξ (q, q̇, q̈) + ∆u (q, q̇, t) = τ. (5.2)

81



CHAPTER 5. A NEW FINITE-TIME CONTROL SOLUTION FOR ROBOTIC
MANIPULATORS BASED ON NON-SINGULAR FAST TERMINAL SLIDING
VARIABLES AND THE ADAPTIVE SUPER-TWISTING SCHEME

Here, Ξ (q, q̇, q̈) is the nominal robot system when there are no perturbations or uncer-
tainties. ∆u (q, q̇, t) = Fr (q̇) + τp presents the total components of the perturbations and
uncertainties. General robotic manipulators have the following properties.
Assumption 5.1: The inertia matrix M (q) is an invertible, positive definite, and sym-
metric matrix bounding the following condition:

δ1 ≤M (q) ≤ δ2. (5.3)

Here, δ1 and δ2 denote positive coefficients.
To ensure occurrence of the sliding motion in a finite amount of time without essential

information related to the upper bounds of elements influencing the robot (e.g. friction,
disturbances, and uncertainties), the following assumptions are necessary when designing
the control algorithm in the sequel.
Assumption 5.2: The perturbations and uncertainties are a limited function satisfying
the following relation: ∥∥∥∥ ddt∆u

∥∥∥∥ ≤ Ω. (5.4)

Here, Ω is a known positive coefficient that is first-order differentiable.
Remark 5.1: The Assumption 5.2 is realistic in real applications. For example, when
a cutting tool or an end mill of a CNC machine tool cuts a work-piece, the load torque
may change as the cutting thickness changes, but the change rate of the load torque
is always limited. In this chapter, the Assumption 5.2 in equation (5.4) might not be
satisfied for some conditions when the change of disturbances and uncertainties is very
fast. In this situation, the system might be unstable. Fortunately, due to the benefits
of the proposed NFTSM variables and ASTA, the system responses against disturbances
and uncertainties can stabilize the system very quickly. This is one of the contributions
of the chapter, which has been verified in the simulation. The reviewers can refer to [71]
for more detail of this Assumption.
The control destination of our paper is that the controlled variables will achieve the

desired trajectory in a limited time under the newly designed control method. In this case,
essential information related to the upper limits of the perturbations and uncertainties is
rejected.

5.3 Design Procedure of the Control Scheme

In this section, a new control scheme is suggested for Eq. (5.1), which is described by the
two following main tasks.
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5.3.1 Design of NFTSM Variables

The set epi = qi−qri (i = 1, 2, · · · , n) is the tracking positional error, where qr is defined
as the desired trajectory value. According to the design technique of TSMC, a state
variable (referred to as the NFTSM variable) is defined beforehand. From the tracking
positional error, the novel NFTSM variables are proposed as:

si = epi +

t∫
0

(
Γ1i (e

p
i )

[2−ϑi] + Γ2ie
p
i + Γ3i (e

p
i )

[ϑi]
)
dσ. (5.5)

Here, si is the sliding variable; Γ1i,Γ2i,Γ are positive coefficients satisfying the relation
4Γ1iΓ3i > Γ2

2i, 0 < ϑi < 1 (i = 1, 2, · · · , n); and (epi )
[ϑi] are defined as (see [124]):

(epi )
[ϑi] = |epi |

ϑi sign [epi ] . (5.6)

Remark 5.2: Once the tracking positional error of |epi | is much greater than 1, Γ1i (e
p
i )

[2−ϑi]+

Γ2ie
p
i expresses the role of providing a fast convergence speed. Alternatively, when the

tracking positional error of |epi | is much smaller than 1, Γ3i (e
p
i )

[ϑi] expresses the role of
determining finite-time convergence.

According to the SMC technique, once the tracking positional error runs in the sliding
mode, the following relations are approved [16] and [20]:

si = 0; ṡi = 0. (5.7)

Accordingly, based on Eq. (5.5) and Eq. (5.7), it is determined that

epi +

t∫
0

(
Γ1i (e

p
i )

[2−ϑi] + Γ2ie
p
i + Γ3i (e

p
i )

[ϑi]
)
dσ = 0. (5.8)

Therefore, the following sliding mode dynamics can be obtained:

ėpi = −Γ1i (e
p
i )

[2−ϑi] − Γ2ie
p
i − Γ3i (e

p
i )

[ϑi] . (5.9)

The following theorem establishes that finite-time convergence occurs.
Theorem 5.1: Consider the dynamic system of Eq. (5.9). The original point epi = 0 is
globally balanced in a finite amount of time and the state variable of the system in Eq.
(5.9) converges to zero in a finite amount of time Tepi 6 T f

epi
.
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T f
epi

is defined as:

T f
epi

=
2

(1− ϑi)

(
π

2
− tan−1 Γ2i√

4Γ1iΓ3i − Γ2
2i

)
1√

4Γ1iΓ3i − Γ2
2i

. (5.10)

Proof : From Eq. (5.9), the Lyapunov function candidate is defined as:

L1 = (epi )
2 . (5.11)

With Eq. (5.9), the time derivative of Eq. (5.11) is derived as:

L̇1 = 2epi ė
p
i

= 2epi

(
−Γ1i (e

p
i )

[2−ϑi] − Γ2ie
p
i − Γ3i (e

p
i )

[ϑi]
)

= 2
(
−Γ1i (e

p
i )

[3−ϑi] − Γ2i (e
p
i )

2 − Γ3i (e
p
i )

[1+ϑi]
)

= 2

(
−Γ1iL

3−ϑi
2

1 − Γ2iL1 − Γ3iL
ϑi+1

2
1

) . (5.12)

To give a conclusion from Eq. (5.12), the following Lemma is used.
Lemma 5.1: [40] For any real numbers z1 > 0, z2 > 0, and 0 < ϕ < 1, an extended
Lyapunov function condition of finite-time stability can be given in the form of a fast
terminal sliding mode: L̇(x) + z1L(x) + z2L

ϕ(x) 6 0, where the settling time can be
estimated by

T 6
1

z1 (1− ϕ)
ln
z1L

1−ϕ (x (0)) + z2

z2

. (5.13)

From Eq. (5.12), ϑi+1
2

< 1 means L̇1 ≤ 0. Based on Lemma 5.1, the original point of
epi = 0 is a globally balanced point over a finite amount of time. In the next step, it will
be proven that the error state variable of the system in (5.9) converges to zero in a finite
amount of time.

Eq. (5.12) can be shown as:

L̇1 = 2L
ϑi+1

2
1

(
−Γ1iL

1−ϑi
1 − Γ2iL

1−ϑi
2

1 − Γ3i

)
. (5.14)
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Additionally, Eq. (5.14) can be expressed as:

dL1 = 2L
ϑi+1

2
1

(
Γ1iL

1−ϑi
1 + Γ2iL

1−ϑi
2

1 + Γ3i

)
dt

⇒ dt = − dL1

2L
ϑi+1

2
1

(
Γ1iL

1−ϑi
1 + Γ2iL

1−ϑi
2

1 + Γ3i

)

= − 1

1− ϑi
dL

1−ϑi
2

1(
Γ1iL

1−ϑi
1 + Γ2iL

1−ϑi
2

1 + Γ3i

)
. (5.15)

Setting L1

(
Tepi

)
= 0 and taking the integral of Eq. (5.15) during the time period of

0→ Tepi gives:

Tepi =
2

(1− ϑi)
1√

4Γ1iΓ3i − Γ2
2i

arctan
2Γ1iL

1−ϑi
2

1 (epi (0))√
4Γ1iΓ3i − Γ2

2i

− arctan
Γ2i√

4Γ1iΓ3i − Γ2
2i

 .

(5.16)

From Eq. (5.16), Tepi is limited by T f
epi

= 2
(1−ϑi)

(
π
2
− arctan Γ2i√

4Γ1iΓ3i−Γ2
2i

)
1√

4Γ1iΓ3i−Γ2
2i

.

In fact, L1

(
Tepi

)
= 0 means epi

(
Tepi

)
= 0. In addition, it can be seen that the upper bound

of T f
epi

is depends only on the designing constants Γ1i,Γ2i,Γ3i, and ϑi, and the tracking
positional error in Eq. (5.9) reaches zero in a finite amount of time. This completes the
proof of Theorem 5.1.

The proposed control solution forces the error state variables to reach sliding variables
in a finite amount of time. This will be presented in the next step.

5.3.2 Design of a New Finite-time Control Solution Based on

NFTSM Variables and the ASTA

The following proposed controller is designed according to the designing procedure of
sliding mode control:

τSMC = τeq + τsw. (5.17)

The term of the equivalent control of τeq maintains the trajectory of the error state
variables on the sliding variables. To get this result, it is necessary to take the derivative
of sliding variables with respect to time. Also, ṡ = 0 for a nominal system that does
not consider perturbations or uncertainties. The time derivative of sliding variables is
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expressed as:
ṡ = ėp + Γ1 (ep)[2−ϑi] + Γ2e

p + Γ3 (ep)[ϑi] . (5.18)

With Eq. (5.1), ėp can be presented as:

ėp = τSMC + Ξ∗, (5.19)

in which the dynamic function of the robot is shown as:

Ξ∗ = −M (q) q̈ +
(
In×n − Cm (q, q̇)

)
q̇ −G (q)− Fr − τp − q̇r. (5.20)

Substituting Eq. (5.19) into Eq. (5.18) gives:

ṡ = (τSMC + Ξ∗) + Γ1 (ep)[2−ϑi] + Γ2e
p + Γ3 (ep)[ϑi] . (5.21)

The equivalent control term can be defined in the case where ṡ = 0, without considering
the perturbations and uncertainties, as:

τeq = −Ξ− Γ1 (ep)[2−ϑi] − Γ2e
p − Γ3 (ep)[ϑi] − µs[

1
2 ] − ηµs. (5.22)

Here, µ and ηµ are positive coefficients.

The switching control term is designed as:

τsw = −η2sign (s) , (5.23)

in which η2 is a positive coefficient.

Therefore, the overall control input becomes

τSMC = τeq+τsw = −Ξ−Γ1 (ep)[2−ϑi]−Γ2e
p−Γ3 (ep)[ϑi]−µs[

1
2 ]−ηµs−η2sign (s) . (5.24)

When the design parameters of the switching control term are greater than the uncer-
tainties of the upper bounds, the stability of the system in Eq. (5.17) can be fully proven
by the Lyapunov criterion. Unfortunately, robot manipulators have a complicated dy-
namic model with many parametric uncertainties (e.g., friction, payload, perturbations,
and sensor noise). Those may reduce the tracking positional precision. Also, it is not easy
to exactly determine the essential information of the uncertainties of upper limits and the
robot dynamic function in the equivalent control. To solve those problems, we construct a
new finite-time control solution for the robot manipulator with adaptive tuning principles
instead of using a fixed gain η2. Therefore, the sliding motion is guaranteed to take place
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in a finite amount of time without requiring the essential information of the upper limits
of perturbations and uncertainties. For that reason, the robot control solution of Eq.
(5.24) is presented as:

τSMC = τeq + τasw = −Ξ− Γ1 (ep)[2−ϑi] − Γ2e
p − Γ3 (ep)[ϑi] − µs[

1
2 ] − ηµs+ ρa, (5.25)

in which τasw is an adaptive control term that replaces the control law τsw in Eq. (5.23).
Its adaptive updating rule is given as:

ρ̇a = ηνs− νsign (s) , (5.26)

in which ν and ην are positive coefficients.
The adaptive updating rule is proposed and referred to as the super-twisting method

[124]. To complete the proof, the following Lemma is necessary.
Lemma 5.2: [125] The following system is considered:{

σ̇ = −µ (t)w[ 12 ] − ηµ (t)w +$

$̇ = −ην (t)w − ν (t) sign (w) + κ (t)
. (5.27)

Assume that the term κ is a perturbation that satisfies the following condition:

|κ (t)| ≤ κ∗. (5.28)

With some unknown coefficients κ∗ > 0, the estimating parameters µ, ν, ηµ, and ην are
defined as: 

µ (t) = µ0

√
V0 (t)

ν (t) = ν0V0 (t)

ηµ (t) = ηµ0V0 (t)

ην (t) = ην0V
2

0 (t)

. (5.29)

Here, the initial values µ0, ν0, ηµ0 , and ην0 of the estimating parameters µ, ν, ηµ, and ην are
positive coefficients and V0 (t) is a time-varying, positive, scalar function. The adaptive
updating rule of the time-varying function V0 (t) is given as:

V̇0 (t) =

 Υ,

0,

|w| 6= 0

otherwise
. (5.30)

Here, Υ is an arbitrary positive constant. The state variables of Eq. (5.26) reach zero
within a finite amount of time when the initial values µ0, ν0, ηµ0 , and ην0 satisfy the
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following relation:
4ν0ην0 >

(
8ν0 + 9µ2

0

)
η2
µ0
. (5.31)

The control method used to achieve the control goal for the system of Eq. (5.10) is
summarized in Theorem 5.2.
Theorem 5.2: For the system of Eq. (5.1), if the suitable finite-time NFTSM variables
have been selected as shown in Eq. (5.5), the control input signal is constructed as shown
in Eq. (5.25) (with its parameter updating rules designed as shown in Eqs. (5.29)-(5.30)),
and the corresponding parameters satisfy the conditions of Eq. (5.31), then the sliding
variable motion is guaranteed to happen. This means that the error state variables reach
sliding variables in a finite amount of time and the system of Eq. (5.9) is globally finite-
time stable.
Proof : With Eq. (5.1) and the control input of Eq. (5.25), Eq. (5.21) yields:

ṡ = −Ξ− Γ1 (ep)[2−ϑi] − Γ2e
p − Γ3 (ep)[ϑi] − µs[

1
2 ]

−ηµs+ ρa + Ξ∗ + Γ1 (ep)[2−ϑi] + Γ2e
p + Γ3 (ep)[ϑi]

= −µs[
1
2 ] − ηµs+ ρa + ∆u

ρ̇a = −ηνs− νsign (s)

. (5.32)

By denoting the new variable as $

$ = ρa + ∆u, (5.33)

the system of Eq. (5.32) can be rewritten as:
ṡ = −µs

[ 12 ]
− ηµs+$

$̇ = −ηνs− νsign (s) +
d

dt
∆u

. (5.34)

According to Assumption 5.2 and Lemma 5.2, the state variables of Eq. (5.32) reach
zero in a finite amount of time, which means that the sliding mode motions of s = 0 take
place in the finite amount of time, Ts [125]. Therefore, Theorem 5.2 is totally proven.
Remark 5.3: With the proven results of Theorems 5.1 and 5.2, it can be summarized
that applying the suggested control method in Eq. (5.25) (with its parameter updating
rules designed as shown in Eqs. (5.29)-(5.30), with the corresponding parameters satis-
fying the conditions of Eq. (5.31), and with the finite-time NFTSM variables selected as
shown in Eq. (5.5)) leads the error state variables to reach sliding variables within a finite
amount of time T ≤ max

{
Ts + T f

epi

}
.
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Figure 5.1: 3-DOF PUMA560 robot manipulator.

Remark 5.4: In this chapter, the robustness issue and the finite-time convergence of
the suggested system are totally confirmed by the Lyapunov stability principle. Through
simulation studies, the experimental results could be expected to exhibit the effective-
ness and viability of our proposed scheme for joint position tracking control of a 3-DOF
PUMA560 robot. In the future, authors will apply the proposed controller to the real
robot system to demonstrate the effectiveness of this control method.

5.4 Numerical Simulation Studies

The proposed control solution is applied for trajectory tracking control simulation for the
first three joints of a PUMA560 manipulator to demonstrate its viability and effectiveness.
A dynamic model with essential parameters of the manipulator was utilized in [72]. We
used Matlab/Simulink software for all numerical simulation studies, and the sampling
time was set to 10−3 s.

A 3-DOF PUMA560 robot manipulator with the first three joints and the last three
joints locked is considered. Its kinematic representation is shown in Fig. 5.1.

To test the robustness of the control system, a large value of the perturbations and
uncertainties are assumed in these simulations, as follows. The friction Fr

(
θ̇
)
and per-
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turbation τp are assumed to be

Fr

(
θ̇
)

+ τp =


0.5q̇1 + 1.0sign

(
3θ̇1

)
1.3q̇2 + 1.8sign

(
2θ̇2

)
−1.8q̇3 + 2.0sign

(
2θ̇3

)
+


7.2 sin

(
θ̇1

)
6.1 sin

(
θ̇2

)
4.15 sin

(
θ̇3

)
 . (5.35)

Additionally, the desired joint trajectories for the position tracking are

qr =
[

0.6 + cos
(
t

6π

)
− 1, −0.6 + sin

(
t

6π
+ π

2

)
, 0.6 + sin

(
t

6π
+ π

2

)
− 1

]T
. (5.36)

The parameters for the NFTSM variables of Eq. (5.5) are experimentally selected.
They are based on convergence properties stated in Remark 6.2. The parameters for
the controlling input signals in Eq. (5.25) (with the adaptive updating rules established
in Eqs. (5.29)-(5.30)) were experimentally chosen to make system stable, to obtain the
desired performance with fast convergence time (the upper bound of the convergence
time is T f

epi
≈ 0.8s based on the results in Eq. (5.16)) as Γ1 = diag (3, 3, 3), Γ2 =

diag (2, 2, 2), and Γ3 = diag (3, 3, 3), which satisfy conditions mentioned in the article and
explained in references [90,124,125] as 4Γ1iΓ3i > Γ2

2i and ϑi = 0.4 (i = 1, 2, 3) (0 < ϑ < 1).
Additionally, we set Υ = 8 and V0 (0) = 3, which satisfy the relation of Eq. (5.30), and
µ0 = 2, ν0 = 4, ηµ0 = 2.5, and ηv0 = 30, which satisfy the relation of Eq. (5.31) and
ρa (0) = 0.

