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ABSTRACT(논문 요약) 

200년 전에, 엔진을 가진 자동차가 발명되었다. 이때부터 차량은 더욱 편리 해지고  

안전 해졌다.이동체 및 이동 로봇과 같은 지상 이동체가 개발되면서, 이동체에 대한 연구

가 많이 진행 되고 있다. 오늘날에는 컴퓨팅 능력과 센싱 기술의 발달로 이동체은 사람 

뿐만 아니라 알고리즘에 의해서도 스스로 제어 되여 특정 임무를 수행하게 되였다.  

알고리즘 기반으로 이동체를 정확하게 제어하려면 이동체의 상태를 정확하게 인식해

야 한다. 이동체 상태의 가장 중요한 파라미터 중의 하나는 이동체 위치이다. 일반적으로 

위치는 GPS(위성항법장치) 신호를 직접 사용해 취득할 수 있다. 그러나, 도시 환경에서 

다양한 노이즈가 GPS신호에 영향을 주고 GPS 신호 다중 경로 라우팅 때문에, 이동체 위

치 정밀도 요구에 만족하는 위치 정보를 취득하기 어렵다. 따라서, 이동체는 맵의 도움 

받아 이동체와 주변 요소의 기하학적 관계를 이용하여 자기 이동체의 위치를 추정할 수 

있다. 그러나 맵에도 측정 노이즈가 존재하고, 이동체에 탑재된 센서도 노이즈가 존재할 

뿐만 아니라 노이즈 특성(가우시안, 비가우시안 등)도 다양하다. 따라서 센서의 가우시안 

노이즈, 비가우시안 노이즈 필터링와 다양한 센서 정보를 융합하여 이동체의 위치를 추

정하는 알고리즘이 필요하다. 

본 연구에서는 센서 융합 알고리즘인 PAUKF를 제안하였다. 맵 정보, 이동체위치 예

측 모델, 측정 모델, 다양한 센서를 기반으로 이동체위치를 추정한다. PAUKF의 주요 부

분은 두 부분으로 나눌 수 있다. 하나는 PF이고 다른 하나는 UKF이다. PF는 이론적 모든 

종류의 노이즈을 처리할 수 있는 Monte-Carlo 방법론의 응용이다. PF는 가상의 파티클을 

이용하여, 이동체센서에서 측정한 값과의 오차를 기반으로 자기 이동체 위치를 추정한다. 

UKF는 개선된 Kalman 필터의 일종이다. UKF는 여러 시그마 포인트를 생성하고 이러한 
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시그마 포인트를 사용하여 가우시안 및 비가우시안 노이즈를 필터링한다. PAUKF는 PF와 

UKF의 특성을 융합하여 비가우시안 노이즈를 효과적으로 필터링하고 차량의 위치를 정

확하게 추정할 수 있다. PF 기반으로 맵 매칭 진행하여 먼저 자신의 위치를 추정하고, 

UKF에서 PF에서 처리한 정보를 이용하여 자신의 위치를 최종으로 추정한다. PAUKF는 

맵 정보를 이용하기 때문에, PAUKF는 GPS없는 환경에서도 연속적으로 정확한 위치정보

를 취득할 수 있다.  

PAUKF는 일종의 일반적인 센서 퓨전 알고리즘으로서, 특정 타겟 하드웨어에만 적용

할 수 있는 것이 아니다. 하드웨어 동특성에 따라서, PAUKF의 예측모델만 수정하면 알

고리즘을 어떻한 하드웨어 플랫폼에도 다 사용가능하다. 따라서, PAUKF알고리즘은 2가

지 방법으로 검증하였다. 한가지는 ROS(로봇 작동 시스템)를 기반으로 실제 UGV를 이

용하여 검증하였다. UGV 기반의 실험은 이동체가 UGV 기반의 예측모델을 PAUKF에 적

용한 다음, 실내환경에서 제한된 특징점을 이용하여 자기 위치를 교정하는 것이다. 다른 

한 가지는 차량 형태의 이동체에 PAUKF를 적용하여 특징점이 많고, 속도가 높은 환경

에서 시뮬레이션 검증 진행하여 알고리즘의 성능 검증하였다. 두가지 방법으로 검증한 

결과 및 기타 연구 결과와 비교를 통해, PAUKF의 위치 추정 성능을 확인 할 수 있었다.  
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Chapter 1 Introduction 

1.1  The autonomous vehicle 

The autonomous vehicle becomes a popular research area in the whole transportation system[1]. 

The autonomous vehicle refers to the vehicle that moves by its algorithm. Both the unmanned ground 

vehicle(UGV) and the self-driving car can be regarded as autonomous vehicles as Figure 1 shows. 

 

 

Figure 1 Autonomous vehicle (UGV, Self-driving car) 

 

The field of automated vehicles is multidisciplinary. It involving transportation systems, 

automotive engineering, human factors, information technology, control, robotics, communications, 

energy, security, and social sciences[2]–[5]. The unmanned ground vehicle is developed many years 

ago. The unmanned ground vehicle is mainly used to convey the material in a modernizing 

self-service factory and warehouse. By using the unmanned ground vehicle, the factory and 

warehouse can work without human help. The unmanned ground vehicle is not famous because the 

unmanned ground vehicle is working in the warehouse or factory. In the contrast, the self-driving car 

like the autonomous vehicle is coming into the spotlight because it is tested in the public road. The 

milestone of the autonomous vehicle is the DARPA challenge. The DARPA Grand Challenge is a 

prize competition for American autonomous vehicles, funded by the Defense Advanced Research 

Projects Agency, the most prominent research organization of the United States Department of 

Defense As the DARPA challenge started in 2004, the research the autonomous vehicle is accelerated. 

https://en.wikipedia.org/wiki/Vehicle_automation
https://en.wikipedia.org/wiki/Defense_Advanced_Research_Projects_Agency
https://en.wikipedia.org/wiki/Defense_Advanced_Research_Projects_Agency
https://en.wikipedia.org/wiki/United_States_Department_of_Defense
https://en.wikipedia.org/wiki/United_States_Department_of_Defense
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The team from Stanford University won the 2005 contest, and the team from Carnegie Mellon 

University(CMU) won the 2007 contest. The autonomous vehicle of Google which separated as 

Waymo was initially developed based on the Stanford and CMU[6]. By the beginning of 2017, the 

United States National Highway Traffic Safety Administration is expected to authorize the adoption of 

Vehicle-to-Vehicle technology on all new vehicles, whether autonomous or not. Almost every famous 

automobile manufacturers like Mercedez-Benz, Tesla, Volvo, GM, BMW, VW, Audi, Toyota, Nissan, 

Hyundai, and Tier 1 suppliers like Bosch investing much capital in developing fully autonomous 

vehicle technology[7], [8]. Because the autonomous vehicle is driven by the algorithm, therefore the 

IT corporations play a main role in the autonomous vehicle algorithm development. The autonomous 

vehicle from Waymo, the open platform APOLLO which is developed by Baidu, and the open-source 

autonomous vehicle platform from the autoware foundation accelerates the research of the 

autonomous vehicle[9]–[15]. 

Even the unmanned ground vehicle and the car-like autonomous vehicle is different in 

appearance, the main algorithm of the autonomous vehicle is the same. To guarantee the safety and 

the convenience of the autonomous vehicle, a top-level algorithm needs to know the information of 

the ego vehicle and the surrounding environment. If the vehicle is controlled by a human, then all of 

the driving missions are done by the human. The human driver needs to see the scenes, figures out 

where the vehicle is memorizes the geometry of the road, and remember the environment. Once the 

vehicle is driven by an algorithm, the algorithm needs to recognize the state of the vehicle and the 

surrounded environment to control the vehicle appropriately. To recognize the state of the vehicle and 

environment, the autonomous vehicle is equipped with several sensors. Usually, the autonomous 

vehicle is equipped camera sensor, lidar sensor, radar sensor, global navigation satellite system(GNSS) 

like GPS, GLONASS, Galileo, Beidou, and other regional systems. The state of the vehicle can be 

estimated by using the mounted sensors mentioned above. The algorithm of the autonomous vehicle 

can be classified into 4 parts roughly. The 4 parts are localization, perception, planning, and control. 

The perception module is used for detecting the object and environment, the planning module is used 

for local path planning and global path planning based on the vehicle position, the control module is 
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used for publishing the final control value to the vehicle. The control module receives the path from 

the planning module. The planning module makes local and global path plan based on the location of 

the vehicle and the surrounding information from the perception module. Therefore, it can be found 

the location of the vehicle is critical to the autonomous vehicle. Without precise location data, the 

autonomous vehicle can not work appropriately. The typical autonomous vehicle system is shown in 

Figure 2. 

 

 

Figure 2 The typical autonomous vehicle system 

 

Thus, extracting the location of the autonomous vehicle is meaningful and critical. Because of 

the importance of the location data, there are many types of research about the localization algorithm. 

The GNSS is the abbreviation of the global navigation satellite system. The GNSS is the 

standard generic term for satellite navigation systems that provide autonomous geo-spatial positioning 

with global coverage. This term includes such as the GPS(global positioning system) from the United 

States, GLONASS from Russia, Galileo from Europe, Beidou from China, and other this kind of 

system[16]–[21]. GPS is one of the most famous GNSS. Take the GPS as an example. The GPS 

defines the coordinate of the earth and satellites, then locates the position of the receiver based on the 

flying time of the signal. The usage of GPS is everywhere in current days. Almost every smartphone 
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contains a GPS receiver to use the location-based application. Despite the GPS receiver is mounted in 

the smartphone, however, the precision of the GPS is varied depends on the environment. If the 

smartphone is used in the tunnel or subway, the receiver can not receive the signal from the satellite. It 

is not a critical problem for the smartphone user, however, it is critical for the autonomous vehicle. 

For the same reason, the GPS signal can be worse in the urban city were full of high-rise buildings. 

The signal of the GPS can be reflected randomly. It means the fly time of the signal changes which 

also means the position contains much noise. This phenomenon is called multipath error[22]. The 

update frequency of the GPS is 10Hz usually[23]. If the autonomous vehicle localizes itself with GPS 

only, then if the velocity is 30m/s(108Km/h), the autonomous vehicle locates itself with an interval of 

3 meters. It means even the vehicle changes into the side lane, the algorithm still considers the vehicle 

is in the same lane. Thus, the GPS is combined with IMU(inertial measurement unit) generally. The 

update frequency of IMU is 100Hz or higher. It means the algorithm could calculate the position of 

the vehicle based on the dead reckoning in the interval of the GPS[24]–[26]. However, the data of the 

IMU sensor accumulates the noise which makes the estimation value worse again. If the GPS signal is 

good enough, then GPS/IMU combined is enough for localizing the vehicle with a real-time kinematic 

signal. However, GPS/IMU combined solution still can not works correctly when the vehicle loses a 

GPS signal for a long time. Therefore, an efficient way that localizes the global position of an 

autonomous vehicle without a GPS signal for a long time is meaningful research. 

The camera sensor is one of the most inexpensive sensors in the autonomous vehicle. The camera 

sensor provides the RGB value of the real world. In intuition, the camera sensor is the eye of the 

autonomous vehicle. The object detection based on the mono-camera, dual camera, and multiple 

cameras has been studied for a long time. The computer vision is used to detect the traffic sign, 

pedestrian, and other vehicles based on the features and geometry of the object’s pixels[27]–[32]. The 

brightness, reflection, distortion, shelter from other vehicles, and the various objects shape increases 

the complexity of the detection. The limitation of the camera is the uncertainty of the detection result. 

The detection result changes a lot based on the light condition and reflection. Besides, because the 

camera monitors all the scenes on the road in high frequency, the phantom phenomenon can affect the 
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detection result[33]. The problem of the pure computer vision-based detection is that the relative 

distance is calculated based on the features in the image. The small noisy movement of the pixels will 

obtain different results completely. As a result, a reliable approach to detection is needed. 

The range sensor provides the relative distance between the sensor coordinate and object. The 

precision of the relative distance obtained by the sensor like lidar is 1cm. Therefore combining the 

ability of the object detection of the camera and relative distance measurement from lidar is a suitable 

approach. Thus camera and lidar fusion-based approaches are studied[34]–[41]. The fusion of the 

lidar and camera is the most reliable method to detect the elements in the surrounding environment in 

current days. 

Once the perception module extracts the road elements effectively, then the location of the ego 

vehicle also can be extracted by matching with the map[42]–[46]. The map is made by using the 

SLAM(simultaneous localization and mapping) algorithm and manufactured by the map engineer 

with high precision measuring equipment. The map contains every detail of the road, such as the slope 

of the road, the width of the lane, the position of the traffic sign, the elements of the road, and so on. 

Every element contains a position labeled value defined by the map manufacturer. Thus the position 

of the ego vehicle can be obtained by matching the object's position in the map and the detected 

objects from the ego vehicle perception module. Since the accuracy of the commercial map is verified 

by the map engineer, thus the precision of the map is reliable. Therefore, if the perception data and the 

noises can be handled appropriately, the position of the vehicle can be extracted accurately based on 

the map. However, if the algorithm estimates the position of the ego vehicle only by using the map 

matching, the jump of the position will happen because of the noise in the map, perception algorithm, 

and sensor itself. So the localization algorithm should use the information of the vehicle to limit the 

jump of the estimated location. Usually, the vehicle model has been used to constraint the boundary of 

the jump of the location. Since the location is estimated based on map matching, the algorithm can 

estimates the location of the ego vehicle continuously even missing the GPS for a long time. Thus a 

reliable method that can fuse the elements in the road, elements in the map, and the constraints of the 

vehicle model is needed. 

javascript:;
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1.2  Estimate the vehicle location based on sensor fusion 

The autonomous vehicle is an extended research area of the unmanned ground vehicle. The 

location estimation method used in the unmanned ground vehicle is also can be applied to the 

autonomous vehicle. autonomous vehicle location estimation algorithm level, there are no significant 

differences between the autonomous vehicle and unmanned ground vehicle except the structure. The 

only difference between the autonomous vehicle and unmanned ground vehicle is the model of the 

vehicle. An autonomous vehicle system must control numerous parameters, including speed, 

orientation, acceleration, and maneuvering. All of these control parameters are controlled by the 

decision-making module, which handles all perception data from the vehicle and sensors. The 

perception module determines the relationship between the ego vehicle and the surrounding 

environment. One of the most important algorithm modules is vehicle localization because all the 

sensors sense the environment based on local vehicle coordinates[47]. As illustrated in section 1.1, the 

typical perception sensors of an autonomous vehicle are the camera, range sensor, GPS[48]. GPS is 

the most commonly used navigation system in an autonomous vehicle. However, because of issues 

with multipath routing and poor signal availability in cities, relying entirely on GPS is not suitable for 

localizing vehicles in urban environments. Although differential GPS systems can be used, the high 

cost and size of these systems limit their implementation[49]. Furthermore, GPS systems cannot be 

used in tunnels or indoor environments. Vision-based localization has been proposed as a method for 

localizing vehicles using a low-cost camera. However, the vision-based localization algorithm is 

easily affected by weather and light conditions, leading to insufficient accuracy and stability[50]–[54] 

Range sensor-based map matching can yield highly precise results with the help of the map. By 

contrast, matching requires the environment to be accurately mapped such that the point cloud of the 

environment does not change. Point cloud matching is expensive and requires considerable power and 

computation resources[55]–[62]. Thus, developing a localization method that can utilize the vehicle’s 

sensors and road features to achieve precise and stable location performance is necessary for 

furthering research on the autonomous vehicle. One of the localization solutions that can be used in 

complex urban environments is vehicle localization based on local sensor systems and information 
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from the map. Matching an entire point cloud with a map is inefficient; therefore, only the ground 

truth location map of features is used in this study, for computational efficiency. In previous research, 

vehicle localization based on vehicle-to-vehicle (V2V) and vehicular ad-hoc network (VANET) 

communication was proposed. The basic condition is that these algorithms require surrounding 

vehicles to be equipped with V2V communication equipment, which are then referred to for the 

infrastructures[63]–[69]. The communication system based localization is not accurate enough and 

highly depends on the V2V signal. The sigma can be disconnected because of the environment. Thus 

in this study, we choose matching the detected features with the map for a precise, stable, and 

communication signal independent approach. Because the vehicle data contain a large amount of 

noise, and an efficient filtering algorithm is needed to obtain precise localization results. 

The methods for vehicle localization have improved considerably over the years. The primary 

methodology that was used is the probabilistic approach. The Kalman filter (KF) is an optimal 

estimator that is designed for processing Gaussian noise with mean and variance, and it is an 

important component in several such approaches[70]. One of the assumptions of the KF is that the 

noise should be Gaussian. However, in practice, a function like the trigonometric filter renders the 

Gaussian noise non-Gaussian. Therefore, an extended Kalman filter (EKF), which uses a low order 

Taylor expansion to linearize the nonlinear (e.g., trigonometric) function, has been proposed. It uses a 

partial derivative to represent the rate of change of the nonlinear functions, which aims to keep the 

noise Gaussian. If the state is a vector, then the partial derivative parameters can be assembled into a 

new matrix, which is called a Jacobian matrix. Generally, to localize the vehicle’s position, 

researchers derive the Jacobian matrix based on the transition and measurement models for handling 

the vehicle’s noisy sensor data[71]–[76]. If an EKF based on a Jacobian matrix approximates a 

nonlinear function using a high order of Taylor series, it also works well in transforming nonlinear 

functions into linear ones. The critical problem, however, is that the Jacobian matrix is difficult to 

derive for complex dynamics. Therefore, a new, sample region-based Kalman filter, which is called 

the unscented Kalman filter (UKF), was proposed. The UKF performs better than the EKF and KF 

when the system model is highly nonlinear[77]–[79]. The UKF uses some key points, which are 
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called sigma points, to approximate the non-Gaussian noise into Gaussian based on the unscented 

transform. In this way, it can properly capture the nonlinearity. Furthermore, because the UKF 

approximates the non-Gaussian noise with sigma points, it is easy to combine other information when 

selecting the sigma points and there is no need to calculate the Jacobian matrix. 

The basic assumption of the Kalman filter family is that noise is Gaussian. In the real world, 

most noise does not have a Gaussian property. For processing non-Gaussian noise, a Monte 

Carlo-based localization approach, called particle filter (PF), has been proposed [80], [81] The particle 

filter uses several samples, referred to as particles, to approximate the non-Gaussian property. 

Because the particles are generated randomly, they can represent the properties of non-Gaussian noise 

precisely if there are sufficient numbers. However, a vehicle has limited computational resources; 

therefore, it cannot allow the particle filter to approximate the number of particles. Therefore, there is 

a trade-off between precision and computational resources when generating an effective 

particle-based system model. Thus, an extended Kalman filter-aided particle filter, called an extended 

particle filter (EPF), and an unscented particle filter (UPF), called the Kalman filter-aided particle 

filter, have been proposed [82]–[84]. Both the EPF and the UPF use system models to generate and 

update the particles. It should be noted that each particle should compute the sigma points or Jacobian 

matrix; therefore, both the EPF and UPF are computationally inefficient and difficult to implement 

[85]–[87]. 

