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ABSTRACT
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by
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Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy (Electrical, Electronic and Computer Engineering)

May 2021

In recent years, the available spectrum becomes more and more scarce and deserves

utilization efficiency to avoid bottlenecks in surging wireless traffic demand. With this regard,

spectrum reuse is required to mitigate interference when using wireless communications. As

promising solutions to the spectrum scarcity problems, Cognitive radio (CR) technology is a

communication paradigm that allows non-licensed users (i.e. cognitive users) to opportunis-

tically access spectrum holes that are temporally unoccupied by licensed users (i.e. primary

users) at a particular time and geographic location. Therefore, wireless networks can be

greened by the CR technique that is capable of not only dealing with spectrum scarcity but

also improving the energy deficiency of wireless users. In addition, energy harvesting (EH)

in cognitive radio networks (CRNs) has been applied and considered as promising topics

for many researchers. Although harvesting ability has been limited and still needs to be

improved, EH-powered CRNs have been widely investigated in many aspects such as relay

selection, transmission power allocation, and packet duration optimization.

Intuitively, limited energy harvesting capability on wireless communications is seen

as one of the crucial issues in designing energy-efficient resource assignment approaches.

Moreover, similar to traditional wireless networks, CRNs also face vulnerabilities regarding

information security such as malicious attacking, jamming, or eavesdropping, which would

be more challenging in future resource allocation. Nowadays, with the assistance of artificial

intelligent (AI) paradigms such as machine learning, game theory, and meta-heuristics, the
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wireless networks get intelligent in the practical deployment. Among them, POMDP and

reinforcement learning approaches are well-known for their useful applications in resource

allocation optimization. Therefore, it is vital to employ these innovative methods to improve

the quality of services in long-term and maintenance-free operation of the energy harvesting-

powered wireless networks. Motivated by the foregoing analysis, this dissertation focuses

on studying the robust resource allocation solution (e.g. transmission energy, frequency

bands) to maximize the long-term performance of the EH-powered CRNs with and without

information of harvested energy distribution. Furthermore, by leveraging the advantage of

the CR technique, the hybrid scheduling method using both CR channels and ISM channels

is investigated to enhance successful packet delivery ratio in industrial wireless networks

with the consideration of ISM channels’ interference. The performance of the proposed

methods is validated through numerical simulation under the numerous network parameters.

Specifically, this dissertation will address the current challenges in wireless networks as

follows:

Firstly, we consider jamming attacks in the physical layer of multi-hop cognitive

radio networks (MHCRNs) where energy-constrained relays forward information from the

source to the destination. Meanwhile, a jammer can transmit interfering signals on a channel

such that all ongoing transmissions on this channel will be corrupted. All jammers can attack

only one of the predefined channels in each time slot and can randomly switch channels to

start jamming another channel at the beginning of every time slot. The switching behavior

is assumed to follow a Poisson distribution. Energy harvesting is utilized in the network

such that relays are able to harvest energy from non-radio frequency (non-RF) signals such

as solar, wind, or temperature. We determine the throughput/delay ratio as a key metric

to evaluate the performance in MHCRNs. Owing to the limited battery capacity in the

relays and the jamming problem, the source needs to select proper relays and channels for

each data transmission frame to optimize overall network performance in terms of end-to-

end delay, throughput, and energy efficiency. Therefore, we provide two novel multihop

allocation schemes to maximize achievable end-to-end throughput while minimizing delay in

the presence of jammers.

Secondly, we investigate an attack strategy for a legitimate energy-constrained

eavesdropper (e.g., a government agency) to efficiently capture the suspicious wireless

communications (e.g., an adversary communications link) in the physical layer of a CRN in

tactical wireless networks. Since it is powered by an energy harvesting device, a full-duplex
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active eavesdropper constrained by a limited energy budget can simultaneously capture

data and interfere with the suspicious cognitive transmissions to maximize the achievable

wiretap rate while minimizing the suspicious transmission rate over a Rayleigh fading

channel. The cognitive user operation is modeled in a time-slotted fashion. We formulate

the problem of maximizing a legitimate attack performance by adopting the framework

of a partially observable Markov decision process. The decision is determined based on

the remaining energy and a belief regarding the licensed channel activity in each time slot.

Particularly, in each time slot, the eavesdropper can perform an optimal action based on

two functional modes: (1) passive eavesdropping (overhearing data without jamming) or

(2) active eavesdropping (overhearing data with the optimal amount of jamming energy) to

maximize the long-term benefit.

Thirdly, we consider a centralized multi-channel cognitive radio network in the

presence of eavesdroppers (EVEs). In the network, the secondary base station (SBS) shares

currently free primary channels to simultaneously communicate with secondary users (SUs),

while passive eavesdroppers attempt to overhear data in the secondary communications.

Each limited-battery SU is equipped with two antennas (one for transmitting signals, and

other for receiving signals) and is powered by a solar energy harvester. Meanwhile, the

SBS equipped with multiple antennas can operate in full-duplex (FD) transmission mode

(simultaneously transmit and receive signals) or in half-duplex (HD) transmission mode

(transmit and receive signals in turn during each half of a time slot) with the SUs. We

propose a novel scheme to maximize the secondary system security of the multi-channel

cognitive system in the presence of multiple passive EVEs, in which the EVEs are able to

overhear the data of the SBS-SU transmissions on all the primary channels. The problem of

decision making is formulated as the framework of a partially observable Markov decision

process (POMDP), and an optimal solution is achieved by adopting value iteration-based

dynamic programming. Specifically, in each time slot, the SBS allocates optimal channel and

optimal action (i.e. either stay silent or employ HD/FD transmission modes with optimal

transmission power) for each SU in order to obtain maximum long-term secrecy rate for the

secondary system.

Next, we consider a system of caching-based UAV-assisted communications between

multiple ground users (GUs) and a local station (LS). Specifically, a UAV is exploited to

cache data from the LS and then serve GUs’ requests to handle the issue of unavailable or

damaged links from the LS to the GUs. The UAV can harvest solar energy for its operation.
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We investigate joint cache scheduling and power allocation schemes by using non-orthogonal

multiple access (NOMA) technique to maximize the long-term down-link rate. Two scenarios

for the network are taken into account. In the first, the harvested energy distribution of the

GUs is assumed to be known, we propose a partially observable Markov decision process

framework such that the UAV can allocate optimal transmission power for each GU based on

proper content caching over each flight period. In the second scenario where the UAV does

not know the environment’s dynamics in advance, an actor-critic-based scheme is proposed

to achieve a solution by learning with a dynamic environment.

Then, we study the optimal scheme of maximizing the packet delivery ratio in

industrial wireless systems. To enhance the transmission performance of the WirelessHART

network, the cognitive radio (CR) technique is applied such that joint CR/Industrial Scientific

Medical (ISM) channels are scheduled for data transmissions of the field devices. Each

CR-enabled device has a limited buffer capacity, and the cognitive channels’ behavior is

modeled as the discrete Markov chain. The packets generated at each device are routed to

the gateway (GW) through the aid of neighbor devices. Access Points (APs) are deployed

to improve the successful transmission probability of the packets by using cognitive radio

technology. Moreover, the APs can harvest solar energy from the sunlight environment. The

problem of long-term throughput maximization is formulated as a framework of a Markov

decision process. Subsequently, we propose the deep reinforcement learning-based scheme to

optimally assign multiple ISM and cognitive radio channels to the field devices to maximize

the received packets at the gateway.

Finally, we summarize the main contributions of this dissertation and discuss future

research directions for the next-generation wireless networks.
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Chapter 1

Introduction

1.1 Background

1.1.1 Security Threats in Cognitive Radio Networks

In recent years, the exponential growth of wireless-enabled devices and their data-

hungry applications is leading to dramatic increase in wireless traffic. Moreover, mobile

data traffic has become more random, diverse, and unevenly distributed via time and

space due to the stochastic nature of user demands as well as mobility of users [1]. This

trend of growth forced the network operator to add more spectrum to accommodate the

ever-increasing demands. However, licensed-spectrum is scarce and this requirement imposes

extra operational costs on the mobile-network operators.These drastic challenges result in a

dilemma for mobile-network operators in improving network capacity and quality of service [2].

Cognitive radio network (CRN) is a potential concept for an efficient utilization of radio

frequency (RF) spectrum by allowing unlicensed secondary users (SUs) to opportunistically

utilize the spectrum without causing any harmful interference to primary users (PUs) with

the aid of software defined radio (SDR), smart protocols, and machine learning algorithms.

To identify a spectrum opportunity, a SU should undergo through a cognitive cycle that

consists of sensing, analysis, adaptation, and acting phases [3]. Among four different phases

of cognitive cycle, sensing and acting phases are most vulnerable to malicious attacks. For

instance, to pretend the presence of PUs, a SU can be attacked during the sensing phase by

an adversary who puts spoofing signals in currently unused bands [4]. Moreover, once SUs

access unused spectrum bands, the adversary can utilize conventional jamming to interfere

1
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legitimate transmission during acting phase [5]. Owing to opportunistic spectrum access and

dynamic spectrum agility, CR technology introduces novel classes of challenges including PU

emulation attacks, selfish behavior while using spectrum, reporting false sensing information,

or launching denial-of-communication attack to PUs and/or SUs [6]. Attackers can leverage

the CR technology to launch more sophisticated and unpredictable attacks with even greater

damage. Furthermore, a selfish SU itself can occupy all or part of the available radio

resources to prohibit other SUs from accessing those, and thus significantly degrading the

overall performance of CRNs [7].

The energy supply for the secondary users is limited in some practical scenarios,

where the battery of the user is not easy to replaced or recharged manually. Emerging

technology targeting energy-constrained SUs is energy harvesting which allows an SU to

harvest energy from multiple sources, such as solar, wind, mechanical vibrations, or ambient

radio frequency power. The harvested energy is stored in a rechargeable battery with a finite

capacity such that a SU can operate perpetually without requiring any battery replacements

or extra power supply cables. Thus, CR networks with energy harvesting capability are

expected to provide a new technology that can greatly enhance both spectrum efficiency and

energy efficiency [8]. However, deploying energy harvesting-powered CR networks also bring

challenges to efficient resource allocation due to the high density data traffic, stochastic

energy arrivals, and security threats. Therefore, according to the above analysis, it is

essential to design energy-efficient resource management algorithms for CRNs to enhance

system performance under the consideration of network security.

1.1.2 Motivation and Objective

Nowadays, cognitive radio has encountered various types of security threats, as

well as challenges in the networks, due to the open nature of the cognitive radio architecture.

One of the serious attacks that affect CRN security is jamming, which can be either a

single-channel or a multiple-channel attack. To tackle jamming attacks, SUs first detect

attackers by collecting data on noise in the network to build a statistical model [9]. With

this, SUs are always able to differentiate between interference signals and noise when the

jammer attacks a channel. There are two main strategies to defend against attackers [10].

The first is to use frequency hopping, such that as the SUs identify jamming attacks, they

immediately switch to other unjammed channels for transmission. The second is to execute
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a spatial retreat in which the SUs escape from the zone of the jamming to other positions

out of jamming range. However, the spatial retreat method may induce SUs to drop their

current communication. However, most of the previous works only focus on security problem

in single-hop [11,12] or two-hop relay transmissions [13,14]. The resource allocation problem

for multi-hop and multi-channel transmission of energy-harvesting CRNs in the presence of

jamming attacks needs to be carefully investigated.

Along with countermeasures to jamming attacks, there have been extensive studies

investigating defense mechanisms against passive eavesdropping and active eavesdropping.

However, most existing works consider a data-capture attacker as an illegitimate eavesdropper.

Recently, more and more threats by terrorists or criminals can potentially be used to access

wireless communications links for various purposes [15]. Therefore, government agencies (e.g.

the National Security Agency in the United States) have been investigating counteraction

solutions against terrorism by legitimately and efficiently eavesdropping on suspicious wireless

transmissions. Furthermore, there are existing works on physical layer security that are

based on half-duplex (HD) transmission (i.e. either overhear or transmit the jamming

signals) [16–19], or full-duplex (FD) transmission (i.e. simultaneously overhear and transmit

the jamming signals) [20–23]. However, these works usually view eavesdropping as an

illegitimate attack. Consequently, most of the studies have been carried out to optimize secure

transmissions, typically to maximize the achievable secrecy rate of the attacked (or legitimate)

side. In contrast with illegitimate attacks, there are only a few studies investigating legitimate

attacks where a legitimate eavesdropper aims to actively attack suspicious point-to-point

wireless communications [24, 25]. Compared with a passive eavesdropper, it is obvious

that the active eavesdropper requires additional energy consumption to execute jamming

attacks. This leads to a conclusion that consideration of energy-efficient strategy for an

active eavesdropper should also be intensively investigated. Besides, it is essential to develop

the robust scheme that allows both HD and FD to maximize the long-term secrecy rate

of orthogonal frequency-division multiplexing (OFDM)-based CRNs in the presence of the

eavesdroppers.

As compared with traditional wired communication systems, wireless transmissions

offer several advantages such as fewer infrastructure requirements, reduced connector trouble,

and simplicity for future upgrading [26, 27]. However, there has been concerns regarding

network latency and reliability, which hampered the deployment rate owing to the stringent

communication requirements in industrial control applications. Thus, the control performance



4 Chapter 1: Introduction

might be significantly deteriorated by increasing latency, jitter and packet loss rate. In order

to address these issues, WirelessHART [28], the first open wireless communication standard

that was designed for industrial process monitoring, has been introduced. Specifically,

WirelessHART uses a tightly integrated medium access and networking layer for multi-hop

multipath routing based on multi-channel TDMA. The WirelessHART architecture was

developed by leveraging time diversity, path diversity and frequency diversity to support the

advanced process monitoring and control applications. However, there is only few research

attempts that leverage the advantage of CR technique in WirelessHART. Thus, the joint

CR/ISM channel allocation approach for the transmissions of devices also needs to be studied

to improve the system performance of industrial wireless networks.

Motivated by the above analysis, this dissertation aims to address the remaining

challenges for energy harvesting CRNs by using artificial-intelligent approaches such as

value iteration-based dynamic programming, reinforcement learning, and deep learning. The

contributions of this dissertation are summarized as follows:

• We investigate two novel multihop allocation schemes for multi-hop multi-channel

CRNs to maximize achievable end-to-end throughput while minimizing delay in the

presence of jammers.

• We design an energy-efficient attack strategy against the suspicious point-to-point

transmissions to improve eavesdropping performance in a tactical cognitive radio-based

network.

• We propose a novel scheme to maximize the secondary system security of the multi-

channel cognitive system in the presence of multiple passive EVEs, in which the EVEs

are able to overhear the data of the SBS-SU transmissions on all the primary channels.

• We study joint cache scheduling and power allocation schemes for UAV-assisted

communications by using the non-orthogonal multiple access (NOMA) technique,

which aims to maximize the long-term downlink rate.

• We propose the deep reinforcement learning-based scheme to optimally assign multiple

ISM and CR channels to the field devices with the aim of maximizing the received

packets at the gateway.
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1.1.3 Thesis Outline

The contribution of this research is presented in the thesis outline as follows:

Chapter 2 introduces the model of jamming attacks in the physical layer of multi-hop

cognitive radio networks (MHCRNs) where energy-constrained relays forward information

from the source to the destination. In the network, each jammer can transmit interfering

signals on a channel such that all ongoing transmissions on this channel will be corrupted.

All jammers can attack only one of the predefined channels in each time slot and can

randomly switch channels to start jamming another channel at the beginning of every time

slot. Energy harvesting is utilized in the network such that relays are able to harvest

energy from non-radio frequency (non-RF) signals such as solar, wind, or temperature.

We determine the throughput/delay ratio as a keymetric to evaluate the performance in

MHCRNs. Owing to the limited battery capacity in the relays and the jamming problem,

the source needs to select proper relays and channels for each data transmission frame to

optimize overall network performance in terms of end-to-end delay, throughput, and energy

efficiency. Therefore, we provide two novel schemes using energy harvesting to allocate the

best relays and channels over hops to transfer the number of data frames from the source to

the destination.

Chapter 3 investigates an attack strategy for a legitimate energy-constrained

eavesdropper to efficiently capture the suspicious wireless communications in the physical

layer of a CRN in tactical wireless networks. A full-duplex active eavesdropper constrained

by a limited energy budget can simultaneously capture data and interfere with the suspicious

cognitive transmissions. The cognitive user operation is modeled in a time-slotted fashion.

The problem of maximizing a legitimate attack performance is formulated as the framework

of a partially observable Markov decision process. We propose a value iteration-based

programming scheme to maximize the attack performance, where the decision is determined

based on the remaining energy and a belief regarding the licensed channel activity in

each time slot. Particularly, in each time slot, the eavesdropper can perform an optimal

action based on two functional modes: (1) passive eavesdropping (overhearing data without

jamming) or (2) active eavesdropping (overhearing data with the optimal amount of jamming

energy) to maximize the long-term benefit.

Chapter 4 considers a model of centralized multi-channel cognitive radio network in

the presence of eavesdroppers (EVEs). The secondary base station (SBS) shares currently-
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free primary channels to simultaneously communicate with secondary users (SUs), while

passive eavesdroppers attempt to overhear data in the secondary communications. Each

limited-battery SU is equipped with two antennas (one for transmitting signals, and other for

receiving signals) and is powered by a solar energy harvester. Meanwhile, the SBS equipped

with multiple antennas can operate in full-duplex (FD) transmission mode (simultaneously

transmit and receive signals) or in half-duplex (HD) transmission mode (transmit and receive

signals in turn during each half of a time slot) with the SUs. We propose a energy-efficient

scheme to maximize the secondary system’s security of the multi-channel cognitive system.

The problem of decision making is formulated as the framework of a partially observable

Markov decision process (POMDP), and an optimal solution is achieved by adopting value

iteration-based dynamic programming. With the proposed scheme, the SBS can allocate

optimal channel and optimal action (i.e. either stay silent or employ HD/FD transmission

modes with optimal transmission power) for each SU to obtain maximum long-term secrecy

rate.

Chapter 5 studies a system of caching-based UAV-assisted communications between

multiple ground users (GUs) and a local station (LS). In particular, a UAV is exploited to

cache data from the LS and then serve GUs’ requests to handle the issue of unavailable or

damaged links from the LS to the GUs. We assume that the UAV can harvest solar energy for

its operation. We investigate joint cache scheduling and power allocation schemes by using

non-orthogonal multiple access (NOMA) technique to maximize the long-term downlink

rate. In the network, two scenarios are taken into account. In the first, the harvested energy

distribution of the GUs is assumed to be known, we propose a partially observable Markov

decision process framework such that the UAV can allocate optimal transmission power for

each GU based on proper content caching over each flight period. In the second scenario

where the UAV does not know the environment’s dynamics in advance, an actor-critic-based

scheme is proposed to achieve a solution by learning with a dynamic environment.