To demonstrate the effectiveness of the proposed control solution, its trajectory tracking
performances are compared with those of SMC [16] and NTSMC [37, 40]. The control
schemes for these comparisons are briefly expressed in the appendix.

The parameters of the controller in Eq. (D.10) were chosen as α = 2 and g = 10 to
guarantee stability and obtain good performances (referred to [16]).

Additionally, the parameters of the controller in Eq. (D.18) were chosen as l = 5,
h = 3, β = 2, lg = 8, and ξ = 2 to guarantee stability and obtain the good performances
(referred to [37,40]).

For a fair comparison, the initial control input magnitudes of the control methods are
similar and in the allowable range. Simulations were performed to compare the controllers
in terms of their positional precision, their fast response speed, and the resulting chattering
behaviors in their control inputs.

The averaged tracking errors are calculated according to: epi =

√
1
n

n∑
k=1

(
‖epi ‖

2
)
in which

i = 1, 2, 3, and n is the number of simulation steps.
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Figure 5.2: Tracking positions: (a) at Joint 1, (b) at Joint 2, and (c) at Joint 3

The tracking positional trajectories and tracking positional errors of the first three
joints with the three control schemes are exhibited in Figs. 7.3-7.4. It can be seen that all
three of the control schemes seem to have the same good trajectory tracking performance.
However, the tracking errors of the suggested control scheme are relatively small compared
to those of the other control methods, on the order of 10−7 rad, and the convergence times
of those errors are faster. The tracking positional errors of the other control schemes are on
the order of 10−4 ∼ 10−5 rad, with slower convergence times, as can be observed in Table
5.1. Additionally, the chattering phenomena of our proposed solution were improved, as
shown in Fig. 7.5.

The chattering behavior obtained with the suggested NFTSM variable and control
principle was much less compared to the other control schemes. The suggested control
input system is efficiently smooth and demonstrates chattering-free behavior.
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Figure 5.3: Tracking errors: (a) at Joint 1, (b) at Joint 2, and (c) at Joint 3 .

By adjusting the value of V̇0 (t), a better transient performance can be obtained. From
the response time of the sliding variables in Fig. 7.6, the proposed NFTSM variable shows
the best performance for fast finite-time convergence.

5.5 Conclusions

In this study, a new trajectory tracking control solution is developed for robot manipula-
tors. Based on numerical simulation results and a performance comparison with two other
control schemes for a 3-DOF PUMA560 robot manipulator, our control scheme shows the
best performance in terms of tracking positional precision, small steady-state errors, fast
response rate, and small chattering behavior. The suggested control solution has the fol-
lowing valuable benefits. 1) It uses new NFTSM variables, which offer a fast transient
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Figure 5.4: Control input signals: (a) at Joint 1, (b) at Joint 2, and (c) at Joint 3 .

response rate and finite-time convergence with no singularity drawback. 2) It requires no
essential information regarding the upper limits of the perturbations and uncertainties.
3) The upper limit of the convergence time can be set beforehand. 4) It demonstrates
impressively small chattering behavior. 5) The robustness and the finite-time convergence
of the system have been guaranteed fully by the Lyapunov stability criterion.
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Table 5.1: Averaged tracking errors under the control signals of the control schemes.

Error

Control Method ep1 ep2 ep3

SMC 1.91× 10−4 2.71× 10−4 8.82× 10−4

NTSMC 1.27× 10−5 2.17× 10−5 2.78× 10−5

Proposed Algorithm 6.76× 10−7 5.74× 10−7 7.72× 10−7

Figure 5.5: Sliding variables: (a) at Joint 1, (b) at Joint 2, and (c) at Joint 3.
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To design SMC [16] and NTSMC [37,40], the dynamic equation of the robotic manipula-
tors in Eq. (5.1) is expressed as:

q̈ = M−1 (q) [τ − Cm (q, q̇) q̇ − Fr (q̇)−G (q)− τp] . (D.1)

To simplify the designing procedure and analysis in the sequel, Eq. (D.1) can be
expressed as:

q̈ = Φ (q, q̇) +H (q) τ + ∆ (q, q̇, t) , (D.2)

where Φ (q, q̇) = M−1 (q) [−Cm (q, q̇) q̇ −G (q)] and H (q) = M−1 (q) are smooth nonlinear
vector fields and ∆ (q, q̇, t) = M−1 (q) [−Fr (q̇)− τp] presents the total components of the
perturbations and uncertainties.

The design procedure of SMC

Set ep = q − qr as the tracking positional error and define qr as the desired trajectory
values.

Then, define the following sliding variable as:

s = ėp + αep, (D.3)

in which α is a positive coefficient.

Using Eq. (D.2), Eq. (D.3) then gives:

ṡ = ëp + αėp

= q̈ − q̈r + α (q̇ − q̇r)

= Φ (q, q̇) +H (q) τ + ∆ (q, q̇, t)− q̈r + α (q̇ − q̇r)

. (D.4)

To guarantee that the controlled variables of Eq. (D.1) converge to sliding variables,
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the following relation must be satisfied:

s = 0; ṡ = 0. (D.5)

The following proposed controller is designed according to the sliding mode design
procedure:

τSMC = τeq + τsw. (D.6)

The term of the equivalent control of τeq maintains the trajectory of the error state
variables on the sliding variables. To get this result, it is necessary to take the derivative
of sliding variables with respect to time. Additionally, ṡ = 0 for the nominal system that
does not consider perturbations and uncertainties. The time derivative of sliding variables
is expressed as:

Φ (q, q̇) +H (q) τeq − q̈r + α (q̇ − q̇r) = 0, (D.7)

and Eq. (D.7) yields:

τeq = −H−1 (q) (Φ (q, q̇) + α (q̇ − q̇r)− q̈r) . (D.8)

The switching control term is designed as:

τsw = −H−1 (q) gsign (s) , (D.9)

in which g is a positive coefficient.

Therefore, the control input of SMC is

τSMC = −H−1 (q) (Φ (q, q̇) + α (q̇ − q̇r)− q̈r + gsign (s)) . (D.10)

The design procedure of NTSMC

Set ep = q − qr as the tracking positional error and define qr as the desired trajectory
values.

Then, define the following sliding variable as:

s = ep +
1

β
(ėp)

l
h , (D.11)

in which β is a positive coefficient, l and h are positive odd integers satisfying condition
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1 < l
h
< 2:

ṡ = ėp +
1

β

l

h
(ėp)

l
h
−1 ëp. (D.12)

To guarantee that the controlled variables of Eq. (D.1) converge to sliding variables,
the following relations must be satisfied:

s = 0; ṡ = 0. (D.13)

The following proposed controller is designed according to the sliding mode design
procedure:

τSMC = τeq + τsw. (D.14)

The term of the equivalent control of τeq maintains the trajectory of the error state
variables on the sliding variables. To get this result, it is necessary to take the derivative
of sliding variables with respect to time. Additionally, ṡ = 0 for the nominal system that
does not consider perturbations and uncertainties. The time derivative of sliding variables
is expressed as:

ṡ = ėp +
1

β

l

h
(ėp)

l
h
−1 ëp

= q̇ − q̇r +
1

β

l

h
(ėp)

l
h
−1 (Φ (q, q̇)− q̈r +H (q) τeq)

, (D.15)

and Eq. (D.15) yields:

τeq = −H−1 (q)

(
Φ (q, q̇)− q̈r + β

h

l
(ėp)2− l

h

)
. (D.16)

The switching control term is designed as:

τsw = −H−1 (q) (lg + ξ) sign (s) , (D.17)

in which lg and ξ are positive coefficients.
Therefore, the control input of the NTSM controller is

τSMC = −H−1 (q)

(
Φ (q, q̇)− q̈r + β

h

l
(ėp)2− l

h + (lg + ξ) sign (s)

)
. (D.18)
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Chapter 6

An Adaptive Neural Non-Singular
Fast-Terminal Sliding-Mode Control
for Industrial Robotic Manipulators

6.1 Introduction

Literature regarding robotic manipulators has introduced many control systems focused on
achieving high performance against various uncertainties, including external noise. These
control methods were derived to fundamentally control the motion of robot manipulators,
and include PD controller [110], nonlinear PD controller [111], and PID controller [4,93].
The advantages of the cited control systems were to provide a simple and basic approach
to implementation, as they do not require an exact dynamic model. However, these
systems could not obtain the desired performance in the presence of disturbances and
dynamic uncertainties. Several advanced control approaches have been proposed to ad-
vance system performance, such as FLS controller [28,58] and NN controller [54,98,126],
but they demand complicated calculations, and the effectiveness of each solution still
has several limitations. The control scheme design strategy is based on the robot dy-
namic model, where the whole dynamic model is computed and compensated explicitly
to achieve the desired performance. Therefore, other enhanced methods were suggested
to improve the motion tracking for robot manipulators, including CTC [7], AC [101,127],
and SMC [15, 16]. Among those controllers, SMC has been confirmed to offer high ro-
bustness against uncertainties and disturbances for nonlinear systems. Therefore, the
SMC has been widely applied in real applications [15,16]. However, the traditional SMC
still possesses drawbacks such as requiring an exact dynamic model, singularity problems,
a chattering phenomenon, and finite-time convergence. Some research efforts have fo-
cused on overcoming these disadvantages. For the system states to approach the sliding
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variable within a finite-time, the use of TSMC, based on the nonlinear sliding surface,
has been reported in the literature [27, 79, 101]. Nonetheless, the TSMC convergence
time is slow when compared to the conventional SMC, and still contains a singularity
glitch. To solve convergence time and singularity issues, several FTSMC [39, 68] and
NTSMC [80, 122, 128] approaches have been proposed. Practically, private algorithms,
such as FTSMC or NTSMC, have only treated an individual weakness or failed to solve
the other disadvantages of the classical SMC. Consequently, NFTSMC has been intro-
duced [47, 85, 129–131]. Here, NFTSMC can solve many disadvantages of the classical
SMC or other control algorithms based on TSMC. However, chattering behavior has not
been removed by applying a high-frequency switching control law to the control input of
the above methods, which include TSMC, FTSMC, NTSMC, and NFTSMC. Therefore,
some effective techniques have been introduced to handle this topic by application of the
saturation function (refer to [64]), FOSMC [71,132], or HOSMC [64,65].
One of the main tasks in the design of a control method based on SMC or TSMC is

to develop an exact dynamic model of the robot manipulator, which one does not readily
know in advance for real robot systems. To estimate this unknown dynamic model, several
computing approaches have been proposed such as NNs [55,133] and FLSs [134,135] due
to their universal approximation capabilities.
While each disadvantage of the classical SMC and TSMC has been treated individ-

ually, this report focuses on simultaneous resolution of the disadvantages of SMC and
TSMC, including the requirement for an exact dynamic model, as well as the presence of
a singularity problem, chattering phenomenon, and finite-time convergence.
Consequently, the goal of this research is to develop a robust control strategy for robotic

manipulators based on an ANNFTSMC scheme. The main advantages of the suggested
control strategy include:

• The inheritance of NFTSMC advantages in terms of non-singularity, finite-time con-
vergence, fast transient response, low steady-state errors, and high position tracking
accuracy.

• The achievement of smooth control inputs with chattering behavior elimination.

• The removal of demand for an exact dynamic model by applying an adaptive radial
basis function neural network to approximate an unknown robot function.

• Better tracking performance and less impact by disturbances and uncertainties com-
pared to classic SMC and other control methods based on TSMC.

• Improved robustness and stability of the robot system, as demonstrated by Lya-
punov theory.
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Figure 6.1: Structure of radial basis function neural network.

The remainder of this chapter is structured as follows. Following the introduction, the
problem statements are presented, succeeded by the design approach for the proposed
control strategy, where the proposed strategy is utilized to allow joint position tracking
control simulation for a 3-DOF robot manipulator. Here, its tracking performance is
compared with SMC and TSMC to analyze the effectiveness of the proposed control
strategy. Finally, conclusions are presented.

6.2 Problem Statements

6.2.1 Radial Basis Function Neural Network

Previous research on the universal approximation theory proved that any nonlinear func-
tion over a compact set with arbitrary accuracy can be approximated by an RBFNN.
Here, RBFNNs have several advantages, including ease of design, good generalization,
strong tolerance to input noise, and online learning ability. Compared with a multiplayer
neural network, an RBFNN is simpler and converges faster. An RBFNN includes three
layers: the input layer, hidden layer, and output layer, all of which are expressed in Figure
6.1.
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The output of the RBFNN can be computed as:

H (υ) = φTΨ (υ) + ξ (υ) , (6.1)

where υ ∈ Rn and H (υ) are the neural network input and output, respectively. Here,
φT ∈ Rn×n is the weight matrix connecting the hidden layer and the output layer, Ψ (υ)

is the nonlinear function of the hidden nodes, and ξ (υ) ∈ Rn is an approximation error
of NN.

A Gaussian fit is selected for the nonlinear function as follows:

Ψ (υ) = exp

(
− (υ − µl)T (υ − µl)

δ2
l

)
, l = 1, 2, . . . , (6.2)

where δ and µ correspond to the width and center of the Gaussian function, respectively.

6.2.2 Dynamic Model of the Robot Manipulator

For an n-link rigid robotic manipulator, the dynamic model can be described as (refer
to [75, 94]):

M (q) q̈ + Cm (q, q̇) q̇ +G (q) + Fr (q̇) + τd (t) = τ, (6.3)

where q, q̇, q̈ ∈ Rn correspond to the position, velocity, and acceleration of the robot
manipulator, respectively. Additionally, M (q) ∈ Rn×n is the invertible inertia matrix,
Cm (q, q̇) ∈ Rn×1 is the matrix from the centrifugal force and Coriolis, G (q) ∈ Rn×1 is
the gravitational force matrix, Fr (q̇) ∈ Rn×1 denotes the friction matrix, τ ∈ Rn×1 is the
designed actuation input of actuators, and τd ∈ Rn×1 is a load disturbance matrix.

To simplify the approach and analysis, Eq. (6.3) is given as:

q̈ = Ξ (q, q̇) +B (q) τ (t) + ∆u (q, q̇, t) , (6.4)

where Ξ (q, q̇) = M−1 (q) [−Cm (q, q̇) q̇ −G (q)] is the nominal dynamic model of the robot
manipulator without perturbations and uncertainties, ∆u (q, q̇, t) = M−1 (q) [−Fr (q̇)− τd (t)]

represents the unknown perturbation and uncertainty terms, and B (q) = M−1 (q) .

The hypothesis here is that the control variables will follow the desired trajectory, with
high performance, in finite-time under a robust control strategy. In this case, the proposed
system does not need an exact robotic model.

The following assumptions are crucial for the design approach.
Assumption 6.1: The inertia matrix M (q) is an invertible, positive definite, and sym-
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metric matrix that adheres to the bounded condition:

θ1 ≤M (q) ≤ θ2, (6.5)

where θ1 and θ2 represent positive constants.
Assumption 6.2: The unknown perturbations, uncertainties, and approximation errors
of NN have an upper-bound satisfying the following relation:

‖∆u (q, q̇, t)‖ ≤ Ω, (6.6)

where Ω is an unknown positive constant.

6.3 Design Procedure of the Control Strategy

In this section, a new control strategy is suggested for a robot manipulator using Eq.
(6.3), which is described by the two following main tasks.

6.3.1 Design of NFTSM Variable

Based on the TSMC design approach, a state variable termed as NFTSM variable was
previously designed, where the novel NFTSM variables are proposed from the tracking
positional error as:

si = ς̇i + h1isign [ςi] + h2iς
[αi]
i , (6.7)

where h1i, h2i are positive values, αi > 1, and the variable ςi is selected as:

ςi = ei +

t∫
0

(
Γ1i (ei)

[2−ϑi] + Γ2iei + Γ3i (ei)
[ϑi]
)
dσ, (6.8)

where ei = qi − qir (i = 1, 2, · · · , n) is the tracking positional error, qir is described as the
desired path value, ςi is the sliding surface variable, Γ1i,Γ2i,Γ3 are positive coefficients
satisfying the relation 4Γ1iΓ3i > Γ2

2i, 0 < ϑi < 1 (i = 1, 2, · · · , n) and e[ϑi]
i is as described

in [90]:
e

[ϑi]
i = |ei|ϑi sign [ei] . (6.9)

Remark 6.1: Once the tracking positional error |ei| is much greater than 1, Γ1i (ei)
[2−ϑi]+

Γ2iei contributes to the task by offering a fast convergence. While the tracking positional
error |ei| is much smaller than 1, Γ3i (ei)

[ϑi] contributes by producing finite-time conver-
gence.
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According to the SMC manner, once the state variable proceeds in sliding mode, the
following constraints are imposed (refer to [15,16,136–138]):

si = 0; ṡi = 0, (6.10)

ςi = 0; ς̇i = 0. (6.11)

Combining Eq. (6.10) constraints with Eq. (6.7) yields:

ς̇i = −h1isign [ςi]− h2iς
[αi]
i , (6.12)

and combining Eq. (6.11) constraints with Eq. (6.8) gives:

ėi = −Γ1ie
[2−ϑi]
i − Γ2iei − Γ3ie

[ϑi]
i . (6.13)

It must be proved that once the second-order sliding motion takes place, i.e., si = 0,
the first-order sliding motion takes place in finite-time, i.e., ςi = 0, and the state variable
system of Eq. (6.13) reaches zero in finite-time. The following theorems have been
established for this proof.
Theorem 6.1: Consider the dynamic system shown in Eq. (6.12). The original point
ςi = 0 is globally balanced in finite-time and the state variable of the system (6.10)
converges to zero in finite-time Tsi ≤

ς2i (0)√
2h1i

.
Proof :The positive-definite Lyapunov functional is investigated as:

V1 =
ς2
i

2
. (6.14)

With Eq. (6.12), the time derivative of Eq. (6.14) is computed as:

V̇1 = ςi

(
−h1isign [ςi]− h2iς

[αi]
i

)
= −h1i |si| − h2is

[αi+1]
i

6 −h1i |si|

= −
√

2h1iV
1
2

1

. (6.15)

It can be seen that (6.15) has the form V̇1 +
√

2h1iV
1
2

1 ≤ 0. Therefore, the defined
finite-time is given by [41]:

Tsi 6
ς2
i (0)√
2h1i

. (6.16)
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This completes the proof.
Theorem 6.2: Consider the dynamic system (6.13). The original point ei = 0 consists
of globally balanced points in finite-time and the state variable of the system (6.13) as it
converges to zero in finite-time Tei ≤ T fei . T

f
ei
is defined as:

T fei =
2

(1− ϑi)

(
π

2
− arctan

Γ2i√
4Γ1iΓ3i − Γ2

2i

)
1√

4Γ1iΓ3i − Γ2
2i

. (6.17)

Proof : The Lyapunov function candidate is investigated as:

V2 = e2
i . (6.18)

With Eq. (6.13), the time derivative of Eq. (6.18) is calculated as:

V̇2 = 2eiėi

= 2ei

(
−Γ1ie

[2−ϑi]
i − Γ2iei − Γ3ie

[ϑi]
i

)
= 2

(
−Γ1ie

[3−ϑi]
i − Γ2ie

2
i − Γ3ie

[1+ϑi]
i

)
= 2

(
−Γ1iV

(3−ϑi)
2

2 − Γ2iV2 − Γ3iV
(ϑi+1)

2
2

). (6.19)

To arrive at a conclusion from Eq. (6.19), the following Lemma is used.
Lemma 6.1: [40] For any real numbers z1 > 0, z2 > 0, and 0 < ϕ < 1, an extended
Lyapunov function condition of finite-time stability can be given in the form of a FTSM
as L̇(x) + z1L(x) + z2L

ϕ(x) 6 0, where the settling time can be estimated by:

T 6
1

z1 (1− ϕ)
ln
z1L

1−ϕ (x (0)) + z2

z2

. (6.20)

From Eq. (6.19), ϑi+1
2

< 1 indicates that V̇2 ≤ 0. Based on Lemma 7.1, the original
point ei = 0 is a globally balanced point in finite-time. In the next step, proof that the
error state variable of the system (6.13) converges to zero in finite-time will be given.