In this study, a new method, the particle-aided unscented Kalman filter (PAUKF) is proposed for 

vehicle localization. PAUKF is a kind of hybrid filter framework based algorithm like previous works 

of literature [88]–[93]. The Nan hu, Chengdong Wu, Tong Jia, and Peng Ji proposed a hybrid filter 

localization algorithm based on the selection mechanism. They hybrids the extended Kalman filter 

and H-infinity filter(HEKHF). The limitation of their research is the EKF is expanded in one order of 

the Tayler series and the EKF can not process the noise with the multi-model property. Amir Panah 

and Karim Faez proposed a hybrid filter based simultaneous localization and mapping for a mobile 

robot. They merged the UKF and multi-layer perceptron for the SLAM application. The multi-layer 

perceptron is used to learning the used as a universal approximator. Compare to this approach, 
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PAUKF uses the PF as the pre-process by using the detected features and ground truth position of the 

features in the map. Thus the PAUKF can provide the global location of the autonomous vehicle and 

correct the state of the vehicle. Inam Ullah, Yu Shen, Xin Su, Christian Esposito, and Chang Choi 

proposed a localization based on unscented Kalman filter and particle filter localization algorithms. 

They studied the localization algorithm based on the UKF and PF, however, UKF and PF in their 

research work independently. Compare to their research, the PAUKF combines the PF and UKF. 

Seong Jin Kim and Byung Kook Kim proposed a dynamic ultrasonic hybrid localization system for 

indoor mobile robots. They fused the ultrasonic distance measurement unit based on the EKF 

algorithm. The EKF has limitations at the noise with multi-modal and highly Non-Gaussian. The 

Mohammad A. Al-Khedher proposed a hybrid GPS-GSM localization of automobile tracking system. 

This approach fuse the GPS receiver based on the Kalman filter. The vehicle model and features are 

not used. What is more, their hybrid GPS-GSM localization algorithm relies on the GPS signal. 

Compare to this hybrid algorithm, the PAUKF cant provides the precise estimation of location even 

there is no GPS signal. Carsten Fritsche, Anja Klein, and Dominique Wurtz also proposed a hybrid 

GPS/GSM localization of mobile terminals using the extended Kalman filter. The limitation of their 

research is also from the EKF and relies on GPS.  

The PAUKF utilizes the particle filter and unscented Kalman filter at the application level. The 

PAUKF is not a localization algorithm that is derived from the mathematical like the creation of the 

Kalman filter. The novelty of the PAUKF is it fuses the vehicle model and detected features and the 

ground truth position of the features in the map. Because the PAUKF fuses the PF and UKF, the 

PAUKF contains the good property of the PF and UKF. The property of the PF makes PAUKF can 

handle almost every kind of noise and nonlinearity and the UKF measurement update based on the PF 

make the final result is smooth and precise. As a result, PAUKF can estimate a system with high 

nonlinearity and various sources of nonlinear noise more precisely based on the detected features 

measurement and ground truth of the features comparing to the previous literature. Because each 

particle does not have to update the sigma points or share the prediction model, this method requires 

fewer computational resources. The computational burden and precision of PAUKF can be easily 
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tuned by tuning the quantity of the sigma points and particles. The global position of the vehicle is 

estimated based on the particle filter, and the unscented Kalman filter carries out the measurement 

update by using the estimation from the particle filter. The PAUKF considers the geometry affection 

of the perception and calculates the weight of each particle by using a multivariable normal 

distribution in three dimensions. We also found that the PAUKF provides feasibility to fuse 

multisource perception data into the PAUKF framework by weighing the particles.  

 

1.3  Outline of the thesis 

Section 2 illustrates the methodology of the PAUKF. The PAUKF is evaluated in two kinds of 

platforms. One is based on a wheeled skid-steer ground vehicle with experiment and another one is 

based on the car like the autonomous vehicle in the simulation environment. Therefore, section 3 

details the experiment environment configurations and analysis of the PAUKF experiment results 

based on an unmanned ground vehicle. Section 4 details the simulation environment configuration 

and result analysis of the PAUKF based on the car-like autonomous vehicle. Finally, Section 5 

presents the conclusion of this thesis. 
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Chapter 2 The particle aided unscented Kalman filter based  

localization 

2.1  The PAUKF algorithm 

This section describes the implementation of the PAUKF, including particle implementation and 

PAUKF implementation. Both the PF and UKF are Bayesian-based filters, and the environment is 

assumed to be Markov, which means that the PAUKF also has a Markov assumption. The PAUKF is a 

general algorithm that independent of the platform. For example, the PAUKF used in the unmanned 

ground vehicle and the car-like autonomous vehicle is the same except for the prediction 

model(vehicle model) and measurement model(sensors used). Therefore, PAUKF can be applied to 

different kinds of hardware platforms. In this paper, the performance of PAUKF is verified in 

unmanned ground vehicle platforms with experiments and the car-like autonomous vehicle with 

simulation as Figure 3 shows. 

 

 

Figure 3 Different kinds of the verification platform 

 

2.1.1  Particle filter based pre-processing 

The particle filter is a Monte Carlo-based method that can handle both Gaussian noise and 

Non-Gaussian noise[94]. The intuition of the particle filter is shown in Figure 4. The magnetic field is 
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a kind of probability distribution. No matter how the magnetic field changes, as long as the random 

iron particle is used, the properties of the magnetic field can be approximated. 

 

 

Figure 4 Intuition of the particle filter 

 

Therefore, compared to the widely used filter like Kalman filters, particle filters approximate a 

large range of probability distributions, not just normal distribution. Once a robot’s belief is focused 

on a subspace of the space of all poses, particle filters are computationally efficient, since they focus 

their resources on regions in the state space with high likelihood. How to make the algorithm “throw” 

the particles at the appropriate position for better distribution is an important process. The method 

which combines particle filter combined with probabilistic models of vehicle perception and motion is 

called Monte Carlo localization. The particle filter based preprocessing follows the Monte Carlo 

localization idea. 

For better understanding, it is necessary to briefly derive the basics, begging with the Bayes 

filters. Bayes filters address the problem of estimating the state x of a dynamical system from sensor 

measurements. For example, in autonomous vehicle localization, the dynamical system is an 

autonomous vehicle and its environment, the state is the vehicle’s pose which usually specified by a 

position in a two-dimensional Cartesian space and the vehicle’s heading direction. The state can be 

varied according to the specific application. The measurement may include range measurements, 

camera images, odometry readings, and measurement from the IMU sensor. The Bayesian filters 
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assume that the environment is Markov which means, past and future data are independent if one 

knows the current state. The important idea of the Bayes filtering is to estimate the posterior 

probability density over the state space conditioned on the data. The posterior is typically called as 

belief. Thus the belief of the 𝑥𝑡 is shown as Equation (2.1). 

 

 𝐵𝑒𝑙(𝑥𝑡) = 𝑝(𝑥𝑡|𝑦𝑡, 𝑢𝑡−1, 𝑦𝑡−1, 𝑢𝑡−1 ⋯ ,𝑢0, 𝑦0) (2.1) 

 

The 𝑦𝑡 represented as the perceptual data like laser range measurements, and odometry data or 

controls which carry information about robot motion is represented as 𝑢𝑡−1. Bayes filters estimate the 

belief recursively. The initial belief characterizes the initial knowledge about the system state. 

To derive a recursive update equation, the Equation (2.1) can be transformed by Bayes rule to 

(2.2) where the 𝑑0,…𝑡−1 represent the data starting at time 0 up to time t.  

 

 𝐵𝑒𝑙(𝑥𝑡) =  
𝑝(𝑦𝑡|𝑥𝑡 , 𝑢𝑡−1, … , 𝑦0)𝑝(𝑥𝑡|𝑢𝑡−1, … , 𝑦0)

𝑝(𝑦𝑡|𝑢𝑡−1, … , 𝑦0)
=

𝑝(𝑦𝑡|𝑥𝑡 , 𝑢𝑡−1, … , 𝑦0)𝑝(𝑥𝑡|𝑢𝑡−1,…,𝑦0)

𝑝(𝑦𝑡|𝑢𝑡−1,𝑑0…𝑡−1)
 (2.2) 

 

By using the Markov assumption, the measurement 𝑦𝑡 are conditionally independent of past 

measurements and odometry readings are given knowledge of the state 𝑥𝑡. 

 

 𝑝(𝑦𝑡|𝑥𝑡 , 𝑢𝑡−1, … 𝑦0) = 𝑝(𝑦𝑡|𝑥𝑡) (2.3) 

 

Equation(2.3) allows it to conveniently simplify Equation (2.2) into Equation(2.4). 

 

 𝐵𝑒𝑙(𝑥𝑡) =
𝑝(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑢𝑡−1,…,𝑦0)

𝑝(𝑦𝑡|𝑢𝑡−1,𝑑0…𝑡−1)
 (2.4) 

 

To obtain the final recursive form, now have to integrate out the pose 𝑥𝑡−1 at time t-1, which 

represents as equation (2.5).  
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 𝐵𝑒𝑙(𝑥𝑡) =  
𝑝(𝑦𝑡|𝑥𝑡)

𝑝(𝑦𝑡|𝑢𝑡−1,𝑑0…𝑡−1)
∫ 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1, … , 𝑦0)𝑝(𝑥𝑡−1|𝑢𝑡−1, … 𝑦0)𝑑𝑥𝑡−1 (2.5) 

 

The Markov assumption also implies that given knowledge of 𝑥𝑡−1 and 𝑢𝑡−1, the state 𝑥𝑡 is 

conditionally independent of past measurements 𝑦1…, 𝑦𝑡−1 and odometry readings 𝑢1…, 𝑢𝑡−2 up 

to time t-2, that shown as equation (2.6) 

 

 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1, … , 𝑦0) = 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1) (2.6) 

 

By using the definition of the belief Bel, a recursive estimator known as Bayes filter is shown as 

Equation (2.7). 𝜂 is the normalizing constant. 

 

𝐵𝑒𝑙(𝑥𝑡) =  
𝑝(𝑦𝑡|𝑥𝑡)

𝑝(𝑦𝑡|𝑢𝑡−1, 𝑑0…𝑡−1)
∫𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1)𝐵𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1 

 = 𝜂𝑝(𝑦𝑡|𝑥𝑡) ∫ 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1)𝐵𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1 (2.7) 

 

Equation (2.7) is the basic idea of various Monte Carlo localization algorithms. The following 

particle filter also follows the basic idea of the Bayes filter. 

To implement Markov localization, we have to know three distributions: the initial belief Bel(𝑥0), 

the next state probability p(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1) which usually called the motion model, and the perceptual 

likelihood p(𝑦𝑡|𝑥𝑡) which is usually called a perceptual or measurement model. If the state space is 

continuous, as is the case in mobile robot localization, implementing the belief update Equation (2.7) 

is not a trivial matter particularly if one is concerned about efficiency. The idea of MCL( and other 

particle filter algorithms) is to represent the belief Bel(x) by a set of N weighted samples distributed 

according to Bel(x) as the Equation (2.8) shows. 

 

 𝐵𝑒𝑙(𝑥) = {𝑥𝑖, 𝑤𝑖}𝑖=1…𝑁 (2.8) 
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Here each 𝑥𝑖 is a sample(a state), and 𝑤𝑖 are non-negative numerical factors called importance 

factors, which sum up to numerical value one. In this thesis, the important factors are also called the 

weight of each sample(particle). In global vehicle localization, the initial belief is a set of poses drawn 

according to a uniform distribution over the vehicle’s universe, annotated by the uniform importance 

factor 
1

𝑁
. The recursive update is realized in three steps, computing the expression in (2.7) from the 

right to the left. 

 

1. Sample a state 𝑥𝑡−1 from Bel(𝑥𝑡−1), by drawing a random 𝑥𝑡−1
𝑖  from the sample set 

representing Bel(𝑥𝑡−1) according to the (discrete)distribution defined through the importance 

factors 𝑤𝑡−1
𝑖 . 

2. Use the sample 𝑥𝑡−1
𝑖  and the action 𝑢𝑡−1  to sample 𝑥𝑡

𝑖  from the distribution 

p(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1). The predictive density of 𝑥𝑡
𝑖 is now given by the product p(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1). 

The predictive density of 𝑥𝑡
𝑖 is now given by the product p(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1)𝐵𝑒𝑙(𝑥𝑡−1). 

3. Finally, weight the sample 𝑥𝑡
𝑖  by the (non-normalized) importance factor p(𝑦𝑡|𝑥𝑡

𝑖), the 

likelihood of the sample 𝑥𝑡
𝑖 given the measurement 𝑦𝑡. 

 

After the generation of N samples, the new importance factors are normalized so that they sum 

up to 1 (hen define a probability distribution). This process in fact implements (2.7), using an 

approximate sample-based representation. It should be mentioned that the idea of the particle filter 

based localization could be the same. However, the implementation of the idea is different case by 

case. 

In this PAUKF approach, the particle filter is used as matching the detected features and ground 

truth features for estimating the location of the vehicle. There are many sources of noise. The Monte 

Carlo property makes particle filter can handle the different kinds of noise. The different kinds of 

noises exist in the map build step, sensor’s detection algorithm module error, and the inherent noises 

of the sensors themselves. There is no way that the noise property always has a Gaussian character. 

Thus it is essential for the vehicle can handle the different kinds of noises.  
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The particle filter for localization in this thesis can be mainly divided into five parts as Figure 5 

shows. The main process is particle initialization, particle prediction based on the vehicle model, 

receive the measurement value, transform the measurement based on the particles, and weight update 

& normalization and resampling of the particles. 

 

 

Figure 5 The process of the PF based pre-processing 

 

  The details of the particle filter are introduced in the following subsections. 

 

2.1.1.1 Initialization 

To localize the vehicle in global coordinates, it is essential to provide an initial location to the 

vehicle. Otherwise, the vehicle will search for its position over the entire world. Therefore, a sensor 

that can provide the initial global position is needed. The GPS sensor is used for particle initialization 

usually. Even though the GPS signal is poor due to multipath and blocking issues, it still provides a 

limited area for the vehicle to localize. Of course, the initial position also can be given by a human. 

When a particle filter receives the initial position, it generates N random particles for initialization as 

Equation (2.9) and Equation (2.10). 
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 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 = 𝑃𝑖 = 𝑆𝑡𝑎𝑡𝑒𝑖𝑛𝑖𝑡 + 𝑁𝑜𝑖𝑠𝑒𝑖𝑛𝑖𝑡   (2.9) 

 

 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 = [𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒1, 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒2 ⋯ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑁−1, 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑁] (2.10) 

 

Figure 6 is a diagram of the particles' initialization step. The initialized particles 𝑃𝑖 coordinate is 

represented as dotted lines where the actual initial position is represented as a solid line.  

 

 

Figure 6 Particles initialization 

 

2.1.1.2 Prediction 

To obtain the prior distribution, each particle at timestamp k−1 should predict the current state 

based on the system prediction model. The prediction model was constructed based on the vehicle 

model usually. The vehicle model is different according to the structure of the vehicle. For example, 
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the UGV with a skid-steering wheeled structure can be modeled as Thomas Moore, Daniel Stouch 

research[95]. For the car-like autonomous vehicle, the model that can be selected is the kinematic 

model and dynamic model. It should be mentioned that whatever the model is, as long as the state of 

the vehicle can be calculated from time k-1 to time k, that is enough for prediction. The role of the 

vehicle model is to provide constraints of the prior distribution. Since the posterior distribution is 

obtained based on the prior distribution, it is necessary to improve the appropriate prior distribution 

for better estimation. The state of each particle should be predicted for obtaining the prior 

distributions at the next timestamp. Equation (2.11) shows the prediction step of particles. The vehicle 

model used in the prediction step depends on the structure of the selected autonomous vehicle. The 

timestamp k means current time, and the k-1 means the previous timestamp. The timestamp k-1, k, 

k+1 is a relative concept. Thus, in some of the literature, the timestamp k+1 and k are also used to 

represent the relationship of the timestamp. 

 

 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ∶ 𝑥𝑘
−  = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙(𝑥𝑘−1) + 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑛𝑜𝑖𝑠𝑒 (2.11) 

 

As Equation (2.11) shows, the prediction model is shown as a concept. This is because the 

prediction model is different depends on the platform that is selected. For better readability, the details 

of the prediction models will be explained when illustrating the specific vehicle platform. The 

prediction models usually contain several trigonometric functions, which correspond to a highly 

nonlinear prediction model. The heading angle of each particle is critical because it changes according 

to the local vehicle coordinates. Figure 7 is a diagram of the particle prediction step. The dotted line in 

black represents the predicted movement depends on Equation (2.11).  
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Figure 7 Particles prediction 

 

2.1.1.3 Weight calculation 

Weight is an important factor that can heavily influence the performance of the particle filter. By 

using the measurement data based on the vehicle sensor and the pre-saved features information, the 

weight of each particle is calculated. In this approach, the vehicle is assumed that can receive the 

features’ data from the map, and the distance & bearing angle value of the vehicle, and every feature j 

that can be received by the on-vehicle sensor as Figure 8 shows. The black-colored parameters 

𝜽𝒋, 𝒅𝒋, 𝒗 is the measurement data from on-vehicle sensors, the red 𝑷𝒊 means the predicted particle 

and the [𝒙𝒇,𝒋, 𝒚𝒇,𝒋] in blue means the relative distance of features and ego vehicle. 
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Figure 8 The vehicle, the particles, and the features 

 

The measurement values of z are the distance from the origin of the vehicle coordinate to the 

feature j, and the bearing angle of the vehicle local coordinate to feature j as Equation (2.12) shows. In 

reality, there are different kinds of noise are exist in the sensed data. The measurement value is the 

same for all the particles. 

 

 𝑧𝑘  =  [
dj

θj
]
k

 (2.12) 

 

Since the measurement is relative distance and angle of the ego vehicle and target feature, the 

geometry of the detection should be considered as Figure 9 shows. The geometry of the measurement 

is affecting the uncertainty of the particles, thus the measurement should be decomposed when 

executing transformation based on the predicted particles in the following contents. 
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Figure 9 Measurement geometry affect uncertainty 

  

It should be mentioned there are three coordinates used. One of the coordinates is the global 

coordinate which is fixed. The second coordinate is the vehicle local coordinate and the last 

coordinate is the sensor coordinate. Usually, the data from the sensor transforms to a fixed point of the 

vehicle. Therefore, this approach assumes the coordinate of the sensor and vehicle is overlapped 

meaningful. 

Next, to matching the detected features and the features in the map, the measurement should be 

incorporated into the particles for evaluating each of the particles. In the previous initialization step 

and prediction step, the N particles are generated and predicted. Every particle has a state that 

contains position x, position y, and yaw angle of the vehicle in global coordinate. Since particles are 

generated randomly, the position x, the position y, and the yaw of particles are different. In physical 

meaning, the initialization step means the algorithm generates the N number of the virtual vehicle 

near the initial position. The prediction step means the algorithm tries to calculate the position of each 

particle at the next timestamp. In the current step, the x, y, and yaw values of each particle are 

different. It means every coordinate of the virtual vehicle is different. However, the sensed distance 

data and relative bearing angle data is from the vehicle coordinate. Therefore, to calculate the weight 

of each particle, the measurement values should be transformed into every particle’s coordinate as 
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Figure 10 shows. The ultimate goal of the transformation is to transform the features into global 

coordinates based on each particle. 

 

 

Figure 10 Transform the measurement into each particle 

 

The translation of the measurement of the features based on each particle is implemented as 

Equation (2.13). The θ𝑖,𝑣 is the vehicle’s yaw angle of the particles in global coordinate, 𝑥𝑖, 𝑦𝑖 is 

the position of ith particles in the global coordinate. By transformed into Equation (2.13), 𝑥𝑓,𝑗
𝑔𝑙𝑜𝑏𝑎𝑙

 

and 𝑦𝑓,𝑗
𝑔𝑙𝑜𝑏𝑎𝑙

 is calculated based on each of the particles. 