Chapter 6 considers the optimal scheme of maximizing the packet delivery ratio

in industrial wireless systems. In order to improve the transmission performance of the

WirelessHART network, the cognitive radio (CR) technique is employed such that joint

CR/Industrial Scientific Medical (ISM) channels are scheduled for data transmissions of

the field devices. We assume that each CR-enabled device has a limited buffer capacity,

and the cognitive channels’ behavior is modeled as the discrete Markov chain. The packets

generated at each device are routed to the gateway (GW) through the aid of neighbor devices.
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Access Points (APs) are deployed to improve the successful transmission probability of the

packets by using cognitive radio technology. Moreover, the APs can harvest solar energy

from the sunlight environment. We propose the deep reinforcement learning-based scheme to

optimally assign multiple ISM and cognitive radio channels to the field devices to maximize

the received packets at the gateway. Then, we compare the performance of the proposed

method with other traditional schemes where the context of long-term consideration is not

considered.

Finally, chapter 7 concludes this thesis and provides discussions on our future

research directions.



Chapter 2

Efficient Channel Selection and

Routing Algorithm for Multi-hop

Cognitive Radio Networks under

Jamming Attacks

2.1 Introduction

The cognitive radio network (CRN) has become a key solution for inefficient

spectrum utilization due to its dynamic spectrum sharing. Cognitive radio users are allowed

to share the spectrum bands, which are licensed to the primary user (PUs) [29, 30]. By

periodically sensing and adapting to the environment, secondary users (SUs) can utilize

spectrum bands that are not currently used by PUs [31]. This is considered an overlay

approach in CRN. For an underlay approach, SUs can be allowed to concurrently use the

spectrum bands originally allocated to PUs only if interference is regulated to below an

acceptable threshold [32,33]. Most of the previous works only focused on the sensing and

utilization of spectrum holes in frequency or time domains. Meanwhile, improved utilization

of spectrum holes based on location information of the PUs and the SUs has not been

investigated in a systematic way.

Location information can help find spectrum holes, and a cognitive user may be

encouraged to use the spectrum owned by the primary user furthest away to avoid severe

8
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interference. The location information can be obtained by using a global positioning system

(GPS) or other localization methods [34,35]. However, cognitive radio has also encountered

various types of security threats, as well as challenges in the networks, due to the open

nature of the cognitive radio architecture [36,37]. Many studies have focused on practical

attacks in IEEE 802.11 networks at the physical (PHY) layer. One of the serious attacks that

affect CRN security is jamming, which can be either a single-channel or a multiple-channel

attack. To tackle jamming attacks, SUs first detect attackers by collecting data on noise in

the network to build a statistical model [9]. With this, SUs are always able to differentiate

between interference signals and noise when the jammer attacks a channel. There are two

main strategies to defend against attackers [10]. The first is to use frequency hopping, such

that as the SUs identify jamming attacks, they immediately switch to other unjammed

channels for transmission. The second is to execute a spatial retreat in which the SUs escape

from the zone of the jamming to other positions out of jamming range. However, the spatial

retreat method may induce SUs to drop their current communication.

Relaying is emerging as a key enabling solution to solve problems in CRNs. For

instance, relaying can improve the system and secrecy capacity when the user suffers from

fading, shadowing, or malicious attacks [38]. Ruan and Lau [39] and Zhang et al. [40]

conducted joint power allocation and hop-relay selection to maximize end-to-end throughput

and enhance power savings. Wang et al. [41] proposed a routing mechanism to avoid

malicious relays and minimize routing delay. Wu et al. [42] also focused on defending against

jamming attacks using a Markov decision process, where SUs can perform dynamic access

to multiple channels for an anti-jamming defense. Recently, energy harvesting has emerged

as an appealing technique to solve energy-constrained problems of wireless networks. In

an energy-harvesting CRN, cognitive users are powered by harvested energy either from

non−RF signal sources (solar, wind, temperature, etc.) [43] or from RF signals from base

stations [44,45]. Xu et al. [46] investigated the end-to-end throughput maximization problem

in a multi-hop energy-harvesting cognitive radio network, and their simulation results verified

the superiority of a joint optimal time and power allocation algorithm, compared to other

solutions, through different scenarios.

In this chapter, we investigate spectrum allocation for multi-hop and multi-channel

transmissions of energy-harvesting CRNs in the presence of jamming attacks. The main

contributions of this chapter are summarized as follows
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• We consider the spectrum allocation in multi-hop transmissions with the consideration

of security. In addition, the energy-constrained issue is also considered in this chapter.

With an energy harvesting technique, energy-constrained relays are able to harvest

non−RF energy from the ambient environment to maintain their operations.

• Subsequently, we propose multi-hop channel allocation schemes to deal with the

jamming and constrained-energy problems. More specifically, by estimating the

considered quality of service (QoS) (e.g. end-to-end throughput, delay time) through

a number of considered data frames, the source can select the best channels and relays

to optimize the network performance (with high QoS) in the presence of jamming

attacks.

• Numerical results are presented to show that the proposed schemes are superior,

compared with baseline scheme and random scheme.

The remainder of this chapter is organized as follows. In Section 2.2, we describe

the system model of multi-hop and multi-channel cognitive radio network. In Section 2.3,

we define the problem formulation of this chapter. In Section 2.4, the proposed schemes are

presented. In Section 2.5, we validate the proposed schemes through the simulation results.

Finally, we conclude the chapter in Section 2.6.

2.2 System Model

In the chapter, we consider a multi-hop and multi-channel data transmission

between a secondary transmitter (source) and a receiver (destination) in which due to a

limited transmission range, the source needs to select the best relays to forward its data to

the destination. Different from [47], where the energy-constrained problem was not taken

into account, we employ the energy harvesting in the considered network. Particularly,

the relays in this chapter are energy-constrained devices equipped with a non-RF energy

harvesting component to prolong their operation. Thus, obtaining the best relay that has a

finite capacity battery, and the best channel for MHCRNs in the context of jamming attacks

to optimize network performance, is a key motivation for this chapter.

The network consists of a source (S), a destination (D), N relaysRf |f = {1, 2, ..., N},
and M jammers Ji |i = {1, 2, ...,M} . For the sake of simplicity, we assume that both S and

D have a fixed power supply such that they always have enough energy to transmit and
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Figure 2.1: An example of source and destination SU pair in the multi-hop and multi-channel

cognitive radio network under jamming attacks.

receive data. The relays still can harvest energy while implementing sensing or data commu-

nication phases. The total amount of harvested energy in each relay is stored in a battery

with a finite capacity, eca. The destination is located far from the source such that they are

currently not within transmission range of each other. Therefore, relays are responsible for

assisting the source to transmit data frames to the destination, and there are Q free channels

(C = {Ck|k = {1, 2, ..., Q}}) in the CR network. Before the data transmission phase, SUs

perform spectrum sensing to find out whether the channel is currently secure (i.e. there is

no jamming signal) or not. The source is assumed to have the information on all relays

(position, remaining energy) at the beginning of each data frame time. Therefore, it updates

the information before selecting the relay to transfer each data frame.

Fig. 2.1 shows an example of source and destination SU pair in the multi-hop and

multi-channel cognitive radio network with the assistance of multiple relays in the presence

of attacks by multiple jammers. Each user can only transmit the data within its transmission

range, Rt. In this chapter, we consider a low mobility context in which the spectrum

environment varies slowly, such that we can conduct the user and channel assignment based

on the location information and the network topology must be updated periodically. For
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such a spectrum allocation scenario, the source needs to establish an optimal route to the

destination and assign suitable channels to every link in the route. Therefore, by providing

a proper channel allocation scheme, we can guarantee the highest secure data transmission

along the whole route while still minimizing the delay of the communications.

2.2.1 Random Channel Switch Model of Jammers

In the chapter, jammers independently attack channels, and each jammer can only

attack one channel in specific time slot t within its jamming range, Rj . An attacker starts

jamming a channel at the beginning of each time slot and can also automatically switch to

jam another channel for the next time slot. We assume that the set of available channels

defined for all jammers is the same in the network. However, each jammer randomly switches

between channels over time slots according to the jamming probability following the Poisson

distribution. Therefore, the jammers may attack different channels within their jamming

range in two consecutive time slots. For example, if a jammer Ji attacks channel C1 at time

slot t, it may either switch to attack another channel, e.g. C2, or keep attacking channel C1

at time slot t+ 1. We further assume that jammers always have enough energy to attack

the channels. Thus, they always attack cognitive users in predefined channels. Besides, each

jammer has its own corresponding channel index during jamming attacks on the network.

The jamming probability of a jammer on channel Ck follows a Poisson distribution:

PJi(Ck) =
(µi)

IiCk exp (−µi)
IiCk !

(2.1)

where µi is the channel-jamming index mean of jammer Ji, and IiCk represents the index of

channel Ck of jammer Ji.

2.2.2 Energy Harvesting Model

A relay is equipped with a separate hardware component such that it can indepen-

dently harvest extra energy from the ambient environment over every time slot. It harvests

energy in both sensing and transmission phases. Therefore, the energy harvested by relays

in the previous time slot will be stored in a finite capacity battery and can be used for the

next time slot.



Chapter 2: Efficient Channel Selection and Routing Algorithm for Multi-hop Cognitive
Radio Networks under Jamming Attacks 13

The harvested energy of relays in a whole time slot is given as follows:

e
Rf
h =

 ε, with probability P
Rf
h

0, with probability (1− PRfh )
(2.2)

where ε represents the total amount of energy successfully harvested by relay Rf . P
Rf
h is

the probability of energy successfully harvested by relay Rf .

In this chapter, the time for completing the transmission of a data frame is referred

to as the frame time, Tfr. A data frame sent from every sub-source and sub-destination

pair is assumed to take a time slot duration. It also means that frame time may change for

every frame due to the different chosen routes. Let Nts denote the number of total time

slots required to transfer a frame from the source to destination over a chosen route. Then,

the harvested energy of relay Rf after one frame time will be given as

e
Rf
h,Nk

= εhs (2.3)

where hs denotes the number of time slots successfully harvested during Nts time slots. For

simplicity in this chapter, we ignore the energy for the signal receiving circuit and the energy

for decoding at the relays. If a data frame is transferred successfully from the source to

destination, the updated energy of relay Rf , which belongs to chosen route r∗j for data frame

Fj at the beginning of T jthfr , can be expressed as

E
Rf
0,j = min

(
E
Rf
0,j−1 − es − et + e

Rf
h,Nk

, eca

)
,∀Rf ∈ r∗j (2.4)

where E
Rf
0,j−1 represents the updated energy of relay Rf at the beginning of frame time

T jth−1
fr ; es, et, and eca are sensing energy, transmission energy, and battery capacity of the

relay, respectively. Meanwhile, the updated energy of other relays that do not belong to

chosen route r∗j for data frame Fj at the beginning of T jthfr is given by

E
Rf
0,j = min

(
E
Rf
0,j−1 + e

Rf
h,Nk

, eca

)
, ∀Rf /∈ r∗j (2.5)

2.3 Problem Formulation

In the reference [47], we proposed a scheme to select the optimal route and maximize

the SU’s successful-transmission probability under the jamming attack scenario. The scheme
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is responsible for finding all the best channels for each link (hop) in the possible routes from

the source to destination, wherein Ψmax represents a set of possible routes that have the

corresponding maximum successful transmission probability in P r
max

s . More particularly,

each link of a route in Ψmax is allocated the best channel to forward data, which is denoted

as a link-channel pair. That is, a link-channel pair is defined as the best-allocated channel for

a link, which can be obtained through the previous work [47]. Consequently, the proposed

scheme from that chapter will be adopted as one part of these schemes for the multi-hop

channel allocation presented in this chapter.

In this chapter, we investigate the solution for dynamically selecting the best routes

(best relays and channels) to deliver a number of data frames Nfr (from the source to

destination) such that the cognitive network can achieve the best performance under the

energy-constrained problem. By estimating the throughput and delay over a number of

specifically considered data frames (described later in Section IV) for all data frames, the

problem formulation can be given as follows:

Ω∗ =
{
r∗1, r

∗
2, ..., r

∗
Nfr

}
= arg max

rj∈Ψ

Nfr∑
j=1

(
τrj
trj

)
s.t. ∀Γ

l
rj
v
≤ Rt

(2.6)

where Ψ =
{
r1, r2, ..., r|Ψ|

}
represents a set of possible routes (from source to destination); τrj ,

and trj are throughput and delay of data frame Fj , respectively, Ω∗ including
{
r∗1, r

∗
2, ..., r

∗
Nfr

}
represents a set of the best chosen routes for each data frame (form first frame to the total

number of delivered frames, Nfr). Γ
l
rj
v

is the length of link lv on route rj . Rt is the

transmission range of each device. We assume that the energy of cognitive relays is limited,

and jammers can attack the channels in any time slot. Therefore, inefficient utilization of

relays and channels can significantly degrade the throughput and delay of the network, as

well as the utilized energy efficiency of the system. Hence, obtaining an optimal solution for

multi-hop cognitive communications is a challenging work in this study. In the next section,

we describe two novel schemes to solve this problem.

2.4 Multi-hop channel allocation schemes

In this section, we provide two novel multi-hop channel allocation schemes to solve

the energy-constrained and jamming problems, such that the source can choose the best

route including optimal link-channel pairs for each data frame transmission.
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The proposed algorithm is composed of a channel allocation process and a route

selection process. In channel allocation process, we adopt a scheme in the reference [47]

wherein the set of the best link-channel pairs of all routes from the source to the destination

is obtained according to network parameters. To this end, we merely consider the jamming

attack issue to allocate the best channel for each hop between the source and destination.

Subsequently, we get a set of possible routes, Ψmax, with a set of link-channel pairs,

Sr

(
lrv, C

lrv
k

)
, and a set of corresponding maximum successful transmission probabilities,

P r
max

s . lrv and C
lrv
k represent the link of route r and the best chosen channel for link lrv,

respectively. In the route selection process, we focus on selecting the best route, which

has the assigned channel obtained from the channel allocation process, for each data frame

transmission to optimize the multi-hop cognitive radio network performance.

In the next part, we provide two long term estimation schemes to deal with limited-

energy devices. In particular, we provide schemes to effectively select the best route for every

data frame by estimating the expected throughput and delay for a number of considered

data frames. Let us consider some formulas to establish schemes before describing the main

part in more detail in the next subsection.

The probability that arbitrary user n is attacked by jammer Ji on channel Ck is

PJi(Ck, n) = PJi(Ck) if user n is located within jamming range of jammer Ji. Otherwise,

Ji cannot attack user n due to the jamming range limitation, i.e. PJi(Ck, n) = 0. The

probability that user n will not be jammed by Ji on channel Ck is given by

PJi(Ck, n) = 1− PJi(Ck, n) (2.7)

where user n ∈ {S,D,Rf} , Ck ∈ C, Ji ∈ J. The probability of user n not being jammed on

channel Ck, i.e., the probability that there are no jammers in the area that can attack user

n on channel Ck, is expressed as

PJ(Ck, n) =
M∏
i=1

PJi(Ck, n). (2.8)

The probability of successful transmission on channel Ck for link l that can establish

a connection between two users, a and b, is then defined as

P ls = PJ(Ck, a)PJ(Ck, b), (2.9)

where a, b ∈ {S,D,Rf} , Ck ∈ C. The probability of successful transmission for route r is
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thus given by

P rs =

|r|∏
∀lv∈r,v=1

P lvs ,Γlv ≤ Rt, (2.10)

where lv is the link of route r, |r| is the number of links on route r, and Γlv represents the

length of link lv.

At the beginning of data frame Fj , the source will update the energy of all relays

E
Rf
0,j =

{
ER1

0,j , E
R2
0,j , ..., E

RN
0,j

}
. According to the updated information, we can determine the

corresponding energy of the relays that belong to each individual route, rm, as follows

E
Rrmf
0,j =

[
E
Rrm1
0,j , E

Rrm2
0,j , ..., E

Rrm|rm|
0,j

]
, (2.11)

where |rm| represents the total number of relays in route rm. The notation [.] indicates that

the index of each relay is arranged in ascending order of each relay in route rm. A set of

successful transmission probabilities for all possible routes in Ψmax is defined as

P r
max
m
s =

{
P
rmax
1
s , P

rmax
2
s , ..., P

rmax
|Ψmax|
s

}
, (2.12)

where |Ψmax| denotes the total number of all possible routes in the network.

Frame time duration refers to the time for transferring data through the total

number of hops in a chosen route. It may vary in each data frame. For instance, the first

data frame time will be three (time slots) if the source chooses a route having two relays.

However, the second data frame time would be four (time slots) if the source selects another

route that consists of three relays. After selecting a route for the current data frame, the

source must wait to transmit the next one until the data frame time of that route finishes.

Once the data frame time is finished, the source will again decide on a route to deliver the

next data frame.

Nevertheless, without estimating rewards such as throughput and delay for other

future data frames, selecting only the most favorable route for a data frame at the beginning

of the current data frame time is not always the best solution with a large number of data

frames. That is because the rest of the available routes (after selecting the previous one) may

provide poor quality (e.g. the low throughput or the long delay). In this chapter, therefore

we propose two estimation schemes to enhance the quality of the multi-hop cognitive radio

network in which both end-to-end throughput and delay are considered with the number of

considered data frames.
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2.4.1 Scheme 1

In this scheme, we provide a method to estimate metrics of QoS such as end-to-end

throughput and delay, and optimize overall quality of the multi-hop cognitive radio network.

These factors play crucial roles in evaluating multi-hop cognitive network performance. This

scheme allows the source to consider all routes at the beginning of each data frame even

including routes having insufficient-energy relays. This is because insufficient-energy relays

could be available (having sufficient energy for forwarding) after the current forwarding

phase finishes. Hence, this scheme allows each relay to forward data as it has enough energy

in its turn even though its remaining energy is insufficient at the beginning of the route

selection process.

In the channel allocation process, the source updates all relay and jammer infor-

mation at the beginning of each data frame. Then, it will find a set of possible routes,

Ψmax, in which a set of best link-channel pairs S∗r (lrv, C
lrv
k ) is included, as well as a set of the

corresponding maximum successful transmission probabilities, P r
max

s . lrv denotes link v of

route r, and C
lrv
k is the best channel k allocated to link v of route r. After allocating the

best link-channel pairs for all hops of each route in order to obtain Ψmax, we finally select

the best route to transfer every data frame.