Eq. (6.19) can be shown as:

V̇2 = 2V
ϑi+1

2
2

(
−Γ1iV

1−ϑi
2 − Γ2iV

1−ϑi
2

2 − Γ3i

)
. (6.21)
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Eq. (6.21) can be expressed as:

dV2 = 2V
ϑi+1

2
2

(
Γ1iV

1−ϑi
2 + Γ2iV

1−ϑi
2

2 + Γ3i

)
dt

⇒ dt = − dV2

2L
ϑi+1

2
1

(
Γ1iV

1−ϑi
2 + Γ2iV

1−ϑi
2

2 + Γ3i

)

= − 1

1− ϑi
dV

1−ϑi
2

2(
Γ1iV

1−ϑi
2 + Γ2iV

1−ϑi
2

2 + Γ3i

)
. (6.22)

Setting V2 (Tei) = 0 and taking the integral of Eq. (6.22) during the time period where
0→ Tei gives:

Tei =
2

(1− ϑi)
1√

4Γ1iΓ3i − Γ2
2i

arctan
2Γ1iV

1−ϑi
2

2 (ei (0))√
4Γ1iΓ3i − Γ2

2i

− arctan
Γ2i√

4Γ1iΓ3i − Γ2
2i

 .

(6.23)

It can be seen that Tei is limited by T fei = 2
(1−ϑi)

(
π
2
− arctan Γ2i√

4Γ1iΓ3i−Γ2
2i

)
1√

4Γ1iΓ3i−Γ2
2i

.

In fact, V2 (Tei) = 0 means ei (Tei) = 0. In addition, it can be seen that the upper-bound of
T fei is only dependent on the design constants, as Γ1i,Γ2i,Γ3i, ϑi and the tracking positional
error in Eq. (6.13) approach zero in finite-time. Therefore, the proof of Theorem 7.2 is
complete.

The proposed control strategy forces the error state variables to reach sliding variables
in finite-time, as will be presented next.

6.3.2 Design an ANNFTSMC for Robotic Manipulators

To achieve the desired control performance for the system in Eq. (6.3), the control method
is performed as follow:

Substituting Eq. (6.8) into Eq. (6.7) provides:

s = ė+ Γ1e
[2In−ϑ] + Γ2e+ Γ3e

[ϑ] + h1sign [ς] + h2ς
[α], (6.24)

where s = [s1, . . . , sn]T , In is the unit matrix, ϑ = diag (ϑi, . . . , ϑn), α = diag (αi, . . . , αn),
Γ1 = diag (Γ11, . . . ,Γ1n), Γ2 = diag (Γ21, . . . ,Γ2n), Γ3 = diag (Γ31, . . . ,Γ3n), h1 = diag (h11, . . . , h1n),
h2 = diag (h21, . . . , h2n), sign [ς] = [sign [ς1] , . . . , sign [ςn]]T , e = [e1, . . . , en]T . e[2In−ϑ], e[ϑ]
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and ς [α] are vectors defined as:

e[ϑ] = diag (sign [e]) · |e|ϑ =
[
e

[ϑ1]
1 , e

[ϑ2]
2 , · · · , e

[ϑn]
n

]T
. (6.25)

To simplify the analysis, the following notion is applied as:

de[ϑ]

dt
= ϑdiag

(
|e|ϑ−In

)
· ė. (6.26)

Using Eq. (6.26), the time derivative of Eq. (6.24) is derived as:

ṡ = ë+ Γ1 (2In − ϑ) diag
(
|e|In−ϑ

)
ė+ Γ2ė+ Γ3ϑdiag

(
|e|ϑ−In

)
ė+ h2αdiag

(
|ς|α−In

)
ς̇ .

(6.27)

From Eq. (6.4), ë is presented as:

ë = q̈ − q̈d
= Ξ (q, q̇) +B (q) τ (t) + ∆u (q, q̇, t)− q̈d

. (6.28)

Substituting Eq. (6.28) into Eq. (6.27) gives:

ṡ = Ξ (q, q̇) +B (q) τ (t) + ∆u (q, q̇, t)− q̈d + Π (e, ς) , (6.29)

where Π (e, ς) = Γ1 (2In − ϑ) diag
(
|e|In−ϑ

)
ė+Γ2ė+Γ3ϑdiag

(
|e|ϑ−In

)
ė+h2αdiag

(
|ς|α−In

)
ς̇.

To obtain the desired performance, the proposed control algorithm is designed for sys-
tem (6.3) as:

τ (t) = B+ (q) (τeq (t) + τs (t)) , (6.30)

where B+ (q) = BT (q)
[
B (q)BT (q)

]−1, the equivalent control law is constructed as:

τeq (t) = − (Ξ (q, q̇) + Π (e, ς)− q̈d) (6.31)

and the switching control term is designed as:

τs = − (Ω + ρ1) sign (s) , (6.32)

in which Ω and ρ1 are positive constants.

Substituting control laws (6.30)–(6.32) into Eq. (6.29) provides:

ṡ = − (Ω + ρ1) sign (s) + ∆u (q, q̇, t) . (6.33)
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The positive-definite Lyapunov functional is selected as:

V3 =
1

2
sT s. (6.34)

With Eq. (6.33), the time derivative of Eq. (6.34) is derived as:

V̇3 = sT ṡ

= sT (− (Ω + ρ1) sign (s) + ∆u (q, q̇, t))

= −Ω |s| − ρ1 |s|+ ∆u (q, q̇, t) s 6 −ρ1 |s|

. (6.35)

Accordingly, based on the Lyapunov criterion [90], it can be verified that the stability
of the tracking error is secured under control laws (6.30)–(6.32) despite the presence of
external disturbances and system uncertainties.

Unfortunately, robot manipulators have complicated dynamic models with many para-
metric uncertainties (e.g., friction, sensor noise, payload, perturbations). Therefore, it is
not trivial to precisely calculate the uncertainty upper-bounds and provide an exact robot
dynamic function in the equivalent control law. To overcome these difficulties, a robust
control strategy will be constructed for robotic manipulators based on an ANNFTSMC.
Here, an ARBFNN will be utilized to approximate an unknown robot function, while an
adaptive law will be used to estimate the uncertainty upper bounds and estimated error
of the NN. In this report, RBFNN is used to approximate the dynamic robot model as
follows:

f (x) = Ξ (q, q̇) , (6.36)

where x = [x1, x2]T , assign x1 = q, and x2 = q̇.

Define f̂ (x) as an approximated function of f (x), f̂ (x) can be described by an NN, as
follows:

f̂ (x) = φ̂TΨ (x) . (6.37)

Here, φ̂ is the adaptable parameter vector.

The optimal parameter φ∗ can be described, as follows:

φ∗H = arg min

{
sup
x∈Θx

∣∣∣f (x)− f̂
(
x, φ̂
)∣∣∣} . (6.38)

Accordingly, RBFNN (6.37) can exactly approximate the arbitrary value of f (x) which
is given by the following Lemma.
Lemma 6.2: For any given real continuous function f (X) on the compact set ΘX ∈ Rn

and arbitrary positive coefficient ξ > 0, there is a neural approximator existence f̂ (X)
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that possesses a similar form as Eq. (6.37), such that

sup
X∈ΘX

∣∣∣f (X)− f̂
(
X, φ̂

)∣∣∣ < ξ. (6.39)

Therefore, the robot dynamic model can be described as:

q̈ = φ∗TΨ (x) +B (q) τ (t) +W, (6.40)

where W = ∆u (q, q̇, t)+ ξ is the lumper uncertainty, including disturbances, dynamic un-
certainties, and NN approximation error. In this step, the lumper uncertainty is assumed
to be bounded by an unknown positive constant, |W | ≤ Φ.

The proposed control law as depicted in Figure 6.2 is designed as follows:

τ (t) = B+ (q) (τeq (t) + τas (t)) . (6.41)

Here, the equivalent control law is constructed as:

τeq (t) = −
(
φ̂TΨ (x) + Π (e, ς)− q̈d

)
, (6.42)

and τas (t) is an adaptive control term for replacing the control law τs (t) in Eq. (6.32),
describing τas (t) as:

τas = −
(
Φ̂+ ρ1

)
sign (s) , (6.43)

and the adaptive updating rules are given as:

˙̂
Φ =

1

γ
|s| , (6.44)

˙̂
φ =

1

ω
sΨ (x) , (6.45)

where Φ̂ is the estimated value of the design parameter Φ, ρ1 is a positive constant, and
γ, ω indicate the adaptive gains.

The control design approach for the robot system is summarized in Theorem 3 below.
Theorem 6.3: For the system (6.3), if the suitable NFTSM variables have been selected
as (6.7) and (6.8) and the control input signal is constructed as (6.41)–(6.43) with its
parameter updating rules designed as (6.44) and (6.45), then the sliding variable motion
is a certainty, and the tracking error variables converge to zero.
Proof : Define the adaptive estimation error and NN weight approximation error, respec-
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tively, as follows:
Φ̃ = Φ̂− Φ, (6.46)

φ̃ = φ∗ − φ̂. (6.47)

The time derivative of the sliding surface in Eq. (6.29) is rewritten as:

ṡ = φ∗Ψ (x) +B (q) τ (t) +W − q̈d + Π (e, ς) . (6.48)

Substituting control laws (6.41)–(6.43) into Eq. (6.48) provides:

ṡ = φ̃TΨ (x)−
(
Φ̂+ ρ1

)
sign (s) +W. (6.49)

The positive-definite Lyapunov functional is selected as:

V4 =
sT s

2
+
γΦ̃

T
Φ̃

2
+
ωφ̃T φ̃

2
. (6.50)

With the result of Eq. (6.49), the time derivative of Eq. (6.50) is derived as:

V̇4 = sT ṡ+ γΦ̃
T ˙̃Φ− ωφ̃T ˙̂

φ

= sT
(
φ̃TΨ (x)−

(
Φ̂+ ρ1

)
sign (s) +W

)
+ γ

(
Φ̂− Φ

)
˙̂
Φ− ωφ̃T ˙̂

φ

= sT φ̃TΨ (x)− Φ̂ |s| − ρ1 |s|+Ws+ γ
(
Φ̂− Φ

)
˙̂
Φ− ωφ̃T ˙̂

φ

. (6.51)

Applying the updating laws (6.41)–(6.43) to (6.51) yields:

V̇4 = −Φ̂ |s| − ρ1 |s|+ Φs+
(
Φ̂− Φ

)
|s|

= −ρ1 |s|+Ws− Φ |s|

6 −ρ1 |s|

. (6.52)

If the parameter ρ1 is selected to be greater than zero, V̇4 will be negative-definite.
Based on the Lyapunov principle [90], V̇4 becoming negative-definite indicates that s and
Φ̃ reach zero. Therefore, the tracking error variables converge to the sliding variables.
Therefore, Theorem 7.3 is proven.
Remark 6.2: In practical systems, the parameter drift problem typically occurs under
the adaptive control rule (6.44). Consequently, the bounded approach is implemented to
set up the adaptive estimator as:
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Figure 6.2: Block diagram of the proposed control method.

˙̂
Φ =


0 if |s| 6 $

1

γ
|s| if |s| > $

, (6.53)

in which $ > 0 is an arbitrary positive value.
Remark 6.3: [64] The chattering phenomenon can be significantly alleviated by replacing
the sign (·) function with a saturation function in the control input signal, such as:

sat
( s
ε∗

)
=

{
sign (s) if |s| > (ε∗)2

s
ε∗

if |s| < ε∗
, (6.54)

in which 0 < ε∗ < 1 is a minor positive coefficient called boundary layer thickness, and
ε∗ = 0.1.

6.4 Numerical Simulation Studies

To demonstrate the effectiveness of the proposed control strategy, the strategy was ap-
plied to a pathway tracking control for the first three joints of a PUMA560 manipulator,
and its tracking performance was compared with those of a classical SMC [15, 16] and
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NFTSMC [37, 40]. The dynamic model with the crucial parameters found in a 3-DOF
PUMA560 robot manipulator was explained by Armstrong et al. [72]. We utilized the
MATLAB/Simulink environment for all simulation analysis with the sampling rate set
to 10−3s. In this work, only the first three joints of a robot manipulator were investi-
gated (the last three joints were blocked). The simulations were implemented to compare
the controllers in terms of their positional accuracy, response speed, and the resulting
chattering phenomenon in their control inputs.

To ascertain the robustness of all control methods, we evaluated the system performance
in three operation stages, where disturbances and uncertainties were modeled as follows:

Fr (q̇) + τd (t) =

 0.9q̇1 + 1.0sign (3q̇1)

1.8q̇2 + 1.85sign (2q̇2)

−2.1q̇3 + 2.5sign (2q̇3)

+

 7.2 sin (q̇1)

1.65 sin (q̇2)

0.57 sin (q̇3)

 . (6.55)

Stage 1: Robot system was assumed to run under normal operation from time 0s to
15s.

Stage 2: Robot system was assumed to run under operation condition, but there was
an external disturbance impacting the first joint between 15s and 50s. This external
disturbance had a value defined as (15 sin (q1q2) + 1.5 cos (q̇1q2) + 5.5 cos (q̇1q̇2)).

Stage 3: Robot system was assumed to run under operation condition, but there was a
partial loss (75%) of control input effectiveness at the second joint between 25s and 50s.

The desired joint pathways for the position tracking were

qr =
[

cos
(
t

5π

)
− 1, sin

(
t

5π
+ π

2

)
, sin

(
t

5π
+ π

2

)
− 1

]T
. (6.56)

The RBFNN architecture consisted of seven nodes, the initial weight matrix of the
network was selected as 0, the width and center of the Gaussian function was set as
δ = 0.2, and the center of the Gaussian function µ was selected in range (−1.5÷1.5) with
µl = 0.5. The matrix used in an adaptive law of RBFNN was selected as ω = 15I7, and
the NN input was selected as υ =

[
e ė qr q̇r q̈r

]
.

The SMC control input was set as:

τ (t) = −B−1 (q) (Ξ (q, q̇) + η (q̇ − q̇r)− q̈r + (Φ2 + ρ2) sign (s)) . (6.57)

Here, η, Φ2, ρ2 are positive constants, s is a linear sliding function, and qr is defined as a
desired trajectory value.
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Table 6.1: The control parameter selection for the varying control strategies.

Control Strategy Control Parameters Control Parameter Values

Classical SMC η, Φ2, ρ2 2, 9.9, 1

NFTSMC d, h, β 5, 3, 2

Φ3, ρ3, ν 9.9, 1, 0.1

ANNFTSMC

h1, h2 20, 7, 0.5, 0.6

Γ1,Γ2,Γ3 diag (10, 10, 10) , diag (6, 6, 6)

ϑ, α diag (3, 3, 3) , diag (3, 3, 3, ) , diag (2, 2, 2)

γ, ρ1, $, ε
∗ 0.5, 0.1, 0.01, 0.1

Table 6.2: Averaged tracking errors under the control signals of the control schemes.

Error

Control Method Eav
1 Eav

2 Eav
3

SMC 0.1943 0.8708 0.0060

NFTSMC 0.1542 0.1218 0.0038

ANNFTSMC 0.0031 0.0031 0.0029

The NFTSMC control input was set as:

τ (t) = −B−1 (q)

(
Ξ (q, q̇)− q̈r + β

h

d
(ė)2− d

h + (Φ3 + ρ3)
s

‖s‖+ ν

)
. (6.58)

Here, β, Φ3, ρ3 are positive constants, s is a nonlinear sliding function, ν is a small posi-
tive scalar, qr is defined as a desired trajectory value, and d, h are positive odd integers
satisfying the condition 1 < d

h
< 2.