 

 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ∶  [
𝑥𝑓,𝑗

𝑔𝑙𝑜𝑏𝑎𝑙

𝑦𝑓,𝑗
𝑔𝑙𝑜𝑏𝑎𝑙 ] = [

cos (θj + θ𝑖,𝑣) sin (θj + θ𝑖,𝑣)

−sin (θj + θ𝑖,𝑣) −cos (θj + θ𝑖,𝑣)
] [

djcos (θj)

djsin (θj)
] + [

𝑥𝑖

𝑦𝑖
](2.13) 

 

To evaluate the weight of each particle, a multivariable normal distribution function was used to 

assess the importance of each particle. Thus, a multivariable normal distribution function returns the 
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weight of a particle-based on the newest sensor measurement values and the predicted values from the 

model as Equation (2.14). The 𝑤𝑖,𝑗 represent the weight of particle I with feature j, the σx, σy 

and σz represent the detection of uncertainty in x, y, and z-direction. The  μx, μy, μz is the expected 

value of the features’ global position which values are the ground truth data of features in the map. In 

physical meaning, the larger the weight is, the probability of being in the right position of the vehicle 

is the highest. After weighing all the particles, the weight with the largest particle’s state is treated as 

the best estimation result of the particle filter. The illustration diagram is shown in Figure 11. 

 

 

Figure 11 Weight update scheme diagram 

 

 wi,j =
1

(2π)
3
2σxσyσz

e

−(
( 𝑥𝑓,𝑗
𝑔𝑙𝑜𝑏𝑎𝑙

 – μx,f,j)
2

2σx
2 +

( 𝑦𝑓,  𝑖
𝑔𝑙𝑜𝑏𝑎𝑙

 – μy,f,j)
2

2σy
2 +

( 𝑧𝑓,  𝑖
𝑔𝑙𝑜𝑏𝑎𝑙

 – μz,f,j)
2

2σz
2 )

,  i = 1,  2 . . N (2.14) 

 

The weight wi of the ith particle is calculated based on the product over every detected 

measurement and ground truth data in the map as Equation (2.15) shows. 
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 wi = ∏ wi,j
𝑁𝑓

𝑗=1
 (2.15) 

 

Once the weight of each particle is an update based on the map matching process, the wi needs 

to be normalized as Equation (2.16) shows. The reason why the algorithm needs normalization is to 

prevent the particle group from polarization. 

 

 wi = 
wi

∑ wi
𝑁𝑏
𝑗=1

 (2.16) 

 

Next, to keep the diversity of the particle group, a resampling process is needed as Equation 

(2.17) shows. This process draws N particles from the current particle set with probabilities 

proportional to their weights and replaces the current particle set with this new one. In this thesis, the 

resampling process happens in every iteration. 

 

 𝑃𝑟𝑜𝑏𝑝𝑟𝑜𝑏_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
𝑖 ∝ wi  (2.17) 

 

Then the final output of the particle filter is the state of the particle with largest weight. 

 

 𝑥𝑃𝐹  =  𝑃max𝑤𝑒𝑖𝑔ℎ𝑡(𝑥, 𝑦, θ) (2.18) 

 

The whole pseudo code of the particle filter based pre-processing is shown in Table 1. 
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Table 1 Pseudo code of the particle filter based pre-processing 

Order Process 

1 Start one sample time iteration 

2 Initialization X1,2…N particles 

3 For 1 to N do 

4 x̂k
−  =   Nonlinear prediction model(x̂k−1) + noise 

5 End for 

6 zk  = measurement input 

7 w[1,2…N]  =  multivariable normal distribution(X̂i…N
− , zk, σx,y,z, μx,y,z) 

8 Return x̂PF  =  argmax
w[1,2…N]

P(xp,i, yp,i, zp,iθp,i) 

9 End one sample time iteration 

 

Based on the multivariable distribution framework, if there are different sources of perception 

data, they can be fused simply. When the vehicle receives multiple perception data about one feature, 

the belief of each perception data can be calculated based on the multivariable normal distribution 

Equation, as Equation (2.14) shows. After calculating the probability based on each sensor, the final 

weight of each particle can be calculated, as Equation (2.19) shows. This provides a feasible 

multisource data fusion method based on the PAUKF. Please note that the feasibility is not verified. In 

this thesis, we only considered a single range sensor case. 

 

 wi = PLiDAR(x, y, z) ∗ PRADAR(x, y, z) ∗ PCamera(x, y, z) ∗ …Pperception source(x, y, z) (2.19) 

 

2.1.2  Particle-Aided Unscented Kalman Filter Algorithm 

The particle filter based pre-processing algorithm is introduced in Section 2.1.1. The particle 

estimates the position of the vehicle by using the range sensor. The final results for each particle 

contain information about the surrounding features and the position of the ego vehicle. Therefore, it 

can be concluded that this estimation from the particle sensor becomes a virtual sensor that provides 

accurate location results. When the UKF estimates the state, the results from the particle filter will be 
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the measurement value of the vehicle. Subsequently, the PAUKF can extract a more precise result 

based on the particle filter estimation results. A flowchart of the PAUKF is shown in Figure 12. 

 

 

Figure 12 Particle-aided unscented Kalman filter algorithm flowchart 

 

Before the PAUKF, the basic EKF framework of the state estimation process should be illustrated. 

The basic framework for the EKF involves the estimation of the state of a discrete-time nonlinear 

dynamic system.  

 

The 𝑥𝑘 represent the unobserved state of the system and 𝑧𝑘 is the only observed signal. The 

process noise 𝑣𝑘 drives the dynamic system, and the observation noise is given by 𝑛𝑘. The system 

dynamic model F and H are derived based on the target hardware platform and the sensors that be 

selected. Consider the basic state-space estimation framework as Equations (2.20) and (2.21).  

 

 𝑋𝑘 = 𝐹(𝑥𝑘−1, 𝑣𝑘) (2.20) 

 

 𝑧𝑘 = 𝐻(𝑥𝑘 , 𝑛𝑘) (2.21) 
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Given the noisy observation 𝑧𝑘, a recursive estimation for 𝑥𝑘 can be expressed in the Equation 

(2.22). 

 

 𝑥𝑘 = (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥𝑘) + 𝐾𝑘[𝑧𝑘 − (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑧𝑘] (2.22) 

 

This recursion provides the optimal minimum mean-squared error estimate for 𝑥𝑘 assuming the 

prior estimate 𝑥𝑘−1 and current observation 𝑧𝑘 are Gaussian random variables. For nonlinear models, 

the EKF approximates the optimal terms. In other words, in the EKF the state distribution is 

approximated by a Gaussian random variable which is then propagated analytically through the 

“first-order” linearization of the nonlinear system. These approximations, however, can introduce 

large errors in the true posterior mean and covariance of the transformed random variable, which may 

lead to sub-optimal performance and sometimes divergence of the filter.  

The UKF provides another solution to approximation issues of the EKF. The state distribution is 

approximate by using a minimal set of carefully chosen sample points which is called sigma point. 

These sample points completely capture the true mean and covariance of the Gaussian random noise, 

and when propagated through the true non-linear system, captures the posterior mean and covariance 

accurately to the 3rd order(Taylor series expansion) for any nonlinearity. Therefore, the combination 

of the PF and UKF is a good combination for processing different kinds of noises.   

As illustrated above, PAUKF is Instead of using a Taylor expansion, a UKF deterministically 

extracts the mean and covariance using the sigma points as Figure 13 shows. The sigma points are 

generated near the state which is also the mean of the random variables. The PAUKF also follows the 

3 basic processes of the Bayes filter, the initial belief Bel( 𝑥0) , the next state probability 

p(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1) which usually called the motion model, and the perceptual likelihood p(𝑦𝑡|𝑥𝑡) 

which is usually called a perceptual or measurement model. At the final measurement update step, the 

estimation results 𝑧𝑘 from the particle filter are used for the measurement update as Equation (2.20). 
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Figure 13 Linearization of the Non-Gaussian noise with sigma points 

 

The sigma points are predefined by an empirical parameter λ that is calculated using Equation 

(2.23). The diagram of the sigma points generation is shown in Figure 14. The physical meaning of 

the λ is the spread area of the sigma point near the mean value. The sigma point is an asymmetrical 

region around the mean value. Pk|k is the covariance matrix of the state, which updates at every 

iteration. The state vector of the vehicle is xpaukf, which is changed depends on the platform that we 

selected as shown in Equation (2.24). The state of the UGV and the car-like autonomous vehicle is 

different, therefore, it details in the evaluation step with a specific vehicle platform in the following 

chapters. The state vector value is the mean of the sigma matrix. nx is the quantity of the state vector. 

Then, the sigma points are generated using Equation (2.25). 

 

 λ =  3 − nx (2.23) 
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 xpaukf  =   𝑆𝑡𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 (2.24) 

 

 𝑿𝑝𝑎𝑢𝑘𝑓,𝑘−1  =  (xpaukf,k−1, xpaukf,k−1  + √(𝜆 + 𝑛𝑥)𝑃𝑘−1, xpaukf,k−1 − √(𝜆 + 𝑛𝑥)𝑃𝑘−1)(2.25) 

 

 

Figure 14 The generated sigma points 

 

The weight of each sigma point is can be calculated based on the Equation (2.26) and (2.27). The 

weight of the sigma point represents importance. The diagram of the weights of the sigma points is 

shown in Figure 15. 

 

 wpaukf,i  =   
λ

λ+nx
, when i =  0 (2.26) 

 

 𝐖paukf,i  =   
1

2(λ+nx)
, when i =  1…nx (2.27) 
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Figure 15 Calculate the weights of sigma points 

 

After it generates the sigma points, a UKF needs a prediction model to calculate the position of 

the sigma points at the next timestamp as Equation (2.28).  

 

 𝑿̂𝑝𝑎𝑢𝑘𝑓,𝑘
−  = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙(𝑿𝑝𝑎𝑢𝑘𝑓,𝑘−1) (2.28) 

 

The diagram of the prediction step of the sigma points is shown in Figure 16. 



 

31 

 

 

Figure 16 Predict the sigma points 

 

Then the predicted state and covariance matrix of the vehicle can be calculated by using the 

generated weights and sigma points as Equation (2.29) and (2.30) show. 

 

 𝑥𝑝𝑎𝑢𝑘𝑓,𝑘
−  =   ∑ 𝐖paukf,i𝐗paukf,k|k−1,i

2nx
i=0  (2.29) 

 

 𝑃𝑝𝑎𝑢𝑘𝑓,𝑘
−  =  ∑ 𝐖paukf,i(𝐗paukf,k|k−1,i  −   𝑥𝑝𝑎𝑢𝑘𝑓,𝑘

− )
2nx
i=0 (𝐗paukf,k|k−1,i  −  𝑥𝑝𝑎𝑢𝑘𝑓,𝑘

− )T (2.30) 

 

Figure 17 shows the diagram of the predicted state based on the sigma points. 
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Figure 17 Predicted state based on the sigma points 

 

After predicting the new mean and covariance matrix based on the sigma point, the group of the 

sigma points represents the prior distribution. Until now, the prior probability was calculated based on 

sigma points. When using a Bayesian filter, a measurement update can be implemented. Instead of 

using the original range sensor with noise from the vehicle, x̂PF is used as the measurement in this 

step. This means that x̂PF becomes a virtual sensor, which is more precise than the original sensor. 

Since x̂PF already includes sensor information based on the particle filter, it optimally provides a 

more precise belief of the state. The measurement vector depends on the sensors that be selected. The 

measurement estimation from the particle filter provides position x,y, and the yaw angle of the vehicle. 

Thus the measurement is shown in Equation (2.31). 

 

 𝑧 =  [
x
y
θ
] (2.31) 

 

The measurement model based on the sigma points can be calculated as Equations (2.32) shows. 

The particle filter measurement provides estimated x, y, and yaw data to the UKF. Since the x, y, and 
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yaw angle can be measured directly, the value in the matrix A becomes 1 at the corresponding position 

to the selected state. Figure 18 shows the diagram of the measurement prediction based on the sigma 

points. 

 

 𝐙paukf,k|k−1 =  A𝐗paukf,k|k−1 (2.32) 

 

 
Figure 18 The measurement prediction based on sigma points 

 

The predicted measurement means is calculated based on the weight of each measurement’s 

sigma points, as shown in Equation (2.33). 

 

 𝑧̂𝑝𝑎𝑢𝑘𝑓,𝑘
−  =  ∑ wpaukf,i𝐙paukf,k|k−1,i

nx
i=1  (2.33) 

 

The predicted measurement covariance is calculated using Equation (2.34). R is the measurement 

noise covariance, as shown in Equation (2.35). The covariance is tuned according to the particle filter 

estimation results. 
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 S𝑧̂𝑘𝑧̂𝑘
 =   ∑ 𝐖paukf,i

2nx
i=0 (𝐙paukf,k|k−1,i  −   𝑧̂𝑝𝑎𝑢𝑘𝑓,𝑘

− )(𝐙paukf,k|k−1,i  −   𝑧̂𝑝𝑎𝑢𝑘𝑓,𝑘
− )T  +  R (2.34) 

 

 R =  [

σxPF
2 0 0

0 σyPF
2 0

0 0 σθ𝑃𝐹
2

] (2.35) 

 

At this time, a measurement value is needed to calculate the posterior probability. The update 

step is similar to that of the Kalman filter. The only difference is that the UKF needs to calculate the 

cross-correlation value, according to Equation (2.36), between the sigma points in the state space and 

the measurement space. 

 

 T𝑥𝑘𝑧̂𝑘
 =   ∑ 𝐖paukf,i

2nx
i=0 (𝐗paukf,k|k−1,i  −  𝑥𝑝𝑎𝑢𝑘𝑓,𝑘

− )(𝐙paukf,k|k−1,i  −  𝑧̂𝑝𝑎𝑢𝑘𝑓,𝑘
− )T (2.36) 

 

Based on the cross-correlation matrix and the measurement covariance, the Kalman gain is then 

calculated as Equation (2.37). 

 K =   T𝑥̂𝑘𝑧̂𝑘
𝑆𝑧̂𝑘𝑧̂𝑘

−1  (2.37) 

 

The state is updated using the measurement value x̂PF, which is obtained from the particle filter 

estimation as Equation (2.38). The measurement value is from the estimation result of the particle 

filter, thus the 𝑧𝑘 of the PAUKF can be represented as the Equation (2.39) shown. 

 

 𝑧𝑝𝑎𝑢𝑘𝑓,𝑘 = 𝑥𝑃𝐹 (2.38) 

 

 𝑥𝑝𝑎𝑢𝑘𝑓,𝑘  =  𝑥𝑝𝑎𝑢𝑘𝑓,𝑘
−  +  𝐾𝑘+1|𝑘(𝑧𝑝𝑎𝑢𝑘𝑓,𝑘  −  𝑧̂𝑝𝑎𝑢𝑘𝑓,𝑘

− ) (2.39) 
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Figure 19 shows the state update based on the measurement from the particle filter. This is the 

place where the fusion of PF and UKF. 

 

 

Figure 19 The state update based on the measurement from the particle filter 

 

The covariance matrix is then updated based on the updated Kalman gain and the measurement 

covariance matrix as Equation (2.40). 
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 𝑃𝑝𝑎𝑢𝑘𝑓,𝑘  =  𝑃𝑝𝑎𝑢𝑘𝑓,𝑘
−  −  𝐾𝑆𝑧̂𝑘𝑧̂𝑘

𝐾𝑇 (2.40) 

 

The terms 𝑥𝑝𝑎𝑢𝑘𝑓,𝑘  and 𝑃𝑝𝑎𝑢𝑘𝑓,𝑘  are the final estimation results of the PAUKF, which 

combines the vehicle model, particles estimation, position of features, the ground truth of position 

data in the map, and unscented Kalman filter-based estimation. The different kinds of vehicle models 

can be added to the prediction model. However, the research about the detail of the vehicle dynamic is 

not the main interest of this thesis. 

For easier understanding, the complete pseudo-code of the PAUKF algorithm is shown in Table 

2.  

 

Table 2 Pseudocode of the particle-aided unscented Kalman filter (PAUKF) 

Order Process 

1 Start one sample time iteration 

2 Initialization X1,2…N particles 

3 For 1 to N do 

4 X̅k+1  =  prediction model 

5 End for 

6 x̂PF =  Pmaxweight(x, y, θ) 

7 For 1 to naug do 

8 𝐗paukf,k−1 = unscented transform (λ, xpaukf,k−1, σ) 

9 𝐗̂paukf,k
−  = Model-based prediction 

10 𝐙paukf,k|k−1 = A(𝐗̂paukf,k
− ) for measurement transition 

11 x̂paukf,k, Ppaukf,k  =  update(Tx̂kẑk
, Sẑkẑk

, ẑpaukf,k
− , x̂paukf,k

− , zpaukf,k, R) 

12 End one sample time iteration 

 

The total formula based PAUKF iteration diagram is organized as Figure 20. 



 

37 

 

 

Figure 20 The PAUKF algorithm flow 
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Chapter 3 PAUKF experiment in the UGV platform 

In the previous section, the concept of PAUKF is illustrated in detail. The PAUKF uses the 

particle filter for processing features and features information by using the vehicle model, and the 

UKF is in charge of filtering the state based on the data from the vehicle itself based on the prediction 

model. The evaluation of the PAUKF algorithm is carried out based on the experiment. To evaluate 

the performance of the PAUKF algorithm, it is needed to be verified in the real vehicle, real hardware, 

and real perception environment. With the real vehicle test, the performance of the PAUKF could be 

verified appropriately.  

Since the PAUKF is matching the perceived features data and the features ground truth data in 

the map, the precision of the ground truth data and the quantity and precision of the detected features 

are critical for the performance of the PAUKF. The ultimate goal of the PAUKF experiment is to 

figure out the location estimation performance and the correction behavior based on the limited 

features. 

As illustrated in chapter 2, the prediction model of the PAUKF should be changed according to 

the specific hardware platform. The UGV used in this experiment is a skid-steered mobile robot, thus 

the prediction model of the PAUKF should be modified to adapt to the real vehicle.  

The ideal real test environment is receiving the data from CAN-bus of the vehicle, detecting the 

features from the surrounded environment, getting the ground truth data of features from HD-map 

from the commercial map provider and the PAUKF algorithm is loaded to the vehicle computing unit 

and execute the algorithm in the vehicle computing unit. 

However, because of the limited test environment and perception algorithm, a differential 

wheeled unmanned ground vehicle(UGV) called AECOBOT is used to verify the PAUKF. The UGV 

equips one lidar sensor(model name: Velodyne VLP-16) for making a simplified HD-map, one depth 

camera(Intel RealsenseD435) for detecting the features around the UGV. The total algorithm 

implementation is based on the robot operating system(ROS). 

Since the UGV under test is different from the vehicle that is illustrated in the previous sections, 

the PAUKF algorithm should be modified to adapt to the UGV. The change of the vehicle leads to the 
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change of the prediction model. The prediction model of particle filter and unscented Kalman filter is 

referred to as the research of T. Moore and D. Stouch, and other researches[96]–[98]. The coordinate 

definition follows the ROS standard REP-103 and REP-105. The state of the UGV is defined as 

Equation (2.41) based on the coordinate shown in Figure 21. 