In the route selection process, the source decides the number of considered data

frames, Nc, to estimate the sum of the expected throughput/delay ratio through a number

of considered data frames over different choices. Meanwhile, a set of possible choices, based

on the number of considered data frames, is given as Ω = {Ωw|w = {1, 2, ..., |Ω|}}, where

Ωw = {rw,u|u = {1, ..., Nc}}. However, allocating the best choice is still affected by the

energy of the relays due to their limited battery capacity.

A set of energy harvesting cases based on a number of considered data frames

is given as Ωeh = {Ωeh
w,z|z = {1, 2, ..., |Ωeh |}}; where Ωeh

w,z = {Ωeh
w,z,u|u = {1, ..., Nc}}, and

Ωeh
w,z,u = {eRfh,w,z,u|f = {1, 2, ..., N}}. Here w, z, and u represent the index of possible choices,

energy harvesting cases, and considered data frames, respectively. The set of corresponding

energy harvesting probability cases is also given as ΩPeh = {ΩPeh
w,z |z = {1, 2, ..., |ΩPeh |}},

Ω
Peh
w,z = {ΩPeh

w,z,u|u = {1, ..., Nc}}, and Ω
Peh
w,z,u = {PRfh,w,z,u|f = {1, 2, ..., N}}.

If all relays in the route of frame u have enough energy to forward the data frame,

the expected throughput of frame u is calculated as follows

τw,z,u = P
rmax
w,z,u

s RcTPh,w,z,u. (2.13)
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where Ph,w,z,u =
N∏
f=1

P
Rf
h,w,z,u represents the energy harvesting probability for the case

(w, z, u).

In the case any of the relays in the allocated route of frame u does not satisfy the

energy forwarding requirement (es + et), the source needs to define the successful recovery

probability of the insufficient-energy relay. That is because the relay is able to forward the

data frame if it satisfies the energy forwarding requirement. For example, at the beginning

of time slot t, the third relay of the allocated route does not have enough energy; however; it

can still be available (i.e. having enough energy) to forward the data frame after harvesting

enough energy during three time slots. For that reason, we define a set of insufficient-energy

relay of allocated route for frame u as Ω̃ = {R̃rw,z,u1 , ..., R̃
rw,z,u

|Ω̃|
}, where R̃rw,z,u represents

the insufficient-energy relay in allocated route rw,z,u. Then, the requirement for harvested

energy of relay Rf for forwarding is given as

εR̃
rw,z,u
f = es + et − E

R̃
rw,z,u
f

0 . (2.14)

The successful recovery probability of relay R̃
rw,z,u
f is computed as follows

δR̃
rw,z,u
f = 1−

ε
R̃
rw,z,u
f −1∑
hs=0

P
R̃
rw,z,u
f

h (hs, I
R̃
rw,z,u
f ) (2.15)

where P
R̃
rw,z,u
f

h (hs, I
R̃
rw,z,u
f ) denotes the successful energy harvesting probability of relay

R̃
rw,z,u
f with the number of successful energy harvesting time slots hs within IR̃

rw,z,u
f time

slots. Note that IR̃
rw,z,u
f is an order of relay R̃f in route rw,z,u. It also means that the

relay R̃f has IR̃
rw,z,u
f time slots to harvest enough of the required energy for the data frame

forwarding phase. The successful recovery probability of frame u is given by

δrw,z,u =

|Ω̃|∏
f=1

δR̃
rw,z,u
f . (2.16)

The expected throughput of frame u is calculated as

τw,z,u = P
rmax
w,z,u

s δrw,z,uRcTPh,w,z,u. (2.17)

The throughput/delay ratio is expressed as

Γw,z,u =
τw,z,u
tw,z,u

(2.18)
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Algorithm 2.1 Multi-hop channel allocation scheme under attack in the physical layer

1: Input: S,D,Rf , Ji, Ck, PJi(Ck), P
Rf
h , Nc.

2: Output: Obtain the best choice Ωw∗ = {r∗1, ..., r∗Nc
}|r∗1, ..., r∗Nc

∈ Ψmax.

3: Find Ψmax, P r
max

s as Eq. (2.7-2.10).

4: Find a set of possible choices Ω = {Ωw|w = {1, 2, ..., |Ω|}}, Ωw = {rw,u|u = {1, ..., Nc}}.
5: Define a set of energy harvesting cases Ωeh , Ωeh

w,z, Ωeh
w,z,u.

6: Define a set of energy harvesting probability cases ΩPeh , Ω
Peh
w,z , Ω

Peh
w,z,u.

7: for w = 1 : |Ω| do

8: for z = 1 : |Ωeh | do

9: Initialize remaining energy of relays at the frame time index u = 1.

10: for u = 1 : Nc do

11: if ∀E
R
rw,z,u
f

0 ≥ es + et // Energy of all relays in chosen route is sufficient.

12: Calculate τw,z,u as Eq. (2.13).

13: else

14: Define a set of inactive relays Ω̃ = {R̃rw,z,u1 , ..., R̃
rw,z,u

|Ω̃|
}.

15: Calculate required energy of relays in Ω̃, as Eq. (2.14).

16: Calculate recovery probability of each relays δR̃
rw,z,u
f as Eq. (2.15).

17: Calculate recovery probability of δrw,z,u as Eq. (2.16).

18: Calculate expected throughput for frame u, τw,z,u as Eq. (2.17).

19: end if

20: Calculate throughput/delay ratio Γw,z,u as Eq. (2.18) and remaining energy.

21: end for

22: end for

23: Define the best index z∗, with Γw,z∗ = max
z

Nc∑
u=1

Γw,z,u.

24: end for

25: Define the best index w∗, with Γw∗ = max
w

(Γw,z∗).

where tw,z,u = |rw,z,u| is the delay duration of the allocated route in frame u. After computing

the expected throughput/delay ratio of the cases with index w, z, u s.t. u = {1, ..., Nc}, , we

define the best harvested energy case, z, as follows:

Γw,z∗ = max
z

Nc∑
u=1

Γw,z,u. (2.19)
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Then, the best choice with index w (i.e allocated routes for each considered data frame) will

be selected as

Γw∗ = max
w

(Γw,z∗). (2.20)

So, now we can obtain the best choice, which is represented as

Ωw∗ = {r∗1, ..., r∗Nc
}|r∗1, ..., r∗Nc

∈ Ψmax. (2.21)

Afterwards, the source will select the first allocated route in the set of considered

data frames (u = 1) for its current data frame. Note that frame index u denotes an estimated

data frame and can only be applied to select the best choice in the route selection phase. It

is not the index of the real data frame that the source currently wants to transmit. Likewise,

the source will repeatedly define the best choice for the next data frames by using this

scheme until finishing its transmission (i.e. transmit all the total number of intended data

frames). Consequently, by estimating the throughput/delay ratio, transmitted data frames

are forwarded over secure and efficient routes to increase overall network performance in the

presence of jamming attacks. The multi-hop channel allocation scheme 1 is shown in the

Algorithm 2.1.

2.4.2 Scheme 2

In this scheme, we select the routes that have sufficient-energy relays for forwarding

at the beginning of each data frame time. It means the source will ignore all insufficient-

energy relays in the current time slot, and only sufficient-energy routes are taken into

consideration. The route selection process is similar to the scheme 1, except that the number

of route candidates is reduced. It guarantees that once the source selects the best route

for the current data frame, the transmission is only affected by jammers during the frame

time, not the energy in relays anymore because the source selects a sufficient-energy route at

the beginning of each data frame time. According to this scheme, the amount of harvested

energy by relays will be used for the next data frame transmission.

First, the source will define Ψmax and P r
max

s . Then, it defines a set of insufficient-

energy relays: Ω̃ = {R̃1, ..., R̃|Ω̃|}. After that, it defines a set of sufficient-energy routes, as

follows:

Ψmax = Ψmax\Ψ̃max (2.22)
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Algorithm 2.2 Multi-hop channel allocation scheme under attack in the physical layer

1: Input: S,D,Rf , Ji, Ck, PJi(Ck), P
Rf
h , Nc.

2: Output: Obtain the best choice Ωw∗ = {r∗1, ..., r∗Nc
}|r∗1, ..., r∗Nc

∈ Ψmax.

3: Find Ψmax, P r
max

s by using Eq. (2.7-2.10).

4: Find a set of insufficient-energy relays Ω̃ = {R̃1, ..., R̃|Ω̃|}.
5: Find a set of insufficient-energy routes Ψ̃max = {r̃1, ..., r̃|Ψ̃max|}.
6: Define a set of sufficient-energy routes Ψmax as Eq. (2.22).

7: Find a set of possible choices Ω = {Ωw|w = {1, 2, ..., |Ω|}}, Ωw = {rw,u|u = {1, ..., Nc}}.
8: Define a set of energy harvesting cases Ωeh , Ωeh

w,z, Ωeh
w,z,u.

9: Define a set of energy harvesting probability cases ΩPeh , Ω
Peh
w,z , Ω

Peh
w,z,u.

10: for w = 1 : |Ω| do

11: for z = 1 : |Ωeh | do

12: Initialize remaining energy of relays at the frame time index u = 1.

13: for u = 1 : Nc do

14: Calculate expected throughput for frame u, τw,z,u as Eq. (2.13).

15: Calculate delay time tw,z,u = |rw,z,u|.
16: Calculate throughput/delay ratio Γw,z,u as Eq. (2.18) and remaining energy.

17: end for

18: end for

19: Define the best index z∗, with Γw,z∗ = max
z

Nc∑
u=1

Γw,z,u.

20: end for

21: Define the best index w∗, with Γw∗ = max
w

(Γw,z∗).

where Ψ̃max = {r̃1, ..., r̃|Ψ̃max|} represents a set of insufficient-energy routes in the current

time slots. In the next step, the source will establish a set of possible choices Ω. All possible

routes (including insufficient-energy routes in frame u = 1) can be selected for the next

data frame transmissions, i.e. u >= 2, because after the data frame time of the data frame

(u = 1), insufficient-energy routes may become available (getting sufficient-energy routes).

Similar to the scheme 1, after defining the energy harvesting cases and the probability of

energy harvesting cases, the expected throughput of each case with index w, z, u can be

computed with Equation (2.13).

Note that insufficient-energy relays are ignored in the route selection phase of the
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Table 2.1: SIMULATION PARAMETERS

Parameter Value

Number of relays 7

Total number of data frames 1.5× 103

Initial energy of relays 6 energy units

Energy harvested probability 0.6

Harvested energy 2 energy units

Number of considered data frames 2

Sensing energy 2 energy units

Transmission energy 4 energy units

Battery capacity 10 energy units

Number of jammers 4

Number of channels 5

Total frame time 50 ms

Cognitive radio rate 1 bits/sec/Hz

Transmission range 0.4

Jamming range 0.3

Channel-jamming index mean µ 3

Area 1x1 normalized unit

Source position [0.1, 0.1]

Destination position [0.9, 0.9]

scheme 2. Therefore, the successful recovery probability of the allocated route will not be

considered. Next, we calculate the delay tw,z,u and throughput/delay ratio Γw,z,u for each

case. Finally, the best choice, Ωw∗ , is obtained as in the scheme 1. According to this scheme,

the best set of routes with the best channels and corresponding relays will be allocated for

every data frames of the multi-hop cognitive transmission from the source to destination.

The multi-hop channel allocation scheme 2 is shown in the Algorithm 2.2.
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Figure 2.2: Average throughput according to the battery capacity of relays.

2.5 Simulation Results and Analysis

In this section, we verify the performance of the two proposed schemes by using

a MATLAB simulation. To evaluate the efficiency of our proposed algorithms, we keep

the source and destination in fixed positions which are far from each other (i.e. no direct

transmission from source to destination). The relays and jammers are randomly distributed

in the network. Simulation parameters are listed in Table 2.1. In simulations, we make

a comparison with two other schemes: a reference scheme [47] and a random scheme. In

the reference scheme, the relays and channels are allocated by only maximizing the current

throughput/delay ratio for every data frame. In the random scheme, spectrum and relay

allocations are randomly performed.

Fig. 2.2 shows the relation between average throughput and the battery capacity

of the relays. We can see that average throughput increases with a larger battery capacity

of the relays. The higher throughput can be obtained because the source can select the

best routes more times thanks to the higher capacity of the relays. In Fig. 2.3, the relation

between average delay and the battery capacity of the relays is shown. It is obvious that

the delay decreases as the battery capacity of the relays increases. It is because the relays

have more time to be active (i.e. enough energy for forwarding data), which results in more

opportunities for the source to select the optimal routes.

Similarly, the relation between average throughput/delay ratio versus the battery

capacity of the relays is shown in Fig. 2.4. It is observed that a higher battery capacity of

relays can provide better quality. As a consequence, the curves show the effectiveness of the
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Figure 2.3: Average delay according to the battery capacity of relays.
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Figure 2.4: Average throughput/delay ratio according to the battery capacity of relays.

proposed schemes with various levels of battery capacity.

In order to confirm the energy efficiency of the proposed schemes versus the number

of jammers, simulation is implemented in Fig. 2.5. In this case, the energy efficiency of the

schemes decreases as the number of jammers increases. The reason is that the source has

lower successful transmission probability with the increment of number of jammers in the

network. Fortunately, the curves show that proposed schemes obtain higher energy efficiency

than the other schemes with different numbers of jammers in the network. In general,

the two proposed schemes provide higher effectiveness on network performance, compared

with the traditional schemes. More particular, the scheme 1 is superior the scheme 2 in

terms of end-to-end through and energy efficiency. However, the scheme 1 imposes higher

computational complexity than the scheme 2 since it needs to consider routes regardless of



Chapter 2: Efficient Channel Selection and Routing Algorithm for Multi-hop Cognitive
Radio Networks under Jamming Attacks 25

3 3.5 4 4.5 5 5.5 6 6.5 7

Number of jammers M

0

0.005

0.01

0.015

0.02

0.025

A
v
e
ra

g
e
 e

n
e
rg

y
 e

ff
ic

ie
n
c
y
 (

b
it
s
/e

n
e
rg

y
 u

n
it
)

Proposed scheme 1

Proposed scheme 2

Reference scheme

Random scheme

Figure 2.5: Average energy efficiency according to the number of jammers.

the energy status of the relays.

2.6 Conclusion

In this chapter, we considered a multi-hop, multi-channel data transmission CRN

in which the source cooperates with relays to forward data to the destination under jamming

attacks. The energy-constrained problem in a CR network was taken into account. We

proposed two novel schemes using energy harvesting technique to allocate the optimal

relays and channels over hops to transfer the number of data frames from the source to

the destination. Simulation results were provided to verify the efficiency of the proposed

schemes compared to traditional schemes. Finally, the simulation results confirmed that

good performances can be obtained by applying the proposed methods in the presence of

the jamming attacks.



Chapter 3

Attack strategy for legitimate

eavesdropping in cognitive radio

networks

3.1 Introduction

Recently, more and more threats by terrorists or criminals can potentially be used

to access wireless communications links for various purposes [15]. Therefore, government

agencies (e.g. the National Security Agency in the United States) have been investigating

counteraction solutions against terrorism by legitimately and efficiently eavesdropping on

suspicious wireless transmissions. In the literature, there are existing works on physical

layer security that are based on half-duplex (HD) transmission on both legitimate and

illegitimate (i.e. adversary) sides [16–19]. In the HD scenario, the attacker can be a

passive eavesdropper that either overhears the information of legitimate transmissions or

can be a jammer that launches jamming attacks to reduce the legitimate transmissions

rate. Multiple-antenna techniques [48,49] and cooperative security approaches [50,51] are

commonly applied to tackle eavesdropping attacks. Meanwhile, in order to defend against

jamming attacks, various potential countermeasures have been proposed, such as frequency

power control [52], frequency hopping [53], reactive transmission [54], etc. Eavesdroppers

have also recently adopted an FD technique to enhance their attacks, which are facilitated

in order to simultaneously overhear and jam the intended communications. There is also

26
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a lot of research devoted to security enhancement strategies as countermeasures against

the FD-based attackers [20–23]. However, these works usually view eavesdropping as an

illegitimate attack. Consequently, most of the studies have been carried out to optimize

secure transmissions, typically to maximize the achievable secrecy rate of the attacked (or

legitimate) side.

In contrast with illegitimate attacks, there are only a few studies investigating

legitimate attacks where a legitimate eavesdropper aims to actively attack suspicious point-

to-point wireless communications [24,25,55,56]. Inspired by the aforementioned issues for

energy-efficient utilization of the legitimate eavesdropping attack, which aims to overhear

and interfere with suspicious transmissions in the tactical enemy wireless environment, in

this chapter we investigate an optimal solution for this problem by adopting the partially

observable Markov decision process (POMDP) framework. The main contributions and

novelties of the chapter are summarized as follows.

i. We investigate an energy-efficient attack strategy against the suspicious point-to-point

transmissions to improve eavesdropping performance in a tactical cognitive radio-

based network. Powered by a non−RF energy harvesting circuit, a legitimate FD

eavesdropper can simultaneously harvest energy from the ambient environment and

overhear a global decision from a fusion center (FC) of the wireless sensor network

to decide to either passively (HD mode) or actively (FD mode) overhear suspicious

transmissions. The legitimate eavesdropper aims at not only maximizing the wiretap

rate but also degrading the illegitimate transmission rate of suspicious communications

in a Rayleigh fading channel.

ii. We propose a POMDP-based scheme to enhance the attack performance of the legitimate

FD eavesdropper where the energy-constrained problem is taken into account. The

problem is formulated in a recursive method to illustrate how the optimal action policy

can be obtained for the legitimate eavesdropper.

iii. The numerical results provide valuable insights into the effect of the parameters on

system performance (e.g. reward, legitimate wiretap rate, illegitimate transmission

rate, and energy efficiency). The proposed scheme is demonstrated to be robust with

various parameters of network conditions such as the harvested mean energy of the

harvesting circuit, the distance between the eavesdropper’s position and the illegitimate
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Figure 3.1: (a) The system model of the network. (b) The operational time frame structure

of the suspicious users and the legitimate eavesdropper.

transmission link, and the self-interference coefficient of the eavesdropper’s antenna.