The control parameter selection for the varying control strategies, including classical
SMC, NTSMC, and the proposed control strategy is shown in Table 6.1.

The averaged tracking errors were calculated according to the following equation: Eav
i =√

1
n

n∑
k=1

(
‖ei‖2) in which i = 1, 2, 3, and n is the number of simulation steps.

The trajectory tracking performances, including tracking positions and tracking errors
at each of the first three joints with three controllers, are illustrated in Figures 6.3 and 6.4.
In Stage 1 (from 0s to 15s), three of the control systems give similar good path tracking
performance. In Stage 2 (from time greater than 15s) and in Stage 3 (from time greater
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Figure 6.3: Trajectory tracking positions: (a) at Joint 1, (b) at Joint 2, and (c) at Joint
3.

than 25s), it is clear that the classical SMC provides the poorest path tracking perfor-
mance, where robot operation becomes unstable when a large disturbance or uncertainty
is applied. From Table 6.2 and Figure 6.4, it is observed that NFTSMC provides less
path tracking error and faster transient response than classical SMC. However, tracking
performance is also diminished upon application of a large disturbance. It is noteworthy
that the proposed sliding surface is designed based on the sliding function integral in Eq.
(6.8), and this integral portion has a significant role in providing fast transient response
and robustness against uncertainty and disturbances. Therefore. the proposed control
strategy gives the best path tracking performance and fastest transient response among
the compared control strategies, due to the role of the proposed surfaces, an adaptive
compensator, and a main contribution of the proposed controller.

The control input signals for all control types, including classical SMC, NFTSMC, and
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Figure 6.4: Trajectory tracking errors: (a) at Joint 1, (b) at Joint 2, and (c) at Joint 3.

the suggested system are shown in Figure 6.5. In Figure 6.5a, it is clear that the NFTSMC
offers a continuous control signal by using a boundary technique [64]. However, the weak-
ness of this technique is that a choice must be made between chattering phenomenon
removal and path tracking precision. Consequently, this technique decreases the robust-
ness of the system while also increasing the tracking error. In Figure 6.5b, the SMC
offers a discontinuous control signal with serious chattering behavior. On the contrary,
the suggested system offers a continuous control signal for the robot manipulator without
the loss of its effectiveness, as shown in Figure 6.5c.

The adaptations of the estimated parameters are shown in Figure 6.6. These adaptive
gains are estimated according to the variation of the influences of disturbances and un-
certainties, and they will attain a constant value once the error variables converge to the
sliding surface in a stable phase.
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Figure 6.5: Control input signals: (a) FNTSMC, (b) classical SMC, and (c) the suggested
control methodology.

From the simulation performance, we conclude that the proposed controller gives the
best performance compared to a classical SMC and NFTSMC in terms of tracking preci-
sion, transient response, chattering deletion, and small steady state error.

6.5 Conclusions

In this report, a robust trajectory tracking control strategy was developed for robot ma-
nipulators. From the simulation results and performance comparison with two other
control strategies for a 3-DOF PUMA560 robot manipulator, our control strategy offered
the best performance in terms of tracking positional accuracy, small steady-state errors,
fast convergence, and chattering phenomenon rejection. The suggested control solution
has the following benefits: (1) inherits the advantages of the NFTSMC, including non-
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Figure 6.6: Time history of adaptive gain.

singularity, finite-time convergence, fast transient response, low steady-state errors, and
high position tracking accuracy; (2) achieves smoothness with elimination of chattering
behavior; (3) does not demand an exact dynamic model for the robot manipulator by
applying an adaptive radial basis function neural network to approximate an unknown
robot function; (4) compared to the classical SMC and another control methods based
on TSMC, the proposed control strategy offers better tracking performance and stronger
resistance against disturbances and uncertainties; (5) robustness and stability of the robot
system was demonstrated fully by Lyapunov theory.
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Chapter 7

Neural Integral Non-singular Fast
Terminal Synchronous Sliding Mode
Control for Uncertain 3-DOF Parallel
Robotic Manipulators

7.1 Introduction

Parallel robotic manipulators have become increasingly popular and play an important
role in industrial production systems, applied science fields, and the broader research
community. The highlighted benefits of parallel robotic manipulators include a low motion
inertia, high movement speeds, high mechanical stiffness, high-precision positioning, and a
large load-carrying capability. Therefore, research involving parallel robotic manipulators
has received highly significant attention from a lot of scientists in the field of robotics. In
real applications, parallel robotic manipulators have been widely applied in applications,
such as laser cutting machines, precise manufacturing, flight simulators, medical science,
automobile simulators, 3D printers, humanoid robots, and space exploration equipment.
Nonetheless, parallel robotic manipulators have constrained workspace and a complicated
dynamic model in comparison with serial manipulators. Furthermore, they are attached
high nonlinear behavior, the forward kinematic matter, and singularities. Hence, specific
experiments are required to completely handle the above problems.

As published in the literature, numerous control approaches, based on model-free con-
trol algorithms, have been proposed to drive both parallel and serial robotic manipula-
tors. The highlighted methods, including PID scheme [139], PD synchronized control
algorithm [140], or the approach in [112] have been published to control the movement of
robotic manipulators. However, these control approaches almost always offer low track-
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ing performance or experience degradation in their effectiveness owing to the existence of
high nonlinear behavior, uncertainties, or exterior disturbances. Likewise, some model-
based control solutions have been introduced to increase the tracking accuracy of robot
systems, including CTC [6,7,141], adaptive control techniques [142,143], and robust con-
trollers [8,15,58,66,75,83,137,144,145]. However, the tracking accuracy of these algorithms
tremendously depends on the exact model of the robot, which is difficult to characterize
in real or generalized applications. Moreover, these algorithms include general properties,
such as the state-variables of each joint responding to the control closed-loop of each re-
spective actuator, exclusive of the response data from the remaining joints. Accordingly,
the control closed-loop of every individual joint will only tune state errors which generated
from uncertain terms by its corresponding closed-loop control, the remaining errors were
not considered. Furthermore, the end-effector of parallel robotic manipulators follows a
certain path, which is synchronously controlled by all active joints. And so, we should
synchronously control all active joints of these robot systems to achieve higher trajectory
tracking precision.
In recent years, research attention on the SC of parallel robotic systems has steadily

increased. In the SC methods, the relation of the kinematic coupling among all active
actuators was considered. As a result, the precision of the trajectory tracking has been ex-
pressively improved. The first SC algorithm used for this purpose was introduced in [146].
Subsequently, this controller was extensively improved in [147,148], and gradually became
popular in the tracking control for parallel robots [149–151]. An analysis of the compara-
tive performance among the SC schemes stated in [149] pointed out that the SC methods
based on a dynamic model provide a better tracking accuracy than other controllers with-
out such a dynamic model. Nonetheless, the model-based synchronization controllers have
additional complexity relative to the model-free ones because of the inherent complexity
in the dynamic model.
NFTSMC methods suitably minimize the effects of high uncertainties and exterior dis-

turbances for uncertain nonlinear systems. These methods mostly overcome the limita-
tions of both classic SMC and normal TSMC, including slow convergence rate, undefined
time convergence, and singularity glitch. And, they have been effectively used for the
robotic field and in other real applications [8, 49, 86, 87]. With the use of NFTSMC, the
state variables of the system not only quickly converge, but also overcome the possibility of
a singularity glitch. However, like the conventional SMC and conventional TSMC schemes,
the NFTSMC approaches still have a slow transient response. And, these approaches also
skip the relation of the kinematic coupling among the active joints of a parallel robotic
manipulator while the approach is designed; further, the torque signals still suffer from
chattering as a result of using a discontinuous control law in the reaching phase. Further-
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more, the NFTSMC model requires knowledge of the upper bound of uncertain terms in
the system, which is difficult to precisely calculate for all uncertain terms. First, to obtain
a faster transient response, ITSMC approach was proposed in [52, 53], which preserves
the role of the integral term in the PID control method [86, 152]. Secondly, to reduce
chattering, numerous useful techniques have been published. These include BLT [64,153],
HOSMC [100, 154], FOSMC [71, 88], and Fuzzy-SMC (F-SMC) [155–157]. Third, several
control methodologies based on a combination of Adaptive Control (AC), Fuzzy logic Sys-
tem (FLS), or NN have been combined into TSMC or NFTSMC algorithms to overcome
the upper bound problem, as respectively discussed in [103, 106, 158]. In those published
papers, due to their approximation ability, NN, FLS, or AC schemes were adopted to
approximate unknown elements in the system. These methods only required data regard-
ing output error variables, but no attention was paid to the upper bound of uncertain
terms. In [159], an adaptive control system has been introduced for robotic manipulators
utilizing the NN-based friction compensator. The friction components between the gear
or shaft with the bearing usually degrade control performance at low velocities in mo-
tion, and these components have been fully estimated and compensated for. Nonetheless,
this controller missed the compensation for any perturbations and approximated errors
in the robotic system. Otherwise, the neural-sliding mode controller has built for robotic
systems [160] in which the control algorithm applied two equivalent NNs. The first one
for learning the system behaviors of the nominal control component and the second one
for approximating high-frequency control term. Though the control system behaviors
could learn or estimate thoroughly. However, stability analyses of the closed-loop control
system have not guaranteed yet. Besides, it also raises a new drawback to applying in
real applications, since the large size NNs has a complex structure and a large calculation
requirement. In another solution [92], a controller has been developed for 2-DOF parallel
robotic manipulators where disturbances and uncertainties are compensated by using a
combination of FNN with an error estimator. With this method, the controller can offer
continuous control torque and the desired control performance for 2-DOF parallel robot
manipulators. Nonetheless, the FNN design only uses a standard linear filter, so, the
convergence speed of the tracking errors is normal.
The central motivation in our paper is to develop an enhanced path tracking controller

for 3-DOF parallel robot manipulators with uncertain components, while offering the fol-
lowing benefits: (1) the designed method contains the benefits of the INFTSMC, SC, and
FNN regarding faster error convergence, a faster transient response, approximation abil-
ity, singularity rejection, robustness, and high tracking accuracy; (2) all types of errors
in the robotic system are synchronously considered to obtain a better tracking accuracy;
(3) the control torque system is smooth with minimized chattering; (4) it removes the
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constraint for prior information about the upper bounds of uncertain terms that exist in
the robotic system; (5) unlike the current NN or fuzzy algorithms, the proposed algorithm
sufficiently compensates for the lumped uncertain dynamics, considers the estimated er-
rors, and high-order components of Taylor’s series extension. Moreover, the novelty of
the proposed control system in comparison with a normal FNN is that the proposed FNN
applies the NFTSM filter replacing for a normal linear filter. Therefore, they adapt better
to variations of uncertainties and external disturbances with faster convergence speed.

The remaining of this chapter is arranged in the following outline. In Section 2, the
problem formulations and definitions are discussed. In Section 3, the designed control
method synthesis is stated with the stability analysis. The designed NINFTSSMC applied
for a 3-DOF parallel robot manipulator in Section 4. Then, the path tracking performance
of the designed controller is discussed with those of SMC, Synchronization SMC (SSMC),
and NFTSMC. Several highlighted conclusions are summarized in Section 5. The control
methods for comparison are briefly explained in the Appendix.

7.2 Problem Formulations and Preliminaries

7.2.1 Dynamic Model Description of 3-DOF parallel robot

manipulators

Let us consider the parallel robotic manipulators with the corresponding dynamic model
as in [116,161] and its kinematic illustration as in Fig. 7.1:

Ma (qa) q̈a + Ca (qa, q̇a) q̇a + Fa (q̇) +Da = τa (7.1)

where qa =
[
qa1 qa2 qa3

]T
, q̇a =

[
q̇a1 q̇a2 q̇a3

]T
, and q̈a =

[
q̈a1 q̈a2 q̈a3

]T
repre-

sent the system state vectors at active joints. The components ofMa (qa) ,Ca (qa, q̇a) ,Fa (q̇a) ,

and Da have been highlighted in [65]. Ma (qa) = M̂a (qa) + δMa (qa) ∈ R3×3 denotes the
actual inertia matrix and Ca (qa, q̇a) = Ĉa (qa, q̇a) + δCa (qa, q̇a) ∈ R3×3 denotes the actual
Coriolis and centrifugal force matrix. M̂a (qa) ∈ R3×3 denotes the approximated inertia
matrix and Ĉa ∈ R3×3 denotes the approximated Coriolis and centrifugal force matrix.

F (q̇)a =
[
Fa1 (q̇) Fa2 (q̇) Fa3 (q̇)

]T
and Da =

[
Da1 Da2 Da3

]T
are the frictions

and load disturbances at active joints, respectively. δMa (qa) ∈ R3×3 and δCa (qa, q̇a) ∈
R3×3 represent errors of the actual dynamic model, and τa =

[
τa1 τa2 τa3

]T
are the

control input signals.
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Figure 7.1: The kinematic illustration of the 3-DOF planar parallel robot manipulators.

The actual dynamic equation of the parallel manipulator can be given as follows:

M̂a (q) q̈a + Ĉa (qa, q̇a) q̇a + δτa = τa (7.2)

The vector of uncertain terms δτa in Eq. (7.2) is described as the following expression:

δτa = δMa (qa) q̈a + δCa (qa, q̇a) q̇a + Fa (q̇a) +Da (7.3)

To minimize both analysis and design, the dynamic (1) can be expressed in shorter form
as:

q̈a = Φ (qa, q̇a)−∆ (qa, τa) (7.4)

where ∆ (qa, τa) = M̂−1 (qa) δτa and Φ (qa, q̇a) = M̂−1 (qa)
[
τa − Ĉa (qa, q̇a) q̇a

]
.

The following assumption is crucial for the design approach.
Assumption 7.1: The lumped uncertain terms are a bounded function satisfying the
below constraint:

‖∆ (qa, τa)‖ 6 Λ (7.5)

where Λ is a positive constant that needs to be known in advance.

The main motivation for developing this controller is to further improve the accuracy in
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the trajectory tracking control for uncertain 3-DOF parallel robotic manipulators. Here,
the coupling position error is utilized to build a synchronous nonlinear sliding surface and
develop the control loop. Additionally, an FNN is applied to estimate uncertain dynamics.
Therefore, synchronization errors and position errors can synchronously converge to zero
and maintain stability for the control system with the presence of uncertain components.

7.2.2 Error Definitions in Synchronization Control

Define eaj = qdaj − qaj with j = 1, 2, 3 as the position tracking errors at each active joint,
where qida indicates the angle of the collated position of the jth active joint.
With SC methods, the positional error of eaj not only reaches zero, but also adjusts

the relationship of the movement among multiple active joints throughout the tracking
process, such that e1 = e2 = e3.
When a 3-DOF parallel robotic manipulator has three active joints, the synchronization

errors are computed as follows:

E =
[
e1 − e2, e2 − e3, e3 − e1

]T
=
[
E1, E2, E3

]T
(7.6)

where E represents the vector of synchronization errors.
As a result, the aim is to ensure that the position errors and synchronization errors

quickly converge to zero, which is guaranteed to occur at the same time if Ej = 0 for all
active joints.
In SC methods, the coupling position error is described with the following expression:

E∗1a = e1a + κ

∫ φ

0

δE13dφ

E∗2a = e2a + κ

∫ φ

0

δE21dφ

E∗3a = e3a + κ

∫ φ

0

δE32dφ

(7.7)

where φ is a temporal variable starting time zero, κ is a positive constant. δE13 = E1−E3,
δE21 = E2 − E1, and δE32 = E3 − E2 are defined as the cross-coupling errors.

Denote E∗a =
[
E∗1a, E∗2a, E∗3a

]T
as the vector of coupling position errors, δE =[

δE13, δE21, δE32

]T
, and its time derivative δ̇E =

[
δ̇E13, δ̇E21, δ̇E32

]T
.

According to Eq. (7.7), the coupling position error has first-order and second-order
derivatives as follows:

Ė∗a = ėa + κδE (7.8)
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and

Ë∗a = ëa + κδ̇E (7.9)

7.3 Proposed NINFTSSMC Design

7.3.1 Design of SINFTSM Surface

In this section, a novel NINFTSSMC is devised for uncertain 3-DOF parallel robotic
manipulators as follows.

From the coupling position errors in Eqs. (7.7) - (7.9), the SINFTSM surfaces are built
according to [109]:

σ = Ė∗a +

∫ t

0

(
W1 |E∗a|

α1 sign (E∗a) +W2

∣∣∣Ė∗a∣∣∣α2

sign
(
Ė∗a

))
dι (7.10)

where σ =
[
σ1, σ2, σ3

]T
∈ R3×1 are the sliding manifold variables, α1, α2,W1, and

W2 are positive constants, which are assigned in the same manner as in [109]. W1 and
W2 can be assigned such that the polynomial ρ2 + W2ρ + W1 is Hurwitz. α1 and α2 can
be defined according to the constrains: 0 < α1 < 1, and α2 = 2α1

1+α1
.