 

 𝑋𝑈𝐺𝑉 = [𝑥 𝑦 𝑧 𝑟𝑜𝑙𝑙 𝑝𝑖𝑡𝑐ℎ 𝑦𝑎𝑤 𝑥̇ 𝑦̇ 𝑧̇ 𝑟𝑜𝑙𝑙̇ 𝑝𝑖𝑡𝑐ℎ̇ 𝑦𝑎𝑤̇ 𝑥̈ 𝑦̈ 𝑧̈] (2.41) 

 

 

Figure 21 The state and coordinate of the UGV 

 

The prediction model is represented in the matrix form. Despite the environment of the 

experiment is planar, to improve the expansibility of the algorithm, 15 dimensions of the state and the 

prediction model are shown below. The transfer function is initialized with the identity matrix which 

size of column and row is 15 as Equation (2.42) shows. 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦_𝑚𝑎𝑡𝑟𝑖𝑥(15,15) (2.42) 
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Then the prediction model of each state is defined as Equation (2.43-2.73) shows. The 𝑑𝑡 is the 

sample time of the ROS. 

 𝑠𝑟, 𝑐𝑟 ∶ sin(𝑟𝑜𝑙𝑙) , cos(𝑟𝑜𝑙𝑙) (2.43) 

 

 𝑠𝑝, 𝑐𝑝: sin(pitch) , cos (pitch) (2.44) 

 

 𝑠𝑦, 𝑐𝑦 ∶ sin(𝑦𝑎𝑤) , cos(𝑦𝑎𝑤) (2.45) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(0,6) = 𝑐𝑦 ∗ 𝑐𝑝 ∗ 𝑑𝑡 (2.46) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(0, 7) = (𝑐𝑦 ∗ 𝑠𝑝 ∗ 𝑠𝑟 − 𝑠𝑦 ∗ 𝑐𝑟) ∗ 𝑑𝑡 (2.47) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(0,8) = (𝑐𝑦 ∗ 𝑠𝑝 ∗ 𝑐𝑟 − 𝑠𝑦 ∗ 𝑠𝑟) ∗ 𝑑𝑡 (2.48) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(0,12) =  
1

2
∗ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(0,6) ∗ 𝑑𝑡 (2.49) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(0,13) =
1

2
∗ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(0,7) ∗ 𝑑𝑡 (2.50) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(0,14) =
1

2
∗ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(0,8) ∗ 𝑑𝑡 (2.51) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(1,6) = 𝑠𝑦 ∗ 𝑐𝑝 ∗ 𝑑𝑡 (2.52) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(1,7) = (𝑠𝑦 ∗ 𝑠𝑝 ∗ 𝑠𝑟 + 𝑐𝑦 ∗ 𝑐𝑟) ∗ 𝑑𝑡 (2.53) 
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 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(1,8) = (𝑠𝑦 ∗ 𝑠𝑝 ∗ 𝑐𝑟 − 𝑐𝑦 ∗ 𝑠𝑟) ∗ 𝑑𝑡 (2.54) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(1,12) =
1

2
∗ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(1,6) ∗ 𝑑𝑡 (2.55) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(1,13) =
1

2
∗ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(1,7) ∗ 𝑑𝑡 (2.56) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(1,14) =
1

2
∗ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(1,8) ∗ 𝑑𝑡 (2.57) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(2,6) = −𝑠𝑝 ∗ 𝑑𝑡 (2.58) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(2,7) = 𝑐𝑝 ∗ 𝑠𝑟 ∗ 𝑑𝑡 (2.59) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(2,8) = 𝑐𝑝 ∗ 𝑐𝑟 ∗ 𝑑𝑡 (2.60) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(2,12) =  
1

2
∗ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(2,6) ∗ 𝑑𝑡 (2.61) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(2,13) =  
1

2
∗ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(2,7) ∗ 𝑑𝑡 (2.62) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(2,14) =  
1

2
∗ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(2,8) ∗ 𝑑𝑡 (2.63) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(3,9) = 𝑑𝑡 (2.64) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(3,10) = 𝑠𝑟 ∗ 𝑡𝑝 ∗ 𝑑𝑡 (2.65) 
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 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(3,11) = 𝑐𝑟 ∗ 𝑡𝑝 ∗ 𝑑𝑡 (2.66) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(4,10) = 𝑐𝑡 ∗ 𝑑𝑡 (2.67) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(4,11) = −𝑠𝑟 ∗ 𝑑𝑡 (2.68) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(5,10) = 𝑠𝑟 ∗
1

𝑐𝑝
∗ 𝑑𝑡 (2.69) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(5,11) = 𝑐𝑟 ∗
1

𝑐𝑝
∗ 𝑑𝑡 (2.70) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(6,12) = 𝑑𝑡 (2.71) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(7,13) = 𝑑𝑡 (2.72) 

 

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(8,14) = 𝑑𝑡 (2.73) 

 

Then predicted state can be calculated as Equation (2.74) both in particle filter and UKF. 

 

 𝑋𝑈𝐺𝑉,𝑘+1 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∗ 𝑋𝑈𝐺𝑉,𝑘 + 𝑁𝑜𝑖𝑠𝑒𝑈𝐺𝑉 (2.74) 

 

The measurement is based on the open-source object detection algorithm ar_track_alvar based on 

ROS. By combining the RealsenseD435 depth camera and ar_track_alvar, the 3-dimensional features 

with position value stamped can be obtained. The RealsenseD435 provides the relative distance of the 

sensor coordinate and detected object in x, y, z-direction, the measurement model becomes  The 

UGV provides raw odometry data which including position, velocity, and angular velocity in x, y, z 



 

43 

 

three axes with covariance stamped. The PAUKF receives the data from raw odometry and Realsense 

D435 depth camera and localizes the UGV in the “odom” coordinate which is defined in the 

REP-105. 

 

3.1  Experiment environment 

As illustrated in section 2.4, the total evaluation of the PAUKF is based on the robot operating 

system(ROS). The ROS is robotics middleware. Although ROS is not an operating system like 

Windows from Microsoft, it provides services from low-level control, device communication, 

package management, and convenient packages distribution. The ROS is designed to promote code 

sharing and enable the development of open-source robotics commons. Therefore, many open-sourced 

packages were developed and shared based on ROS. Because ROS needs a lot of open-source 

libraries, the operation system of the ROS is based on the Linux framework. There are a lot of 

packages that are developed and being updated based on ROS[99]–[101]. Developers can use open 

packages to realize the specialized functionality of the robot. 

Some many robots and sensors support ROS. One of the most famous models is the husky UGV 

made by Clearpath. The husky supports the ROS officially. Thus all the data from husky can be 

obtained based on the ROS. It means, the developed code can access most of the data and modify 

them. There are no sensors mounted on the original husky. Thus, several modifications are needed to 

meet the evaluation request. The ultimate coordinate relationship and diagram of the PAUKF 

experiment are shown in Figure 22. 
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Figure 22 Evaluation environment configuration of PAUKF 

 

To better readability, several coordinates should be introduced first. 

 

3.2  Coordinate of devices 

Before introducing the detail of the test environment configuration, the REP-105 should be 

reviewed since this is the standard coordinate that is defined in the ROS. In this evaluation process, 

the “odom” frame, “base_link” and “map” frames are used. 

 

3.2.1  Odom 

The “odom” frame means the odometry frame. The coordinate frame called Odom is world-fixed. 

The pose of a mobile platform in the Odom frame can drift over time, without any bounds. This drift 

makes the Odom frame useless as a long-term global reference. However, the pose of a robot in 

the Odom frame is guaranteed to be continuous, meaning that the pose of a mobile platform in 

the Odom frame always evolves smoothly, without discrete jumps. In a typical setup, the Odom frame 

is computed based on an odometry source, such as wheel odometry, visual odometry, or an inertial 
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measurement unit. The Odom frame is useful as an accurate, short-term local reference, but drift 

makes it a poor frame for long-term reference[102]. 

The Odom frame is a “relative” frame in which the translation of the coordinate is calculated 

based on the UGV’s state. The state of UGV accumulated and transformed into the “odom” 

coordinate. 

 

3.2.2  base_link 

The coordinate frame called base_link is rigidly attached to the mobile robot base. 

The base_link can be attached to the base in any arbitrary position or orientation. For every hardware 

platform, there will be a different place on the base that provides an obvious point of reference. The 

base_link of the UGV is defined by the manufacture which is min the middle of the UGV. The 

RGB-D camera and Lidar sensor should transform the data from the local coordinate to the base_link 

coordinate. 

 

3.2.3  map 

The coordinate frame called map is a world fixed frame, with its Z-axis pointing upwards. The 

pose of a mobile platform, relative to the map frame, should not significantly drift over time. 

The map frame is not continuous, meaning the pose of a mobile platform in the map frame can change 

in discrete jumps at any time. In a typical setup, a localization component constantly re-computes the 

robot pose in the map frame based on sensor observations, therefore eliminating drift, but causing 

discrete jumps when new sensor information arrives. The map frame is useful as a long-term global 

reference, but discrete jumps in position estimators make it a poor reference frame for local sensing 

and acting. 

The map frame is used to extract the features in the global coordinate. By using the open-sourced 

simultaneous localization and mapping(SLAM) algorithm which generates coordinate based on the 

fixed map frame. By transforming the features in the map coordinate, the “ground truth” global 

https://www.ros.org/reps/rep-0105.html#id14
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position of the features can be obtained. The gmapping SLAM algorithm is based on the lidar sensor 

and odometry data. It should be mentioned that the precision of the ground truth position of the 

features is important to the performance of the PAUKF. 

 

3.3  The process of the PAUKF evaluation 

The PAUKF is implemented based on the robot localization framework which is a famous 

open-sourced localization package. The PAUKF is evaluated in two scenarios.  

The evaluation process of the PAUKF in scenario 1 is illustrated. The process of the PAUKF 

evaluation in scenario 1 could be divided into two parts. First, the features’ position in the global map 

frame should be obtained with a relatively accurate sensor and algorithm. Usually, in the commercial 

autonomous vehicle, manufacturing the map is an expensive, long production cycle and complex 

project based on the SLAM algorithm. Manufacturing this kind of commercial map for evaluating the 

PAUKF is not an appropriate solution. Thus, gmapping SLAM algorithm(use lidar sensor) and 

ar_track_alvar(use RGB-D sensor) package based simplified map is generated alternatively. The 

RGB-D camera also replaces the detection result that fusing the multiple sensors in the commercial 

autonomous vehicle about the surrounded road. Second, when the experiment, the lidar, and the 

SLAM algorithm not used. The PAUKF estimates the location of the vehicle only based on the 

RGB-D camera and the raw odometry. 

The evaluation process of the PAUKF in scenario 2 is illustrated. In scenario 2, the quantity of 

the features(ar markers) is increased. And because of the shifting phenomenon of the gmapping, the 

ground truth value of the ar markers are measured manually for better precision. The total moving 

distance is decreased compared to scenario 1 which increases the precision of the raw odometry 

directly. The position of the features(ar markers) set in wall planar which makes it is easy to figure out 

the performance of the PAUKF. The lidar sensor is only used to run the LeGO-LOAM algorithm to 

provides a reference and generates the precise geometry of the corridor. The PAUKF only uses raw 

odometry and information about the features(ar markers) based on the depth camera. The result of the 

PAUKF is logged directly from the experiment not based on the rosbag. 
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3.3.1  Experiment scenario 1 setting 

As illustrated above, the SLAM algorithm “gmapping” is used to provide the transformation of 

the vehicle. The SLAM algorithm fuses the distance data from the lidar sensor and the odometry data 

from UGV. 

The test environment is the corridor of the 6th floor of the 7th department at the University of 

Ulsan. The initial view of the UGV and the panoramic photo of the test environment is shown in 

Figure 23. 

 

 

Figure 23 Test scenario of PAUKF 

 

Then the UGV moves slowly to accumulate the distance data from the lidar sensor and odometry 

data. If the UGV moves fast, the SLAM results become worse which means the accuracy of the 

location of UGV decreases. 

The ar_track_alvar is used as feature detection. The ar_track_alvar detects the position based on 
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the specialized images which are shown in Figure 24. Each of the images has specialized ID. 

Therefore, there are no repeated recognition features in this test scenario. 

 

 
Figure 24 Ar track alvar package specialized image 

 

The specialized images are stuck at the center of the corridor as Figure 25. 

 

 

Figure 25 The randomly stuck specialized image 

 

Then the RGB-D camera is used to detect the specialized images and transform them into the 

map frame as Figure 26 shows. 
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Figure 26 Detect the features based on RGB-D 

 

The detected geometry of the corridor by the SLAM algorithm is shown in Figure 27. From 

Figure 27, it can be found that the corridor is bent as the UGV moves. It means, the detected features’ 

position data also contains the shifting noise. The features’ ground truth(GT) data can be measured by 

hand one by one. However, measured by hand is not a good solution to handle this problem. Because 

measures the features manually work in the small scale scenario. Whereas, the autonomous vehicle 

moves long distance usually. Considering the test in the outside in the future, the SLAM based feature 

detection and transformation algorithm was made. The slow movement and lidar sensor-based SLAM 

algorithm provide accurate features position in the map coordinate relatively. Therefore, the feature 

position data generated by the SLAM algorithm are treated as ground truth data.  

From the generated map, it can be found, the map also contains accumulated orientation error. 

Thus, the “ground truth” position of the ar markers is a relatively precise position data. It means, even 

the PAUKF estimates perfectly, the precision of the estimation is limited by the precision of the 

ground truth data of the features. 
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Figure 27 Features GT position obtained based on the SLAM algorithm 

 

3.3.1.1  Recording the ROS bag for the test 

The ground truth data of the features are obtained as section 3.4.2.1 introduced. The evaluation 

scenario of PAUKF is the same as the previous section. The difference between section 3.4.2.1 is the 

UGV localize the vehicle only with raw odometry and features. The lidar is not used in this test. 

Before introducing the test of the PAUKF, one concept “ROS bag” should be mentioned first. 

ROS bag is a tool of the ROS system. ROS bag record subscribes to topics and writes a bag file with 

the contents of all messages published on those topics. Topic means the data stream of the ROS. The 

file contains interlaced, serialized ROS messages dumped directly to a single file as they come in over 

the ROS. After the record, the ROS bag, the data stream that is saved in the ROS bag can be played. It 

means the data from the ROS bag is the same as the real test completely as Figure 28 shows. 
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Figure 28 Data stream output from ROS bag 

 

In other words, the ROS bag allows the PAUKF can be tested in the lab only with one data log. 

Thus the test scenario illustrated in the following content is the test that logged for final estimation for 

this thesis. The test data is logged with the wired connection to the UGV. The command that sends to 

UGV without data loss. 

The features detected from ar_track_alvar package are critical to the final estimation result. 

Therefore, the performance of feature detection should be mentioned first. In the real test, the 

specialized images are stuck at the wall of the center of the corridor as Figure 25 shows. The 

performance of the detection is shown in Figure 29 shows. The local coordinate is the same as the 

previous sections illustrated. The forward direction is the +x axis. The red dashed circle is the 

perception error, and the yellow dashed rectangle is the correct perception result. The detected relative 
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distance value is evaluated manually, and the perception error to sensor coordinate is 1-10cm roughly. 

Figure 29(a) and Figure 29(b) show the perception module detects the images which do not exist and 

obtained the position of the image is not exist. Figure29(c) also shows the perception module detects 

the image that does not exist. Compare to the (a) and (b), the detected feature’s position is close to the 

correct perception results which makes it hard to distinguish the correct features and false detected 

features. Figure 29(d) shows the position of the detected value is jumped randomly. The detected 

feature ID is correct, however, the relative distance changes randomly. This is the most tricky type of 

false detection. The reason for this kind of detection error could be happened because of the detection 

algorithm, the light condition of the scenario, the functional error of the sensor itself. This 

phenomenon also happens in the real autonomous vehicle in which the scenario is much more 

complex and hard to perceive. Therefore, the particles are used to handle this tricky problem. 

 

 

Figure 29 The perception errors(yellow: normal, red circle: unexpected error) 
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The command value of linear velocity in the x-direction and angular velocity in the z-direction is 

shown in Figure 30. 

 

Figure 30 Command send to the UGV 

 

 It can be found the maximum velocity of the UGV is 1m/s and it changes a lot. The angular 

velocity in z-direction which is the yaw angle of the UGV is also changed a lot. This command lets 

UGV’s trajectory looks like an S shape most of the time. The features’ position and the light condition 

are the same as in section 3.4.2.1. The detected features are not transformed into the map coordinate 

anymore. PAUKF uses these features to localize itself in the Odom frame. 

The movement of the UGV is illustrated in Figure 31. Figure 31 is only to demonstrates the 

movement of the UGV. The arrows in Figure 31 are not the ground truth trajectory of the UGV. As 

illustrated above, the ar markers are used as features for the particle filter. When the UGV starts to 

move, it is controlled by the command that sends to the UGV. Before the UGV detects the ar markers 

for the first time, the PAUKF only has the measurement from the raw odometry which is from the 

differential wheel of the UGV. It means the PAUKF has to believe the raw odometry from the UGV. 

By using the raw odometry of the UGV, the PAUKF only can estimate the location based on the dead 
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reckoning. Once reach the center of the corridor where the ar markers are stuck, the relocation and 

correction behavior should happen when UGV detects the ar markers based on the depth camera. The 

UGV only can detect the ar markers 2 times when it far away, and detects the ar markers 2 times when 

it comes back to the start point. It means the relocation and correction behavior of PAUKF estimation 

should happen 2 times relatively. 

The IMU sensor also can be used, however, it only can provide a relative measurement. In this 

thesis, the main contribution of the PAUKF is that the PAUKF can extract the global location data 

based on the map matching. Of course, the usage of the IMU can improve the performance, however, 

that is not the main interest in this thesis. In this experiment, to figure out the global relocation 

performance of PAUKF is the main purpose. Therefore, the main performance of the PAUKF is 

evaluated only based on the raw odometry measurement, and at the last of chapter 3, the performance 

of the PAUKF with IMU is illustrated for reference of using the IMU measurement. 

 

 

Figure 31 The movement diagram of experiment 1 

 

Figure 32 shows the controller and computing devices when experiments with the PAUKF with 

UGV. The mini PC is used as collecting the sensor data for the first step. Then all the data should be 

transformed into the base_link frame of the robot in the transformation tree by using the tf library of 

the ROS. Then all the data including the RGB-D camera data, IMU data, transformation data, 

communication data are uploaded to the ROS master node. By join the ROS network based on the 

ethernet cable, the notebook can access the data of the data in the mini PC. Then the main algorithm 

of the PAUKF runs on the notebook and the command to the UGV is based on the joystick. 
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Figure 32 Controller and computing devices used in the experiment 

 

3.3.2  Experiment scenario-2 setting 

The trajectory of the UGV is overlapped because of the location of the ar markers position. This 

will make it hard to figure out the relocation and correction phenomenon of the PAUKF. Compare to 

environment 1, the ar markers are distributed in four different positions to provide position 

measurement. The ground truth position of the ar markers in scenario 2 is measured by the ruler. This 

is because the ground truth position of ar markers from the gmapping algorithm tends to shift as 

Figure 27 shows. It makes the estimation error bigger when estimation has not yet started. The 

scenario is the same corridor as experiment 1. The difference is the UGV moves more straightly and 

the ar markers are more distributed in four positions as Figure 33 shows. The selection of the ar 

marker position is arbitrarily selected. 
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Figure 33 The ar markers used in experiment 2 

 

Figure 34 shows the movement diagram of the UGV in experiment 2. The UGV moves more 

straight forward and there are no markers in the far away process. The ar markers are only detected 

when the UGV comes back to the start position. The black dot in Figure 34 is the accumulated point 

cloud extracted based on the LeGO-LOAM algorithm[103]. It should be mentioned that the gray line 

and green dashed line in Figure 34 is just for illustration of the trajectory of the UGV, it is not the 

actual trajectory. There is no accurate position measurement device to get the ground truth trajectory 

of the UGV. 
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Figure 34 The movement diagram of experiment 2  

 

The detection error phenomenon also happens as in Figure 29, therefore, the detection of the ar 

marker also contains uncertainty. It will affect the performance of the PAUKF. It will be discussed in 

the next section. The command to the UGV is the velocity in the x-direction and the angular velocity 

in the z-direction as the Figure 35 shows. As illustrated in the above contents, the movement of the 

UGV in experiment scenario 2 is straight forward. Therefore, the velocity in the x-direction is no 

negative value and the angular velocity in the z-direction is not fluctuate as in experiment scenario 1. 