The remainder of this work is organized as follows. In section 3.2, we present the

system model for the legitimate FD eavesdropper. We derive the problem formulation in

Section 3.3 and propose the POMDP-based wiretap scheme for the legitimate eavesdropper

in Section 3.4. The numerical simulation results and the discussion are provided in Section

3.5. Finally, Section 3.6 concludes this chapter.

3.2 System Model

The network consists of a suspicious cognitive user pair (a source denoted as S

and a destination denoted as D), and a legitimate eavesdropper denoted as LE as shown

in Fig. 3.1 (a). In this chapter, S, D and LE are secondary users in which the S tries to

transmit data to the D while the LE attempts to overhear the S-to-D communications and

mitigate data reception at the D. In fact, spectrum sensing is a vital function for secondary

users to identify free spectrum with the purpose of opportunistically using licensed bands in

overlay cognitive radio networks. However, the detection of licensed channel activity, which

is performed individually by a user, may be incorrect due to various issues such as fading,

shadowing, receiver uncertainty, etc., in a real wireless environment. For that reason, in this
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chapter we assume that the cooperative spectrum sensing (CSS) technique is used to obtain

a global decision from a fusion center (FC) over a broadcast channel (BC) [55]. The global

decision represents the Free state or Busy state of the primary channel. Specifically, at the

beginning of a time slot, the network requires all users to individually sense the primary

channel for local decisions as to the Free/Busy state of the licensed (primary) channel.

Subsequently, users will report their local decisions to the FC. The FC then makes the

global decision on the availability of the primary channel and broadcasts it to the users

in the network. As a result, the global decision sent from the FC provides cognitive users

more exact information in terms of the state (Free or Busy) of the primary channel. In the

considered system, a suspicious source also adopts CSS to obtain more accurate sensing

information to enhance its data transmission performance. A primary channel is allocated

for communications between the S and the D in a large series of time frames, such that they

can always use the primary channel when the primary channel is free. The LE is assumed

to know the time frame of suspicious cognitive radio users. Hence, it does not participate

in the sensing phase, but starts to take action starting from the FC reporting phase. The

operational frame structures of the suspicious cognitive user and legitimate eavesdropper

are illustrated in Fig. 3.1 (b).

3.2.1 Suspicious Transmission Rate and Legitimate Wiretap Rate

The S and the D are equipped with a HD antenna, while the LE enables FD

capability. The S transmits the data to the D when the reported global decision is “Free”.

Meanwhile, the confidential data transmissions can be overheard by the LE. For the data

transmissions from the S to the D, the transmit power is constrained by the maximum

transmit power, Pmax
S . Due to the FD technique, the LE is capable of performing jamming

attacks (i.e. transmitting interference signals to the destination) while overhearing the data

transmitted on the channel. The jamming power, PJ , is also constrained by the maximum

allowed power, Pmax
J . We further assume that the D and the LE can not successfully

decode the SU data when the collision (with PUs transmissions) happens owing to the high

interference of PU signals. Besides, since eavesdropping and jamming are simultaneously

performed at the LE, self-interference will be occurred. Unfortunately, it can not be

completely eliminated due to hardware limitations. Hence, in this chapter, we also consider

the residual self-interference that may significantly affect the attack performance of the LE.
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The received signal at the D and the LE can be given as

xD(t) =
√
PShSDs1(t) +

√
PJhEDs2(t) + nD(t), (3.1)

and

xE(t) =
√
PShSEs1(t) +

√
ρPJhEEs2(t) + nE(t), (3.2)

where PS and PJ represent the transmit power at the S and the jamming power at the

LE, respectively; hij represents the quasi-static block-fading channel gain from node i to

node j with i ∈ {S,E} and j ∈ {D,E}; and s1(t) and s2(t) denote the suspicious signal

and the jamming signal, respectively. Besides, we assume they are normalized information

signals with E
{
|s1 (t)|2

}
= E

{
|s2 (t)|2

}
= 1. nD and nE represent the baseband additive

white Gaussian noise (AWGN) at the D and the LE, respectively; and ρ is the coefficient of

the residual self-interference at the LE. The corresponding signal-to-interference-plus-noise

ratio (SINR) at the destination and the LE can be written as

γD =
PS |hSD|2

PJ |hED|2 + σ2
D

, (3.3)

and

γE =
PS |hSE |2

ρPJ |hEE |2 + σ2
E

, (3.4)

respectively, where σ2
D = σ2

E = σ2
0 denotes the same value for noise variance at the D and

the LE. The suspicious transmission rate and legitimate wiretap rate can be calculated as

follows [20]:

RD = log2(1 + γD), (3.5)

and

RE = log2(1 + γE), (3.6)

respectively, with the unit bandwidth of the channel.

3.2.2 Energy Harvesting Model and Primary Channel Model

In this chapter, we consider the energy-constrained problem of the eavesdropper,

in which an eavesdropper equipped with a limited capacity battery is powered by an energy
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Figure 3.2: Primary channel model.

harvester. For simplicity, we assume the S and the D always have enough energy for their

communications. At the end of a time slot, the LE updates the remaining energy that it can

utilize for the forthcoming time slots. We also consider a practical scenario where arrived

energy packets are finite. The harvested energy, εhv, of the LE updated at the end of time

slot t can be described as follows:

εhv (t) ∈
{
εhv1 , εhv2 , ..., εhvξ

}
, (3.7)

where εhvmin < εhv1 < εhv2 < ... < εhvξ < Eca, and Eca represents the battery capacity of the

LE. The amount of harvested energy in a time slot is assumed to follow a stochastic Poisson

process with mean value ε. The probability mass function of εhv can be given as follows:

phv(k) = Pr
[
εhv = εhvk

]
=
εk

k!
e−ε, k = 1, 2, ..., ζ. (3.8)

In a time slot, the states of the primary channel are denoted as {F,B}, where F

and B denote the hypothesis that the channel is currently Free or Busy, respectively. Fig.

3.2 illustrates the state transition model between two consecutive time slots of the primary

channel. The model is formulated as a two-state discrete-time Markov chain process, where

Pij |i, j ∈ {F,B} denotes the transition probability from state i in the current time slot to

state j in the next time slot. Besides, these transition probabilities are assumed to be known

a priori [57].

3.2.3 System Assumption

Throughout this chapter, the assumptions about the network are summarized as

follows:
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A1. The energy harvesting process of the legitimate eavesdropper is constantly implemented

throughout a time slot, with a minimum harvested energy of εhvmin, even when it stays

idle [57].

A2. The channel gain, hij , modeled as a block-fading and frequency non-selective parameter,

is constant over each time slot, independent and identically distributed from two

consecutive time slots, following a Rayleigh distribution [19,20,24].

A3. The channel state information on the wiretap link, jamming link, and suspicious

transmission link are available to the eavesdropper. This assumption can be interpreted

as a practical scenario where the eavesdropper belongs to the wireless network that

the suspicious users are involved in [20,23,24].

3.3 Problem Formulation

Based on the belief regarding the availability of the primary channel and the

remaining energy at the beginning of a time slot, the LE will take action as to whether it

should listen to the BC for the global decision of the FC in the reporting duration or not.

Subsequently, the LE will determine the optimal action mode (e.g. inactive eavesdropping

or active eavesdropping). For inactive eavesdropping mode, the LE only overhears the data

transmitted by the suspicious transmitter. For active eavesdropping mode, the LE will

select the proper amount of jamming energy to disturb data reception at the destination

while overhearing the data of suspicious transmissions such that it can concurrently obtain

the maximum wiretap rate and enhance jamming efficiency.

In the energy-constrained network, the energy consumption significantly affects

network performance. We therefore consider the energy consumption of the LE in a whole

time slot. That consists of four components: BC listening energy, εL, overhearing energy, εO,

jamming energy, εJ , and circuit energy, εCI . BC listening energy εL denotes the required

energy for the LE to listen to the BC to acquire the global decision on the state of the primary

channel; εO and εJ represent the required energy for overhearing and jamming, respectively.

Circuit energy εCI includes the consumption of active circuit blocks, signal processing,

etc. [58]. For simplicity, we assume the consumed energy for making a computational

decision can be negligible. Without loss of generality, the circuit power in the secondary

system is modeled as a constant: PCI [59]. We assume that when the LE stay idle in time
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slot t, it still consumes an amount of energy, εCI , for the whole time slot. The legitimate

attack reward can be defined as follows:

RA = max
a∗n(t),ε∗J (t)

∞∑
i=t

(RE(t)−RD(t)), (3.9)

s.t. 0 ≤ εJ(t) ≤ εmax
J ,

where a∗n(t) denotes the optimal action for the LE, while ε∗J(t) represents the allocated

optimal jamming energy of the LE to disturb the suspicious transmissions in time slot t.

RE(t) and RD(t) represent the legitimate wiretap rate and the suspicious transmission rate

in time slot t, given as (3.6) and (3.5), respectively. Note that the inactive eavesdropping

mode is equal to the active eavesdropping mode when εJ(t) = 0.

In this chapter, we consider an imperfect spectrum sensing scenario that depends on

two key factors: a probability of detection, Pd, and probability of false alarm, Pf . Intuitively,

Pd represents the probability that the sensing mechanism indicates the presence of the

PU while the PU actually occupies the channel, whereas Pf refers to the probability that

the sensing mechanism indicates the channel is occupied by the PU but the PU actually

does not occupy the channel. This work does not focus on spectrum sensing issues that

are well studied in the literature [60–62]; hence, we set the value of Pd according to the

maximum allowable probability that the cognitive user’s transmission collides with the PU’s

transmission on the licensed channel [57, 63]. Actually, in practical systems, the probability

of detection should be higher than a given threshold to protect the communications of PUs

on primary channel (e.g. in [63,64], the probability of detection is given at least 0.9 for all

multi-path conditions). According to the target probability of detection, the probability of

false alarm, Pf , can be calculated as follows [60]:

Pf = Q
(√

2γ + 1Q−1(Pd) +
√
τsfsγ

)
. (3.10)

where τs and fs represent the sensing duration and sampling frequency, respectively, of

the sensing mechanism within a time slot, and γ denotes the channel gain from a primary

transmitter to the sensing device.

The LE can observe the primary channel and the BC over multiple consecutive

slots to statically build a state transition model of the primary user, as well as the global

false alarm and the detection probabilities of the fusion center. In this chapter, we do not
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focus on the method to obtain the estimated values of the system, which was investigated

elsewhere [55,65]. So, we assume that these estimated values regarding the transition and

the false alarm probabilities are perfectly determined by the LE.

Table 3.1: TYPES OF ACTIONS

Description Action π1 ψ π2
π3

Stay idle a1 No - No No

Only use passive eavesdropping mode without

listening to BC
a2 No - Yes No

Only use active eavesdropping mode without

listening to BC
a3 No - Yes Yes

Only listen to BC a4 Yes - No No

Listen to BC, then use passive eavesdropping

mode when ψ = “Free”
a5 Yes

Free Yes No

Listen to BC, then stay silent when ψ = “Busy” Busy No No

Listen to BC, then use active eavesdropping

mode when ψ = “Free”
a6 Yes

Free Yes Yes

Listen to BC, then stay silent when ψ = “Busy” Busy No No

3.4 The proposed POMDP-based wiretap scheme

In this chapter, we will determine the optimal decision by adopting the POMDP

framework to maximize the long-term legitimate attack reward along with a concern regarding



Chapter 3: Attack strategy for legitimate eavesdropping in cognitive radio networks 35

the utilized energy efficiency of the eavesdropper. At the beginning of a time slot, the LE

selects an optimal decision based on the current remaining energy, εrm, and the channel

state probability (also called the belief), Φ, (i.e. the probability that the primary channel

is free in the next time slot). Making the decision on the optimal jamming energy in the

current time slot, t0, significantly depends on the summation of the current reward and the

expected future reward from time slot t = t0 + 1. The expected future reward produced by

adopting the POMDP framework which is based on the following factors, is described as

follows.

• State space. In time slot t, the state of the eavesdropper includes the remaining

energy in the battery, εrm(t), and the belief regarding the availability of the primary

channel, Φ(t). Thus, the state of the LE at the beginning of time slot t is denoted as

s(t) = {εrm(t),Φ(t)}.

• Action space. In time slot t, the LE decides on action a(t) in the action space AE =

{a1, a2, ..., a6} which is illustrated in Table 3.1. Let us define π1 = {“Yes”, “No”}, π2 =

{“Yes”, “No”}, and π3 = {“Yes”, “No”} as the sub-action indicators for listening the

BC, overhearing the suspicious transmissions, and jamming the suspicious transmissions,

respectively. For example, π1 = “Yes” represents that the LE listens to the BC while

π1 = “No” represents that the LE does not listen to the BC. π2 = “Yes” and π2 = “No”

indicate that the LE overhears and does not overhear the suspicious transmissions

on the primary channel, respectively. Similarly, the LE will make the jamming to

the suspicious transmissions when π3 = “Yes”; otherwise, the LE will not jam the

suspicious transmissions (i.e. π3 = “No”). ψ = {“Free”, “Busy”} represents the global

decision obtained at LE when it listens to the BC. Table 3.1 shows the different actions

of the LE that are defined in our work.

• Reward. Given the state s(t) = {εrm(t),Φ(t)} in time slot t, each action a(t) taken

by the LE will bring a corresponding immediate reward, Rw (s(t), {a(t)). Based on

the objective of this work, the immediate reward, defined as the legitimate attack

reward in the time slot t after taking action a(t), is represented as Rw (s(t), a(t)) =

RE(t)−RD(t), as expressed in Eq. (3.9). The flowchart of the POMDP-based wiretap

scheme is shown in Fig. 3.3. In the next subsection, according to the actions of the

LE, we summarize the possible observation cases that occur at the end of each slot.
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Figure 3.3: The flow chart of the proposed scheme.

3.4.1 Possible Observations for Actions

In subsection, we describe possible observations after an action is taken, based

on the state, action spaces and reward defined in the previous section. According to the

observation and current state, s(t) = {εrm(t),Φ(t)}, we also describe the corresponding

reward and the way to update the next state such as the remaining energy and the belief

regarding the availability of the primary channel, s(t+ 1) = {εrm(t+ 1),Φ(t+ 1)}.

3.4.1.1 The reward and the state update for action a1

In the action a1, the LE stays idle in time slot t. Thus, there is no observation.

However, the rewards exist if the source transmits SU data to the destination. Consequently,
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the reward of the LE is given as

Rw [εrm(t),Φ(t), a1] = −T − tS − tL
T

RD(t)Φ(t)(1− P̃f )

= − ttr
T

log2(1 +
PS |hSD|2

σ2
D

)Φ(t)(1− P̃f ). (3.11)

The belief that the primary channel is free in time slot t+ 1 can be updated as

Φa1(t+ 1) = Φ(t)P̃FF + (1− Φ(t))P̃BF . (3.12)

The remaining energy of the LE for use in the next time slot can be calculated as

εrm(t+ 1) = εrm(t)− εCI + εhv(t). (3.13)

The transition probability of energy from time slot t to time slot t+ 1 can be expressed as

Pr[εrm(t)→ εrm(t+ 1)] = Pr[εhv(t) = εhvk ]. (3.14)

for k = 1, 2, ..., ξ, where Pr[εhv(t) = εhvk ] is given in (3.8).

3.4.1.2 The reward and state update for action a2 according to observations

In the action a2, the LE does not listen to the BC and only overhears suspicious

transmissions at the given time t. Therefore, the remaining energy of the LE for the next

time slot after taking action a2 can be updated as

εrm(t+ 1) = εrm(t)− εO − εCI + εhv(t). (3.15)

Also, there are four possible observations (∆1,∆2,∆3, and ∆4) for action a2, which will be

described more detailed below.

Observation 1 (∆1): the LE takes action a2 and detects only SU signal.

In this case, the SU data is successfully decoded. So, the reward can be obtained

as follows

Rw [εrm(t),Φ(t), a2|∆1] =
T − tS − tL

T
(RE(t)−RD(t))

=
ttr
T

log2

 1+
PS |hSE |2

σ2
E

1+
PS |hSD|2

σ2
D

. (3.16)
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The probability that the event happens after taking action a2, Pr [∆1] can be calculated as

Pr [∆1] = P̃F P̃ (“Free”|F ) = Φ(t)(1− P̃f ). (3.17)

where P̃ (“Free”|F ) is the probability that the global decision is “Free” given the channel

is actually not occupied by PUs. The updated belief for time slot t + 1, Φa2|∆1
(t + 1) is

computed as

Φa2|∆1
(t+ 1) = P̃FF . (3.18)

Observation 2 (∆2): the LE takes action a2 and detects both SU and PU signals.

In this case, the SU data is not successfully decoded due to the collision between SU

and PU transmissions. There will be no reward in this case, i.e. Rw [εrm(t),Φ(t), a2|∆2] = 0.

The probability that the event happens after taking action a2, Pr [∆2] can be calculated as

Pr [∆2] = P̃BP̃ (“Free”|B) = (1− Φ(t))(1− P̃d). (3.19)

where P̃ (“Free”|B) represents the probability that the global decision is “Free” given the

channel is actually occupied by PUs. The belief for the next time slot can be updated as

follows:

Φa2|∆2
(t+ 1) = P̃BF . (3.20)

Observation 3 (∆3): the LE takes action a2 and detects only PU signal.

In this case, we can infer that the primary channel is busy in this time slot. There

will also be no reward in this case, i.e. Rw [εrm(t),Φ(t), a2|∆3] = 0. The probability Pr [∆3]

that the event happens can be calculated as

Pr [∆3] = P̃BP̃ (“Busy”|B) = (1− Φ(t))P̃d. (3.21)

where P̃ (“Busy”|B) represents the probability that the global decision is “Busy” given the

channel is actually occupied by PUs. The belief for the next time slot can be updated as

follows

Φa2|∆3
(t+ 1) = P̃BF . (3.22)
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Observation 4 (∆4): the LE takes action a2 and can not detect any signal.

This case happens when a false alarm occurs based on the FC global decision, which

means there are no SU or PU transmissions on the channel for this time slot. Consequently,

there is no reward, i.e. Rw [εrm(t),Φ(t), a2|∆4] = 0. The probability that the event happens

in this action, Pr [∆4] can be calculated as

Pr [∆4] = P̃F P̃ (“Busy”|F ) = Φ(t)P̃f . (3.23)

where P̃ (“Busy”|F ) represents the probability that the global decision is “Busy” given the

channel is actually not occupied by primary users. The belief for the next time slot can be

updated as follows:

Φa2|∆4
(t+ 1) = P̃FF . (3.24)

3.4.1.3 The reward and state update for action a3 according to observations

In the action a3, the LE does not listen to the BC at the given time t but

simultaneously overhears and jams SU transmission data. In this case, the remaining energy

for the next time slot of the LE after the action a3 is taken can be calculated as

εrm(t+ 1) = εrm(t)− εO − εJ(t)− εCI + εhv(t). (3.25)

There are also four observations (∆5,∆6,∆7, and ∆8) for action a3, which are defined as

follows.