Taking the first derivative of the SINFTSM surface (7.10) with respect to time, we
obtain:

σ̇ = Ë∗a +W1 |E∗a|
α1 sign (E∗a) +W2

∣∣∣Ė∗a∣∣∣α2

sign
(
Ė∗a

)
(7.11)

From Eq. (7.9), the dynamic of Eq. (7.11) gives:

σ̇ = ëa + κδ̇E +W1 |E∗a|
α1 sign (E∗a) +W2

∣∣∣Ė∗a∣∣∣α2

sign
(
Ė∗a

)
(7.12)

Inserting the robotic system (7.4) into Eq. (7.12), Eq. (7.12) gives:

σ̇ = q̈da − M̂−1 (qa) τa + M̂−1 (qa) Ĉa (qa, q̇a) q̇a

+∆ (qa, τa) + κδ̇E +W1 |E∗a|
α1 sign (E∗a)

+W2

∣∣∣Ė∗a∣∣∣α2

sign
(
Ė∗a

) (7.13)
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7.3.2 Design of the proposed NINFTSSMC

The following control action is now designed to control the end-effector of the robot
system, which is tracked over the trajectory profile with the desired performance:

τa = M̂ (qa) (τeq + τsw) (7.14)

The equivalent control action is designed as follows:

τeq = q̈da + M̂−1 (qa) Ĉa (qa, q̇a) q̇a + κδ̇E

+W1 |E∗a|
α1 sign (E∗a) +W2

∣∣∣Ė∗a∣∣∣α2

sign
(
Ė∗a

) (7.15)

and, the switching control action is selected as follows:

τsw = (Λ + ξ) sign (σ) (7.16)

where ξ is positive constant, and Λ is chosen according to Assumption 1.

Applying the control input (7.14)-(7.16) to Eq. (7.13), Eq. (7.13) gives:

σ̇ = −τsw + ∆ (qa, τa) (7.17)

Proof : Defineσj, and ∆j (qa, τa) as the jth sliding manifold variable and the jth lumped
uncertain term, respectively, and τjsw = (Λ + ξ) sign (σj) as the jth switching control
torque withj = 1, 2, 3. Therefore,

σ̇j = −τjsw + ∆j (qa, τa) (7.18)

In order to prove the correctness of the designed control action in Eqs. (7.14)-(7.16), the
following Lyapunov function is defined as follows:

V1 = 0.5
3∑
j=1

σTj σj (7.19)
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The time derivative of Eq. (7.19) employing the result of Eq. (7.18) is

V̇1 =
3∑
j=1

σTj σ̇j

=
3∑
j=1

σTj (−τjsw + ∆j (qa, τa))

=
3∑
j=1

σTj (− (Λ + ξ) sign (σj) + ∆j (qa, τa))

=
3∑
j=1

(−Λ |σj|+ ∆j (qa, τa)σj)−
3∑
j=1

ξ |σj|

6 −
3∑
j=1

ξ |σj|

(7.20)

Since ξ > 0, the synchronization errors and position errors can be synchronously con-
verged to zero and maintained stability under control commands (7.14)-(7.16) for the
robot system with the presence of uncertain components. However, the switching control
term in Eq. (7.16) is designed according to Assumption 1. That means uncertain dynam-
ics, external disturbances, the mathematical models cannot obtain an exact computation.
To overcome this dependence, we use FNN to approximate the lumped uncertain dynam-
ics. The novelty of the proposed approach compared to a classic FNN is that the proposed
FNN utilizes a NFTSM filter replacing for a classic filter. Thanks to this procedure, the
lumped uncertain dynamics are compensated more quickly and more accurately, thus,
the malfunction in the reaching phase of state variables approaching the sliding surface
is handled thoroughly.

7.3.3 Feed Forward Neural Network Structural Design

The structure of FNN with multiple inputs and multiple outputs is exhibited in Fig. 7.2
The structural design of FNN has three layers including the layer of neural inputs, the

layer of hidden nodes, and the layer of neural outputs. In this paper, we design an FNN
including 3 outputs corresponding the 3 active actuators of the 3-DOF parallel robot
manipulators. The FNN outputs are expressed by the following equation:

f (x) = W TG (x, V ) + ε (7.21)

with Gi = 1

1−e

Ni∑
j=1

vijxj

, i = 1, . . . , Nh. Here, x is network state input, Ni is network
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Figure 7.2: The architecture of the FNN.

input number, Nh is the node number in the hidden layer of neural network. G =

[G1, G2, . . . , GNh ]T represents the sigmoid function output, V,W are NN weights and the
approximation error ε of NN bounded on a compact set by ‖ε‖ < εB.

In the layer of NN inputs, the input vector is defined as:

x = [x1, x2, . . . , xNi ]
T =

[
E∗a1, Ė

∗
a1, E

∗
a2, Ė

∗
a2, E

∗
a3, Ė

∗
a3

]
(7.22)

In the layer of the hidden nodes, we denote the NN numbers in this layer as Nh, the input
and hidden layers are connected by the weight matrix and described as follows:

V̂ = [v1, v2, . . . , vNh ] ∈ R6×Nh (7.23)

with vi = [vi1, vi2, vi3, vi4, vi5, vi6]T ∈ R6×1, i = 1, 2, . . . , Nh.
In the layer of the hidden nodes, their inputs and outputs are stated, respectively.

neti =

Ni∑
j=1

vijxj (7.24)

Ĝi = g (neti) , i = 1, 2, . . . , Nh (7.25)

The following sigmoid function is selected to become the transfer function in the layer of
the hidden nodes

g (z) =
1

1− e−z
(7.26)
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In the layer of the NN outputs, the hidden and output layers are linked by the following
weight matrices:

Ŵ = [w1, w2, . . . , wNh ]T ∈ RNh×3

wi = [wi1, wi2, wi3] ∈ R3×1, i = 1, 2, . . . , Nh

(7.27)

Defining f̂ (x) as the approximated function of f (x). f̂ (x) is afterward described by the
FNN, as follows:

f̂ (x) = Ŵ T Ĝ
(
x, V̂

)
∈ R3×1 (7.28)

in which Ĝ =
[
Ĝ1, Ĝ2, . . . , ĜNh

]T
∈ RNh×1 and the kth element of f̂ (x) is described as

f̂k =
Nh∑
i=1

wikGi, k = 1, 2, 3.

In this work, the FNN is used to approximate the lumped uncertain dynamics ∆ (qa, τa).
Therefore, the approximation error is defined as follows:

∆ (qa, τa)− f (x) = W ∗TG (x, V ∗)− Ŵ TG
(
x, V̂

)
+ εB (7.29)

Here, the weight matrices W and V have the corresponding optimal parameters W ∗ ∈
RNh×3 and V ∗ ∈ R6×Nh ; Ŵ ∈ RNh×3 and V̂ ∈ R6×Nh are the estimated parameters of the
optimal weight matrices.
We define W̃ = W ∗ − Ŵ ∈ RNh×3, Ṽ = V ∗ − V̂ ∈ R6×Nh as weight estimation errors and
G̃ = G∗ − Ĝ ∈ RNh as the hidden-layer output error in which G∗ ≡ G (x, V ∗) ∈ RNh and
Ĝ ≡ G

(
x, V̂

)
∈ RNh . Then, Eq. (7.29) is rewritten as:

∆ (qa, τa)− f (x) = W ∗T G̃− W̃ T Ĝ+ εB (7.30)

With a given x, the Taylor series expansion of G̃ (x) has the following statement:

G̃ =


G̃1

...
G̃Nh


|V=V̂

+


∂G̃1

∂V T

...
∂G̃Nh
∂V T


|V=V̂

(
V ∗ − V̂

)

+O
(
V̂ Tx

)
= GV Ṽ

Tx+O
(
V̂ Tx

)
(7.31)

whereGV =
[

∂G1

∂V T x
, . . . ,

∂GNh
∂V T x

]T
|V=V̂

∈ RNh×Nh , Ṽ = V ∗−V̂ ∈ R6×Nh , andO
(
V̂ Tx

)
∈

RNh is a vector of high-order components and these components are assumed to be
bounded.

129



CHAPTER 7. NEURAL INTEGRAL NON-SINGULAR FAST TERMINAL
SYNCHRONOUS SLIDING MODE CONTROL FOR UNCERTAIN 3-DOF
PARALLEL ROBOTIC MANIPULATORS

Adding Eq. (7.31) to Eq. (7.30) gives:

∆ (qa, τa)− f (x) = W ∗TGV Ṽ
Tx+ W̃ T Ĝ+W ∗TO

(
V̂ Tx

)
+ εB

= Ŵ TGV Ṽ
Tx+ W̃ T Ĝ+ υ

(7.32)

in which υ = W̃ TGV Ṽ
Tx + W ∗TO

(
V̂ Tx

)
+ εB ∈ R3×1 is called as error vector and it is

assumed to be bounded ‖υ‖ 6 ξ.

Because the lumped uncertain dynamics ∆ (qa, τa) is approximated by the FNN, hence,
the dynamic (7.13) becomes:

σ̇ = q̈da − M̂−1 (qa) τa + M̂−1 (qa) Ĉa (qa, q̇a) q̇a + f (x)

+κδ̇E +W1 |E∗a|
α1 sign (E∗a) +W2

∣∣∣Ė∗a∣∣∣α2

sign
(
Ė∗a

) (7.33)

Theorem 7.1: Consider the robot system (7.1), if the torque inputs are proposed as

τa = M̂ (qa) (τeq + τsw) (7.34)

τeq = q̈da + M̂−1 (qa) Ĉa (qa, q̇a) q̇a

+κδ̇E + Ŵ T Ĝ
(
x, V̂

)
+W1 |E∗a|

α1 sign (E∗a) +W2

∣∣∣Ė∗a∣∣∣α2

sign
(
Ė∗a

) (7.35)

the switching control term is proposed as:

τsw = ξsign (σ) (7.36)

and the update laws of the FNN are proposed as:

˙̂
W = KW Ĝσ

T (7.37)

˙̂
V = KV x

(
GT
V Ŵσ

)T
(7.38)

where KW ∈ RNh×Nh and KV ∈ R6×6 are diagonal matrices. The FNN uses the NFTSM
error filter as (7.10). When these conditions hold then the closed-loop system is stable.
Remark 7.1: From Eqs. (7.37) - (7.38), it is seen that the updating laws of FNN use
the NFTSM surface to make error filter. Therefore, it achieves a faster convergence speed
than a normal error filter.

Block Diagram of the designed control system is illustrated in Fig. 7.3.

To confirm the correctness of Theorem 1, the following proof is given.
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Proof : Applying the designed control inputs (7.34) - (7.36) to dynamic (7.33) and using
result in Eq. (7.32), we have:

σ̇ = −τsw + Ŵ TGV Ṽ
Tx+ W̃ T Ĝ+ υ (7.39)

The control performance is confirmed employing the following Lyapunov function:

V2 = 0.5σTσ + 0.5tr
{
Ṽ TK−1

V Ṽ
}

+0.5tr
{
W̃ TK−1

W W̃
} (7.40)

Using the result of Eq. (7.39), the time derivative of Eq. (7.40) gives:

V̇2 = σT
(
−ξsign (σ) + Ŵ TGV Ṽ

Tx+ W̃ T Ĝ+ υ
)

+tr
(
Ṽ TK−1

V
˙̃V
)

+ tr
(
W̃ TK−1

W
˙̃W
)

= σT
(
−ξsign (σ) + Ŵ TGV Ṽ

Tx+ W̃ T Ĝ+ υ
)

−tr
(
Ṽ TK−1

V
˙̂
V
)
− tr

(
W̃ TK−1

W
˙̂
W
)

= −ξ |σ|+ σTυ + tr
(
Ṽ T
(
−K−1

V
˙̂
V + xσT Ŵ TGV

))
+tr

(
W̃ T

(
−K−1

W
˙̂
W + ĜσT

))
(7.41)

Substituting the update laws (7.37) and (7.38) into (7.41) obtains:

V̇2 = −ξ |σ|+ σTυ

6 0
(7.42)

7.4 Numerical Simulation Studies

Firstly, the 3-DOF parallel robotic manipulator was designed in SOLIDWORKS and the
SimMechanics package of MATLAB. Then, this robot system is used as the testing system
for all simulated validation to investigate the effectiveness of the designed NINFTSSMC.
Specifically, we used the SOLIDWORKS software to build the 3-D computer-aided design
(CAD) of the robot system in which each robotic component was individually formed and
jointly connected using the appropriate joints. An XML file of the 3-D computer-aided
design was afterward exported by the SimMechanics link plug-in and this file was put
into Simulink environment. For that reason, in SimMechanics, the assembly model of
the robot is geometry files. The sensors measured position and velocity, and actuators
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Figure 7.3: Diagram of the proposed control system.

were also set up on the robot system. exterior disturbances and uncertain frictions were
modelled to add to the system when the properties of the proposed NINFTSSMC are
investigated. Finally, the designed NINFTSSMC were performed for the above testing
system. The 3D CAD model of the manipulator is shown in Fig. 7.4. The parameters of
the robotic system are given in Table 7.1.

The selected parameters of four different control systems: SMC, SSMC, NFTSMC,
and NINFTSSMC are stated in Table 7.2. The FNN had six neurons in the input layer,
eleven neurons in the hidden layer, and three neurons in the output layer. The weight
matrices of the FNN are initialized with values W (0) = 0.05 × rand (Nh, 3), V (0) =

0.05× rand (Nh, Ni).

The designed NINFTSSMC was applied to a specified path tracking control of a 3-DOF
parallel robotic manipulator. Then, its path tracking performance was compared with
those of the SMC, the SSMC, and NFTSMC. Furthermore, to investigate the properties of
the proposed NINFTSSMC, a large value of uncertain dynamics and exterior disturbances
were assumed in the simulated examples, as follows. The following friction forces at each
active joint were modelled:
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Table 7.1: The parameters of the robotic system

Parameters Depiction Value

mi1 Mass of each lower Link 5.12kg

mi1 Mass of each upper Link 7.39kg

mp Mass of the motion Platform 3.84kg

lp Inertia moment of the motion Platform 65× 10−3kg.m2

l1 The lower part length of each Link 0.4m

l2 The upper part length of each Link 0.6m

l3 The dimension of the motion Platform 0.2m

lc1 Distance from the Joint to the mass center
of each lower Link

0.3m

lc2 Distance from the Joint to the mass center
of each upper Link

0.3m

li1 Inertia moment of the lower of ith Link 91× 10−3kg.m2

li2 Inertia moment of the upper of ith Link 267× 10−3kg.m2

Fa =

 Fa1

Fa2

Fa3

 =

 0.5sign (q̇a1) + 2.5q̇a1

0.5sign (q̇a2) + 2.5q̇a2

0.5sign (q̇a3) + 2.5q̇a3

 (7.43)

The end-effector of the parallel robotic manipulator is controlled to track the prescribed
path as follows:

P =

 xP

yP

βP

 =

 0.49 + 0.03 cos
(
πt
3

)
0.37 + 0.03 sin

(
πt
3

)
π
2

 (7.44)

Fig. 7.5 exhibits the prescribed path and actual path of end-effector under four differ-
ent control schemes, including SMC, SSMC, NFTSMC, and the proposed NINFTSSMC.
The end-effector of the robotic system is controlled to follow a circular path with the
starting position as XY (0.5284, 0.3681). As seen in Fig. 7.5, there is the largest dis-
crepancy between the tracking circular path from SMC and the desired circular profile; it
provides the worst tracking performance among the four control methodologies. Fig. 7.6,
Fig. 7.7, and Fig. 7.8 exhibit the tracking errors of the end-effector in the X- axis, Y-
axis, and the error of rotary angle, respectively. The tracking error comparison under all
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Figure 7.4: 3-D computer-aided design of the 3-DOF planar parallel robot manipulator.

control methods and synchronization errors and cross-coupling errors at active joints are
corresponding in Fig. 7.9 and Fig. 7.10. The SSMC and the NFTSMC approaches pro-
duce better tracking performance than SMC. Nonetheless, the NFTSMC offers a better
tracking precision and a faster reaching time for the errors than SSMC. It is notable that
the proposed NINFTSSMC is formed based on the integration of synchronization control,
the NFTSMC and the FNN. Accordingly, the actual tracking circular path generated by
the designed NINFTSSMC has the smallest discrepancy in comparison with the desired
trajectory profile, and the fastest convergence time to the prescribed circular path among
the four control methodologies. From Fig. 7.6, Fig. 7.7, Fig. 7.8, and Fig. 7.9, it is seen
that the tracking errors produced by SSMC are smaller than the tracking errors offered by
SMC. However, SSMC offers a worse tracking error than NFTSMC. Specifically, the pro-
posed NINFTSSMC offers the smallest tracking errors compared with SMC, SSMC, and
NFTSMC. By using the proposed NINFTSSMC, the control precision is most increased
compared with SMC, SSMC and NFTSMC.

The control input actions for all control approaches, including SMC, SSMC, NFTSMC,
and the proposed NINFTSSMC are exhibited in Fig. 7.11. From Fig. 7.11, it is clear that
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Figure 7.5: The prescribed path and actual path of the end-effector under the four different
control methods.

all control schemes produce a continuous control torque. All those controllers including
SMC, SSMC, NFTSMC use the BLT to reject high frequency control signals, which is
known as chattering. However, the application of the BLT leads to a decrease in powerful
properties and precision of the control action in several situations. While the proposed
control system applies the FNN with the NFTSM filter to compensate for the lumped un-
certain dynamics. It was found that under the combination of SC, INFTSMC, and FNN,
the trajectory tracking precision produced by the proposed NINFTSSMC was very high
without the chattering phenomenon in the control signal. This is because these lumped
uncertain dynamics have been compensated for by the proposed FNN and the faster
transient response of the integral term in synchronization nonlinear sliding surface. Con-
sequently, the designed NINFTSSMC is extremely useful for trajectory tracking control of
3-DOF parallel robot manipulators. By using the suggested NINFTSSMC, the influences
of high nonlinear terms, exterior disturbances, uncertain dynamics have been thoroughly
compensated for, and does not require prior information about the upper bounds of these
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Table 7.2: Parameters the different control systems

Parameters SMC SSMC NFTSMC NINFTSSMC

z 20 20 − −

Λ 10 10 10 −

ξ 0.01 0.01 0.01 0.01

ε 0.7 0.7 0.7 −

κ − 0.9 − 0.9

KW − − − 0.01× I11×11

KV − − − 0.01× I4×6

Υ 20 20 − −

W1 – − 10 16

W2 − − 5 6.5

α1 − − 1.4 0.5

α2 − − 1.28 0.5

uncertain terms.