The rosbag was also recorded for repeatable monitoring and results extracting.  
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Figure 35 The command to the UGV in experiment 2 

 

3.4  Experiment result analysis 

This section illustrates the test result of the PAUKF with the real unmanned ground vehicle. For 

better readability, the PAUKF is represented as short as PAUKF. As introduced in section 3, the raw 

odometry of the UGV and the features collected by the depth camera is used. The test data is saved by 

using the ROS bag with a wired connection. The command to the UGV is sent by the controller which 

is connected to the notebook. The main algorithm run in the notebook and the basic devices launch 

files are run in the mini PC which is mounted in the UGV. The ROS master is the UGV and the 

notebook becomes the client of the ROS network. It means the computation burden of the mini PC 

mainly from the basic launch files that activate devices and sensors. The object detection is based on 

the ar track alvar packages, SLAM algorithm when collects ground truth data of features, and the 

PAUKF is all run in the notebook.  

The specification of the notebook is shown in Table 3. 
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Table 3 The specification of the notebook 

Name Specification 

Operation System Ubuntu 16.04 

Robot control framework ROS kinetic 

Processor Intel 8th i7 

Graphic card NVIDIA GTX1050 

Memory 12GB 

 

The frequency and bandwidth of the data stream on the ROS network are shown as Table 4. The 

data stream contains the data which type is the data type column. The /ar_pose_marker contains the 

detected markers data stream, /husky_velocity_controller/odom contains the raw odometry provided 

by the UGV, /joy_teleop/cmd_vel contains the command send to the UGV, /tf contains the 

transformation between all the coordinates defined, /pose_from_PF contains the estimated UGV’s 

position based on the ar marker and /odometry_paukf/filtered contains final UGV odometry data 

which is estimated by the PAUKF. The frequency of the data stream also can be increased, 10Hz is 

selected as the frequency of the PAUKF according to the perception module. From Table 4, it can be 

found that the frequency of the data in the ROS network is different, the ROS mechanism makes 

PAUKF receives the latest measurement. 

 

Table 4 The frequency, data type and bandwidth of each data 

Datastream name Data type Frequency(Hz) Bandwidth 

/ar_pose_marker 
ar_track_alvar_msgs/AlvarMa

rkers 
8 5.34KB/s 

/husky_velocity_controller/

odom 
nav_msgs/Odometry 10 7.17KB/s 

/joy_teleop/cmd_vel geometry_msgs/Twist 81.93 3.88KB/s 

/tf tf2_msgs/TFMessage 37.81 9.50KB/s 

/pose_from_PF 
Geometry_msgs/Posewith 

CovarianceStamped 
10 3.67KB/s 

/odometry_paukf/filtered nav_msgs/Odometry 20 14.21KB/s 
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3.4.1  The results analysis based on scenario1 

The total test was done in the indoor scenario, there is no ground truth for calculating the RMSE 

value as in the outdoor(for example RTK-GPS). Thus one appropriate way to how to access the 

accuracy of the filtered estimation results are the differences between the boundary of the scenario 

and odometry data. In this thesis, the boundary of the scenario is a closed corridor. Therefore, the 

geometry of the wall and the UGV’s odometry data can be used to compare the algorithm’s 

performance. In the following section, a new word PAEKF means the particle aided extended Kalman 

filter which has the same framework as PAUKF. 

The experiment diagram is shown in Figure 36. The data used in the 3.4.1.1-3.4.1.3 section are 

only raw odometry and ar markers. Section 3.4.1.4 shows the performance of the PAUKF with IMU 

for reference. 

 

 

Figure 36 Experiment diagram of the PAUKF with raw odometry and ar markers 

 

3.4.1.1 The trajectory of raw odometry, EKF, and UKF 

To compare the performance of the filters, the trajectory of the raw odometry from UGV, EKF 
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filtered odometry and UKF filtered odometry are shown in Figure 37. There are four different kinds of 

lines in Figure 37. The solid line with black color is the boundary of the corridor. The geometry of the 

corridor is measured manually. The solid line with red color is the raw odometry data from the UGV. 

The dotted line with the black circle is the odometry data filtered by the EKF. The dotted line with 

purple color is the odometry data filtered by the UKF. There is no measurement value like ar marker 

is used in this estimation results. From Figure 37, it can be found, all the odometry data from different 

sources are shifted from the boundary of the corridor. At first, all the odometry data is in the boundary 

of the corridor at the start point. However, as the UGV moves, the accumulated noise affects the 

odometry data. All of the odometry data start to shifts to the left side of the UGV. Since there is no 

efficient relocation algorithm based on the ar markers, the EKF and UKF have to believe the 

odometry data from UGV and filtering the noise based on the model of the UGV. As a result, the 

estimation result of the EKF and UKF also shifted as the raw odometry data. At the end of the 

odometry, it can be found all the odometry from the different sources is far away from the start 

position. The UGV moved around in the corridor and moved back to the start point. It means the final 

location estimation error is 3.892m in the x-axis, -10.93m in the y-axis with raw odometry, 4.795m in 

the x-axis, -11.89m in the y-axis with EKF filtered, and 4.153m in the x-axis, -11.82m in the y-axis 

with UKF filtered respectively as Table 5. The performance of the UKF and EKF is worse than the 

raw odometry in this scenario. The enlarged trajectories at the center of the corridor are shown in 

Figure 38. The performance of the EKF and UKF is worse is not because of the filter itself. The 

reason why the EKF and UKF work worse is they only have the measurement with raw odometry. 
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Figure 37 The trajectories of the raw odometry, EKF and UKF 

 

 
Figure 38 Enlarged trajectories in the center of the corridor 
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Table 5 Error of the different estimation method at the final position 

Estimation method Longitudinal error(m) Lateral error(m) 

Raw odometry 3.892 -10.93 

EKF 4.795 -11.89 

UKF 4.153 -11.82 

 

3.4.1.2 The trajectory of raw odometry, PAUKF with different particles 

This section illustrates the trajectory of the raw odometry and PAUKF with different particles in 

section 4.4.2. Figure 39 shows the trajectories of the PAUKF with different particles and Figure 40 

shows the enlarged plot of the PAUKF in the center of the corridor. The number of the particles of 

PAUKF is set as 100, 500, 1000, and 2000 particles. Relocation happened when the UGV detects the 

ar markers. The error of the final position is referred to as the evaluation parameter. The error of the 

different estimation methods in the final position is shown in Table 6. From Table 6, a phenomenon 

that can be found in the estimation precision of the PAUKF is also in positive proportion to the 

number of the used particles. The final error of the UGV back to the start point is 0.552m in the 

longitudinal direction, and -1.643m in the lateral direction. The improvement of the precision is 

increased proportionally according to the number of the particle.  

The upper limit of the precision is decided by the accuracy of the ground truth position of the ar 

markers. The more the ground truth position of the ar markers is, the preciser the PAUKF will be. The 

error of the PAUKF is only based on the raw odometry and the 4 times of the ar markers detection 

without additional sensor. The result shows the advancement of the PAUKF. 
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Figure 39 The trajectories of the PAUKF with different particles 

 

 

Figure 40 Enlarged trajectories in the center of the corridor 

 

 

 



 

65 

 

Table 6 Error of the different estimation method at the final position 

Estimation method Longitudinal error(m) Lateral error(m) 

Raw odometry 3.892 -10.930 

PAUKF with 100 particles 3.160 -8.946 

PAUKF with 500 particles 2.172 -6.648 

PAUKF with 1000 particles 1.642 -5.342 

PAUKF with 2000 particles 0.552 -1.643 

 

3.4.1.3 The trajectory of raw odometry, EKF, UKF, PAEKF and PAUKF 

The comparison of the different estimation results is shown in Figure 41. The PAEKF means the 

PF is used as the pre-processing of the EKF. The raw odometry, EKF filtered without PF, UKF filtered 

without PF, PAEKF with 2000 particles, and PAUKF with 2000 particles. From enlarged Figure 42 

and Table 7, it can be found the PAUKF with 2000 particles performs best. Despite the performance 

of the EKF and UKF shows little differences the performance of the EKF and the UKF is random 

since there is no appropriate way to receive a global position to correct. Only if the algorithm run 

many loops, then the performance of the filters can be normalized. 

 

 

Figure 41 The trajectories of the raw, EKF, UKF, PAEKF, and PAUKF 
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Figure 42 Enlarged trajectories in the center of the corridor 

 

Table 7 Error of the different estimation method at the final position 

Estimation method Longitudinal error(m) Lateral error(m) 

Raw odometry 3.892 -10.93 

EKF 4.795 -11.89 

UKF 4.153 -11.82 

PAEKF with 2000 particles 0.52 -2.688 

PAUKF with 2000 particles 0.5519 -1.643 

 

3.4.1.4 The performance of the PAUKF with IMU sensor 

The performance of the filtering algorithm can be improved by using more sensors. However, the 

ultimate goal of the experiment is to figure out the performance of PAUKF localization rather than 

prove the performance of the sensor itself. The relocation and correction behavior is the focus and 

novelty of the PAUKF. Therefore, in previous sections, the PAUKF is evaluated only based on the raw 

odometry.  

To gives a reference performance of PAUKF with more sensors, the PAUKF is evaluated by 
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using the raw odometry of the UGV, ar markers, and additional IMU sensor. The raw odometry 

provides linear velocity and yaw angle measurement based on the differential wheels and the IMU 

provides additional linear acceleration and angular velocity based on the devices in the IMU. It should 

be noticed that the raw odometry data type provides from the UGV contains pose and twist data. 

However, since the UGV uses the movement of differential wheels for calculating the pose and twist, 

the pose and twist data are calculated from the linear velocity and angular velocity. It means the 

effective data source of the UGV is only linear velocity and angular velocity. The pose of the UGV is 

calculated from the linear velocity and angular velocity. The position of the UGV is generated by 

using the yaw angle and linear velocity in the linear velocity in the X-direction. The UGV only can 

move in the X-direction and the rotation angle(yaw) is generated by the differential wheels. Thus the 

location of the UGV is decided only by using the velocity in the X-direction and the angular velocity 

in the Z-direction. So the velocity in the X-direction and the angular velocity in the Z-direction are 

used as the measurement of the state of UGV. Of course, the data from UGV’s raw odometry can be 

used as a measurement, however, that is inefficient since the data sources are duplicated. The IMU 

provides the acceleration measurement in the X direction and the angular velocity of the UGV in the 

Z direction. The yaw angle of the IMU is generated by accumulating the angular velocity in the Z 

direction. For intuition, the yaw angle of the IMU should be used as the measurement value. However, 

because of the sudden acceleration and changeable moving behavior, the yaw angle from the IMU is 

too worse to be used. Thus, the IMU only provides the rotation velocity in the Z direction and 

acceleration measurement in the X-direction. Of course, the measurement of the IMU in the x and 

y-axis can be used. But since the corridor is a planar scenario, the measurement of angular velocity 

and linear velocity in the x and y-axis will only add additional noises to the estimation. The diagram 

of the experiment of the PAUKF with IMU is shown in Figure 43. The position of the IMU is attached 

at the bottom of the UGV. The coordinate of the IMU frame is integrated into the full coordinate 

system of the UGV. It means, all the data from the different kinds of sensors is transformed by using 

the tf library of the ROS into the base link which is an ideal point of the UGV. 
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Figure 43 Experiment of the PAUKF with raw odometry, IMU, and ar markers 

 

 

The trajectories of the raw odometry, PAUKF with raw odometry and ar markers, and PAUKF 

with raw odometry, ar markers, and IMU are shown in Figure 44. The difference is the usage of the 

IMU sensor. Both of the PAUKF trajectories use the ar marker. The red line is the trajectory of the raw 

odometry, the green dashed line with the dot is the trajectory of the PAUKF without IMU and the 

purple dashed line with the triangle is the trajectory of PAUKF with IMU measurement. Both of the 

PAUKF estimations use the ar marker, thus the filtered trajectories are close to the corridor.  

Compare to the PAUKF without the IMU, the PAUKF with IMU shows better estimation results. 

When the UGV moves from the start point on the left side of the corridor, the estimations of the 

PAUKF start to performs differently. The estimation of the PAUKF without the IMU becomes shifting 

to the left side of the UGV’s moving direction. This phenomenon is happening because the yaw angle 

from the raw odometry accumulates the error from the differential wheels. Compare to the PAUKF 

without IMU, the PAUKF with IMU estimates the movement better by using the linear acceleration 

and angular velocity measurement. Thus the estimated trajectory of the PAUKF before the center of 

the corridor is always in the boundary of the corridor. When UGV moves to the center of the corridor, 
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both of the PAUKF estimations relocate the position of the UGV and correct the state based on the ar 

markers. Thus the relocated position of the UGV is the same as both of the PAUKF estimation. After 

both of the PAUKF relocation and correction, the UGV moves to the left side of the corridor.  

When the UGV passes the U-turn, the estimation of the PAUKF becomes different again. The 

PAUKF with IMU tends to correct the yaw angle to the right side of the UGV’s moving direction, and 

the PAUKF without IMU tends to the left side. This phenomenon always exists in the whole track of 

the UGV. Thus, when the UGV passes the center of the corridor, relocation, correction, the 

phenomenon happens again. As a result, the final position of the PAUKF with IMU is estimated at the 

left side of the start point and the final position of PAUKF without IMU is estimated at the right side 

of the start point. The PAEKF(EKF with PF pre-processing) with IMU is omitted because the 

performance trend is the same with PAUKF. 

 

 

Figure 44 The trajectories of PAUKF with IMU and others 

 

Figure 45 is the enlarged estimated trajectories. It can be found clearly that the PAUKF with 

IMU estimated the position better when UGV moves to the center of the corridor. In the contrast, the 

PAUKF without the IMU sensor shifted to the left side of the UGV moving direction and the 
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estimated trajectory goes over the boundary of the corridor. When UGV detects the ar markers, both 

of the PAUKF relocate the position and correct orientation of the UGV.  

Therefore, a conclusion can be made is adding additional sensors can improve the performance 

of the estimation. However, without the particle filter based pre-processing the information of the 

surrounded features can not be used appropriately. The key feature of the PAUKF is fusing multiple 

data sources. The usage of the IMU can provide relative dead reckoning performance, however, it still 

can’t provide the relocation and correction functions. 

 

 

Figure 45 Enlarged trajectories in the center of the corridor 

 

Table 8 shows the error of the different estimation methods in the final position. Compare to the 

PAUKF without IMU, the longitudinal error changes from 0.552m to the -0.784m, the lateral error 

changes from -1.643m to 0.906m. The point to point distance of start point and finish point of PAUKF 

without IMU is 1.733m, and the PAUKF with IMU is 1.435m. The usage of the IMU improves the 
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precision of the PAUKF by about 17.20%, decreases the point to point error by 0.298m. There is 

another phenomenon that should be noticed is the usage of the IMU makes the estimated velocity is 

faster than the UGV’s real velocity. As a result, the estimated final position of the PAUKF with IMU 

behind at the start point. The conclusion that can be found is that adding a sensor could improve the 

performance of the filter. However, this also adds additional noise to the estimation process.  

 

Table 8 Error of the different estimation method at the final position 

Estimation method Longitudinal error(m) Lateral error(m) 

Raw odometry 3.892 -10.93 

PAUKF without IMU 0.552 -1.643 

PAUKF with IMU -0.784 0.906 

 

From the experiment results of this section, it can be found the usage of the IMU can improve the 

performance of the PAUKF. However, the usage of the IMU still only can provide relative 

measurement and IMU also contains the noises. Therefore, no matter what kinds of sensors that be 

used, the PAUKF localization framework can provide the relocation and correction function based on 

the map. 

 

3.4.2  The results analysis based on scenario2 

In the previous section, the trajectory of the UGV is overlapped. Therefore, it is not easy to 

confirm the relocation and correction phenomenon. In this section, the performance of the 

representational filters is analyzed based on scenario2 which has a more clear trajectory.  

The performance of the raw odometry of the UGV, EKF with IMU sensor, the LeGO-LOAM, 

and PAUKF(without IMU) are compared. The other filters were explained in previous contents except 

for LeGO-LOAM. Therefore, it is necessary to explain the LeGO-LOAM algorithm. The full name 

Lego-LOAM is “LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping 

on Variable Terrain”. The performance is verified in the KITTI dataset. The LeGO-LOAM extracts the 

odometry position of the sensor by calculating the edge features and planar features. Also, it 
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transforms the Lidar data into the odom frame. The accumulated points cloud is used to represent the 

geometry of the corridor. The EKF approach fuses the raw odometry data and IMU, the LeGO-LOAM 

approach uses the lidar sensor and the PAUKF approach fuses the information of the ar marker based 

on the depth camera and the raw odometry.  

Figure 46 shows the trajectories of different approaches. The black dot is the points transformed 

to the start position by the LeGO-LOAM algorithm. It can be found a lot of black dots accumulated is 

the wall of the corridor. The red line is the trajectory from the raw odometry of the UGV. From the 

end position of the raw odometry, it can be found the position error is not as large as the raw odometry 

in scenario 1. This is because the UGV moves straightly most of the time and the moving distance is 

shorter compare to scenario1. The cyan dashed line with the cyan circle is the trajectory of the EKF 

with the IMU sensor. It can be found the lateral error of the EKF with IMU is decreases compare to 

the raw odometry. This is because the IMU sensor provides additional yaw rate measurement. The 

purple dashed line with the purple triangle is the trajectory of the LeGO-LOAM. From the 

accumulated point cloud, it can be found the trajectory of the LeGO-LOAM is always in the wall 

which means it works well. The trajectory of the LeGO-LOAM is close to the real trajectory. Since 

the lateral position can always be extracted by using the planar features, the estimation of the 

LeGO-LOAM is precisely in the lateral direction. However, the estimation of LeGO-LOAM shows a 

large error in the longitudinal direction when it comes back to the start position. The green dashed line 

with the green dot is the trajectory of the PAUKF. In this scenario, the PAUKF only uses ar markers 

and raw odometry data. The lateral/longitudinal error of the PAUKF is smallest when UGV moves 

back to the start position intuitionally. The detailed analysis is going to be illustrated in the following 

manuscripts. 
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Figure 46 The trajectory of raw odometry, EKF, LeGO-LOAM and PAUKF 

 

Figure 47 is the enlarged figure of the UGV when it moves at the center of the corridor. Since the 

point cloud is obtained based on the lidar, the accumulated point cloud is considered precise enough 

to represent the real geometry of the corridor. From the figure, it can be found the trajectory of the 

LeGO-LOAM is on the left side of the wall. In contrast, the trajectories of raw odometry, EKF with 

IMU, and PAUKF are on the right side of the wall which means this estimation is erroneous. This 

phenomenon happens because of the accumulated error in the raw odometry and IMU. The PAUKF in 

this process did not detect any markers for relocation and correction. Therefore, the raw odometry, 

EKF with IMU, and PAUKF only can estimate the position by dead reckoning. Since the UGV is 

controlled with the linear velocity in the x-direction and angular velocity in the z-direction, the 

position only extracts based on those parameters. Compare to the other estimation, the LeGO-LOAM 

provides a precise location estimation based on the relative distance to the surrounded planar 

features(wall). The error of the LeGO-LOAM is significantly smaller compared to the other 

approaches. 
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Figure 47 The trajectory of raw odometry, EKF,  

LeGO-LOAM, and PAUKF at center 

 

Figure 48 is the enlarged figure of the trajectories near the start location where also is the final 

location. The UGV moves back to the start location. Since the UGV can not move back to the start 

location perfectly, the offset of the UGV return to the start position is calculated based on the points 

cloud. The lateral offset of start location and finish position is nearly 0.01m and the lateral offset of 

start location and finish position is nearly 0.03m. It can be found the offset of the start location and 

finish location has very small. Thus the effect of the offset can be ignored safely and it doesn’t affect 

the final comparison of the different approaches. From figure 48, it can be found some intuitionally 

results. Since the UGV moves back to the start position with a very small longitudinal and lateral 

offset, the error of the final position of the different approaches estimation and the start position can 

be used as the evaluation parameter. The error of the raw odometry has the biggest error from the start 

position. The EKF with IMU shows better precision compare to the raw odometry. However, since the 

IMU also accumulates the velocity error and yaw angle error, the effect of the IMU is limited. Next, 

the LeGO-LOAM provides very accurate lateral position estimation, but it performs worse in the 

longitudinal position estimation. The numerical error will be compared in the following manuscript, 

but it can be found directly the longitudinal error of LeGO-LOAM is bigger than other approaches. 
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The PAUKF performs best in these approaches. The longitudinal error and lateral error estimated by 

the PAUKF is the smallest. This is because the PAUKF relocates the vehicle position and corrects the 

yaw angle based on the surrounded features simulated with ar markers. 