Observation 5 (∆5): the LE takes action a3 and detects only SU signal.

In this case, the SU data is successfully decoded. Therefore, the reward can be

obtained as follows

Rw [εrm(t),Φ(t), a3|∆5] =
T − tS − tL

T
(RE(t)−RD(t))

=
ttr
T

log2

1+
PS |hSE |2

ρPJ (t)|hEE |2+σ2
E

1+
PS |hSD|2

PJ (t)|hED|2+σ2
D

. (3.26)

The probability that the event happens after taking action a3, Pr [∆5] can be calculated as

Pr [∆5] = P̃F P̃ (“Free”|F ) = Φ(t)(1− P̃f ). (3.27)
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The updated belief for time slot t+ 1 for this event is computed as

Φa3|∆5
(t+ 1) = P̃FF . (3.28)

Observation 6 (∆6): the LE takes action a3 and detects both SU and PU signals

In this case, a misdetection happens and there is a collision between SU and PU

signals. As a result, the SU data is not successfully decoded. There will be no reward in

this case, i.e. Rw [εrm(t),Φ(t), a3|∆6] = 0. The probability that the observation ∆6 happens

after taking action a3, Pr [∆6] can be calculated as

Pr [∆6] = P̃BP̃ (“Free”|B) = (1− Φ(t))(1− P̃d). (3.29)

The belief for the next time slot can be updated as follows

Φa3|∆6
(t+ 1) = P̃BF . (3.30)

Observation 7 (∆7): the LE takes action a3 and detects only the PU signal.

In this case, we can infer that the primary channel is actually busy in this time

slot. There is also no reward in this case, i.e. Rw [εrm(t),Φ(t), a3|∆7] = 0. The probability

that this observation occurs, Pr [∆7] can be calculated as

Pr [∆7] = P̃BP̃ (“Busy”|B) = (1− Φ(t))P̃d. (3.31)

The belief for the next time slot can be updated as follows:

Φa3|∆7
(t+ 1) = P̃BF . (3.32)

Observation 8 (∆8): the LE takes action a3 and can not detect any signal.

This case happens when the S misses an opportunity for data transmission due to a

false alarm. Therefore, there is also no reward in this case, i.e. Rw [εrm (t) ,Φ (t) , a3 |∆8 ] = 0.

The probability that the event happens, Pr [∆8] can be calculated as

Pr [∆8] = P̃F P̃ (“Busy”|F ) = Φ(t)P̃f . (3.33)

The belief for the next time slot can be updated as follows:

Φa3|∆8
(t+ 1) = P̃FF . (3.34)



Chapter 3: Attack strategy for legitimate eavesdropping in cognitive radio networks 41

3.4.1.4 The reward and state update for action a4 according to observations

In the action a4, the LE only listens to the BC and stays silent till the end of the

time slot t. In this case, the remaining energy of the LE for the next time slot after taking

action a4 can be calculated as

εrm(t+ 1) = εrm(t)− εL − εCI + εhv(t). (3.35)

There are two observations (∆9,∆10) for this action, which are defined as follows.

Observation 9 (∆9): the LE takes action a4 and the global decision of the FC is

free (i.e. ψ = “Free”).

In this case, the reward can be obtained as follows:

Rw [εrm (t) ,Φ (t) , a4 |∆9 ] = −T − tS − tL
T

RD (t)

×
Φ (t)

(
1− P̃f

)
Φ (t)

(
1− P̃f

)
+ (1− Φ (t))

(
1− P̃d

)
= − ttr

T
log2

(
1 +

PS |hSD|2

σ2
D

)

×
Φ (t)

(
1− P̃f

)
Φ (t)

(
1− P̃f

)
+ (1− Φ (t))

(
1− P̃d

) (3.36)

The probability that the event of this action happens, Pr [∆9] can be calculated as

Pr [∆9] = Φ(t)(1− P̃f ) + (1− Φ(t))(1− P̃d). (3.37)

Based on Bayes’ rule, the belief for the next time slot can be updated as follows:

Φa4|∆9
(t+ 1) =

Φ(t)(1− P̃f )P̃FF + (1− Φ(t))(1− P̃d)P̃BF
Φ(t)(1− P̃f ) + (1− Φ(t))(1− P̃d)

. (3.38)

Observation 10 (∆10): the LE takes action a4 and the global decision of the FC

is busy (i.e. ψ = “Busy”).

There will be no reward in this case, i.e. Rw [εrm(t),Φ(t), a4|∆10] = 0. The

probability that the event of this action happens, Pr [∆10] can be calculated as

Pr [∆10] = 1− Φ(t)(1− P̃f )− (1− Φ(t))(1− P̃d). (3.39)
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Similarly, the belief for the next time slot can be updated as follows:

Φa4|∆10
(t+ 1) =

Φ(t)P̃f P̃FF + (1− Φ(t))P̃dP̃BF

1− Φ(t)(1− P̃f )− (1− Φ(t))(1− P̃d)
. (3.40)

3.4.1.5 The reward and state update for action a5 according to observations

In the action a5, the LE listens to the BC in the given time t, and then overhears

suspicious transmissions when ψ = “Free”; otherwise (i.e. ψ = “Busy”), the LE stays silent

and saves the energy for the next time slot. Subsequently, the remaining energy of the LE

when ψ = “Free”can be calculated as

εrm(t+ 1) = εrm(t)− εL − εO − εCI + εhv(t). (3.41)

For the action a5, there are two observations (∆11,∆12) when ψ = “Free” and

there is one observation ∆13 when ψ = “Busy”, which are described in more details below.

Observation 11 (∆11): the LE takes action a5 and successfully decodes the data

when ψ = “Free”.

In this case, the reward can be obtained as follows:

Rw [εrm(t),Φ(t), a5|∆1] =
T − tS − tL

T
(RE(t)−RD(t))

=
ttr
T

log2

 1+
PS |hSE |2

σ2
E

1+
PS |hSD|2

σ2
D

. (3.42)

The probability that the event of action a5 happens, Pr [∆11] can be calculated as

Pr [∆11] = P̃F P̃ (“Free”|F ) = Φ(t)(1− P̃f ). (3.43)

The updated belief for time slot t+ 1 is computed as

Φa5|∆11
(t+ 1) = P̃FF . (3.44)

Observation 12 (∆12): the LE takes action a5 and can not decode the data when

ψ = “Free”.

In this case, there will be no reward, i.e. Rw [εrm(t),Φ(t), a5|∆12] = 0. The

probability that the event happens, Pr [∆12] can be calculated as

Pr [∆12] = P̃BP̃ (“Free”|B) = (1− Φ(t))(1− P̃d). (3.45)
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The belief for the next time slot can be updated as follows:

Φa5|∆12
(t+ 1) = P̃BF . (3.46)

Observation 13 (∆13): the LE takes action a5 and stays silent when ψ = “Busy”.

In this case, the energy remaining for the next time slot when ψ = “Busy” can be

calculated as

εrm(t+ 1) = εrm(t)− εL − εCI + εhv(t). (3.47)

Moreover, this observation is defined the same as observation 10 (∆10), and there is no

reward in this case. Pr [∆13] and Φa5|∆13
(t+ 1) are also given in (3.39, 3.40), respectively.

3.4.1.6 The reward and state update for action a6 according to observations

In the action a6, the LE listens to the BC and then simultaneously overhears and

jams suspicious transmissions when ψ = “Free”; otherwise, the LE stays silent and saves

energy for the next time slot when ψ = “Busy”. The remaining energy of the LE when

ψ = “Free” can be calculated as

εrm(t+ 1) = εrm(t)− εL − εO − εJ(t)− εCI + εhv(t). (3.48)

For the action a6, there are two observations (∆14,∆15) when ψ = “Free”, and there is one

observation ∆16 when ψ = “Busy”, which are described as follows.

Observation 14 (∆14): the LE takes action a6 and successfully decodes the data

when ψ = “Free”.

In this case, the reward can be obtained as follows:

Rw [εrm(t),Φ(t), a6|∆14] =
T − tS − tL

T
(RE(t)−RD(t))

=
ttr
T

log2

1+
PS |hSE |2

ρPJ (t)|hEE |2+σ2
E

1+
PS |hSD|2

PJ (t)|hED|2+σ2
D

. (3.49)

The probability that the event happens, Pr [∆14] can be calculated as

Pr [∆14] = P̃F P̃ (“Free”|F ) = Φ(t)(1− P̃f ). (3.50)

The updated belief for time slot t+ 1 is computed as

Φa6|∆14
(t+ 1) = P̃FF . (3.51)
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Observation 15 (∆15): the LE takes action a6 and can not decode the data when

ψ = “Free”.

There will be no reward in this case, i.e. Rw [εrm(t),Φ(t), a6|∆15] = 0. The

probability that the event happens, Pr [∆15] can be calculated as

Pr [∆15] = P̃BP̃ (“Free”|B) = (1− Φ(t))(1− P̃d). (3.52)

The belief for the next time slot can be updated as follows

Φa6|∆15
(t+ 1) = P̃BF . (3.53)

Observation 16 (∆16): the LE takes action a6 and stays silent when ψ = “Busy”.

In this case, the energy remaining for the next time slot when ψ = “Busy” can be

calculated as

εrm(t+ 1) = εrm(t)− εL − εCI + εhv(t). (3.54)

Moreover, this observation is defined the same as observation 10, and there is no reward

in this case. Pr [∆16] and Φa6|∆16
(t + 1) are also given in (3.39, 3.40), respectively. It is

noteworthy that the transition probabilities for energy, Pr[εrm(t)→ εrm(t+ 1)] under all

observations are given in (3.14).

3.4.2 Value Function

In this section, we present the optimal decision achieved by adopting the POMDP

framework. The final optimal decision of the LE is stimulated by enhancing the value

function defined as the maximum value of the total discounted attack reward. In order to

select the optimal action in the action space AE , based on POMDP, which maximizes the

long-term legitimate attack reward of the LE, we denote the value function starting from

time slot t as V (εrm(t),Φ(t)), which is expressed as follows:

V (εrm(t),Φ(t)) = max
a(t)∈AE


∞∑
i=t

αi−t
∑

∆j∈a(i)

Pr[∆j ]

∑
εrm(i+1)

Pr[εrm(i)→ εrm(i+ 1)|∆j ]

×Rw[εrm(i),Φa(i)(i), a(i)|∆j(i)]|εrm(i) = εrm(t),Φ(i) = Φ(t)

 (3.55)
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where i represents the index of the time slot, t denotes the current time slot, and α is the

discount factor to indicate that the reward value in current time slot t is more than that

of the subsequent time slots; ∆j represents the possible observation of the action, a(i);

Rw[εrm(i),Φa(i)(t), a(i)|∆j(i)] represents the estimated reward when action a(i) is taken

when state s(i) =
{
εrm(i),Φa(i)(i)

}
with the corresponding observation, ∆j , of the LE. The

value function that satisfies the Bellman equation [66] is expressed as follows:

V (εrm(t),Φ(t)) = max
a(t)∈AE

{
Va(t)∈AE (εrm(t),Φ(t))

}

= max
a(t)∈AE


Va1 (εrm(t),Φ(t)) ,

Va2 (εrm(t),Φ(t)) ,

..., Va6 (εrm(t),Φ(t))

 (3.56)

where Vai (εrm(t),Φ(t)) represent the expected value functions of action ai for state s(t) =

{εrm(t),Φ(t)}. Therefore, in order to obtain the optimal policy of the POMDP for the

long-term attack reward, the optimization problem in (3.55) can be solved by using the

value iteration-based method [67].

3.4.3 Energy Overflow Mitigation

In order to mitigate the energy overflow for the battery of the LE, we define energy

overflow mitigation conditions to avoid an event where the energy harvested is greater than

the battery capacity, and the overflow energy will be wasted. The overflow energy will be

taken into account in the case of actions a3 and a6, since the eavesdropper invokes active

eavesdropping mode to attack suspicious transmissions. We define two conditions for energy

overflow mitigation as follows: ω1 : εrm(t)− εrq + ε > Eca

ω2 : ε∗J < εmax

(3.57)

where the condition ω1 indicates that the remaining energy after taking the action will

be greater than the energy capacity, whereas the condition ω2 indicates that the chosen

amount of jamming energy, ε∗J , is less than the possible maximum amount of jamming

energy; εrq denotes the energy that is required to take the action. Consequently, when two

conditions are satisfied, we set ε∗J be εmax. As a result, energy overflow mitigation can be

guaranteed. That means the LE will use the maximum jamming energy to attack suspicious

transmissions in the case that the battery is likely to overflow at the end of each time slot.
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Table 3.2: SIMULATION PARAMETERS

Parameter Notation Value

Number of time slots N 104

Time slot duration T 200 ms

Sensing duration ts 2 ms

Reporting duration tr 1 ms

Self-interference coefficient ρ 10−9

Battery capacity Eca 30 mJ

Circuit energy εCI 1 mJ

Listening energy εL 2 mJ

Overhearing energy εO 7 mJ

Jamming energy εJ [5 10 15] mJ

Mean value of harvested energy ε 6 mJ

Global probability of detection Pd 0.9

Global probability of false alarm Pf 0.1

Transition probability of the primary channel

moving from “Free” to “Free”
PFF 0.8

Transition probability of the primary channel

moving from “Busy” to “Free”
PBF 0.2

Initial belief that the primary channel is free Φ 0.5

Transmit power at the suspicious source PS 10 dBm

Noise variance at the LE and the D σ2
0 0.01

Discount factor α 0.9

3.5 Simulation Results

In this section, we evaluate the performance of the proposed scheme by using

Matlab software. Two baseline schemes are considered for performance comparison with

the proposed scheme; one is the conventional passive eavesdropping, denoted as Myopic -

CPE scheme and the other is the conventional active eavesdropping, denoted as Myopic -

CAE scheme [66]. In the case of the Myopic - CPE scheme, the eavesdropper only passively



Chapter 3: Attack strategy for legitimate eavesdropping in cognitive radio networks 47

7 8 9 10 11

Mean value of harvested energy ǫ (mJ)

-1

0

1

2

3

4

R
ew

ar
d
(b
ps
/H

z)

Proposed scheme
Myopic - CPE scheme
Myopic - CAE scheme

Legitimate attack reward

Suspicious transmission rate

Legitimate wiretap rate

Figure 3.4: Rewards versus different mean values of harvested energy.

overhears the suspicious transmissions to maximize the wiretap rate in a single time slot

if the global decision is free and the remaining energy in the battery is enough for the

operation of the eavesdropper. In the Myopic - CAE scheme, the LE always simultaneously

overhears and jams suspicious transmissions with the maximum remaining energy in the

battery to maximize the immediate attack reward when the global decision is free and the

remaining energy in the battery is enough for the operation. Simulation parameters are

summarized in Table 3.2. The S and the D are located at coordinates (0,0) and (150,0),

while the coordinate of LE is (0,150). The distance between users is in meters. Unless

otherwise stated, we assume the path loss exponent is 3, the step size of the belief is 0.01.

Simulation results are achieved by averaging 104 random realizations over Rayleigh fading

channels [20].

At first, we inspect the performance of the proposed scheme with different mean

values of harvested energy per time slot, ε. The corresponding simulation results are shown

in Figs. 3.4, 3.5, and 3.6. Fig. 3.4 shows the legitimate attack reward, the legitimate wiretap

rate, and the suspicious transmission rate according to the mean value of harvested energy

at the LE. We can see that the legitimate attack reward with all schemes increases as ε

increases. This is because the LE has more energy for its operations with more energy

harvested by the harvesting circuit, which causes a higher legitimate attack reward with the

higher mean value of harvested energy. We can also observe that rewards under all schemes

take a negative value when ε smaller than 7 mJ , which means the harvested energy per

time slot is not enough for the LE to achieve a higher wiretap data rate than the suspicious

transmission rate. Besides, as ε increases, the legitimate wiretap rate of all the schemes
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Figure 3.5: Energy efficiency versus different mean values of harvested energy.

also increases while the suspicious transmission rate decreases only for the proposed scheme

and the Myopic - CAE scheme, but not the Myopic - CPE scheme. The reason is that

Myopic - CPE scheme only overhears the suspicious transmissions to obtain a higher wiretap

rate without considering jamming the suspicious transmissions. This results in higher data

reception at LE in the Myopic - CPE scheme. More specifically, we can get an average rate

more than 3 bps/Hz when ε ≥ 7 mJ , and the maximum value of 3.4 bps/Hz when ε ≥ 9 mJ .

However, the transmission rate of suspicious users maintains a very high rate at 3.9 bps/Hz.

When ε = 11 mJ , we can see that the proposed scheme provides the highest wiretap rate

at the LE and the lowest suspicious transmission rate at the destination, compared with

the CPE and CAE schemes. Subsequently, the more energy the LE harvests, the more

efficiently the proposed scheme works.

Fig. 3.5 shows energy efficiency according to different mean values of harvested

energy by the LE. In this chapter, the energy efficiency is defined as average legitimate

attack reward over the utilized energy of the LE (in b/J unit) over 10,000 time slots. As

a result, the Myopic - CPE scheme provides lower energy efficiency than other schemes

for each single time slot. This is simply because a medium amount of harvested energy is

quite enough for eavesdropping action, whereas the energy of the battery suffers too much

overflow in the case of Myopic - CPE scheme. From the curves in Fig. 3.5, we see that

the proposed scheme outperforms the other schemes in terms of energy efficiency owing to

having the least consumed energy.

The statistics on the number of selected actions by the LE in terms of time slots

in the proposed scheme and the Myopic - CAE scheme are shown in Fig. 3.6 (a) and Fig.
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Figure 3.6: Statistics of selected actions versus different mean values of harvested energy.
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Figure 3.7: Rewards with respect to different positions of the LE.

3.6 (b), respectively during 10,000 time slots. The amount of jamming energy is divided into

three levels of 5 mJ , 10 mJ , and 15 mJ , with corresponding actions, denoted as Min, Med,

and Max, respectively. Fig. 3.6 (a) shows that in the proposed scheme the LE most likely

select and use the action “a6 - Max”, which means that the LE simultaneously overhears

and jams the SU transmissions with the maximum jamming energy, 15 mJ as ε ≥ 10 mJ .

However, the LE usually takes actions a1, a2, “a3 - Min”, a4, and a5 when the mean value

of harvested energy is small, ε < 10 mJ . On the other hand, Fig. 3.6 (b) shows that in the

Myopic - CAE, the LE most likely takes the action “a6 - Max” that requires the highest

jamming energy as ε is large while staying idle as ε is small.