7.5 Conclusions

This chapter proposed NINFTSSMC for 3-DOF parallel robotic manipulators with un-
certain dynamics using synchronous nonlinear sliding surface, where this sliding surface
is formed based on the integration of SC and INFTSMC. Accordingly, position errors and
synchronization errors quickly converge to the SINFTSM surface at the same time. Next,
the FNN is applied to estimate uncertain dynamics, in which the novelty of the proposed
approach compared to a classic FNN is that the proposed NN utilizes the NFTSM error
filter replacing for a classic error filter. Finally, the control approach was designed for the
robotic system to achieve the performance described in this paper, such as rapid error con-
vergence, robustness with uncertain dynamics, minimum chattering, synchronization, and
high precision. The stability of the control loop has been secured according to the Lya-
punov criteria. The powerful properties and effectiveness of the proposed NINFTSSMC
were confirmed by computer simulations and performance comparisons for a 3-DOF par-
allel robotic manipulator. Through control performance comparison, it is concluded that
the NINFTSSMC is extremely efficient for trajectory tracking control of uncertain 3-DOF
parallel robotic manipulators.
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Figure 7.6: The response time of the end-effector in control error comparison (X-axis).

Figure 7.7: Response time of the end-effector in control error comparison (Y-axis).
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Figure 7.8: Response time of the rotary angle in control error comparison.

Figure 7.9: Control errors of Joints (a) at Joint 1, (b) at Joint 2, and (c) at Joint 3.
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Figure 7.10: Synchronization Error and Coupling Position Error of Joints (a) at Joint 1,
(b) at Joint 2, and (c) at Joint 3.

Figure 7.11: Control input actions: (a) SMC, (b) SSMC, (c) NFTSMC, and (d) NIN-
FTSSMC.
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Design of the SMC

In [1, 92], the SMC scheme was designed with the following approach:

Firstly, the sliding manifold was selected and then taken its first derivative with respect
to time, we can gain:

σ = ėa + zea = q̇a − q̇ra;

σ̇ = ëa + zėa = q̈a − q̈ra
(E.1)

where z is a positive constant, ea = qa − qda are the path tracking errors, qda are the
prescribed trajectories, q̇ra = q̇da−zea is the vector of reference velocity, and q̈ra = q̈da−zėa
represents the vector of reference acceleration.

The time derivative of the dynamic system (E.1) along the robot dynamic model (7.4)
is given as

σ̇ = M̂−1
[
τa − Ĉaq̇a

]
−∆ (qa, τa)− q̈ra (E.2)

The torque command was then proposed as in [1, 92] to provide the required control
performance for the system (7.1):

τa = M̂ q̈ra(t) + Ĉaq̇ra − (Λ + ξ) sgn (σ) (E.3)

To disregard the chattering in the torque signal during the control process, the BLT
was performed. Consequently, the torque action of Eq. (E.3) becomes

τa = M̂ q̈ra + Ĉaq̇ra − (Λ + ξ) sat (σ/ε) (E.4)

where Λ, ξ are positive constants, ε is the boundary layer thicknesses, and sat (σ/ε) is a
saturation vector [1].
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Design of the SSMC

The synchronization sliding mode surface was first proposed and then taken its first
derivative with respect to time, the result was

σ = E∗a + zĖ∗a = q̇a − q̇ra;

σ̇ = Ė∗a + zË∗a = q̈a − q̈ra
(E.5)

where z is a positive constant, E∗a is defined in Eq. (7.9) as the cross-coupling error, qda
is the prescribed trajectory, q̇ra = q̇da− δE represents the vector of reference velocity, and
q̈ra = q̈da− δ̇E denotes the vector of reference acceleration. δE and δ̇E are also described
in Eq. (7.9).

Inserting the robotic from Eq. (7.4) into Eq. (E.5), yields:

σ̇ = M̂−1
[
τa − Ĉaq̇a

]
−∆ (qa, τa)− q̈ra (E.6)

The following torque command is constructed as in [162] to obtain the desired tracking
performance for robotic manipulator of Eq. (7.1):

τa = M̂ q̈ra(t) + Ĉaq̇ra −Υσ − (Λ + ξ) sgn (σ) (E.7)

The BLT was performed to substitute the discontinuous component in the torque action.
Therefore, the torque command of Eq. (E.7) becomes

τa = M̂ q̈ra + Ĉaq̇ra −Υσ − (Λ + ξ) sat (σ/ε) (E.8)

where Λ, ξ, Υ are positive constants, ε is the boundary layer thicknesses, and sat (σ/ε)

is a saturation vector [1].

Design of the NFTSMC

Select the NFTSMC surface, as in [85]:

σ = ėa +W1e
[α1]
a +W2e

[α2]
a (E.9)

where σ =
[
σ1, . . . , σ3

]T
∈ R3×1 are the sliding variables, ea = qda − qa are the

position tracking errors, W1,W2, α1, α2 are positive constants and 1 < α1 < 2, α2 > α1,
which are chosen as in [85]. In addition, e[α1]

a and e[α2]
a are defined as:
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e[αi]
a = |ea|αi sgn [ea] ;

d

dt
e[αi]
a = αi |ea|αi−1 ėa

i = 1, 2
(E.10)

in which sgn [ea] =


1 if ea > 0

−1 if ea < 0

0 if ea = 0

.

Taking the first derivative of Eq. (E.9) with respect to time, yields:

σ̇ = ëa + Γ1α1 |ea|α1−1 ėa + Γ2α2 |ea|α2−1 ėa (E.11)

The time derivative of the dynamic system (E.11) along the robot dynamic model (7.4)
is given as

σ̇ = q̈da − M̂−1
[
τa − Ĉaq̇a

]
+ ∆ (qa, τa) + Γ1α1 |ea|α1−1 ėa + Γ2α2 |ea|α2−1 ėa (E.12)

The following torque command is constructed to get the desired tracking performance
for robotic manipulator of Eq. (7.1):

τa = M̂ (τeq + τsw) (E.13)

the equivalent control action is designed as follows:

τeq = q̈da + M̂−1Ĉaq̇a + Γ1α1 |ea|α1−1 ėa + Γ2α2 |ea|α2−1 ėa (E.14)

and, the switching control action is chosen as follows:

τsw = (Λ + ξ) sgn (σ) (E.15)

The BLT was employed to ignore the chattering in the control action. Thus, the torque
command of Eq. (E.13) becomes

τa = M̂
(
q̈da + M̂−1Ĉaq̇a + Γ1α1 |ea|α1−1 ėa + Γ2α2 |ea|α2−1 ėa + (Λ + ξ) sat (σ/ε)

)
(E.16)

where Λ, ξ are positive constants, ε is the boundary layer thicknesses, and sat (σ/ε) is a
saturation vector [1].

143





Chapter 8

A Novel Fault-Tolerant Control
Method for Robot Manipulators
Based on Non-Singular Fast
Terminal Sliding Mode Control and
Disturbance Observer

8.1 Introduction

Robots are essential for manufacturing, human life, and performing complex tasks nowa-
days and in the future. With the need for high-quality products, the robot is more widely
used. To achieve quality products with high productivity, the robot system must be op-
erated smoothly, reliably, and safely. Unfortunately, Robotic manipulators unavoidably
face many complicated uncertainties caused by unmodeled and unknown dynamic mod-
els, nonlinear frictional forces, exterior disturbances, or faults. Consequently, this leads
to obstacles for the control design process and precise control of robot manipulators. The
tracking control of robotic manipulators has concerned many scientists in studying its
potential capability. The tracking control method of robotic systems that require a high
degree of precision, safety, and stability during operation has been an important subject
in both theoretical and practical applications [163,164]. Developing solutions to enhance
the tracking performance and fast response of robotic systems, specifically with respect to
uncertainty, external disturbances, and possible faults, continues to present a challenge in
robotics research. To enhance the reliability, tracking performance, and safety of robotic
systems in all cases, FTCM has been recommended [165–168], however, it is difficult to
apply fault-tolerant controls in robotic systems due to high nonlinearities, external distur-
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bances, and dynamic uncertainties. Furthermore, the time delay implicit in mechanical
systems is also a concern for the performance of FTCM. FTCMs can be categorized as
either passive FTCM or active FTCM [169].
In the passive FTCM, a control system is constructed without fault detection process

for both standard and fault conditions. Therefore, the performance of the control system
is depended on the robust properties to handle external disturbances or uncertainties.
As published in the literature, several FTCs have been successfully adopted to control
uncertain nonlinear systems. Noteworthy examples such as sliding mode FTC [170–172]
or adaptive FTC [173]. The remarkable characteristics of the passive FTCM are fast
response with external disturbances, uncertainties or fault occurrence. However, this
method needs partial information about possible system faults and capability solves high
magnitude faults. Consequently, it is limited in applying to the real robot system.
Different from the passive FTCM, In the active FTCM, the output signal of the con-

troller is constantly adjusted according to a fault approximation response, which is esti-
mated by a fault diagnosis observer (FDO) [138,174]. As a result, the control performance
of the active FTCM depends on the fault information accuracy. The active FTCM with
the exact fault information will provide performance better than that of a passive FTCM
and therefore it is more suitable for real robot applications. On the other hand, wrong
fault information leading to the robot system runs loss stability and damage. Therefore,
designing an active FTCM based on the exact fault observation is really challenges for the
researchers. In controlling robot manipulators, active FTCM offers a control performance
better than passive FTCM due to compensation from online control reconfiguration.
In the literature, several control methods, which can be adapted for use in the FTCM

design, have been successful in controlling robot systems in real-world applications with
uncertainties, disturbances, or faults. The successful control methods employed in these
studies include CTC [174], PID controllers [4, 5], SC [13,14], intelligent controllers [9, 10,
58], a predictive controller [175], AC [12,176], and SMC [17,78]. Among these mentioned
control methods, SMC has a simple design, a robust control algorithm, and a proven ability
to solve perturbations, uncertainties, or system faults. SMC has attracted a great deal
of attention in control system as well as in FTCM [170–172]. Unfortunately, the classical
SMC is not an optimal solution for all robot control problems because of its limitations,
which include chattering behavior, singularity phenomena, and the requirement to know
the upper limit values of disturbances, uncertainties, and faults in advance. Recently,
several studies have proposed enhanced control algorithms to handle the SMC control
obstacles [40, 76, 177]; these control schemes applied a nonlinear sliding variable for the
improvement of the transient performance, called as TSMC.
Generally, the conventional TSMC can be used solve the problems associated with

146



CHAPTER 8. A NOVEL FAULT-TOLERANT CONTROL METHOD FOR ROBOT
MANIPULATORS BASED ON NON-SINGULAR FAST TERMINAL SLIDING
MODE CONTROL AND DISTURBANCE OBSERVER

classical SMC, but issues persist with the singularity phenomenon, and convergence speeds
can be slower for TSMC than for SMC. Hence, to remove the singularity phenomenon
issue and improve convergence speed at the same time, NFTSMC have been developed
[8, 48,83,85].
Despite their advantages, it is important to note that serious chattering phenomena

will occur whenever using one of the above control schemes in real robotic systems (e.g.,
SMC, TSMC, and FNTSMC) with a large sliding gain value in the switching control
law. Consequently, the chattering can compromise the robustness behavior of the control
system and significantly weaken its performance. As such, researchers have focused a lot
of effort to develop methods that eliminate chattering, including BLT [64, 153], HOSMC
[64, 65, 178], STA [124], or FOTSMC [179–181]. However, these methods using BL to
eliminate chattering come with tradeoffs and require selection between weakening the
chattering phenomenon or the path tracking precision. On the contrary, HOSMC, STA,
or FOTSMC offers both higher tracking precision and chattering dismissal. Therefore, in
this study, we develop a novel, robust FTCM with STRCL to achieve the control target
with smooth control input signals.
As mentioned, the active FTCM will provide control performance better than that of a

passive FTCM when the exact fault information is used. Therefore, to precisely estimate
the effects of the uncertainties, disturbances, or faults acting on the robot system, a simple
resolution is to design observers. Researching this trend, numerous observers based on
control schemes have been established [182–184]. With those control algorithms, firstly,
a disturbance observer is constructed to estimate external disturbance and uncertainty
terms. Then, these estimated values are supported for feedforward control technique
to compensate for disturbances and uncertainties in the system. Noteworthy is that,
according to the stable condition of the SMC, the sliding gain values must assign greater
than the boundary values of disturbances and uncertainties in the system [15]. However,
the large sliding gain values will cause serious chattering. For this reason, a simple
resolution reduced the chattering in control input is that the effects of disturbances and
uncertainties must cut down on the system. According to the mentioned solution, DO has
been added into the SMC to compensate for the effects of disturbances and uncertainties
to reject the chattering behavior [185,186].
For all control methods based on SMC, TSMC, NFTSMC, or FOTSMC, the two great-

est challenges are to achieve an exact value of the upper bounds for the lumped uncertain
terms and an exact robot model in the design procedure of the control system. To over-
come these challenges, many types of SMC and TSMC have been suggested based on ACs
because they can automatically adapt the control parameters to reject the influences of en-
vironmental disturbances, uncertainties, or faults [59,61]. And, to approximate unknown
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nonlinear functions, several computing attempts have been suggested, such as NNs [55,56]
and FLS [187], due to their approximation capabilities. However, using NNs or FLSs to
approximate unknown nonlinear functions lead to increases the complex calculations for
the control system.
Purposed by the above analysis, the aim of this report is to design a novel FTCM

for robot manipulators based on the combination of NFTSMC, DO, and STRCL that
solves several important problems: 1) speedy transient performance; 2) convergence in a
short time; 3) rejection of the chattering phenomenon; (4) highly effective for trajectory
tracking control with the presence of exterior disturbances, uncertainties, component or
actuator faults; 5) rejects the requirement for prior information about upper bound values
of exterior disturbances, uncertainties, or faults.
The remainder of this report is outlined as follows: The problem statement is given

in section 2. Section 3 describes the design process of the proposed FTCM. In section
4, the proposed FTCM is applied to a robotic system [72], and its simulation tracks the
prescribed pathway and compares it to control schemes based on conventional SMC [15]
and TSMC [40] to inspect positional errors, fast transient performance, and chattering
phenomenon rejection. Finally, section 5 summarizes the notable conclusions of this work.
Notations: Several symbols are utilized throughout this paper, ‖∗‖ and |∗| correspond
to the Euclidean norm and modulus, while N and R correspond to the spaces of natural
numbers and real numbers, respectively. {∗}−1 and {∗}T correspond to inverse of and
matrix transpose of, respectively.

8.2 Statement of the Problem

8.2.1 The Problem Statement

Consider the robotic dynamic equation explained by:

θ̈ = M−1 (θ)
(
τ − Vm

(
θ, θ̇
)
θ̇ − Fr

(
θ̇
)
−G (θ)− τd

)
+ψ (t− Tf )ω

(
θ, θ̇, τ

) (8.1)

where θ (t) , θ̇ (t) , θ̈ (t) ∈ Rn represent the position, velocity and acceleration at each joint
of the robot system, respectively, M (θ) ∈ Rn×n is the inertia matrix, Vm

(
θ, θ̇
)
∈ Rn×1

indicates the Coriolis and centrifugal forces, G (θ) ∈ Rn×1 is the gravitational force term,
τ (t) ∈ Rn×1 represents the control input torque, τd (t) ∈ Rn×1 indicates anonymous
disturbances, ψ (t− Tf )ω

(
θ, θ̇, τ

)
is the unexpected fault terms that affect the robotic

system, Tf indicates the time instant that a fault occurs, the ψ (t− Tf ) function gives
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the time profile of a fault that occurs at some unknown time Tf , and ω
(
θ, θ̇, τ

)
is the

bounded but uncontrollable term of the controlled system output.
The following fundamental property satisfies the robot dynamic model (1):

Property 1: The inertia matrix is a positive definite matrix and limited as follows:

0 < λmin {M (θ)} 6 ‖M‖ 6 λmax {M (θ)} 6 Υ,

Υ > 0
(8.2)

where λmin {M (θ)} and λmax {M (θ)} correspond to the minimum and maximum eigen-
values of the inertia matrix.
The ψ (t− Tf ) function is defined as a diagonal matrix with the following form:

ψ (t− Tf ) = diag
{
ψ1 (t− Tf ) , · · · , ψn (t− Tf )

}
(8.3)

In the literature, there are two types of faults that have been identified, including abrupt
and incipient faults, according to the following formula:

ψ (t− Tf ) =

{
0, t 6 Tf

1− e−ν (t− Tf ) , t > Tf
(8.4)

where ν > 0 indicates the unknown fault evolution rate.
When the value of ν is small, it characterizes incipient faults. While ν is large, the

formula characterizes abrupt faults.
To simplify the analysis and design in the control system, the robot dynamic model

(8.1) can be rearranged:

θ̈ = M−1 (θ) τ +M−1 (θ)
(
Vm

(
θ, θ̇
)
θ̇ +G (θ)

)
+M−1 (θ)

(
Fr

(
θ̇
)

+ τd

)
+ ψ (t− Tf )ω

(
θ, θ̇, τ

) (8.5)

Here, we assign x1 = θ, x2 = θ̇, x = [x1, x2]T and u = τ ; thus, the dynamic model (5) can
be described according to the following expression:{

ẋ1 = x2

ẋ2 = q (x)u−H (x)−∆
(8.6)

whereH (x) = M−1 (θ)
(
Vm

(
θ, θ̇
)
θ̇ +G (θ)

)
indicates the known element, q (x) = M−1 (θ)

represents a smooth nonlinear function, and ∆ = M−1 (θ)
(
Fr

(
θ̇
)

+ τd

)
−ψ (t− Tf )ω

(
θ, θ̇, τ

)
gives the anonymous element in the system dynamics.
Our goal is to propose a robust, active FTCM such that this control algorithm can
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provide the prescribed performance regardless of disturbances, uncertainties, and faults.
The following constraint is assumed for the control design approach.