 

 

Figure 48 The trajectory of raw odometry, EKF,  

LeGO-LOAM, and PAUKF at start position 

 

Figure 49 shows the ar markers position in the corridor. The A, B, C, and D with black circles 

show the position of the ar markers. The red dashed rectangle shows the trajectory of relocation and 

correction. The UGV detects these ar markers with a depth camera which means the UGV can extract 

the relative distance between these ar markers. In this figure, we put the focus on the blue dotted line 

which represents the estimated trajectory of the PAUKF. It can be found the PAUKF relocates the 

position of the UGV and corrects the yaw angle when the UGV detects the markers A. Then the 

PAUKF estimates the position based on the relocated position and corrected the yaw angle. However, 

in this step, because of some reasons, such as perception algorithm error, hardware error, erroneous 

ground truth position of the ar markers, the corrected yaw angle contains a small error. This error 

makes the estimated position out of the wall which means it is shifted out the boundary. Then the 
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UGV detects the markers B and C, in these two points, the PAUKF extracts the correct position and 

yaw angle. As a result, the position estimation of the PAUKF is almost the same as LeGO-LOAM 

which uses a Lidar sensor. Then PAUKF continues the dead reckoning based on the raw odometry and 

detects the markers at the D position. Because of the relocation and correction at the B, C position, the 

PAUKF contains a little error. Then it relocates and corrects the UGV again at position D. Like in the 

detection at position A, the PAUKF estimates the yaw angle contains a small error. This small error at 

the yaw angle increases the error of the PAUKF in the lateral direction. With this experiment, a fact 

that can be found in the performance of the PAUKF is affected by the number of the features(ar 

markers) and the precision of the features detection. The more features it measures, the more accurate 

the PAUKF will be. 

 

 

Figure 49 The relocation and correction phenomenon happened at four locations 

 

Table 9 shows the comparison of the longitudinal error and lateral error of different approaches. 

The data of the error is the differences between the last estimated position and the start position by 

each approach. The forward-moving direction is the positive direction of x, and the lateral is follows 

the right-hand coordinate based on the positive x-direction. From Table 9, it can be found directly that 
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the estimation performance of the PAUKF is the best. The results are analyzed in the longitudinal 

direction and lateral direction. 

The longitudinal error of the raw odometry, EKF with IMU and PAUKF is small compare to the 

LeGO-LOAM. The estimation of LeGO-LOAM in the longitudinal direction is not good enough. The 

longitudinal error of LeGO-LOAM is -1.853m. It means the LeGO-LOAM can not extract enough 

features to relocate the UGV and the loop closure detection is erroneous. Compare to the 

LeGO-LOAM, other approaches perform well in the longitudinal direction. The longitudinal error of 

raw odometry, EKF with IMU, PAUKF is 0.1413m, 0.078m, and 0.025m respectively. However, it 

does not mean the longitudinal estimation of those approaches is precise. From Figure 47, it can be 

found the longitudinal estimation of those approaches is not as good as LeGO-LOAM. The reason for 

the raw odometry and EKF with imu that contains small longitudinal is that the error is counteracting 

in the longitudinal direction. The longitudinal error of the EKF with IMU is smaller than the raw 

odometry means that the measurement of IMU is helpful to the estimation. Compare to the other 

approaches, the PAUKF reduces the error in longitudinal based on the features(ar markers). It 

relocates and corrects the estimation when the UGV detects the surrounding features(ar markers). The 

IMU is not used in The performance of PAUKF is nearly the same as the EKF with IMU through 

PAUKF does not use the IMU. 

Then the lateral error of different approaches is analyzed. The lateral error is offset of the start 

position and finish position in y positive direction. From Table 9, it can be found the lateral error of 

LeGO-LOAM is 0.03m which is the smallest in all approaches. Since the LeGO-LOAM extracts the 

planar features based on the lidar sensor, it can extract the precise lateral position of the UGV. 

Compare to the LeGO-LOAM, the raw odometry, EKF with IMU gives a lateral error -3.606m and 

-2.737m respectively. The lateral error of the raw odometry and EKF with IMU is because of the 

accumulated error in the yaw angle. Despite the EKF with IMU obtains a relatively small error 

compared to the raw odometry, it has no way to handle the accumulated error in yaw angle. Compare 

to the raw odometry and EKF with IMU, the PAUKF gives the lateral error only with -0.546m. The 

PAUKF does not use the Lidar sensor but uses the surrounded features(ar markers). When PAUKF 
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detects the ar markers at position D, it relocates the position and corrects the yaw angle. Therefore, the 

lateral error of PAUKF is smaller than the raw odometry and EKF with IMU. 

The integrated error is also calculated. The integral error of raw odometry, EKF with IMU, 

LeGO-LOAM, and PAUKF is 3.609m, 2.738m, 1.853m, and 0.547m respectively. The PAUKF shows 

significant precision compare to the other approaches. The advancement of the PAUKF is it can 

relocate and corrects the pose of the UGV based on matching the position of features(simulated as ar 

markers) and the ground truth position data. Once the PAUKF receives more features, the precision of 

the PAUKF should be increased directly. The limitation of the PAUKF is that it can be affected by the 

error of the detection module. This also can be solved by detecting more features and tuning the 

covariance of the measurement of the PAUKF. 

 

Table 9 Error of the different estimation method at the final position 

Estimation method Longitudinal error(m) Lateral error(m) Integral error(m) 

Raw odometry 0.141 -3.606 3.609 

EKF with IMU 0.078 -2.737 2.738 

LeGO-LOAM -1.853 0.003 1.853 

PAUKF 0.025 -0.546 0.547 

 

3.5  Summary of the experiment results of PAUKF in UGV 

As illustrated above, the performance of the particle filter is in positive proportion to the number 

of the used particles. Thus in fact the performance of the PF is not stable. Because the PF provides the 

global position and orientation, it makes the estimated position jump around. In the simulation 

evaluation process, the PF performs relatively smooth compare to the real test. This phenomenon 

happened because of the number of features. In the real test, the ar markers are only stuck in two areas 

of the corridor. Thus, PF only works when UGV detects the ar markers. If more markers can be 

provided, the performance of the PAUKF could be better. Therefore, treat the features detected by the 

computer vision and lidar-based detection as the references and compare them to the pre-build map is 

meaningful. Then no matter where the autonomous vehicle is, it can localize itself correctly based on 

the map and surrounded features. Because perception precision is not the research interest of this 
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thesis, the ar track alvar package is used for provides features. Thus the number of the ar markers can 

not compare to the number of the features detected by the perception module as the commercial 

autonomous vehicles.  

From the real test, a fact that can be found is that the PAUKF works and get the best localization 

accuracy to compare to the other estimation method. After the performance of the PAUKF is 

evaluated based on the raw odometry and ar markers, the PAUKF is evaluated based on the raw 

odometry, ar markers, and the IMU sensor. The results of the PAUKF with IMU sensor show the IMU 

sensors can improve the performance of the PAUKF. Of course, the more sensors that be used, the 

more accurate the estimation is. However, it should be noticed that the usage of other sensors also 

includes new noises in the estimation process. Even the IMU provides the additional measurement of 

the state of the UGV, it still provides the relative measurement. In scenario 2, the PAUKF is compared 

with EKF with IMU and LeGO-LOAM. The PAUKF does not use an IMU sensor and Lidar sensor. 

The smallest integrated error of the PAUKF indicates the advancement of the proposed algorithm. The 

main contribution of the PAUKF is to provide global location information to correct the estimation. 

The experiment results show the advancement of the PAUKF based localization algorithm in both 

scenarios. 

In chapter 3, the experiment of the PAUKF is introduced with differential wheeled UGV with 

slow velocity. As illustrated in chapter 2, the PAUKF is a general localization framework that does not 

depend on the specific hardware. What is more, based on the experiment in scenario1,2, we found the 

quantity and the detection precision of the features affect the performance of the PAUKF directly. 

Because of the lack of a detection algorithm, the ar markers are used to simulate the features. 

However, it is not easy to set enough ar markers for evaluating the performance of the PAUKF. To 

evaluate the performance of PAUKF on more level, the PAUKF is implemented into a car-like vehicle 

with high speed and more features around. Because of the limited experiment condition, the 

evaluation is based on the simulation. The interest of evaluation is not the effect of the vehicle model 

but the performance of the PAUKF with more features with high speed. Since the ground truth 

trajectory of the vehicle can be logged in the simulation environment, it is convenient to analyze the 
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estimation performance of the different approaches. 

The simulation in the next chapter is trying to provide a reference of the PAUKF in more features 

and high-speed conditions with the car-like autonomous vehicle. 
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Chapter 4 The PAUKF evaluation with car-like autonomous  

vehicle in simulation 

In chapter 3, the PAUKF is implemented into the UGV for evaluation. From the experiment 

results from scenario1,2, it can be found that the PAUKF corrects the yaw angle of the UGV and 

make an estimation of UGV relocates to the correct position. The performance is compared based on 

the relative error of the UGV at the start point and finished point.  

However, it is not enough for PAUKF evaluation. The evaluation process needs a ground truth 

trajectory for comparing the error and it should be proved that the PAUKF based localization method 

is independent of the specific vehicle. What is more, the features only can be detected 4 times while 

the whole experiment and the UGV move slowly. The advancement of the PAUKF is to combine the 

vehicle data and the nearby feature.  

However, in the real UGV test, the limited quantity of the features and the distribution of the 

features are too concentrated. The setting of the scenario makes the PAUKF can not detect enough 

features for correcting the UGV position. 

Despite the estimation of PAUKF is better than the other approaches, it still needs to figure out 

the real performance of the PAUKF with sufficient features. So, to figure out the performance of the 

PAUKF with sufficient features with high velocity, the PAUKF is implemented into a car-like 

autonomous vehicle. This evaluation also proves the PAUKF is a general localization algorithm that 

independent from the specific target vehicle and evaluates the performance of the PAUKF with 

ground truth which is known already. 

In this chapter, the PAUKF is evaluated based on the simulation with a car-like autonomous 

vehicle. 

4.1  The model of the car-like autonomous vehicle 

As illustrated in chapter 2, the model of the PAUKF should be changed based on the target 

platform. In chapter 3, the UGV model is introduced. Therefore, to evaluate the PAUKF in the car-like 

autonomous vehicle, the model of the vehicle should be used. The prediction model was constructed 
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based on the vehicle model. Complex models, such as a dynamic model considering the force of tires, 

can also be included. However, complex vehicle models reduce computation efficiency. Such models 

also require detailed vehicle parameters, which are difficult to set. Incorrect parameters can cause 

noisy estimations. Considering the computational burden and precision, a kinematic model was used 

in this study. The slip angle is ignored since in the simulation environment, there is no slip. 

It should be mentioned that the vehicle dynamic should be improved if the PAUKF is 

implemented into the real vehicle. However, the goal of this thesis is not to evaluate the effection of 

the selected model on the PAUKF. The state of each particle should be predicted for obtaining the 

prior belief at the next timestamp. Equation (2.75) shows the prediction model and the Equation (2.76) 

shows the movement of the vehicle is modeled as noise since the environment is assumed as planar. 

 

 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ∶ 𝑥𝑘
−   = [

x
y̅
z̅
θ̅

̅

]

k

=

[
 
 
 
 
𝑣

θ̇
[sin(θ + θ̇ × Δt )  − sin(θ)]

𝑣

θ̇
[cos(θ)  − cos(θ + θ̇ × Δt)]

zv

θ̇ × Δt ]
 
 
 
 

𝑘−1

+ [

x
y
0
θ

]

k−1

 (2.75) 

 

 zv ~ N(0, σvz
2 ) (2.76) 

 

When the yaw rate equals zero, Equation (2.75) can be shown to become infinite. A different 

prediction model should therefore be used when the yaw rate is zero as shown in Equation (2.77). 

 

 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ∶ 𝑥𝑘
−   = [

x
y̅
z̅
θ̅

̅

]

k

= [

v cos(θ) Δt
v sin(θ) Δt

zv

0

]

𝑘−1

+ [

x
y
0
θ

]

k−1

 (2.77) 

 

The roll, pitch are ignored and the movement in the Z direction is modeled as noise since the 

vehicle is assumed as moving on a planar in this thesis. Considering the underlying structure of the 

vehicle for a real-world test, the acceleration and yaw acceleration is considered to be noise. If the 
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acceleration and yaw acceleration noise effect are additive, then the covariance term can be added 

directly. However, the acceleration and yaw acceleration noise effects are nonlinear. Therefore, the 

process noise cannot be handled by addition alone. To handle nonlinear noise, it is considered to be a 

state, as shown in Equation (2.78). The state of the UKF part in the simulation environment is shown 

as Equation (2.78). The state considers the nonlinear affection of the noise is called an augmented 

state.  

 

 xpaukf,k,aug  =  [x y v θ θ̇ wlinacc wanlacc]
T (2.78) 

 

The process noises in linear acceleration in the x-direction wlinacc and noises in angular 

acceleration in z-direction  wangacc are set as normal Gaussian distributions with variances of 

 σlinacc
2 and σangacc

2, respectively, as shown in Equations (2.79) and (2.80). 

 

 wvelacc ~ N(0,  σlinacc
2) (2.79) 

 

 wyawacc ~ N(0, σangacc
2) (2.80) 

 

The covariance matrix Pk is also augmented into Pk,aug, which has a size of 7 × 7, as shown in 

Equation (2.81). 

 

 Pk,aug  =  [

Pk 0 0

0 σlinacc
2 0

0 0 σangacc
2
] (2.81) 

 

The prediction model that considers the augmented noise affection is shown as Equation (2.82). 

It can be found the noise is affected by the nonlinear function. 
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 𝑿̂𝑝𝑎𝑢𝑘𝑓,𝑘
−  = 𝑿𝑝𝑎𝑢𝑘𝑓,𝑘−1  +  
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1
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Δt2sin(θk) ∙ σlinacc

Δtσlinacc
1

2
Δt2 ∙ σangacc

Δt ∙ σangacc

σangacc

σangacc ]
 
 
 
 
 
 
 
 

 (2.82) 

 

Then the sigma points generation and the following processes are the same as chapter 2 

illustrated. 

 

4.2  PAUKF evaluation based on simulation 

The simulation environment is based on the MATLAB autonomous driving toolbox. The whole 

algorithm is made in MATLAB .m file. The vehicle model in MATLAB toolbox is a simple vehicle 

model based on the x,y, and yaw angle. The noise of the vehicle, detection, markers is all generated by 

merging the ground truth data and random noise. The generated noise term and other parameters that 

are used in each scenario are going to be explained respectively sections. 

The simulation results are compared to evaluate the performance of the PAUKF. The evaluation 

parameter is based on the Root Mean Square Error (RMSE) as Equation (2.83) shows. We choose 

RMSE as an assessment parameter because the estimation performance of the filter can be compared 

intuitively by the numerical value of RMSE alone. In Equation (2.83), N indicates the number of data 

points. The trajectory of the estimated results and the ground truth of the vehicle’s trajectory are 

compared to verify the algorithm. The effect of the yaw angle is considered for both the x and y 

directions; therefore, there is no additional comparison of the yaw angle. The unit for all position 

parameters is “meter”. 

 

 [
RMSEest

RMSEnoise
]  =  

[
 
 
  √[∑ (Positionesti − Positionmean_esti)

2
]/NN

i=1

 √[∑ (Positionnoisei
− Positionmean_noisei

)
2
]/NN

i=1 ]
 
 
 

 (2.83) 
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4.2.1  Performance of PAUKF with 2D features 

First of all, the setting of the environment is illustrated. The simulated geometry of the road is an 

S curve as shown in Figure 50. The 12 features can be detected all-time in the 2D features 

environment. The two-dimensional features are fixed near the road in Figure 50. The 2D features 

mean the vertical position of the features is zero. Not only the features are 2D, but the movement of 

the vertical movement of the vehicle is also ignored in the 2D features scenario. This means there is 

no noise effect of the vertical direction. 

 

 

Figure 50 2D features around the road 

 

The noise setting parameters are shown in Table 10. The modeled GPS sensor data is used for the 

vehicle position initialization and particle initialization. This initial position of the vehicle also can be 

given with manual input. However, in general, the initial position is measured by the GPS even the 

signal contains errors. The noise is generated by the normal distribution and transformed with the 

sinusoidal function for modeling the Non-Gaussian noise according to the previous literature 
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[104][105]. The literature “Sensor Fusion-Based Low-Cost Vehicle Localization System for Complex 

Urban Environments” by J. K. Suhr, J. Jang, D. Min, and H. G. Jung is selected for comparison 

because of the similar approach. J. K. Suhr, J. Jang, D. Min, and H. G. Jung uses particle filter and 

features of lane line(2D) to relocate and correct the vehicle position. Thus the noise term is generated 

refer to this literature and compare the result with it.  

The onboard noise values are empirical. The perception error is modeled as a normal distribution 

in x, y-directions. In this thesis, we assumed that the perception was performed by a sensor that can 

extract the relative distance. These simulation noise parameters are configured with experimental and 

only provide reference results. Once the PAUKF algorithm is implemented into the real vehicle, then 

the parameters of the algorithm should be configured according to the appropriate test. The perception 

error depends on the algorithm of the perception module; therefore, it should also be tuned to the 

actual sensors. The velocity was assumed to be constant. The test velocities of the vehicle were 60 

km/h, 70 km/h, 80 km/h, 90 km/h, 100 km/h, 110 km/h, and 120 km/h.  