Next, we observe the performances of the proposed scheme, and the two baseline

schemes when the eavesdropper is located in different positions, throughout Figs. 3.7, 3.8,

and 3.9. In the simulation, the LE moves along a straight line from the position (0,150) to

(150,150). Fig. 3.7 shows that the reward slightly declines when the LE is located far from



50 Chapter 3: Attack strategy for legitimate eavesdropping in cognitive radio networks

0 50 100 150

Position of the eavesdropper (m)

-150

-100

-50

0

50

E
n
er
gy

E
ffi
ci
en
cy

(b
/J

)
Proposed scheme
Myopic - CPE scheme
Myopic - CAE scheme

Figure 3.8: Energy efficiency with respect to different positions of the LE.
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Figure 3.9: Statistics of selected actions with respect to different positions of the LE.

the suspicious source under all schemes. It is noteworthy that only the proposed scheme

provides the legitimate wiretap rate greater than or equal to the suspicious transmission

rate in all positions of the LE. On the other hand, the two baseline schemes always provide

a lower legitimate wiretap rate than the data rate of the suspicious transmissions.

Fig. 3.8 shows the energy efficiency according to the different position of the LE.

Energy efficiency degrades as the position of the LE moves in the left-to-right direction,

which is gradually farther away from the S. This can be explained as follows: with a limited

energy budget and the same mean harvested energy, in all schemes, the LE will use the same

energy, regardless of the position of the LE, which leads to degradation in energy efficiency

due to the farther eavesdropping distance. Fig. 3.8 shows that the proposed scheme provides

higher energy efficiency than two other baseline schemes, and has robustness to the change

of network topology by dynamically adopting the proper policy for the LE.

Fig. 3.9 shows statistics on the number of selected actions by the LE in terms
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Figure 3.10: Rewards with respect to different coefficients of self-interference.

of time slots, with different positions of the LE in the cases of the proposed scheme and

Myopic - CAE scheme. Similarly to Fig. 3.6 (a), we can observe the adaptability of the

proposed scheme as the position of the LE changes. For example, the proposed scheme

adopts more action of the active eavesdropping, action a6 than the passive eavesdropping as

the LE moves closer to the suspicious destination node.

Lastly, Fig. 3.10 shows the effect of the self-interference coefficient on the perfor-

mance of the schemes. In Fig. 3.10, the Myopic - CPE scheme obtains steady rewards,

regardless of the increasing values of the self-interference coefficient. The reason is that the

LE always uses the passive eavesdropping mode to attack suspicious transmissions. The

opposite situation holds when the LE uses active eavesdropping mode, which is generally

shown through the legitimate attack reward. Obviously, we can see that the attack reward

under the proposed scheme slightly decreases, whereas that of the Myopic - CAE scheme

sharply drops as the self-interference coefficient increases from 10−6 to 10−3. The reason

is that the Myopic - CAE scheme experiences higher jamming power by itself due to the

high value of the self-interference coefficient. On the other hand, the proposed scheme can

dynamically choose the more passive eavesdropping action mode, instead of only using the

active eavesdropping mode for the attack operation. For the proposed scheme, the legitimate

wiretap rate is constantly greater than the suspicious transmission rate (2.6 bps/Hz vs 2.4

bps/Hz) until the self-interference coefficient of the LE antenna is greater than 10−6. When

self-interference is very large, the throughput at the LE is just a little smaller than the data

rate at the suspicious cognitive receiver. Throughout the simulation results, it is shown that

the proposed scheme is more robust under the strict constraints of the physical hardware.
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3.6 Conclusions

In this chapter, we investigated an attack strategy for a legitimate full-duplex

eavesdropper in cognitive radio networks. This chapter aims to maximize the legitimate

wiretap rate for the legitimate eavesdropper while degrading the data reception rate of a

suspicious receiver as much as possible. The proposed scheme adopts a POMDP framework

to deal with the energy-constrained problem in a wireless network. As a result, the legitimate

eavesdropper equipped with an energy harvester can obtain high performance in attacks

against suspicious transmissions in which the legitimate eavesdropper considers the long-term

achievable reward during its operations. The intensive simulation results demonstrate the

effectiveness of our proposed scheme, compared with conventional schemes where the LE only

considers the immediate reward over each single time slot. However, one of the drawbacks

of the proposed scheme is the high complexity. To reduce the computational complexity, the

deep learning-based scheme can be investigated in future works.



Chapter 4

Joint Resource Allocation and

Transmission Mode Selection Using

a POMDP-Based Hybrid

Half-Duplex/Full-Duplex Scheme

for Secrecy Rate Maximization

4.1 Introduction

Along with the emergence of energy-constrained problem for wireless networks,

data transmissions can easily be overheard by EVEs or disrupted by jammers due to the

broadcast nature of wireless communications. Wyner first introduced the wiretap channel

(spanning the source to the eavesdropper) and defined a secrecy rate (representing the rate at

which the data can be securely transmitted between legitimate transceivers) for a basis theory

in physical layer security (PLS) [68]. There have been several passive eavesdropper detection

approaches in CRNs, which are well investigated in [69,70]. The authors proposed schemes

where the legitimate users can identify the presence of the passive eavesdroppers from local

oscillator power which is inadvertently leaked from its RF front-end even if they are in the

reception mode. These techniques can be adopted for spectrum sensing in single-antenna

CRNs to avoid interference to primary receivers under AWGN channels. More specifically,

53
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the authors in [71] generalize these techniques to MIMO wiretap channels in which a variety

of detectors based on energy detection, matched filtering, and composite tests are intensively

studied. With the detection methods [69–71], they assume that eavesdroppers are known in

the system. Recently, several solutions for preventing eavesdropping have been investigated

in various wireless communications systems [72,73].

For the sake of secure multi-band transmission in PLS, there are only a few

studies on secure communications solutions against EVEs [74,75]. In [74], a joint optimal

energy-harvesting time, power-allocation, and channel-assignment scheme was proposed for

a secondary transmitter to transmit data to a secondary access point. Additionally, the

authors in [75] investigated an optimal power allocation strategy for both the primary base

station and the cognitive base station of orthogonal frequency-division multiplexing (OFDM)-

based CRNs to obtain energy-efficient secure communications using a confidential signal

beamformer and artificial noise to confront a multi-antenna EVE. Overall, the aforementioned

study efforts [74, 75] mainly focused on either the uplink or the downlink of underlay CRNs,

and were restricted to deployment in practical scenarios. By applying the FD technique,

the work in [76] investigated the hybrid HD/FD transmission protocol for both uplink and

downlink SBS−SU communications to maximize the overall throughput; however, the system

model is simplified with a single channel, and communications security was not taken into

account.

4.1.1 Main Contributions and Novelty

Inspired by these works, in this chapter, we investigate a secure communications

approach for both uplink and downlink of multi-channel CRNs in the presence of passive

eavesdroppers. The SUs can opportunistically share multiple legitimate channels of the PUs

to communicate with the SBS in a secure way. We propose a joint resource-allocation and

transmission mode-selection scheme using a partially observable Markov decision process

(POMDP) framework to maximize the long-term secrecy rate of multi-channel CRNs in

the presence of EVEs. With this scheme, each SU will be assigned to either stay silent, or

transmit data by HD/FD mode, and is also assigned an optimal amount of transmission

energy on multiple cognitive channels.

In particular, the main contributions and novelties of this work can be summarized

as follows.
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• We study a novel model for energy-efficient data transmissions in multi-channel CRNs in

the presence of passive EVEs. In this model, a number of wireless-powered SUs capable

of HD/FD transmissions attempt to opportunistically share free channels with PUs for

communicating with a secondary base station. Meanwhile, the eavesdroppers in the

surrounding area constantly listen to confidential messages of secondary transmissions

on all channels.

• The problem of optimizing network communications security is formulated as the

framework of the POMDP under the energy constraints of SUs. Subsequently, we derive

a novel POMDP-based approach to maximize the long-term average secrecy rate of the

secondary system by dynamically selecting a proper action for each SU to communicate

with the SBS. Accordingly, the optimal action for each SU in each time slot (including

the assigned channel, HD/FD transmission mode, and the amount of transmission

power) can be achieved by using value iteration-based dynamic programming.

• We further present the impact of network parameters on the system performance

through the numerical results. The secrecy rate and energy efficiency of the proposed

scheme are also shown to be superior to that of conventional schemes where the context

of a long-term system reward is not taken into account.

The rest of this chapter is organized as follows. In Section 4.2, the network

description and the two transmission modes are presented. Next, we describe the proposed

joint resource-allocation and transmission mode-selection scheme in Section 4.3. The

numerical results and the discussion are elaborated on in Section 4.4. Finally, we conclude

this work in Section 4.5.

4.2 Network Description and Assumptions

In this section, we present the wireless-powered, multi-channel cognitive network

subjected to the data capture by EVEs. In this chapter, the SUs are facilitated by solar

energy harvester such that they can harvest solar energy from the ambient environment to

recharge limited-capacity batteries for long-term operation without the need to manually

replenish them. Meanwhile, the SBS and EVEs are assumed to always have enough energy

for their operations (e.g. powered by a traditional electrical source). Fig. 4.1(a) shows the
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Figure 4.1: (a) A centralized cognitive radio network in the presence of eavesdroppers. (b)

An example of the operation of the secondary user in consecutive time frames.

model of the centralized multi-channel cognitive radio network in the presence of passive

EVEs. Fig. 4.1(b) illustrates operations by two SUs in the considered secondary system. In

particular, the time frame consists of four sub-slots, spectrum sensing, the action decision,

data transmission, acknowledgment/no acknowledgement (ACK/NACK) feedback, and

information updates. The action of the SUs will be determined by the SBS after the

spectrum sensing phase. Subsequently, SU1 and SU2 will use the allocated channels to

transmit data according to their assigned HD/FD modes. Then, the ACK/NACK feedback

indicating the status of the current transmissions (successful/unsuccessful), and reports

on the remaining energy of the SUs will be updated to the SBS for subsequent resource

allocation.

4.2.1 Network Model

We consider that there are M SUs, centered by the SBS, sharing K time-slotted,

non-overlapping orthogonal channels in the primary system to carry out their communications

with the SBS. We assume that the primary system and the secondary system operate in a

time-synchronized fashion. Both the SBS and the SUs are assumed to have a full-duplex

capability to communicate with each other. Meanwhile, N eavesdroppers equipped with

multiple antennas are assumed to be located near the locations of SBS−SU pairs and to

be able to decode SBS and SUs information via the K primary channels. We assume



Chapter 4: Joint Resource Allocation and Transmission Mode Selection Using a
POMDP-Based Hybrid Half-Duplex/Full-Duplex Scheme for Secrecy Rate Maximization 57

that the cooperative spectrum sensing approach is employed through each time slot. More

particularly, at the beginning of a slot, all SUs are required to sense and report on the state

of the primary channels to the fusion center (FC). FC is assumed to be integrated in the

SBS, such that a global decision, based on local spectrum sensing results sent from SUs,

will be made by the SBS regarding the status of the K primary channels in every time

unit. Subsequently, the SBS will allocate to the SUs the currently-free channels and their

transmission modes. We further assume that the SUs and the SBS always have data to

communicate. In this chapter, the configured data communications of an SBS−SU pair can

be divided into two modes: 1) transmit and receive the data simultaneously (full-duplex

mode), and 2) transmit and receive the data, in turn, during each half of a time frame

(half-duplex mode).

We assume that the SUs and the SBS can not successfully decode the data on

channel k if a collision with PU transmissions on that channel occurs due to high interference

by PU signals. Suppose that all channels experience block Rayleigh fading, remain constant

in a whole single time slot, and vary independently among various time slots. Let hij,k

and dij , respectively, be the complex-valued channel coefficient on fading channel k and

the distance of a link between node i and node j, with i, j ∈ {b, u, e}, where b, u, and e

stand for the SBS, the SU, and the EVE, respectively. The path loss of each channel is

assumed to follow an exponential decay model where the channel mean power between node

i and node j is d−αij , where α is the path-loss exponent. In the following, we present the two

transmission modes for SBS−SU communications.

4.2.1.1 Full-duplex transmission mode (FDTM)

In FDTM, the SBS will simultaneously transmit its information to SUm and will

receive information transmitted by SUm on channel k, and vice versa. To be realistic, we

consider imperfect self-interference cancellation (SIC) at both the SBS and SUm. Ideally,

the SI can be totally eliminated by some specific cancellation approaches [77]. However,

in practice, due to high SI power and hardware limitations, it may only be removed to a

certain extent. Accordingly, the received signal at the SBS, SUm, and EVEn on channel k

can be expressed by

yFDb,k =
√
Pumbd

−α
bum

humb,kxum +
√
µPbumhbb,kxb + wb, (4.1)
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yFDum,k =
√
Pbumd

−α
bum

hbum,kxb +
√
µPumbhuu,kxum + wum , (4.2)

and

yFDen,k =
√
Pbumd

−α
ben
hben,kxb

+
√
Pumbd

−α
umenhumen,kxum + wen

, (4.3)

respectively, where Pbum =
εtrbum
Ttr

and Pumb =
εtrumb
Ttr

represent the transmission power of

the SBS for SBS− SUm transmissions and the transmission power of SUm for SUm−SBS

transmissions, respectively; εtrbum and εtrumb represent the transmission energy used to transmit

the data from the SBS to SUm, and vice versa; α is the path-loss exponent; xum and xb

are the coded unit-power signals sent by SUm and the SBS, respectively; and wb, wum ,

and wen denote the additive white Gaussian noise (AWGN) with zero mean and variance

σ2
b = σ2

um = σ2
en = σ2

0 at the SBS, SUm, and EVEn, respectively. Note that the second term

in (1) and (2) is the residual self-interference component with residual coefficient µ after

interference suppression at the SBS and SU, respectively. The signal-to-interference-plus-

noise ratio (SINR) on channel k at the SBS, SUm, and the upper-bounded SINR on channel

k at the EVEn [78], are given by

γFDb,k =
Pumbd

−α
bum
|humb,k|

2

µPbum |hbb,k|
2 + σ2

0

, (4.4)

γFDum,k =
Pbumd

−α
bum
|hbum,k|

2

µPumb|huu,k|
2 + σ2

0

, (4.5)

and

γFDen,k =
Pbumd

−α
ben
|hben,k|

2 + Pumbd
−α
umen |humen,k|

2

σ2
0

, (4.6)

respectively. In the equation (4.6), the first term of the numerator, Pbumd
−α
ben
|hben,k|

2 is the

signal power received from the SBS while the second term, Pumbd
−α
umen |humen,k|

2 represents

the signal power received from SUm at the EVEn. In addition, hben,k and dben are the channel

coefficient on channel k and the distance between the SBS and the EVEn, respectively while

humen,k and dumen represent the channel coefficient on channel k and the distance between

the SUm and EVEn. Consequently, the achievable rates at the SBS and at SUm, and the
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sum rate at EVEn on channel k, which can be upper-bounded by using the two-user multiple

access channel capacity result [79], are respectively calculated as follows

RFDb,k =
(

1− Ts−Td−Tu
T

)
B log(1 + γFDb,k )

= Ttr
T B log

(
1 +

Pumbd
−α
bum
|humb,k|2

µPbum |hbb,k|2+σ2
0

)
,

(4.7)

RFDum,k =
(

1− Ts−Td−Tu
T

)
B log(1 + γFDum,k)

= Ttr
T B log

(
1 +

Pbumd
−α
bum
|hbum,k|2

µPumb|huu,k|2+σ2
0

)
,

(4.8)

and

RFDen,k =
(

1− Ts−Td−Tu
T

)
B log(1 + γFDen,k)

= Ttr
T B log

(
1 +

Pbumd
−α
ben
|hben,k|2+Pumbd

−α
umen |humen,k|2

σ2
0

)
,

(4.9)

where Ts, Td, Tu, and Ttr represent the sensing duration, action decision duration, updating

duration, and data transmission duration, respectively. B is the bandwidth of the system.