Assumption: The modelling uncertainty is bounded such that

‖∆‖ 6 Λ (8.7)

where Λ are arbitrary positive constants.

8.3 FTCM for Robot Manipulators based on

NFTSMC, DO, and STRCL

This section presents FTCM for robot manipulators based on the combination of NFTSMC,
DO, and STRCL, which secures the stabilization of the system and obtains the prescribed
tracking performance.

8.3.1 Design of the new FTSMS

To overcome singularity glitch and to enhance convergence time of conventional TSMC,
the new FTSMS is constructed as:

σi = ėi +
2γ1

1 + E−µ1(|ei|−φ)
ei

+
2γ2

1 + Eµ2(|ei|−φ)
|ei|α sign (ei)

(8.8)

where σ ∈ Rn is the FTSMS, E defines as exponential function. Likewise, ei = x1i − xri
represents the positional control error, and ėi = ẋ1i − ẋri represents the velocity control
error xr ∈ Rn is the prescribed reference path. Furthermore, γ1, γ2, µ1, µ2 are the positive

constants, 0 < α < 1 , and φ =
(
γ2
γ1

) 1
1−α .

Based on the SMC, the following terms must be satisfied when the control errors run
in the sliding mode:

σi = 0;

σ̇i = 0
(8.9)

Combining dynamic (8.8) with terms (8.9) gives:

ėi = − 2γ1

1+E−µ1(|ei|−φ) ei

− 2γ2

1+Eµ2(|ei|−φ) |ei|
α sign (ei)

(8.10)
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To prove that ei = 0 is an equilibrium point, and it will converge to zero in finite-time,
the following Lyapunov function is considered:

V1 = 0.5e2
i (8.11)

Calculating time derivation of Lyapunov function (8.11) and noting (8.10), we can yield
as:

V̇1 = eiėi

= − 2γ1

1+E−µ1(|ei|−φ) e
2
i −

2γ2

1+Eµ2(|ei|−φ) |ei|
α+1

< 0

(8.12)

The inequality (8.12) confirms ei = 0 in finite-time according to Lyapunov criterion.
Once |ei (0)| > φ, the sliding motion includes two phases:
The first phase: ei (0)→ |ei| = φ , the first part of Eq. (10) offers the role of providing

a rapid convergence speed and the second part plays a secondary role.

t1∫
0

dt =
ei(0)∫
φ

1
2γ1

1+E
−µ1(|ei|−φ)

ei+
2γ2

1+E
µ2(|ei|−φ)

|ei|α
d (|ei|)

<
ei(0)∫
φ

1
γ1|ei|d (|ei|) = ln(|ei(0)|)−ln(φ)

γ1

(8.13)

The second phase: |ei| = φ → ei = 0, the second component of Eq. (8.10) offers the
role greater than the first one.

t2∫
0

dt =
φ∫
0

1
2γ1

1+E
−µ1(|ei|−φ)

ei+
2γ2

1+E
µ2(|ei|−φ)

|ei|α
d (|ei|)

<
φ∫
0

1
γ1|ei|αd (|ei|) = 1

γ2(1−α)
|φ|1−α

(8.14)

The time total of the sliding motion phase is defined as:

Ts = t1 + t2

< ln(|ei(0)|)−ln(φ)
γ1

+ 1
γ2(1−α)

|φ|1−α
(8.15)

The state variable of the dynamic (8.10) converge to sliding manifold (σ (0)→ 0) within
the defined time Tr, which was point out in [16]. Therefore, the time total for stability
on the sliding manifold is computed as: T ≤ Tr + Ts.

8.3.2 Design of NFTSMC

With system (8.6), ë is described as follows:
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ë = q (x)u−H (x)−∆− ẍr (8.16)

Let us take the time derivation of Eq. (8.8):

σ̇ = ë+ 2γ1
1+E−µ1(|e|−φ)

ė+ 2γ1µ1ėsign(e)E−µ1(|e|−φ)

(1+E−µ1(|e|−φ))
2 e

+ 2γ2α

1+Eµ2(|e|−φ)
|e|α−1 ė− 2γ2µ2ėEµ2(|e|−φ)

(1+Eµ2(|e|−φ))
2 |e|α

(8.17)

Noting result (8.16), therefore, Eq. (8.17) becomes:

σ̇ = q (x)u−H (x)−∆− ẍr + 2γ1
1+E−µ1(|e|−φ)

ė

+2γ1µ1ėsign(e)E−µ1(|e|−φ)

(1+E−µ1(|e|−φ))
2 e

+ 2γ2α

1+Eµ2(|e|−φ)
|e|α−1 ė− 2γ2µ2ėEµ2(|e|−φ)

(1+Eµ2(|e|−φ))
2 |e|α

(8.18)

In order to reach the prescribed tracking performance, the following control method is
designed for the robotic system (8.1):

u = −q−1 (x) (un + ur) (8.19)

where the term of the nominal control, un, holds the path of the control errors on the
FTSMS (8.8). un is defined as follows:

un = −H (x)− ẍr + 2γ1
1+E−µ1(|e|−φ)

ė

+2γ1µ1ėsign(e)E−µ1(|e|−φ)

(1+E−µ1(|e|−φ))
2 e

+ 2γ2α

1+Eµ2(|e|−φ)
|e|α−1 ė− 2γ2µ2ėEµ2(|e|−φ)

(1+Eµ2(|e|−φ))
2 |e|α

(8.20)

In order to combat the influences of the lumped anonymous elements on dynamics
of the robot manipulator, a reaching control law is proposed according to the following
expression:

ur = (Λ + ρ) sign (σ) (8.21)

where ρ is a minor positive constant.
Remark 8.1: The convergence condition of sliding mode only guarantees that the initial
motion point at any position in the state space can approach the sliding surface within a
defined time, and there is no limitation on the prescribed pathway of the reaching motion.
The reaching law enhances faster convergence time of reaching motion.

152



CHAPTER 8. A NOVEL FAULT-TOLERANT CONTROL METHOD FOR ROBOT
MANIPULATORS BASED ON NON-SINGULAR FAST TERMINAL SLIDING
MODE CONTROL AND DISTURBANCE OBSERVER

8.3.3 Stability Analysis of NFTSMC

Applying control input signals (8.19)-(8.21) to Eq. (8.18) gives:

σ̇ = −ur −∆ (8.22)

To confirm the correctness of the control commands (8.19)-(8.21), the Lyapunov func-
tion is defined as:

V2 = 0.5σTσ (8.23)

Therefore, the time derivative of Eq. (8.23) is given as:

V̇2 = σT σ̇ (8.24)

Now, substituting Eq. (8.22) into Eq. (8.24), we can yield the following inequality:

V̇2 = σT (−ur −∆)

= σT (− (Λ + ρ) sign (σ)−∆)

= (−Λ |σ| −∆σ)− ρ |σ|
≤ −ρ |σ|

(8.25)

From inequality (8.25), it is apparent that the robotic system of Eq. (8.1) is globally
stable under the control law (8.19)-(8.21), and the control errors will approach zero in
a short time regardless of disturbances, uncertainties, and faults. However, the main
challenge in scheming an FTCM based on SMC, TSMC, or NFTSMC is serious chattering.
To overcome the above challenge, proposed FTCM for robot manipulators is developed
and clearly stated below.

8.3.4 Design of DO

The lumped uncertain component can be described according to estimation, as follows:

∆ = ∆̂ + ∆̃ (8.26)

where ∆̂ is the estimated value of the lumped uncertainty of ∆, it is used to compensate
the effects of the lumped uncertain term, and ∆̃ is the estimated error of disturbances,
∆̃ =

[
∆̃1, . . . , ∆̃n

]
, this estimated error is assumed to be bounded by an unknown positive

constant,
∥∥∥∆̃i

∥∥∥ ≤ Πi |σi|0.5 ; i = 1, . . . , n with Πi > 0.
We design an observer to estimate the lumped uncertain term for the system (8.6) with
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time-varying disturbance as:

˙̂
∆ = k1 (ω̂ − ẋ1)
˙̂ω = q (x)u−H (x)− ∆̂− k2 (ω̂ − ẋ1)

(8.27)

where ∆̂ is the estimated value of ∆, and ω̂ is the estimated value of x2, k1 > 0, k2 > 0.

8.3.5 Stability Analysis of DO

Let us select the Lyapunov function for DO (8.27) as:

V3 = 0.5
1

k1

∆̃2 + 0.5ω̃2 (8.28)

where ∆̃ = ∆ − ∆̂ is the estimated error of disturbances, ω̃ = x2 − ω̂ is the estimated
error of the state variable x2.

Taking time derivative of Eq. (8.28), we have:

V̇3 = 1
k1

∆̃ ˙̃∆ + ω̃ ˙̃ω

= 1
k1

∆̃
(

∆̇− ˙̂
∆
)

+ ω̃
(
ẋ2 − ˙̂ω

)
= 1

k1
∆̃∆̇− 1

k1
∆̃

˙̂
∆ + ω̃

(
ẋ2 − ˙̂ω

) (8.29)

Substituting Eqs. (8.26) and (8.27) into Eq. (8.29) gives:

V̇3 = 1
k1

∆̃∆̇ + ∆̃ω̃ + ω̃
(
−∆ + ∆̂ + k2 (ω̂ − ẋ1)

)
= 1

k1
∆̃∆̇− k2ω̃

2 ≤ 0
(8.30)

When k1 is selected as a relative large value, we have 1
k1

∆̇ ≈ 0. Obviously, the lumper
uncertainty can be estimated by this DO, and the compensation of the lumped uncertain
term will be realized in the designed controller.

8.3.6 Design of the proposed FTCM

In this paper, the FTCM is proposed for robot manipulators to achieve high performance
with no significant chattering as follow:

u = −q−1 (x) (un + ur) (8.31)

Where, the un is designed based on novel FTSMS and DO as follows:
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Figure 8.1: Diagram of the proposed FTCM.

un = −H (x)− ∆̂− ẍr + 2γ1
1+E−µ1(|e|−φ)

ė

+2γ1µ1ėsign(e)E−µ1(|e|−φ)

(1+E−µ1(|e|−φ))
2 e

+ 2γ2α

1+Eµ2(|e|−φ)
|e|α−1 ė− 2γ2µ2ėEµ2(|e|−φ)

(1+Eµ2(|e|−φ))
2 |e|α

(8.32)

and STRCL of ur is designed as

ur = Υ1 |σ|0.5 sign (σ) + η

η̇ = −Υ2sign (σ)
(8.33)

where Υ1 = diag (Υ11, . . . ,Υ1n) and Υ2 = diag (Υ21, . . . ,Υ2n). Υ1i and Υ2i are assigned
to satisfy the following relationship [188]:

{
Υ1i > 2Πi

Υ2i > Υ1i
5ΠiΥ1i+4Π2

i

2(Υ1i−2Πi)

; i = 1, 2, . . . , n (8.34)

Block Diagram of the designed control system is illustrated in Fig. 8.1.

8.3.7 Stability Analysis of The Proposed FTCM

To verify correctness of the proposed system (8.31)-(8.33), the following procedure:

Applying control commands (8.31)-(8.33) to Eq. (8.18) gains:
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{
σ̇ = ∆̃−Υ1 |σ|0.5 sign (σ)−K
K̇ = −Υ2sign (σ)

(8.35)

Now, using one of the elements in Eq. (8.35) as follows:{
σ̇i = ∆̃i −Υ1i |σi|0.5 sign (σi)−Ki

K̇i = −Υ2isign (σi)
(8.36)

Let us consider the following Lyapunov function for dynamic (8.36):

V4 = κTQκ (8.37)

Here, κ = [σ0.5
i , λi]

T , Q = 1
2

[
4Υ2i + Υ2

1i

−Υ1i

−Υ1i

2

]
. If Υ2i > 0, so, according to

Rayleigh’s inequality:

λmin (Q) ‖κ‖2 ≤ V4 ≤ λmax (Q) ‖κ‖2 (8.38)

with ‖κ‖2 = |σi|+ η2
i .

Taking the time derivation of Eq. (8.37), we can yield:

V̇4 = − 1

|σi|0.5
κTPκ+

1

|σi|0.5
[
∆̃i, 0

]
Qκ (8.39)

with P = Υ1i

2

[
2Υ2i + Υ2

1i

−Υ1i

−Υ1i

1

]
.

With Assumption
∥∥∥∆̃i

∥∥∥ ≤ Πi |σi|0.5 ; i = 1, . . . , n, it can gain:

V̇4 ≤ − 1
|σi|0.5

κT P̃ κ

≤ − 1
|σi|0.5

λmin

(
P̃
)
‖κ‖2

(8.40)

where

P̃ = Υ1i

2


(

2Υ2i + Υ2
1i

− (4Υ2i + Υ1i) Πi

)
− (Υ1i + 2Πi)

− (Υ1i + 2Πi) 1

.
We select P̃ > 0. So, V̇4 < 0.
Employing inequality (8.38) obtains:

|σi|0.5 ≤ ‖κ‖ (8.41)

It follows that
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V̇4 ≤ υV 0.5
4 (8.42)

with υ =
λmin(P̃)
λ0.5max(Q)

.
Refer to [16], σi = 0 and σ̇i = 0 in finite-time (tri = 2V 0.5

4 (t = 0) /υ). Therefore, σ = 0

andσ̇ = 0 in finite-time (Tr = maxi=1,...,n {tri}) and ei,ėi also stabilize to zero in finite-time
(T ≤ Tr + Ts) under the control commands (8.31)-(8.33).

8.4 Simulation Results and Discussion

To exhibit the tracking performance of the suggested control method, position tracking
computer simulations were performed for a PUMA 560 robot [72]. For convenience in the
analysis, in this work, we only consider a robot manipulator with the first three joints
(the remainder three joints were locked). The kinematic and dynamic model with the
crucial parameters found in a 3-DOF PUMA560 robot manipulator has been previously
described in detail [72].
The friction and disturbance term at each joint are modelled as follows:

Fr

(
θ, θ̇
)

+ τd =


1.5 sin

(
(t− 2) θ̇1

)
+ 1.2θ3

1

1.3 sin
(

(t− 2) θ̇2

)
+ 1.1θ3

2

2.5 sin
(

(t− 2) θ̇3

)
+ 1.3θ3

1

(8.43)

The reference joint paths for the position tracking at each joint are designed according
to the following expression:

xr =

 0.5 + cos
(
t

5π

)
− 1

−0.5 + sin
(
t

5π
+ π

2

)
0.5 + sin

(
t

5π
+ π

2

)
− 1

 (8.44)

The initial position trajectories for the robotic system were indicated as θ1 (0) = 0,
θ2 (0) = 0, θ3 (0) = 0, θ̇1 (0) = 0, θ̇2 (0) = 0, and θ̇3 (0) = 0.
MATLAB/Simulink software was used to perform all simulations with a fixed-step size

of 10−3s.
In order to exhibit the improvements in the tracking performance gained by using the

suggested control algorithm, its reference path performances were compared with other
control algorithms, including the normal SMC [15] and NFTSMC [37,47,48]. The details
of SMC and NFTSMC design are briefly described as follow:
The normal SMC [15] has the following control torque:
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Table 8.1: Control parameter selection of control algorithms

Control Algorithm Control Parameters Control Parameter Values

SMC c, ξ,Σ 2, 0.01, 20

NFTSMC l, q,$, ξ,Σ 5, 3, 2, 0.01, 20

Proposed Control Algorithm-DO
γ1, γ2, µ1, µ2 2.0, 2.0, 1.2, 1.4

φ, α,Υ1,Υ2 1, 0.6, 16, 20

k1, k2 20000, 200

Table 8.2: The average control errors are provided by control systems

E1 E2 E3

SMC 0.008021 0.007490 0.154244

NFTSMC 0.019966 0.005121 0.004845

Proposed Controller 0.002819 0.002807 0.002785

u = −q−1 (x)

[
H (x) + c (x2 − ẋr)− ẍr
+ (Σ + ξ) sign(σ)

]
(8.45)

whereσ = ė+ ce is the linear sliding manifold, c is a positive constant.

Further, the NFTSMC [37] has the following control torque:

u = −q−1 (x)

H (x) +$
q

l
ė2− l

q − ẍr

+ (Σ + ξ) sign (σ)

 (8.46)

where σ = e+$−1ė
l
q is a nonlinear sliding manifold.

The control parameters that were selected for use in the algorithms are depicted in
Table 8.1. The performance simulations were carried out in cases of both normal and fault
operations to compare the controllers under expressions of positional accuracy, transient
response, steady-state error, and the resulting chattering phenomenon in their control
inputs. For situation 1, the system was controlled in normal operating condition with
the assumed disturbances and uncertainties. For situation 2, the system was controlled
in fault operating conditions with the assumed disturbances, uncertainties, and faults.

In Situation 1 at times where 0s < t < 10s, we first consider the robot working in
normal operation. The effectiveness of DO is analyzed. The target of DO in this condition
is to precisely approximate the assumed value of disturbances and uncertainties. The
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Figure 8.2: Assumed and estimated value of disturbance, uncertainty, and fault: (a) at
the first Joint, (b) at the second Joint, and (c) at the third Joint.

time history of the assumed disturbances and uncertainties, and the outputs of DO are
illustrated in Fig. 8.2. From Fig. 8.2, it is seen that DO has estimated the assumed
value of disturbances and uncertainties with high precision, thus, DO provides exact
information for the control loop in this phase. The tracking positions, positional control
errors, and velocity control errors of the three joints for all three of the tested control
algorithms are shown in Figs. 8.3, 8.4, and 8.5, respectively. Table 8.2 states the average
control errors which are provided by SMC, NFTSMC, and proposed controller. From
the simulation results in Figs. 8.3, 8.4, and 8.5, we observed that each control algorithm
offered good tracking performance when the assumed disturbances and uncertainties were
applied to the robotic dynamic system. SMC, NFTSMC, and proposed controller are
based on the SMC to design a control approach. Therefore, those controllers preserve the
robust ability of SMC in mitigating disturbances and uncertainties, as well as the ability
to obtain high position tracking accuracy. It is noteworthy that the controller suggested
in this study has the best performance compared to the other tested control algorithms
because it preserves the low steady-state error and the fast-transient response properties
of the NFTSMC, exact information from DO, and STRCL. The reader can see the results
reported in Table 8.2.