As illustrated in the previous chapter, the kinematic model is not enough for modeling the motion 

of the vehicle. The purpose of simulating with different velocities is for evaluating the performance of 

the PAUKF rather than the effect of the vehicle model. In the real world, the vehicle model should be 

changed into a dynamic model or fused vehicle model for better results. In this thesis, the goal of the 

simulation is to evaluate the PAUKF algorithm rather than the model of the vehicle. Thus, the results 

of the simulation provide the reference performance of the PAUKF. The random seed was fixed to 50 

for repeatable simulation. The sample time was set as 0.01s. These parameters provide a reference for 

the performance of the PAUKF algorithm. These empirical noise parameters should therefore be tuned 

with the actual sensor characteristics. 
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Table 10 The parameters of the simulation (2D features) 

Parameter Name Generate Method 

vehicle x-axis error(m)(Gaussian) N(9.65, 12.20)[105] 

vehicle y-axis error(m)(Gaussian) N(9.65, 12.20)[105] 

vehicle x-axis error(m)(Non-Gaussian) ~15sin(N(0, 1)) + N(9.65, 12.20) + 5 

vehicle y-axis error(m)(Non-Gaussian) ~15sin(N(0, 1)) + N(8.34, 12.33) + 5 

Velocity error(m/s) ~sin(N(0, 0.09)) 

Yaw error(degree) ~sin(N(0, 0.09)) 

Yaw rate error(degree/s2) ~sin(N(0, 0.09)) 

Feature x, y error(m) ~N(0, 0.09) 

Range sensor bearing error(degree) ~N(0, 0.09) 

 

Figure 51 shows the trajectory results of the PF, UKF, and PAUKF, and noise in the S-shaped 

road with 2D features. In the case of the 2D features, the uncertainty of the features in the Z direction 

is ignored. It means PAUKF processes the features with less noise. As the legend shows, the green 

line with a green circle is the ground truth trajectory, the dashed line with a red upward-pointing 

triangle is the noisy vehicle trajectory, the black dashed line with a black square is the PF estimated 

trajectory, the blue dashed line with a blue square is the UKF estimated trajectory, and the yellow 

dashed line with the yellow star marker is the PAUKF estimated trajectory.  

The data in Figure 51 are generated when the vehicle velocity is 60 km/h, and the noise is 

Gaussian, as shown in Table 10. The sample time is 0.01s in this simulation. The PF estimated 

trajectory is near the ground truth trajectory. However, the PF-estimated trajectory is not smooth, and 

the error is still large. This is because the PF localizes the vehicle position with noisy relative distance 

to each feature and noisy vehicle data. Since there is no other measurement, it must be considered that 

the measurement is correct. Compared to that with the PF, the UKF-estimated trajectory is relatively 

smooth; however, it cannot filter the noise of the GPS data. Because the GPS measurement of the 

UKF has high variance and the UKF does not use range sensor data, the UKF believes the vehicle 

model more than the measurement. The noisy measurement also makes the UKF less sensitive to the 

changes in the position and yaw. Compared to that with the PF and UKF, the trajectory estimated by 

the PAUKF is more accurate and smoother. As it combines the smoothness of the UKF and the 

accuracy of the PF, the PAUKF reacts more quickly and precisely when the position and yaw change. 
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Moreover, the PAUKF does not depend completely on either of the filters, trades off the filters, and 

generates even better results. 

 

 

Figure 51 Estimation trajectory of filters with 2D features 

 

The filter performance results are shown in Table 11. Since the UKF does not use range sensor 

information, it is not appropriate to compare it with the PF and PAUF. Thus, there are no RMSEs for 

the UKF in Table 11. To determine the performance of the filters in an extreme environment, the 

algorithm is tested under different velocity and noise environments. As mentioned in Section 3.1, even 

if the random seed is the same, the random number still changes depending on the number of times it 

has been called. Therefore, we analyzed the trend of every filter. It can be observed that the PF and 

PAUKF estimation errors increase slightly when the velocity increases. However, if we consider the 
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magnitude of the RMSE of the changes in noise from 21.336 to 21.712 m, it can be found that the 

RMSE of the estimation error does not change even when the velocity increases from 60 to 120 km/h. 

Compared to the Gaussian noise, the non-Gaussian noise generated a larger mean value. Even so, the 

precision of the PF does not change even when the noise increases and the precision is almost the 

same as the RMSE range of 5.489–5.959 m. The PAUKF has an RMSE range of 1.440–1.772 m, even 

when the noise increases and velocity increases. This is because PAUKF takes the PF estimation 

results as input and tradeoff the measurement and predicted value from the UKF. The trade-off is done 

using the cross-correlation function in Equation (2.24). Therefore, the PAUKF combines the 

recursiveness of the UKF and the location information of the features based on the PF. The PAUKF 

improves the accuracy by 4.028–4.049 m compared to the PF. 

 

Table 11 Total RMSE of filters in different conditions 

 With Gaussian Noise With Non-Gaussian Noise 

Velocity Noise(m) PF(m) PAUKF(m) Noise(m) PF(m) PAUKF(m) 

60 km/h 21.336 5.634 1.451 29.796 5.959 1.655 

70 km/h 21.339 5.747 1.624 29.912 5.599 1.409 

80 km/h 21.310 5.600 1.651 29.730 5.579 1.440 

90 km/h 21.510 5.594 1.742 29.661 5.652 1.423 

100 km/h 21.154 5.720 1.501 29.430 5.631 1.616 

110 km/h 21.530 5.626 1.625 29.546 5.544 1.485 

120 km/h 21.712 5.800 1.772 29.934 5.489 1.454 

Mean 21.413 5.674 1.624 29.716 5.636 1.497 

 

To figure out the performance of the filters more clearly, the RMSE and mean value are 

calculated in the longitudinal direction and lateral direction respectively. The Table 12 is the RMSE 

and Mean of the PAUKF estimation in the longitudinal direction and lateral direction. The parameters 

are also divided into two groups based on the character of the noise. It should be emphasized again 

that the amplitude of Gaussian noise and Non-Gaussian noise is different. Compare to the Gaussian 

noise, the Non-Gaussian noise larger as Table 10 shows. The average RMSE of PAUKF estimation in 

the longitudinal direction is 1.097m and the average mean is 0.493m, and the average RMSE of 

PAUKF estimation in the lateral direction is 1.196m and the average mean is -0.153m with Gaussian 
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noise. The average RMSE of PAUKF estimation in the longitudinal direction is 0.946m and the 

average mean is 0.304m, and the average RMSE of PAUKF estimation in the lateral direction is 

1.155m and the average mean is -0.061m with Non-Gaussian noise.  

 

Table 12 The RMSE(Mean) of PAUKF estimation in longitudinal/lateral direction 

 With Gaussian Noise With Non-Gaussian Noise 

Velocity Longitudinal(m) Lateral(m) Longitudinal(m) Lateral(m) 

60 km/h 0.990(0.526) 1.060(-0.111) 1.113(0.275) 1.225(0.132) 

70 km/h 1.089(0.333) 1.206(-0.068) 0.954(0.270) 1.037(-0.165) 

80 km/h 1.139(0.548) 1.194(-0.169) 0.970(0.565) 1.064(0.041) 

90 km/h 1.269(0.509) 1.193(-0.310) 0.797(0.187) 1.179(-0.328) 

100 km/h 0.986(0.571) 1.132(0.123) 1.123(0.305) 1.162(-0.184) 

110 km/h 1.058(0.308) 1.233(-0.181) 0.789(0.352) 1.258(0.266) 

120 km/h 1.145(0.659) 1.353(-0.352) 0.873(0.179) 1.163(-0.190) 

Mean 1.097(0.493) 1.196(-0.153) 0.946(0.304) 1.155(-0.061) 

 

To compare the result, the literature “Sensor Fusion-Based Low-Cost Vehicle Localization 

System for Complex Urban Environments” by J. K. Suhr, J. Jang, D. Min, and H. G. Jung is selected 

for comparison as illustrated. The maximum velocity of the vehicle is 60km/h, therefore, the 

estimation of PAUKF in 60km/h is selected for comparison. The Gaussian noise term is generated 

based on the parameters described in the literature at GANGNAM. Therefore the term of noise could 

be considered as similar between the simulation environment of the PAUKF and the literature. 

Table 13 shows the mean and variance of the estimation of the target literature and proposed 

PAUKF. The velocity of each approach is 60km/h and the features are all 2 dimensional. The integral 

mean error and the variance of the error of the target literature are 1.69m and 1.63m respectively. The 

integral mean error and the variance of the error of the target literature are 1.08m and 0.71m 

respectively. By comparing the mean and the variance of the two approaches, it can be found the 

PAUKF improves the precision by 36% in the mean dimension and improves the precision by 56% in 

the variance dimension. Compare to the target literature, PAUKF not only estimates the surrounded 

features by using the particle filter as literature, and it also uses UKF for backend filtering. The usage 

of the UKF behind the PF makes the PAUKF compensating for the jump phenomenon of the 
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estimation from PF. Therefore, the variance of the PAUKF is decreased compared to the target 

literature. This comparison data shows the advantage of the PAUKF.  

 

Table 13 The comparison of PAUKF and the literature with similar noise 

 The error of the mean(m) The error of the variance(m) 

Estimation of literature[105] 1.69 1.63 

Estimation of PAUKF 1.08 0.71 

Improvement 36% 56% 

 

The comparison result in Table 13 shows the advancement of the PAUKF. The PAUKF shows 

better performance compare to the previous research in the Gaussian noise environment.  

As Table 10 shows the environment of Non-Gaussian contains a larger amplitude of the noise. 

This is because we want to find out the performance of the PAUKF in an extremely noisy 

environment. The extremely noisy signal makes it is hard to find the correct location. Therefore, the 

error of the PAUKF shows a relatively big error. The extreme noisy position and the estimation of the 

PAUKF will be shown in the following sections. Since the advancement of the PAUKF is proved in 

the above section, in the following sections, the estimation data of the PAUKF are all obtained in the 

Non-Gaussian noise environment. This is for figuring out the performance of the PAUKF in the large 

Non-Gaussian error environment. 

 

4.2.2  Performance of PAUKF with 3D features 

The geometry of the perception data is critical to the precision of the localization. Once the 

geometry of the perception data is not processed appropriately, the estimation result becomes even 

worse. Table 14 shows the configuration parameters of the simulation(3D features). Compare to the 

2D features, the noise of movement of the vehicle, and the noise of features in the vertical direction 

are added. 
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Table 14 The parameters of the simulation (3D features) 

Parameter Name Generate Method 

vehicle x-axis error(m)(Gaussian) N(9.65, 12.20)[105] 

vehicle y-axis error(m)(Gaussian) N(9.65, 12.20)[105] 

vehicle x-axis error(m)(Non-Gaussian) ~15sin(N(0, 1)) + N(9.65, 12.20) + 5 

vehicle y-axis error(m)(Non-Gaussian) ~15sin(N(0, 1)) + N(8.34, 12.33) + 5 

vehicle z-axis error(m) ~N(0, 0.09) 

Velocity error(m/s) ~sin(N(0, 0.09)) 

Yaw error(degree) ~sin(N(0, 0.09)) 

Yaw rate error(degree/s2) ~sin(N(0, 0.09)) 

Feature x, y, z error(m) ~N(0, 0.09) 

Feature z position(m) Random(0,10) 

Range sensor bearing error(degree) ~N(0, 0.09) 

Range sensor elevation error(degree) ~N(0, 0.09) 

 

The three-dimensional features are generated randomly along the road and the S shape road with 

the 50 m range of features perception limit as Figure 52 shows. For the case of the 3D features, the 

vehicle always can detect 10+ features in the perception range. 

 

 

Figure 52 The perception range and the randomly generated 3D features 

 

Figure 53 shows the position estimation result of the PAUKF does not consider the geometry of 

the perception data at 60 km/h, and the position estimation result of the PAUKF considers the 

geometry of the perception data at 60 km/h, respectively. The sample time here is 0.05s. In both 
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figures, the blue line with the circles is the ground truth trajectory of the vehicle, the red line with the 

triangles is the noisy vehicle position, the yellow line with the square is the particle filter’s estimation 

result, and the black line with the circle is the final estimated vehicle position. The estimated 

trajectory of the PAUKF does not consider the geometry of the perception data showed a significant 

error compare to the ground truth trajectory, as shown in Figure 53 (a). This happens because the 

algorithm did not consider the geometry effect of perception. As a result, it cannot generate and select 

appropriately weighted particles. The PAUKF by contrast achieved better performance, by not only 

improving the calculation of the geometry but also by considering the vertical noise effect on the 

weight generation and the selection scheme. The trajectory of the PAUKF was very close to the 

ground truth data, as shown in Figure 53 (b). The data is obtained under Non-Gaussian error. 

 

 

Figure 53 The comparison of the PAUKF considers the geometry or not 

 

Figure 54 shows the visualization result of the probability distribution of the features’ position, 

the ground truth position, the position from the GPS, and the estimated position of PAUKF 

considering the geometry of the perception data at 250th sample time. To make the figure easy to 

understand, the origin coordinate of probability distributions translates into the position of features, 
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GPS, and vehicle. One thousand random numbers were used for visualizing the probability of each 

parameter. In Figure 54, the red square value is the position from the GPS, the black color with the 

start marker is the position that is estimated from the PAUKF considering the geometry of the 

perception data, and the blue data with the square is the ground truth data of the vehicle. Figure 54 

shows that all the features have different vertical values. The position from the GPS has a large error 

compare to the ground truth data. The estimated position from the PAUKF considering the geometry 

of the perception data is closest to the ground truth data. The PAUKF fused the surrounding feature 

position information to localize the vehicle itself in the map coordinates. This shows the effectiveness 

of the PAUKF and the importance of considering the geometry of the perception data. 

 

 

Figure 54 The probability distribution at 250th sample time 

 

Table 15 shows the performance of PAUKF when it considers 2D and 3D features geometry 

effection at a different velocity condition. The data in column “2D” means the PAUKF does not 

consider the geometry of the perception data in the 3D features environment, and the data in column 

“3D” means the PAUKF considers the geometry of the perception data in the 3D features environment.   

The velocity of the vehicle was set at intervals of 10, from 60 km/h to 120 km/h. The performance of 

the filter changed slightly because of random environmental effects. The RMSE change of noise 

shows that the vehicle position noise was almost the same at all velocity conditions. This suggests that 

both filters were in similar environments. From the RMSE of PF, it can be concluded that the previous 

basic particle filter estimation’s mean RMSE is 11.002 m and the particle filter estimation’s mean 
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RMSE is 6.201 m. The estimation RMSE of PF decreased by about 43.64% compared to the previous 

PF which means the precision of the PF increases by 43.64%. The final estimation result is shown in 

the right column of the PAUKF in Table 15. The mean of RMSE of the PAUKF that does not consider 

perception effection of geometry was 10.295 m and that of the PAUKF that considers perception 

effection of geometry was 2.696 m. The PAUKF decreased the RMSE by about 73.81% by 

considering the effection of perception geometry. It means, the PAUKF increases the precision by 

about 73.81% by considering the perception effection of geometry. The PAUKF considered the 

geometry of perception and improved the weight generation method and selection method. The main 

improvement happens at the particle filter based pre-processing step. By considering the perception 

effection of geometry, the PAUKF may therefore estimate the trajectory precisely. 

 

Table 15 The RMSE of the PAUKF depends on the features 

 Noisy Position of Vehicle PF Estimation PAUKF Estimation 

Velocity 2D(m) 3D(m) 2D(m) 3D(m) 2D(m) 3D(m) 

60 km/h 30.426 29.465 11.057 6.317 10.199 2.478 

70 km/h 30.176 29.351 10.973 6.238 10.314 1.767 

80 km/h 29.883 28.319 10.989 6.265 10.458 2.303 

90 km/h 29.025 29.919 11.052 5.861 10.627 2.169 

100 km/h 29.349 29.981 11.094 6.324 10.893 2.833 

110 km/h 28.365 29.144 10.851 6.303 9.751 3.441 

120 km/h 29.932 30.072 10.999 6.098 9.826 3.881 

Mean 29.571 29.465 11.002 6.201 10.295 2.696 

RMSE Change -0.36% -43.64% -73.81% 

 

Table 16 shows the RMSE and Mean of the PAUKF considering the geometry of the perception 

in the longitudinal direction and lateral direction. The average RMSE of PAUKF estimation in the 

longitudinal direction is 1.800m and the average mean is 0.259m, and the average RMSE of PAUKF 

estimation in the lateral direction is 1.993m and the average mean is -0.516m. The estimated error in 

longitudinal and lateral is nearly 2m which looks like not good enough. However, as illustrated in the 

previous section, the large estimation error is because we want to figure out the PAUKF in the 

extreme Non-Gaussian noise environment. The mean RMSE of the noise is 29.571m which is larger 
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than the usual noise(nearly 10m). The advancement of the PAUKF is already shown in the previous 

section by comparison to the other literature with the same noise condition. Therefore, the large error 

of the PAUKF in the longitudinal and lateral directions is meaningful. This is to provide a reference to 

the PAUKF in the extremely noisy environment. 

 

Table 16 The RMSE(Mean) of PAUKF estimation  

in longitudinal/lateral direction 

Velocity Longitudinal(m) Lateral(m) 

60 km/h 1.467(0.287) 1.997(-0.107) 

70 km/h 1.088(0.397) 1.393(-0.435) 

80 km/h 1.724(0.722) 1.527(-0.103) 

90 km/h 1.562(0.490) 1.506(-0.597) 

100 km/h 2.098(-0.012) 1.904(-0.456) 

110 km/h 1.970(0.151) 2.822(-1.218) 

120 km/h 2.688(-0.224) 2.799(-0.696) 

Mean 1.800(0.259) 1.993(-0.516) 

 

To figure out the performance of the PAUKF in a huge perception error environment, we 

changed the perception noise from N(0, 0.09) to N(3, 9) in the x, y, z-directions, meaning that the 

minimum error of relative distance of every feature and vehicle was always larger than 5.196 m. In 

this noisy environment, with a velocity of 60 km/h, the RMSE of the total RMSE of the PAUKF was 

5.771 m. Since the measurement variances were not changed, the PAUKF still attempted to rely on 

the measurement from the PF. This simulation provides a reference performance of the PAUKF in a 

huge perceived noise environment. The algorithm should perform better if we tune the variance of the 

measurement matrix. 

For PAUKF, selects an appropriate covariance parameter is important. The performance of the 

PAUKF changes according to the selection of the covariance matrix. Especially, in the PAUKF 

localization framework, the measurement covariance is not easy to decide. It is hard to decide the 

uncertainty of the PF based on the map matching. However, tuning the measurement covariances is 

time-consuming work and the results are usually not optimal. Therefore, to obtains better performance 

of the PAUKF, the measurement covariance matrix is trained with the coordinate descent algorithm. 
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Figure 55 shows the estimation results of the different approaches where the PAUKF runs with the 

well-trained measurement covariance matrix. 

 

 

Figure 55 The estimation of PAUKF with trained covariance 

 

Table 17 shows the performance of the PAUKF using the trained measurement covariance matrix. 

The RMSE change parameter of “Noisy Position of Vehicle” and “PF Estimation” equals to zero 

means that the noise term and the precision of the PF based pre-processing are not changed at all. The 

only difference is the selection of the measurement covariance matrix of the PAUKF. From Table 17, 

it can be found the RMSE of the PAUKF with trained measurement covariance decreases 0.423m. It 

means compared to the manual tuned PAUKF, the PAUKF with well-trained measurement covariance 

increases the precision by about 15.7% without adding any computational burden. 
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Table 17 RMSE of the manual tuned and covariance trained PAUKF 

 Noisy Position of Vehicle PF Estimation PAUKF Estimation 

Velocity Manual(m) Trained(m) Manual(m) Trained(m) Manual(m) Trained(m) 

60 km/h 29.465 29.465 6.317 6.317 2.478 2.651 

70 km/h 29.351 29.351 6.238 6.238 1.767 1.510 

80 km/h 28.319 28.319 6.265 6.265 2.303 2.645 

90 km/h 29.919 29.919 5.861 5.861 2.169 2.270 

100 km/h 29.981 29.981 6.324 6.324 2.833 2.166 

110 km/h 29.144 29.144 6.303 6.303 3.441 2.574 

120 km/h 30.072 30.072 6.098 6.098 3.881 2.093 

Mean 29.465 29.465 6.201 6.201 2.696 2.273 

RMSE 

Change 
0% 0% -15.70% 

 

Table 18 shows the RMSE and Mean of the PAUKF with well-trained measurement covariances 

in the longitudinal direction and lateral direction. The average RMSE of PAUKF estimation in the 

longitudinal direction is 1.363m and the average mean is 0.348m, and the average RMSE of PAUKF 

estimation in the lateral direction is 1.797m and the average mean is -0.228m. It can be found the 

error in the longitudinal and lateral direction are decreased by well-trained measurement covariances. 