Generally, the data transmission rate on both uplink and downlink are asymmetric in wireless

networks, and the energy budget of the SUs is limited for their operation. Furthermore, the

channel gain on uplink and downlink might also not be similar through each fading channel

in various time instants. Accordingly, we should determine beforehand the transmission

power for each SU based on the channel quality in each slot, and then, the transmission

power at the SBS will be defined to satisfy the condition γFDum.k = ηγFDb.k . This condition can

be rewritten as follows:

Pbumd
−α
bum
|hbum,k|

2

µPumb|huu,k|
2 + σ2

0

= η
Pumbd

−α
bum
|humb,k|

2

µPbum |hbb,k|
2 + σ2

0

, (4.10)

where η is the asymmetric coefficient between uplink and downlink transmissions. After

some manipulations, we can obtain the transmission power at the SBS as follows:

Pbum =

−σ2
0 +

√
σ4

0 + 4µϕ
(
µ(Pumb)

2|huu,k|2 + Pumbσ
2
0

)
2µ|hbb,k|2

, (4.11)

where ϕ =
η|hbb,k|2|humb,k|2

|hbum,k|2
. As a result, the sum secrecy rate for the FDTM of the SBS−SU

transmissions [80], can be calculated as follows

RFDs,k =

[
RFDb,k +RFDum,k − max

n={1,2,...,N}

(
RFDen,k

)]+

(4.12)

where [x]+ = max{0, x}.
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4.2.1.2 Half-duplex transmission mode (HDTM)

In HDTM, duration T is divided into two phases: first-phase T
2 for the downlink

transmissions and the second-phase T
2 for uplink transmissions. More particularly, during

the first phase, the SBS transmits the data to SUm, and then, the remaining phase is used

for the data transmissions from SUm to the SBS. In the first phase, the SBS will transmit

the information to SUm on channel k, and hence, SUm receives

yHDum,k =
√
Pbumd

−α
bum

hbum,kxb + wum . (4.13)

As such, the SINR and the achievable rate at SUm are computed as

γHDum,k =
Pbumd

−α
bum
|hbum,k|

2

σ2
0

(4.14)

and

RHDum,k = 1
2

(
1− Ts−Td−Tu

T

)
B log(1 + γHDum,k)

= Ttr
2T B log

(
1 +

Pbumd
−α
bum
|hbum,k|2

σ2
0

)
,

(4.15)

respectively. For the wiretap link in HDTM, the received signal and the achievable rate at

EVEn on channel k in the first phase can be expressed as

yHDen,k,1 =
√
Pbumd

−α
ben
hben,kxb + we, (4.16)

and

RHDen,k,1 =
Ttr
2T

B log

(
1 +

Pbumd
−α
ben
|hben,k|

2

σ2
0

)
(4.17)

respectively. The sub-index 1 represents the first phase of HDTM. The secrecy rate for

HDTM on channel k in the first phase can be calculated as

RHDs,k,1 =

[
RHDum,k − max

n={1,2,...,N}

(
RHDen,k,1

)]+

. (4.18)

In the second phase, SUm transmits information to the SBS on channel k; thus, the received

signal at the SBS on channel k can be expressed as

yHDb,k =
√
Pumbd

−α
bum

humb,kxu + wb. (4.19)
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Subsequently, the SINR and the achievable rate at the SBS on channel k can be calculated

as

γHDb,k =
Pumbd

−α
bum
|humb,k|

2

σ2
0

, (4.20)

and

RHDb,k = 1
2

(
1− Ts−Td−Tu

T

)
B log(1 + γHDb,k )

= Ttr
2T B log

(
1 +

Pumbd
−α
bum
|humb,k|2

σ2
0

)
,

(4.21)

respectively. Similar to FDTM, the condition for uplink and downlink transmissions in

half-duplex mode, γHDum,k = ηγHDb,k , can be expressed by

Pbumd
−α
bum
|hbum,k|

2

σ2
0

= η
Pumbd

−α
bum
|humb,k|

2

σ2
0

(4.22)

Solving equation (4.22) yields the value of the transmission power at the SBS, as follows:

Pbum = ηPumb
|humb,k|

2

|hbum,k|
2 . (4.23)

As for the wiretap link, the received signal and the achievable rate at EVEn on

channel k in the second phase is given by

yHDen,k,2 =

√
Pumbd

−α
umenhumen,kxu + we, (4.24)

and

RHDen,k,2 =
Ttr
2T

B log

(
1 +

Pumbd
−α
umen |humen,k|

2

σ2
0

)
, (4.25)

respectively. The sub-index 2 denotes the second phase of HDTM. The secrecy rate for

HDTM on channel k in the second phase can be calculated as

RHDs,k,2 =

[
RHDb,k − max

n={1,2,...,N}

(
RHDen,k,2

)]+

. (4.26)

Consequently, the sum secrecy rate for HDTM of the SBS− SUm transmissions on channel

k can be computed as follows:

RHDs,k =
∑
i=1,2

RHDs,k,i, (4.27)

where RHDs,k,i represents the SBS− SUm secrecy rate on channel k in the ith phase for HDTM.
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4.2.2 Solar Energy Harvesting Model

In this chapter, owing to the energy-constrained problem of the secondary user, the

solar energy harvesting technique is applied to help the SU maintain its operations during a

long period of time. We assume that the amount of energy harvested by the SUs in a time slot t

will be the same among all SUs (i.e. Eh,1(t) = Eh,2(t) = ... = Eh,M (t) = Eh(t)), because they

operate in the same environment, which can be considered a realistic scenario. Besides, we also

consider that number of the arrived packets of harvested energy in each slot, Eh(t), is finite.

The amount of energy harvested during a single time slot t, Eh(t) = εhz ∈
{
εh1 ; εh2 ; ...; εhξ

}
,

can be discretely approximated, i.e. 0 ≤ εhz ≤ EB. EB is the battery capacity of the

SUs. Suppose that the amount of energy harvested during a time slot follows a Poisson

distribution [81]. The probability distribution of harvested energy can be expressed by

ph(z) = Pr[Eh(t) = εhz ] =

(
Eh,mean

)z
exp(−Eh,mean)

z!
(4.28)

where z ∈ [0, 1, 2, ...,∞) denotes the various amounts of harvested energy packets. Eh,mean

represents the mean harvested energy of the SUs. For simplicity, the amount of harvested

energy can be defined approximately, and the maximal harvested energy can be determined

such that its cumulative distribution function is close enough to 1. Suppose that the SUs

always have enough energy to perform essential operations, such as sending and receiving

control signals, or activating energy harvesting circuits for each slot.

4.2.3 Multiple Primary Channel Model

We consider K uncorrelated primary channels that work in a time-slotted fashion.

In each time slot, the state of a channel can be denoted as either F or B, where F and B

represent the hypothesis that the channel is free or busy, respectively. The occupancy state

transition probability of two adjacent time slots in each channel is modeled by a discrete

time Markov chain, as depicted in Fig. 4.2. Pij,k|i, j ∈ {F,B} refers to the state transition

probability of channel k from state i (in time slot t) to state j (in time slot t+ 1), which

is assumed to be recorded at the SBS. For simplicity, the state transition probability of

the channels is set to the same value (i.e. Pij,1 = Pij,2 = ... = Pij). Fig. 4.2 illustrates the

multiple primary channel model.
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Figure 4.2: Primary multi-channel model.

4.2.4 Imperfect Spectrum Sensing

In the chapter, we consider the imperfection scenario of the spectrum sensing.

In a time slot, the SUs perform spectrum sensing to determine the state of the primary

channels and report their local results to the SBS. After gathering the local results from

SUs, the SBS will make the global sensing decision on the state of primary channels by

soft combination approach [82]. However, spectrum sensing errors are inevitable in wireless

channel. As a consequence, the performance of cooperative spectrum sensing is evaluated

via two metrics: global false alarm probability (Pf,k) and global detection probability (Pd,k),

which are defined as

Pf,k = Pr (HG,k(t) = B |F ) and Pd,k = Pr (HG,k(t) = B |B ) , (4.29)

where Pf,k is the probability that the channel k is found busy while the PU is actually

not active, whereas Pd,k is the probability that channel k is correctly found busy. HG,k(t)

represents the state of channel k in time slot t (i.e. global sensing decision on channel k

in time slot t). The performance of the system can be degraded by false alarm event and

misdetection event. Specifically, an SU will waste energy in the case that the SBS assigns

the transmission modes on channel k for the SU when the sensing result indicates “free”

state of the channel k but it is actually busy, which means the misdetection event happens.

Thus, there will be a data transmission collision on channel k. On other hand, SUs may lose

their chance to transmit data to the SBS on channel k in the case of false alarm where the

sensing result indicates “busy” state of the channel k but it is actually free. In the proposed

scheme, the belief values of all channels are constantly updated at the end of each time

slot to estimate the probability that the primary channels are free based on the achieved



64
Chapter 4: Joint Resource Allocation and Transmission Mode Selection Using a

POMDP-Based Hybrid Half-Duplex/Full-Duplex Scheme for Secrecy Rate Maximization

observation with the goal of reducing the transmission collisions with primary users. In

addition, when the maximally allowable collision probability between SUs and PUs is given,

the value for detection probability, Pd,k, can be maintained to be greater than a predefined

threshold, ς, by changing sensing parameters to protect the PU communications on the

primary channel [83].

4.2.5 Problem Formulation

We aim to maximize the long-term average secrecy rate of the secondary system in

centralized multi-channel CRNs in the presence of multiple eavesdroppers. In this chapter,

the average secrecy rate of the secondary system can be defined as the reward of the system.

Thus, the optimization problem formulation for the reward of the system in this chapter can

be expressed as follows

A∗(t) = arg max
A(t)={AC,AM ,AE}

1
K

∞∑
i=t

K∑
k=1

Rs,k(t)

s.t. 0 ≤ εtr,m ≤ εtrmax

(4.30)

where AC, AM , and AE represent the assigned channel vector, assigned transmission

mode vector, and assigned transmission energy vector, respectively, for the SUs, all of which

are presented in more detail in the next section. εtr,m ∈ AE =
[
εtr,1, εtr,2, ..., εtr,M

]
and

εtrmax are the assigned transmission energy for SUm and the upper-bounded amount of the

transmission energy for each SU, respectively. In particular, the crucial goal of this chapter is

to find the optimal global decision at the SBS (including the assigned channels, transmission

modes and amount of transmission energy for the SUs) such that the maximum network

security can be gained over a long-term operation despite eavesdropping attacks. To this

end, based on the prior information about the primary channels, the energy remaining, and

the harvested energy distribution, the parameters of the SUs can be modified and controlled

by the SBS through each time slot.

4.3 POMDP Framework Scheme Description

In this section, we propose a POMDP-based scheme to deal with the problem in

equation (4.30). We adopt POMDP framework to calculate the value function for the states

of the system. Here, the value function is defined as the maximum value of the cumulative
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discounted system reward from the current time slot to infinite horizon and can be obtained

by using the iteration-based dynamic programming method [67]. However, due to the fading

channels, the coefficients of channels will vary over time slots and affect the secrecy rate of

the whole system. In addition, a decision on how much energy is used by each SU in each

current time slot will affect not only the immediate system reward for that time slot but

also the future system reward for a number of subsequent time slots.

In order to dynamically obtain the optimal action for the network state over each

time slot after the channel gains of all links are given, the SBS needs to estimate the expected

reward of each action among possible actions before selecting the optimal one. The expected

reward of each action is computed by making the summation of the immediate reward

calculated in the current time slot t and the future reward, as shown equation (4.51). After

considering the expected rewards for possible actions, the optimal action can be achieved by

selecting the action that brings maximum expected reward of the system, which is expressed

in equation (4.52). In other words, equation (4.30) can be transformed to equation (4.52)

where the SBS selects the optimal action which has the maximum expected reward among

the possible actions for each time slot. Accordingly, the long-term reward of the system (as

shown in equation (4.30)) can be obtained by solving the equation (4.52) in every time slot.

The flowchart of the proposed POMDP-based scheme is given in Fig. 4.3.
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Figure 4.3: The flowchart of the proposed scheme.



66
Chapter 4: Joint Resource Allocation and Transmission Mode Selection Using a

POMDP-Based Hybrid Half-Duplex/Full-Duplex Scheme for Secrecy Rate Maximization

4.3.1 Proposed scheme

Theoretically, a Markov decision process is basically defined as a tuple 〈S,A,P, ϕ〉,
where S, A, and P represent the state space, action space, and state transition probability

space, respectively. Meanwhile ϕ : S × A 7→ R is the reward function. Accordingly, the

system can be expressed as follows

State space

The state of the system comprises remaining-energy vector of the SUs:

εrem =
[
εrem,1; εrem,2; ...; εrem,M

]
, in which each element, εrem,m, refers to the

remaining energy of SUm; and the belief vector regarding the system state, p = [p1; p2; ...; pK ]

where pk represents the probability that channel k is free (i.e. no PU currently uses

channel k). The state of the system at the beginning of time instant t is represented as

s(t) = {εrem(t);p(t)} ∈ S.

Action space

The SBS decides on the global action A(t) consisting of the following three vectors:

AC = [AC1;AC2; ...;ACM ] |ACm ∈ {1, 2, ...,K} ;ACi 6= ACj ,

AM = [AM1;AM2; ...;AMM ] |AMm ∈ {sl, hd, fd} ,

and

AE =
[
εtr,1, εtr,2, ..., εtr,M

] ∣∣εtr,m ∈ {0, εtrmin, ..., ε
tr
max

}
, which represent the assigned

channel vector, the assigned mode vector, and the assigned transmission energy vector for

the SUs, respectively; sl, hd, and fd, respectively, stand for the action modes (stay silent,

half-duplex transmission, and full-duplex transmission) of the assigned SUs. Note that

the elements in each vector are arranged following the index of the corresponding SUs in

the network. Thereby, an action decided by the SBS in time slot t can be expressed by

A(t) = {AC,AM,AE} ∈ A.

Reward

With network state s(t) = {εrem(t),p(t)} and the action A(t) = {AC,AM,AE}
that is determined by the SBS, then the immediate reward of the system can be expressed

as Rs (s(t),A(t)). According to the reward analysis in Section II, the reward of time slot t

is defined as the average secrecy rate of the secondary system after taking action A(t).
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The global action determined by the SBS in each time slot includes the local

transmission mode of each SU. Accordingly, the respective rewards and observations will be

obtained at the end of a time slot after the SBS-SUm transmissions finish, which indicate

that whether the transmissions were successful or not (via ACK/NACK). For a simple

instance of how to get rewards and observations, let us consider a network with M = 2,

N = 2, and K = 2. A global action will be made based on the global sensing results of the

SBS. If the sensing result indicates that the channel k is busy, the SBS will trust this result,

and will not use channel k for the current time slot. Therefore, in the example network,

there are three cases in which the SUs share the two channels as following:

Case 1: Both channels are sensed as free.

Case 2: One of the two channels is sensed as free.

Case 3: Neither of the two channels is sensed as free.

From now on, let us analyze the observations and corresponding rewards for the

three cases when two SUs have enough energy for data transmission in a given time slot:

In the first case when both channels are sensed as free, according to the four possible

observations, we can get corresponding rewards and update the remaining energy vector,

belief vector and transition probability for a given time slot. In more details, when two

channels are all sensed as free, the SBS can assign the two channels to both SUs, and the

action determined by the SBS in time slot t is A(t) = {AC,AM,AE}, where AC = [1; 2]

(the sensing outcome of both channels being free), AM = [hd; fd], and AE =
[
εtr,1; εtr,2

]
.

There are four observations for this action, which are described as follows.

Observation 1 (∆1)

The transmissions of both SU1 and SU2 are successful, since ACK is signaled at

the end of the transmission phase for both assigned channels. The probability that the event

happens can be calculated as

Pr [∆1] =
2∏

k=1

Psuc,k(t)

=
2∏

k=1

pk(t) (1− Pf,k),
(4.31)

where pk(t) is the belief that channel k is free in time slot t. Psuc,k(t) represents the

probability of successful transmission on channel k in time slot t. The reward can be given
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as follows:

R = 1
2

2∑
k=1

Rs,k(t)

= 1
2


[
RHDu1,1

(t)−max
(
RHDe1,1,1(i, t), RHDe2,1,1(i, t)

)]+
+
[
RHDb,1 (t)−max

(
RHDe1,1,2(i, t), RHDe2,1,2(i, t)

)]+

+
[
RFDb,2 (t) +RFDu2,2

(t)−max
(
RFDe1,2(i, t), RFDe2,2(i, t)

)]+

.
(4.32)

Since the ACK signals are received from both channels, we realize that the primary channels

are actually free. The updated belief for the channels in the next time slot will be p(t+ 1) =

[PFF ;PFF ] (i.e. PFF,1 = PFF,2 = PFF ). For simplicity, we assume that the amount of

energy for the action decision and information update is tiny, and can be ignored in this

study. As a result, the remaining-energy vector for the next time slot can be updated as

follows

εrem(t+ 1) =

 εrem,1(t)− εtr,1(t)− εs + Eh,1(t)

εrem,2(t)− εtr,2(t)− εs + Eh,2(t)

 , (4.33)

where Eh,1(t) = Eh,2(t) = Eh(t) represents the harvested energy of SU1 and SU2 in slot

t; εtr,1(t), εtr,2(t), and εs denote the amount of transmission energy for SU1, transmission

energy for SU2, and sensing energy, respectively. The probability that energy remains in the

SUs, based on equation (4.33), also depends on the energy harvesting probability of the SUs,

which is assumed to be approximately the same among the SUs. Thus, the energy transition

probability for the SUs from time slot t to time slot t+ 1 can be computed by

Pr [εrem(t)→ εrem(t+ 1)] = Pr
[
Eh(t) = εhz

]
, (4.34)

for z = 1, 2, ..., ξ, where Pr
[
Eh(t) = εhz

]
is given in (28).

Observation 2 (∆2)

The transmission of SU1 is successful, but the transmission of SU2 is unsuccessful

(i.e. a collision between the PU and SU2 on channel 2 occurs) since there was only one ACK

signaled at the end of the transmission phase for the assigned channel of SU1. Therefore,

there is only a reward obtained by SU1. The probability that the event happens can be

calculated as

Pr [∆2] = Psuc,1(t)× Pfail,2(t)

= p1(t) (1− Pf,1) (1− p2(t)) (1− Pd,2).
(4.35)
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The reward for the system can be obtained as follows:

R =
1

2

 [
RHDu1,1

(t)−max
(
RHDe1,1,1(i, t), RHDe2,1,1(i, t)

)]+
+
[
RHDb,1 (t)−max

(
RHDe1,1,2(i, t), RHDe2,1,2(i, t)

)]+

. (4.36)

ACK is signaled for channel 1 but not channel 2; hence, we realize that channel 1 is actually

free and channel 2 is busy; thus, the updated belief vector for the channels in the next time

slot will be p(t+ 1) = [PFF ;PBF ]. The remaining-energy vector for the next time slot and

the transition probability can be calculated with equations (4.33) and (4.34), respectively.

Observation 3 (∆3)

The transmission of SU1 is unsuccessful (due to a collision with PU transmissions),

but the transmission of SU2 is successful, since there is only one ACK signaled at the end of

the transmission phase on the assigned channel for SU2. The probability that this event

occurs can be given as

Pr [∆3] = Pfail,1(t)× Psuc,2(t)

= (1− p1(t)) (1− Pd,1) p2(t) (1− Pf,2) .
(4.37)

The reward can be calculated as follows:

R =
1

2

[
RFDb,2 (t) +RFDu2,2(t)−max

(
RFDe1,2(i, t), RFDe2,2(i, t)

)]+
. (4.38)

ACK was signaled for channel 2; hence, we realize that channel 2 is actually free and channel

1 is actually busy. The updated belief vector for the channels in the next time slot will be

p(t+ 1) = [PBF ;PFF ]. Similarly to the case of Observation 2, the remaining-energy vector

and the state transition probability can be calculated with equations (4.33) and (4.34),

respectively.

Observation 4 (∆4)

The transmissions of both users are unsuccessful (collisions with PU transmissions

happen on both assigned channels) since there is no ACK signaled at the end of the

transmission phases for assigned channels. The probability that this event occurs can be

given as

Pr [∆4] =
2∏

k=1

Pfail,k(t)

=
2∏

k=1

(1− pk(t)) (1− Pd,k).
(4.39)
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There will be no reward in this case, i.e. R = 0. We infer that misdetection happened on

both channels in this circumstance. Therefore, the belief vector for the channels in the next

time slot can be updated as p(t+ 1) = [PBF ;PBF ]. The remaining-energy vector and the

transition probability can be calculated in the same way: with equations (4.33) and (4.34),

respectively.