159



CHAPTER 8. A NOVEL FAULT-TOLERANT CONTROL METHOD FOR ROBOT
MANIPULATORS BASED ON NON-SINGULAR FAST TERMINAL SLIDING
MODE CONTROL AND DISTURBANCE OBSERVER

Figure 8.3: Tracking positions are provided by SMC, NFTSMC, and proposed controller:
(a) at the first Joint, (b) at the second Joint, and (c) at the third Joint.

ω
(
θ, θ̇, τ

)
=



 25 sin (θ1θ2) + 1.5 cos
(
θ̇1θ2

)
+2.5 cos

(
θ̇1θ̇2

) 
0.3 sin (t)u2 15 sin (θ3θ1) + 1.2 cos

(
θ̇2θ2

)
+2.5 cos

(
θ̇2θ̇3

) 


Tf > 10s

(8.47)

From Eq. (8.47), an abrupt fault, 25 sin (θ1θ2) + 1.5 cos
(
θ̇1θ2

)
+ 2.5 cos

(
θ̇1θ̇2

)
, was

assumed to appear in the first joint at times where t > 10s, the effectiveness of the
control input at the second joint was assumed to be damaged by 0.3 sin (t)u2 once the
time reached t > 10s, and an abrupt fault, 25 sin (θ1θ2) + 1.5 cos

(
θ̇1θ2

)
+ 2.5 cos

(
θ̇1θ̇2

)
,

was assumed appear in the third joint at times where t > 10s, during the simulation.
The effectiveness of DO is also investigated. The goal of DO in the second phase is to
precisely approximate the assumed disturbances, uncertainties, faults. From Fig. 8.2, it
is observed that DO also has the ability to estimate the assumed value of disturbances,
uncertainties, and faults with high accuracy, thus, DO exactly provides information of
these lumped uncertain components for designed control loop in fault occurrence phase.

From Figs. 8.3, 8.4, 8.5, and Table 8.2, we observed that SMC offers the poorest path
tracking performance, where the operation of the robotic manipulator becomes unstable,
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Figure 8.4: Positional control errors are provided by SMC, NFTSMC, and proposed con-
troller: (a) at the first Joint, (b) at the second Joint, and (c) at the third
Joint.

especially, at the third joint, during the presence of a fault. Although SMC gives good
tracking performance for the robotic system in cases of disturbances and uncertainties,
once faults appear, the system loses stability instantaneously. NFTSMC has better track-
ing performance than SMC, but its accuracy is low, especially, at the first joint. While
the proposed control algorithm provides a faster transient response and smaller trajec-
tory tracking error compared to SMC and NFTSMC. The proposed control algorithm
offered the best performance with respect to tracking errors among the compared control
algorithms because of the combination of NFTSMC, DO, and STRCL.

Throughout the simulation process in both situations, the proposed control scheme
improves the tracking position accuracy at the three joints, respectively in comparison
with SMC, as follows: the first joint (64.85%), the second joint (62.52%), and third joint
(98.11%). And. the proposed scheme also enhances the tracking position precision at
the three joints, respectively in comparison with NFTSMC, as follows: the first joint
(85.88%), the second joint (45.18%), and third joint (42.51%).

The control input signals of the controllers, including SMC, NFTSMC, and suggested
control methodology, are depicted in Fig. 8.7. The results in Fig. 8.7 indicates that
suggested control methodology seems to offer a continuous control signal with minor
chattering. Because disturbances, uncertainties, faults were estimated by DO. Moreover,
the remaining of the estimated errors also were handled by STRCL. While SMC and
NFTSMC offer discontinuous control efforts when both methods applied a large gain in
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Figure 8.5: Velocity control errors are provided by SMC, NFTSMC, and proposed con-
troller: (a) at the first Joint, (b) at the second Joint, and (c) at the third
Joint.

Figure 8.6: Response time of the sliding mode manifolds: (a) at the first Joint, (b) at the
second Joint, and (c) at the third Joint.
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Figure 8.7: Control input signals are provided by SMC, NFTSMC, and proposed con-
troller: (a) at the first Joint, (b) at the second Joint, and (c) at the third
Joint.

high-frequency control to combat the effects of those lumped uncertain components.
From trajectory tracking performance and its performance comparison, we observed

that suggested control algorithm offers the best performance compared to the other con-
trol methods, including SMC and NFTSMC, under expressions of the pathway tracking
precision, speedy transient response, small steady state error, and chattering removal.
Remark 8.2: The parameters for SMC, NFTSMC, and proposed sliding surface were ex-
perimentally selected and based on their convergence properties. For example, γ1, γ2, µ1, µ2

are the positive constants, 0 < α < 1, and φ =
(
γ2
γ1

) 1
1−α . The parameters for the proposed

control input with DO and STRCL were experimentally chosen to make system stable, to
obtain the desired performance with a fast convergence time, and to satisfy the conditions,
which were mentioned in the study and have been explained in greater detail by previous
researchers [48, 70, 85]. The parameters of the controllers, including SMC and NFTSMC
were chosen to guarantee stability and obtain the good performance (refer to SMC [15],
and NFTSMC [47,48]).
Remark 8.3: In this work, we only simulated abrupt faults, as their influences are larger
than incipient faults in a robotic system. Therefore, since the suggested control scheme
can effectively manage abrupt faults entirely, it is also able to resolve the influences from
incipient faults.
Remark 8.4: In order to confirm the effectiveness of the suggested control system from
a technical viewpoint, it would be more convincing to demonstrate experimental results
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on real systems. Nonetheless, experimenting with various fault types in a real system is
difficult and presents dangerous challenges and possible damage to the robotic system.
Accordingly, in literature related to fault-tolerant control systems, almost every strat-
egy, including this report, has adopted simulation performance to prove the usefulness
of controllers [133, 134, 189]. However, verifying the effectiveness of the suggested con-
trol methodology in experimental patterns by implementing suitable methods without
destroying a robotic system is an important goal and will be considered in future study.
The parameters of the robotic system are given in Table 8.1.
Remark 8.5: It should be noted that the control parameters are chosen by performing
repetitive testing and control error checking. In this condition how to choose these pa-
rameters is a remarkable issue. Future research is to select the optimal control parameters
by applying optimization algorithms.

8.5 Conclusion

In this chapter, a novel FTCM is developed for robot manipulators. According to theoret-
ical proof, simulation performance, and a comparison with both SMC and NFTSMC, the
proposed control strategy has some contributions, as follows: (1) the proposed strategy is
easy in implementation, which provides finite-time convergence, and faster transient per-
formance without singularity obstacle in controlling; (2) the proposed strategy inherits
the advantages of the NFTSMC, STRCL, and estimation ability of DO in the features
of robustness towards the existing uncertainties; (3) a new FTSMS was introduced, and
evidence of finite-time convergence was sufficiently confirmed; (4) the accuracy of the pro-
posed strategy was further enhanced in the trajectory tracking control; (5) the proposed
strategy displayed the smoother control torque actions with lesser oscillation.
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Chapter 9

Conclusions and Future Works

9.1 Conclusions

The study reported in this thesis develops TSMCs for uncertain nonlinear systems and
their applications to robotic manipulators that plays a very critical role in modern con-
trol technology. The central motivation of this thesis is to significantly improve trajectory
tracking precision and to overcome the limitations of SMC-based methods and TSMC-
based methods for several classes of uncertain nonlinear systems in presence of external
disturbances and uncertain dynamics, or even undesired faults. These proposed control
methodologies are developed based on SMC, SC, TSMC, NFTSMC, FLS, STA, NNs,
observer-based controllers, and AC. The fundamental theoretical procedure is the foun-
dation of the asymptotic stability based Lyapunov theory underpinned by the Lipschitz
condition in the ordinary differential equations and finite time control method. The main
applications of the proposed control methodologies are to apply to uncertain mechanical
systems and robotic systems, in which external disturbances and uncertain dynamics are
required to be bounded and to satisfy the suitable condition.

The proposed control algorithms are designed to achieve the following major advan-
tages such as simple design, fast transient response, defined time convergence, robustness
against uncertainties, high tracking accuracy, and stabilization with small steady-state
errors. These proposed control algorithms can reject some/all of the limitations in con-
ventional SMC or TSMC such as reaching phase glitch and the singularity problem. They
can also avoid/ eliminate/ attenuate the effects of chattering behavior and the require-
ment for prior information about the upper bound of external disturbances and uncertain
dynamics as well as the necessity for an exact mathematical model. Especially, some the
designed controllers have estimate ability and fault tolerance.

The proposed control algorithms were applied for trajectory tracking control and FTC
of parallel and serial robotic manipulators, or synchronization problem in motion control-
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ling. The computer numerical simulation and experiment results are performed for 2-DOF
planar parallel manipulator, 3-DOF planar parallel manipulator, 2-DOF serial robotic ma-
nipulator, and 3-DOF Puma560 robot manipulator to demonstrate the effectiveness and
applicability of the proposed systems and to validate the theoretical derivation. More-
over, the designed control methodologies can be extended their applications to uncertain
high-order MIMO systems.
Chapter 2 developed a chattering-free, adaptive, robust tracking control algorithm for

a class of second-order nonlinear systems. In our algorithm, a novel sliding function,
termed as a PID-NFTSM function, is proposed to incorporate the good features of both
the PID and the NFTSM approaches. Our proposed sliding function inherits some ap-
proaches in the field such as PID, NTSMC, and FTSMC to achieve non-singularity, fast
response, defined time convergence, and stability with small steady-state error. To obtain
a chattering-free behavior, a continuous method (with an integral of a switching term
and adaptive updating law) have been applied to compensate for all of the anonymous
uncertain components in the control system, such as disturbances, unmodeled dynam-
ics, nonlinearities, and unmeasurable noise. Accordingly, the suggested method does not
need prior information about the bound values of those anonymous components, along
with chattering-free behavior, compared to other controllers. The experimental results
for a PUMA560 robot manipulator confirm that the suggested methodology has more
capability to adapt to many uncertain nonlinear systems with high accuracy.
Chapter 3 developed the design of the control system for the class of general nonlin-

ear second-order systems. The suggested system has the following major advantages: 1)
it receives the advantages of both RBFNN and IFOSMC, including good performance
with minimum position errors, robustness against uncertainties, and work with a precise
dynamic model; 2) it consists of a control input system with chattering reduction; 3)
ARBFNN-IFOSMC provides better performance and stronger resistance against distur-
bances and uncertainties compared to RBFNN-SMC and RBFNN-TSMC; and 4) stability
and tracking error convergence of the class of general nonlinear second-order systems was
fully confirmed by the Lyapunov benchmark.
Chapter 4 presented an adaptive continuous finite-time TSMC algorithm for robot

manipulators. From the simulation and performance comparison with two other control
methods for a 3-DOF PUMA560 robot, the suggested control method shows the best
performance among the three controllers in terms of tracking positional accuracy, small
steady state error, fast response speed, and weak chattering behavior. We think that
the proposed control algorithm has the following important characteristics: 1) the NTSM
surface allows finite-time convergence without singularity, 2) requires no prior information
of the upper limits of uncertainties, 3) shows tremendously less chattering behavior, and
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4) the magnitude of the generated control input seems to be more suitable in terms of
motor torque saturation compared with those of the other control methods.
Chapter 5 developed a new trajectory tracking control solution for robot manipulators.

Based on numerical simulation results and a performance comparison with two other
control schemes for a 3-DOF PUMA560 robot manipulator, our control scheme shows
the best performance in terms of tracking positional precision, small steady-state errors,
fast response rate, and small chattering behavior. The suggested control solution has the
following valuable benefits. 1) It uses new NFTSM variables, which offer a fast transient
response rate and finite-time convergence with no singularity drawback. 2) It requires no
essential information regarding the upper limits of the perturbations and uncertainties.
3) The upper limit of the convergence time can be set beforehand. 4) It demonstrates
impressively small chattering behavior. 5) The robustness and the finite-time convergence
of the system have been guaranteed fully by the Lyapunov stability criterion.
Chapter 6 developed a robust trajectory tracking control strategy for robot manipu-

lators. From the simulation results and performance comparison with two other control
strategies for a 3-DOF PUMA560 robot manipulator, our control strategy offered the best
performance in terms of tracking positional accuracy, small steady-state errors, fast con-
vergence, and chattering phenomenon rejection. The suggested control solution has the
following benefits: (1) inherits the advantages of the NFTSMC, including non-singularity,
finite-time convergence, fast transient response, low steady-state errors, and high posi-
tion tracking accuracy; (2) achieves smoothness with elimination of chattering behavior;
(3) does not demand an exact dynamic model for the robot manipulator by applying an
adaptive radial basis function neural network to approximate an unknown robot func-
tion; (4) compared to the classical SMC and another control methods based on TSMC,
the proposed control strategy offers better tracking performance and stronger resistance
against disturbances and uncertainties; (5) robustness and stability of the robot system
was demonstrated fully by Lyapunov theory.
Chapter 7 proposed NINFTSSMC for 3-DOF parallel robotic manipulators with uncer-

tain dynamics using synchronous nonlinear sliding surface, where this sliding surface is
formed based on the integration of SC and INFTSMC. Accordingly, position errors and
synchronization errors quickly converge to the SINFTSM surface at the same time. Next,
the FNN is applied to estimate uncertain dynamics, in which the novelty of the proposed
approach compared to a classic FNN is that the proposed NN utilizes the NFTSM error
filter replacing for a classic error filter. Finally, the control approach was designed for the
robotic system to achieve the performance described in this paper, such as rapid error con-
vergence, robustness with uncertain dynamics, minimum chattering, synchronization, and
high precision. The stability of the control loop has been secured according to the Lya-
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punov criteria. The powerful properties and effectiveness of the proposed NINFTSSMC
were confirmed by computer simulations and performance comparisons for a 3-DOF par-
allel robotic manipulator. Through control performance comparison, it is concluded that
the NINFTSSMC is extremely efficient for trajectory tracking control of uncertain 3-DOF
parallel robotic manipulators.

Chapter 8 focused on the analysis and design of a novel FTCM for robot manipulators.
According to theoretical proof, simulation performance, and a comparison with both SMC
and NFTSMC, the proposed control strategy has some contributions, as follows: (1) the
proposed strategy is easy in implementation, which provides finite-time convergence, and
faster transient performance without singularity obstacle in controlling; (2) the proposed
strategy inherits the advantages of the NFTSMC, STRCL, and estimation ability of DO
in the features of robustness towards the existing uncertainties; (3) a new FTSMS was
introduced, and evidence of finite-time convergence was sufficiently confirmed; (4) the
accuracy of the proposed strategy was further enhanced in the trajectory tracking con-
trol; (5) the proposed strategy displayed the smoother control torque actions with lesser
oscillation.

From design procedure of the control theory and obtained results, the proposed control
method stated in chapter 8 seems to be the best controller among my proposed control
methods due to some advantages as follows.

• An improved non-singular fast terminal sliding surface with the dynamic coefficients
is proposed, which can make the system states arrive at a stable point with a fast
convergence rate.

• The dynamic coefficients can adapt according to the change of the control errors.
The proposed controller not only handles disturbances and uncertainties but also
overcomes the effects of faults occurring in the robot.

• The control design is more suitable for real applications due to its simplicity when a
disturbance observer is applied to approximate the lumped uncertain terms instead
of using a compensator like a neural network or fuzzy logic system.

• Also provides high tracking performance with a smooth control input.

• According to my opinion, each controller in the thesis is suitable for specific appli-
cations. The proposed controllers are also suitable for each development stage of
TSMC theory.
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9.2 Future works

The advanced control methods or FTC are very important for the application of the
robotic system. This thesis has developed some valuable tracking control schemes to im-
prove control performance and the capacity of condition monitoring for the robot system.
However, the proposed control schemes in this thesis are almost model-based. Therefore,
the control performance depends on the exact mathematical models of the robot system.
Moreover, due to the system complexities and fault diagnosis observer scheme, the di-
agnosis of robotic faults have still to face a number of practical challenges in designing
such system such as: early detection and diagnosis, real time fault diagnosis or multiple
fault accommodation. Thus, fault diagnosis, FTC, and the advanced control schemes for
robotic system still attracts many researchers. Some possible future studies are listed as
follows.

• Applying all proposed controllers to real systems such as magnetic levitation sys-
tems, inverted pendulum, or robotic manipulators.

• TSMC method for fault-tolerant tracking control of magnetic levitation systems.

• Almost the methods developed in this thesis are based on the assumption that the
output measurement is accurate and no-fault occurs in sensors. However, sensor
faults sometimes exist in real systems. Thus, the effective fault diagnosis methods
for sensor faults should be carefully studied in future work.

• In this thesis, most of the developed controls are based on the passive method. Al-
though the passive method usually provides faster response and convergence com-
pared to the active method, it provides lower tracking accuracy. Hence, to enhance
both the tracking accuracy and system response, a combining scheme that takes the
benefits of both active and passive methods should be studied.

• Developing some control algorithms that apply reinforcement learning or intelli-
gent controls to eliminate dependence on the accuracy of mathematical models and
assumptions.
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