This phenomenon shows the selection of the measurement covariances of the PAUKF should be well 

configured for better estimation performance. The selection of the measurement covariances is 

affected by the precision of the PF based pre-processing step.  

 

Table 18 The RMSE(Mean) of PAUKF estimation  

in the longitudinal/lateral direction 

With Non-Gaussian Noise 

Velocity Longitudinal(m) Lateral(m) 

60 km/h 1.402(0.222) 2.250(-0.066) 

70 km/h 0.922(0.455) 1.196(-0.280) 

80 km/h 1.873(0.553) 1.868(-0.047) 

90 km/h 1.507(0.894) 1.698(-0.616) 

100 km/h 1.556(-0.170) 1.507(-0.172) 

110 km/h 1.102(0.310) 2.326(-0.337) 

120 km/h 1.177(0.175) 1.731(-0.080) 

Mean 1.363(0.348) 1.797(-0.228) 
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Figure 56 shows the longitudinal error of the noisy GPS and the estimation of the PAUKF when 

the velocity is 60km/h. From Figure 56, it can be found the amplitude of the GPS error in the 

longitudinal direction is from -39m up to 60m and the RMSE of the GPS error in the longitudinal 

direction is 18.768m. Under the large noisy environment, the estimation RMSE of the PAUKF is only 

1.402m. 

 

 

Figure 56 Longitudinal error of PAUKF and noisy GPS 

 

Figure 57 shows the lateral error of the noisy GPS and the estimation of the PAUKF when the 

velocity is 60km/h. From Figure 57, it can be found the amplitude of the GPS error in the lateral 

direction is from -30m up to 68m and the RMSE of the GPS error in the lateral direction is 22.715m. 

Under the large noisy environment, the estimation RMSE of the PAUKF is only 1.797m. 
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Figure 57 Lateral error of PAUKF and noisy GPS 

 

Figure 58 and 59 shows the trajectories of the different kinds of sources at the start point of the S 

curve. Figure 58 shows the trajectories of the vehicle with 60km/h and figure 59 shows the trajectories 

of the vehicle with 120km/h. The blue line with the blue dot is the ground truth data of the vehicle 

from the simulation. The red dashed line with the red triangle is the position measurement data from 

the noisy GPS. The yellow dashed line with the yellow square is the estimated position data from the 

particle filter. The black dashed line with the black dot is the estimated position data of the PAUKF. 

The PAUKF used in the simulation is the same except for the velocity. 

The movement of the estimation data is affected by the noisy vehicle information like velocity 

and yaw angle. From Figure 58 and Figure 59, it can found the interval of the ground truth position is 

different. The interval of the position becomes larger as the velocity grows. As intuition, the 

estimation error should increase as the velocity increase. The prediction step could generate more 

errors because of the velocity. If the vehicle only uses the information from the on-vehicle sensor, the 

error could be increase as the velocity increases. However, in the PAUKF localization framework, the 

vehicle corrects the position and the yaw angle based on the surrounded features. It means, at every 

timestamp the vehicle predicts the state at the next timestamp. If the nearby features are not used for 



 

101 

 

correction, the error should increase as the velocity increases. Therefore, as long as the features exist 

near the vehicle, the PAUKF based localization could guarantee precision that is not affected by the 

velocity. 

Figure 58 and 59 also shows the importance of the initial estimation. Figure 58 shows the 

PAUKF started from an initial position which contains a large error. The result of the bad initial 

position makes the PAUKF converges slowly to the ground truth trajectory. Figure 59 shows the 

PAUKF started from an initial position close to the ground truth position. Therefore, the PAUKF 

converges to the ground truth trajectory faster than the PAUKF in Figure 58. This explains why the 

results of the PAUKF in the previous tables are different. The convergence can be faster if the PAUKF 

run with appropriate covariances. Once the PAUKF uses worse covariance, then even the convergence 

speed can be accelerated, however, the total precision of the estimation could decrease. 

 

 

Figure 58 The trajectories at the start point 
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Figure 59 The trajectories at the start point 

 

4.3  Summary of the simulation results of PAUKF in car-like vehicle 

In this chapter, the PAUKF is implemented into the car-like vehicle. Because of the limited 

experiment environment and the hardware, the evaluation process of the PAUKF is done based on the 

simulation with the Matlab toolbox. The ultimate goal of the PAUKF simulation is to figure out the 

performance of the PAUKF with more features surrounded and faster movement. As illustrated in 

chapter 3 and 4, the PAUKF is a general framework of vehicle localization that does not depend on 

the specific target vehicle. The vehicle model used in the simulation is a simplified model which is 

called a bicycle model. The bicycle model is not enough for representing the real world dynamic in 

the high speed. However, the goal of the simulation is not to figure out the differences between the 

vehicle model and the dynamics of the vehicle in the real world. The goal of the simulation in chapter 

4 is to try to provide a reference of the PAUKF with more features and speed. If someone wants to 

implement the PAUKF into a real car-like vehicle, there are a lot of parameters that should be defined 

far more than the simulation. From the simulation result, it can be found the PAUKF works precisely 

in the Gaussian and Non-Gaussian noise environment.  

To compare with other literature, we calculate the mean value of estimation. The mean 

estimation error for the PAUKF is 1.08 m and the variance is 0.7147 m, which is more precise than 
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the mean of 1.69 m and variance of 1.63 m obtained by GANGNAM for similar noise[105]. To figure 

out the performance of the PAUKF in the extremely noisy environment, the large Non-Gaussian noise 

is added based on the simulation. The simulation shows the room for improvement of the PAUKF 

with preciser perception and the optimized covariances. The effect of the initial position on the 

PAUKF is analyzed for explaining the randomness of the results. The evaluation of the PAUKF with 

the car-like platform is done in simulation, therefore the hardware specification is not considered. As a 

result, the PAUKF performs a character that is not affected by the velocity. It should be mentioned, 

once the PAUKF is implemented into the real vehicle, the precision of the PAUKF should be affected 

by the detection rate of the hardware. In summary, the precision of the PAUKF is strongly affected by 

the precision of the perception module and the quantity of the features near the vehicle. The 

simulation results show the performance of the PAUKF. 
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Chapter 5 Conclusion 

The autonomous vehicle is an important and challenging issue of the transportation system. With 

the development of computing capability and sensing technology, the autonomous vehicle like UGV 

and the car-like autonomous vehicle starts to appear in our life. 

The brain of the autonomous vehicle, the path planning module, and the decision-making module 

work depend on the perception data for path planning and control of the vehicle. It means the 

perception data affects the output of the planning module directly. Because of the direct effect of the 

perception module, it is important to filter the perception data robustly and precisely. Almost every 

autonomous vehicle is equipped with several cameras, lidars, radars, GPS receivers, and other sensors 

for better perception performance. The location of the vehicle is one of the most important perception 

data. Despite the autonomous vehicle equipped with lots of sensors, locating the position of the 

vehicle is still a challenging issue. Because not only every single sensor has its sensing limitations but 

also the sensed data contains a lot of different kinds of noise. Therefore, a robust and precise 

localization algorithm is needed. 

In this thesis, the particle aided unscented Kalman filter(PAUKF) based localization algorithm is 

proposed. The algorithm takes advantage of the concept of particle filter and the framework of the 

unscented Kalman filter for fusing the different kinds of data. Since the noise parameters in the real 

world are not always Gaussian form, the algorithm should process the Non-Gaussian noise effectively 

too. The PAUKF not only fusing the noise effectively but also easy to combine vehicle model, motion 

model. The performance of the algorithm is verified based on the unmanned ground vehicle with real 

hardware(odometry, RGB-D camera, and IMU) and the car-like vehicle in the simulation environment. 

From the UGV and the car-like vehicle simulation results, it can be found that the estimated 

localization of the PAUKF is effective and precise. The algorithm used in the real-world test is based 

on the robot operating system which means the PAUKF is easy to implemented and used by other 

researchers. The ground truth data of the specific features are transformed into the map coordinate 

based on the SLAM algorithm by using the lidar sensor. The precision of the ground truth data of the 

features affects the estimation precision of the PAUKF. The open-sourced object detection package ar 
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track alvar(ar markers) is used as the features detection. In the experiment of the PAUKF, the 

estimated trajectories are generated based on the raw odometry and the ar markers. In the experiment, 

the performance of the EKF, UKF, PAEKF, PAUKF, PAUKF with IMU, EKF(IMU), LeGO-LOAM 

are tested. The EKF and UKF are good filter algorithm. However, both of the filters have no 

additional measurement but the noisy raw odometry of the unmanned ground vehicle. In contrast, the 

PAUKF uses the information of the features and the pre-saved GT position of the features to relocate 

the position of the vehicle and correct the state of the vehicle. The experiment shows the PAUKF can 

relocate the vehicle well and improve the estimation precision. 

Next, the PAUKF is evaluated based on the simulation in a car-like vehicle. Compare with other 

literature, the mean estimation error for the PAUKF is 1.08 m and the variance is 0.7147 m, which is 

more precise than the mean of 1.69 m and variance of 1.63 m obtained by GANGNAM for similar 

noise[105]. 

In this thesis, the algorithm is verified by using simulation and a low-speed robot in a limited 

environment. In the future, the algorithm should be extended and evaluated in the real autonomous 

vehicle with real sensors for the actual performance. Additionally, the distribution of the particles 

should be adapted to the uncertainty of the PAUKF in the previous sample time for better distribution. 
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Nomenclature 

 

Parameter Description 

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖, 𝑃𝑖 The ith particle 

x, y Vehicle position in the x, y dimension 

𝜃 Yaw angle 

𝑥𝑟𝑎𝑛𝑑𝑜𝑚_𝑛𝑜𝑖𝑠𝑒 The random noise of x 

𝑦𝑟𝑎𝑛𝑑𝑜𝑚_𝑛𝑜𝑖𝑠𝑒 The random noise of y 

𝑧𝑟𝑎𝑛𝑑𝑜𝑚_𝑛𝑜𝑖𝑠𝑒 The random noise of z 

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 The group of the particles 

X̅k+1 Predicted state at sample time k + 1 

K Timestamp 

x̅ Predicted X position of the vehicle 

𝑦̅ Predicted Y position of the vehicle 

θ̅ Predicted yaw angle of the vehicle 

v The velocity of the vehicle 

θ̇ Yaw rate of the vehicle 

Δt Sample time 

𝑥𝑣 The vehicle x position in the map coordinate 

𝑦𝑣 The vehicle y position in the map coordinate 

𝜃𝑣 The yaw angle of the vehicle in the map coordinate 

θ𝑖,𝑣 The yaw angle of the ith particle 

𝜃𝑗 The relative angle of the vehicle coordinate and feature j 

𝑑𝑗 The relative distance of ego vehicle and feature j 

𝑥𝑏,𝑗 The relative x distance of ego vehicle and feature j 

𝑦𝑏,𝑗 The relative y distance of ego vehicle and feature j 

𝑧𝑘+1 Measurement vector at time k + 1 

N Number of the used particles 

wi Weight of the ith particle 

w[1,2…N] The weight group of each particle 

𝑥𝑖 The x value of the ith particle 

𝑦𝑖 The y value of the ith particle 

𝑥𝑏,𝑗
𝑔𝑙𝑜𝑏𝑎𝑙

 The x position of ith feature transformed by the particle 

𝑦𝑏,𝑗
𝑔𝑙𝑜𝑏𝑎𝑙

 The y position of ith feature transformed by the particle 

σx The standard deviation of the noise in the x-direction 

σ𝑦 The standard deviation of the noise in the y-direction 

p(xi, yi) Multivariable normal distribution 

 μ
x,b,j

 The position x of the jth feature in the pre-saved map 
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 μ
𝑦,b,j

 The position y of the jth feature in the pre-saved map 

xp,i The position x value of the ith particle 

yp,i The position y value of the ith particle 

X̂PF The estimated result of the particle filter 

λ The designed hyperparameter of UKF 

nx The number of the state of UKF 

xpaukf,k The state of the PAUKF at time k 

μk The mean of the state 

Pk Covariance matrix at time k 

xpaukf,k,aug The state of PAUKF at time k 

wvelacc The noise of vehicle acceleration 

wyawacc The noise of vehicle yaw acceleration 

σvelacc The standard deviation of the noise of vehicle acceleration 

σvelacc The standard deviation of the noise of vehicle yaw acceleration 

xpaukf,k+1 The state of the PAUKF at time k+1 

xpaukf,k+1,aug The augmented state of the PAUKF at time k+1 

μpaukf,k,aug The augmented mean value of the PAUKF at time k 

nx,aug The number of the augmented state of PAUKF 

Ppaukf,k,aug The augmented covariance matrix at time k of PAUKF 

wpaukf,i Weight of ith sigma point 

x̅paukf,k+1|k Predicted state based on the weight of sigma points and states 

P̅k+1|k 
Predicted variance based on sigma points and predicted state 

mean 

ωpaukf,k+1 Measurement noise of PAUKF.  

Zpaukf,k+1|k,i Measurement prediction based on sigma points.  

Xpaukf,k+1|k,i Sigma points of the state  

A Measurement transition model.  

zpaukf,k+1|k Predicted measurement based on sigma points and weights 

Sk+1|k Predicted measurement covariance matrix.  

R Variance matrix of the measurement noise. 

σxpf
 The standard deviation of PF estimation in the x dimension  

σypf
 The standard deviation of PF estimation in the y-dimension  

Tk+1|k Cross-correlation matrix of PAUKF 

Kk+1|k Kalman gain of PAUKF 

x̂PAUFK Final state estimation of PAUKF.  

P̂PAUFK Final state variance matrix of PAUKF 

RMSEest The RMSE of the estimation result 

RMSEnoise The RMSE of the noise 

Positionesti The ith estimated position value in the recorded data 



 

119 

 

Positionmeanesti
 The ith expectation estimated position value in the record data 

Positionnoisei
 The ith noisy position value in the recorded data 

Positionmeannoisei
 The ith expectation noisy position value in the recorded data 

σvz
 The standard deviation of vehicle noise in the vertical direction 

X̅𝑘+1 Predicted state at sample time k+1  

zv The movement of the vehicle in the Z direction 

𝐹𝑗 The jth feature 

𝛼𝑗 The relative bearing angle to jth feature 

𝛽𝑗 The relative elevation angle to jth feature 

xp,i, yp,i, zp,i The x, y, z value of the ith particle 

𝑥𝑓,𝑗
𝑔𝑙𝑜𝑏𝑎𝑙

 The x position of ith feature transformed by the particle 

𝑦𝑓,𝑗
𝑔𝑙𝑜𝑏𝑎𝑙

 The y position of ith feature transformed by the particle 

μz The expectation value of the z 

P(xp,i, yp,i, zp,i) Probability when the particle is xp,i, yp,i
, zp,i 

σx, σy, σz Standard deviation in the x, y, z-direction 

 μ
𝑥,f,j

 The position x of the jth feature in the pre-saved map 

 μ
𝑦,f,j

 The position y of the jth feature in the pre-saved map 

 μ
𝑧,f,j

 The position z of the jth feature in the pre-saved map 

PLiDAR(x, y, z), PRADAR(x, y, z), 

PCamera(x, y, z), Pperception source 
The probability of perception based on different sensors 

ℎ() 
Projection of the estimated value to the high-accuracy 

measurement 

P Variance matrix of the high-accuracy measurement 

𝜇𝑡 The final estimated result of the PAUKF 

γ The random noise of the high-accuracy measurement 

zh,1:T Whole data of the high-accuracy measurement 

xpaukf,1:T Whole data of the estimated value of the PAUKF 

𝑦𝑡 Measurement value from a highly accurate sensor 

𝑅𝑜𝑝 Optimal measurement variances 

a, b, c Tuning hyper-parameters 

EC Evaluation criteria 

x𝑈𝐺𝑉,𝑘+1 The predicted state at k+1 

x𝑈𝐺𝑉,𝑘 The state at k 

𝑁𝑜𝑖𝑠𝑒𝑈𝐺𝑉 The noise of the UGV 
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ABSTRACT 

200 years ago, the vehicle with an engine is invented. From that time, the technologies used in 

the vehicle become more convenient and safe. In current days, with the development of computing 

ability and sensing technology, the vehicle starts to be controlled not only by the human but also 

controlled by the algorithm. Therefore, how to make the vehicle drive safely and correctly becomes a 

hot issue of current research. 

To control the autonomous vehicle correctly, the vehicle needs to recognize the surrounding 

environment precisely. One of the most important parameters of a vehicle is the location of the 

vehicle's global coordinate. In general, the location can be calculated by using the GPS(global 

positioning system) signal directly. However, Owing to the noisy global positioning system (GPS) 

signal and multipath routing in urban environments, a novel, practical approach is needed. Since the 

GPS can not provide precise location information, researchers have to find other methods. For 

estimating the state of vehicles precisely, researchers developed a map that contains precise road 

elements like a road sign, traffic sign, and surrounded buildings. With the map’s help, the algorithm 

can localize the vehicle by using the geometry relationship of the vehicle and surrounding road 

elements. However, not only the map has different kinds of noise, but also all the sensors mounted on 

the vehicle have different kinds of noise. There is no way the noises are all in Gaussian form. So a 

sensor fusion algorithm that can handle the Non-Gaussian noise in-vehicle information and sensor 

information is needed. 

 In this study, a sensor fusion algorithm, PAUKF(particle aided unscented Kalman filter) is 

proposed. PAUKF trying to handle non-Gaussian noise and localizes the vehicle based on the map 

information. By using the information of the ground truth of the features and the detected features 

based on the sensors in the vehicle and the data of the vehicle, the PAUKF can estimate the global 

location of the vehicle precisely. The global position is estimated based on the features, thus the 

PAUKF does not reply to the signal of the GPS. The main part of the PAUKF can be divided into two 

parts. One is PF(particle filter) and the other one is UKF(unscented Kalman filter). The particle filter 
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is an application of the Monte-Carlo methodology that can process all kinds of noise. The particle 

filter generates particles and compares the particles with the measurement from the sensors of the 

vehicle. The UKF is a version of the improved Kalman filter. The UKF generates several sigma points 

and processes the non-Gaussian noise by using these sigma points. By combining the PF and UKF as 

PAUKF, the PAUKF can filter the Non-Gaussian noise effectively and localizing the vehicle precisely 

and smoothly. The performance of PAUKF is evaluated based on the two kinds of platforms. One is 

the experiment based on the unmanned ground vehicle by using ROS, and the other one is based on 

the car-like autonomous vehicle based on the simulation. Both results of the simulation and real test 

prove that the effectiveness of the PAUKF compares to the other works of literature. 

Keywords: particle filter; sensor fusion; Unmanned ground vehicle; autonomous vehicle; 

unscented Kalman filter; ROS; 
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