Next, let us consider the second case when one of the two channels is sensed

as free. In this case, we get two possible observations. According to observations, we

can get corresponding rewards and update the remaining energy vector, belief vector and

transition probability for a given time slot as follows. Suppose that channel 1 is sensed as

busy and channel 2 is sensed as free. Then, the SBS will assign only channel 2 to one SU

(for example SU1), and the action determined by the SBS in time slot t is represented as

A(t) = {AC,AM,AE}, where AC = [2; “null”] (i.e. SU1 is assigned to channel 2 and

SU2 will stay silent), AM = [hd; sl], and AE =
[
εtr,1; 0

]
. There are two observations for

this action, which are described as follows.

Observation 5 (∆5)

The transmission of SU1 is successful since ACK is signaled at the end of the

transmission phase for assigned channel to SU1 (channel 2, in this case). The probability

that this event happens can be calculated as

Pr [∆5] = Psuc,2(t)

= p2(t) (1− Pf,2) .
(4.40)

The reward obtained in this case is

R =
1

2

 [
RHDu1,2

(t)−max
(
RHDe1,2,1(i, t), RHDe2,2,1(i, t)

)]+
+
[
RHDb,2 (t)−max

(
RHDe1,2,2(i, t), RHDe2,2,2(i, t)

)]+

. (4.41)

The updated belief vector and remaining-energy vector can be given as

p(t+ 1) =

 p1(t)Pf,1PFF+(1−p1(t))Pd,1PBF

1−p1(t)(1−Pf,1)−(1−p1(t))(1−Pd,1)

PFF

 (4.42)

and

εrem(t+ 1) =

 εrem,1(t)− εtr,1(t)− εs + Eh,1(t)

εrem,2(t)− εs + Eh,2(t)

 , (4.43)

respectively. The transition probability can be computed by using equation (4.34).
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Observation 6 (∆6)

The transmission of SU1 is unsuccessful (i.e. the PU is actually active on the

assigned channel), since no ACK is signaled at the end of the transmission phase for the

channel assigned to SU1 (channel 2). There will be no reward in this case (i.e. R = 0). The

probability that the event happens can be calculated as

Pr [∆6] = Pfail,2(t)

= (1− p2(t)) (1− Pd,2) .
(4.44)

The belief vector can be updated as

p(t+ 1) =

 p1(t)Pf,1PFF+(1−p1(t))Pd,1PBF

1−p1(t)(1−Pf,1)−(1−p1(t))(1−Pd,1)

PBF

 . (4.45)

In addition, the remaining-energy vector and the transition probability can be given same

as equations (4.43) and (34), respectively.

Lastly, let us consider the third case when neither of the two channels is sensed as

free. In this case, we get no reward and observation. However, the remaining energy vector,

belief vector and transition probability need to be updated as well. The way to update them

can be described as following: In the case, the SBS will not assign a channel to either the

user because the global sensing results are busy for both channels. Accordingly, the two SUs

will stay silent for the given time slot to save energy for the next time utilization. There will

be no reward in this case, R = 0. The belief vector can be updated as

p(t+ 1) =

 p1(t)Pf,1PFF+(1−p1(t))Pd,1PBF

1−p1(t)(1−Pf,1)−(1−p1(t))(1−Pd,1)
p2(t)Pf,2PFF+(1−p2(t))Pd,2PBF

1−p2(t)(1−Pf,2)−(1−p2(t))(1−Pd,2)

 . (4.46)

The remaining-energy vector will be updated as εrem(t+ 1) =

 εrem,1(t)− εs + Eh,1(t)

εrem,2(t)− εs + Eh,2(t)

,

and the state transition probability will be updated same as equation (4.34).

Let us consider the situation that an SU does not have enough energy for data

transmission at a given time slot. In the case, SUm will be silent for the given time slot.

The remaining energy in SUm for the next time slot will be updated by

εrem,m(t+ 1) = εrem,m(t)− εs + Eh,m(t). (4.47)
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Owing to energy shortage of the SU, there might be a channel k that is not used by any SU

although channel k is sensed as free. In the case, we have no reward and no observation on

channel k for the given time slot. In addition, the belief that the channel k will be free for

the next time slot should be updated as follows:

pk(t+ 1) =
pk(t) (1− Pf,k)PFF + (1− pk(t)) (1− Pd,k)PBF

pk(t) (1− Pf,k)− (1− pk(t)) (1− Pd,k)
. (4.48)

On the other hand, if the channel k is sensed as busy, the SBS will not assign that channel

to any SU. Hence, there is no reward and no observation on the channel k in the given time

slot. Similarly, the belief that channel k will be free for the next time slot can be updated by

pk(t+ 1) =
pk(t)Pf,kPFF + (1− pk(t))Pd,kPBF

1− pk(t) (1− Pf,k)− (1− pk(t)) (1− Pd,k)
. (4.49)

4.3.2 Overall Multi-channel Value Function

In the subsection, we describe the value function with respect to the system state

by adopting the POMDP framework. In particular, the optimal policy is stimulated by

increasing the value function defined as the maximum value of the cumulative discounted

system reward from the current time slot. Consequently, the SBS can apply the value

function to select the optimal global action in every single time slot. When a system state

comprising the remaining energy vector (εrem(t)) and the belief vector (p(t)), the value

function, V (εrem(t),p(t)), can be expressed as follows:

V (εrem(t),p(t)) =

max
A(t)



∞∑
z=t

βz−t
∑
∆i

Pr [∆i]

×
∑

εrem(z+1)

Pr [εrem(z)→ εrem(z + 1) |∆i ]

×R(εrem(z),p(z),A(z) |∆i )


,

(4.50)

where z indicates the time slot index, 0 < β < 1 is the discount factor indicating that the

future reward value is less than the immediate reward value, and ∆i is observation i from

each global action. R(εrem(z),p(z),A(z) |∆i ) denotes the estimated system reward for

given εrem(z), p(z), A(z), and observation i. The value function for every pair of energy-

remaining vector and belief vector can be achieved according to the iteration method [67].

However, the channels in this chapter are assumed to be suffered from fading in every time

instant. Therefore, the immediate channel quality of SUs and EVEs may greatly affect the
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average secrecy rate of the secondary system. Consequently, after the sensing phase, the

global decision at the SBS can be detailed in the following subsection.

4.3.3 Optimal Global Decision

In the subsection, we explain the procedure of making the optimal global decision

(optimal action) of the SBS. If the global sensing indicates that the channel k is busy, the SBS

will not assign that channel to any SU; otherwise, it may be assigned to an SU. Therefore,

the detailed calculations of the optimal policy in the proposed scheme can be expressed as

follows. Given the system state in time slot t, the SBS first calculates the expected system

reward for each possible action, A(t) ∈ A, which is calculated as

Rex (εrem(t),p(t),A(t))

=
∑
∆i

(Rex (εrem(t),p(t),A(t)) |∆i )

=
∑
∆i

Pr [∆i]×

 Rim (εrem(t),p(t),A(t))

+
∑
t+1

Pr[∗]× V (εrem(t+ 1),p(t+ 1))

 |∆i ,

(4.51)

where Pr [∆i] is the probability that the observation, ∆i, which indicates whether the SUs

on the assigned channels are successful or not, is observed. Rim (εrem(t),p(t),A(t)) is the ex-

pected immediate reward after taking actionA(t) (in time slot t) and V (εrem(t+ 1),p(t+ 1))

represents the expected future reward (from time slot t+ 1 to infinite horizon) obtained from

(4.50) if actionA(t) is carried out in the current time slot. Pr[∗] is the Pr [εrem(t)→ εrem(t+ 1)],

calculated by using equation (4.28). Finally, the optimal action will be chosen, which offers

the maximum value of the expected reward from among the possible actions in A. As a

consequence, the global decision by the SBS in current time slot t can be obtained by

A∗(t) = arg max
A(t)∈A

(Rex (εrem(t),p(t),A(t))) . (4.52)

In the chapter, the measured values of multi-channel gain in the current processing

time slot are assumed to be available. In fact, these can be periodically measured or from the

previous transmissions of links, where the known channel estimation pilots are sent from the

transmitter to the receiver through the multiple channels. Subsequently, the multi-channel

gains of each transmission link can be measured based on these pilots and the background

noise at the receiver [84].
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Algorithm 4.1 POMDP-based scheme’s procedure for the global decision policy by the

SBS in Nt processing time slots

1: Input: dij , hij , µ, σ0, T , Ts, Td, Tu, EB, εs, E
h,mean, PFF , PBF , Pd, Pf , β.

2: Output: Optimal global action A∗(t) = {AC∗(t),AM∗(t),AE∗(t)} .

3: Define a set of finite system states, S, with s(t) = {εrem(t),p(t)} ∈ S.

4: Define a set of finite system actions, A, with A(t) = {AC(t),AM(t),AM(t)} ∈ A.

5: Define a set of finite state transition probabilities, P with Eq. (4.28).

6: Apply the iteration-based method to obtain the value function for states in S.

7: for t = t0 // Start from time slot t = t0

8: Identify current state at slot t, s(t) = {εrem(t),p(t)}.
9: if Global sensing results indicate all channels are “Busy”

10: All SUs are set to stay silent.

11: else

12: if All SUs do not have enough energy for transmissions

13: All SUs are set to stay silent.

14: else

15: Calculate the expected reward of each action A(t) ∈ A with Eq. (4.51).

16: Decide the optimal action for time slot t, A∗(t), with Eq. (4.52).

17: Execute the SBS− SUm data transmissions and obtain immediate reward.

18: end if

19: end if

20: Update the remaining energy and belief vectors.

21: end for// The number of considered time slots Nt (t = t0 +Nt).

The procedure of the proposed POMDP-based scheme in Nt processing time slots

can be summarized in Algorithm 4.1, which is generally explained as follows. In each time

slot, the SBS first gathers current information of multi-channel gains and then calculate the

immediate reward with respect to the possible actions that the SBS may perform. Note that

possible actions (including assigned channels, transmission energy levels and transmission

modes for SUs) which can be applied for the current time slot depends on how much the

remaining energy in the battery of each SU will be. Besides, there are also observations

that may happen according to the action for the current time slot. Next, the expected
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reward of an action in the set of possible actions is estimated by making the summation

of the immediate reward calculated in the current time slot t and the future reward, as

expressed equation (4.51). Eventually, the SBS can select the optimal action which causes

the maximum expected system reward in the current time slot according to equation (4.52).

Thereby, the long-term average secrecy rate of the system can be obtained by using the

proposed scheme.

Table 4.1: SIMULATION PARAMETERS

Parameter Notation Value

Number of time slots Nt 103

Number of primary channels K 3

Time slot duration T 400 ms

Sensing time ts 4 ms

Action decision time td 2 ms

Updating time tu 2 ms

System bandwidth B 1 Mhz

Self-interference coefficient µ 3× 10−7

Battery capacity EB 400 µJ

Amount of sensing energy εs 10 µJ

Minimum transmission energy εtrmin 40 µJ

Maximum transmission energy εtrmax 180 µJ

Mean harvested energy Eh,mean 100 µJ

Detection probability on channel k Pd,k = Pd 0.9

False alarm probability on channel k Pf,k = Pf 0.1

Transition probability: from Free to Free on channel k PFF,k = PFF 0.7

Transition probability: from Busy to Free on channel k PBF,k = PBF 0.3

Initial belief that channel k is free pk = p 0.5

Path loss exponent α 4

Noise variance σ2
0 -70 dBm

Discount factor β 0.9
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4.4 Simulation Results

In the section, we compare the performance of the proposed scheme and those

of the other conventional schemes: a conventional HD scheme, a conventional FD scheme,

and a conventional HD & FD scheme. In the HD scheme, only half-duplex transmission is

used with optimal transmission power for given channel state. Similarly, in the FD scheme,

full-duplex transmission is only used with optimal transmission power for given channel state.

Lastly, in the HD & FD scheme, half or full-duplex transmission can be chosen with optimal

transmission power for given channel state. However, in the three conventional schemes, the

secrecy rate is maximized by only considering current time slot, and further the optimal

decision is made to get the maximized secrecy rate, as studied in [85,86]. Table 4.1 shows the

simulation parameters of the system and the network topology when M = 2,K = 3, N = 5,

as illustrated in Fig. 4.4. The coordinates of the SBS and the SUs are (250, 250), (231, 272),

and (272, 267), respectively. Meanwhile, the EVEs are located at coordinates (191, 267),

(215, 315), (278, 306), (307, 291), and (307, 247), respectively.

In this chapter, the distance between users is in meters. The network parameters

were setup by mostly referring to the literature [76]. Furthermore, we set the mean value

of harvested energy over each time slot be Eh,mean = 100 µJ , and a time slot length be

T = 400 ms. Hence, the energy harvesting rate is about 250 µW , which belongs to the range

of solar power density in the indoor and outdoor environment (100 µW/cm2 − 10 mW/cm2)

[87,88]. Unless otherwise stated, the transmission energy of each SU is divided into five levels,

with equal amounts of transmission energy in the range (40, 180) µJ ; there are also five levels

in the SUs battery, from 0 to EB ; the span of each belief within the range (0,1) is 0.2; and the

simulation results were obtained by averaging 103 random realizations via fading channels.

To mitigate the wasted energy that may overflow out of the batteries of the SUs, the SBS

will set the maximum transmission energy for the link SBS− SUm if the battery of SUm

is likely to overflow in a processing time slot [89]. In the simulation, we model the arrival

of energy amount as the Poisson distribution with the mean of Eh,mean = 100 µJ [87,88].

Thus, the amount of harvested energy is stochastically generated in each slot by the Poisson

distribution. According to the operation of SUs, the battery of an SU can be empty, which

is referred to as the energy shortage. In the case, the SU will stay silent and wait for the

upcoming energy arrival in the subsequent time slots for other operations.

First, we show the impact of self-interference on system performance based on
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Figure 4.4: Network topology.
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Figure 4.5: Average secrecy rate versus different transmission modes of SUs.

the different action modes with increasing values of transmission energy of the SUs, as

seen in Fig. 4.5. The results obtained were averaged on the assumption that the case all

transmissions are carried out successfully over 103 time slots. We can see that if both SUs

are assigned to FD mode, the maximum secrecy rate can be obtained as εtr < 120 µJ ;

otherwise, the reward becomes the worst among other cases. That is because the system will

experience strong self-interference at a high transmission power from users. For that reason,

the system prefers HD mode at high transmission power for users to avoid self-interference.

Therefore, an efficient algorithm to dynamically assign the optimal actions to secondary

users is worthwhile in the context of this network topology.

Fig. 4.6 shows the system secrecy rate according to mean harvested energy of the

SUs when K = 2 and K = 3. We can see that when the mean value of harvested energy
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Figure 4.6: Average secrecy rate versus different mean values of harvested energy.
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Figure 4.7: Energy efficiency versus different mean values of harvested energy.

increases, the SUs can harvest more energy from the ambient environment, and thus, can

transmit with higher power, which leads to the higher average secrecy rate of the system.

It is also observed that the network secrecy rate of the proposed scheme dominates the

conventional schemes. Furthermore, it is worth noting that the system performance can be

greater as the number of primary channels increases, because there will be more chances to

select a better instantaneous channel gain from the free channels. Next, we compare the

energy efficiency of the schemes under the effect of harvested energy in Fig. 4.7. In this

study, the energy efficiency is defined as the average system reward over the average amount

of utilized energy of the SUs (in b/µJ unit) over 103 time slots. As a result, the curves show

that the proposed scheme is superior to the conventional schemes.

In order to examine the effect of the coefficient of self-interference on the schemes,
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Figure 4.8: Average secrecy rate versus different self-interference coefficients.
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Figure 4.9: Energy efficiency versus different self-interference coefficients.

we show the secrecy rate and the energy efficiency of the system in Fig. 4.8 and Fig.

4.9, respectively, according to various values of µ, under changes in the total number of

primary channels in the network (K = 2, 3). It is evident that system performance degrades

considerably at a large value for µ because of the greater self-interference on data reception

at the users. We can see that the secrecy rate and the energy efficiency with the FD

scheme drop very quickly as µ ≥ 10−7 because the SBS always assigns FD mode for SU

transmissions, regardless of severe self-interference on data reception. The conventional

HD & FD scheme can be more effective than other conventional schemes because it takes

advantage of FD mode when µ is small and of HD mode when µ becomes large. However,

it still only considers the current time slot to maximize the immediate reward, which may

lessen the long-term reward under the restricted energy of the SUs. That results in the
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Figure 4.10: Statistics for selected actions of the proposed scheme with respect to different

coefficients of self-interference when K = 3.

10
-9

10
-8

10
-7

10
-6

10
-5

0

200

400

A
ct
io
n
st
a
ti
st
ic
s
o
f
co
n
v
.
H
D

&
F
D

sc
h
em

e
(s
lo
ts
)

Stay silent

HD - 1

HD - 2

HD - 3

HD - 4

HD - 5

FD - 1

FD - 2

FD - 3

FD - 4

FD - 5

10
-9

10
-8

10
-7

10
-6

10
-5

Coefficient of self-interference µ

0

200

400

(a) SU
1

(b) SU
2

Figure 4.11: Statistics for selected actions of the conventional HD & FD scheme with respect

to different coefficients of self-interference when K = 3.

inefficiency in both energy and spectrum utilization of the system. As a consequence, by

considering both current and future rewards, the proposed scheme can gain more than a

20% increase in the average secrecy rate from an energy-efficiency perspective.

In order to examine the behaviors (action modes) of SUs that are assigned by the

SBS over 1000 time slots, we plotted the action statistics of the proposed scheme and the

conventional HD & FD scheme in Fig. 4.10 and Fig. 4.11, respectively, under the effect

of µ. The notations HD − i and FD − i denote half-duplex mode and full-duplex mode,

respectively, with the level i of transmission energy, where i ∈ {1, 2, ..., 5}. As seen in the

figures, the proposed scheme usually uses less the number of HD modes (i.e. from HD − 2
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Figure 4.12: Average secrecy rate of the system according to differences in network topology

(with various locations of the SBS) when K = 3.

to HD − 5) than that of the conventional HD & FD scheme when µ is small. Instead of

usually using HD − 5, the proposed scheme uses an action with an FD mode more than

the conventional HD & FD scheme in order to enhance the system reward, because the

acceptable self-interference caused by FD mode at a small µ does not affect the overall system

performance too much. In addition, the conventional HD & FD scheme causes the SUs to

stay silent more than the proposed scheme owing to their energy shortage for subsequent

time slots after merely maximizing the reward in the current time slot. On the other hand,

simultaneously assigning the proper action modes with the proper amount of transmission

energy and the optimal channels by the SBS can help SUs get more chances to stay active

and to communicate with the SBS through the fading channels. Consequently, it leads to

efficient energy utilization with high system performance in the presence of eavesdroppers in

the network.

We further investigated the impact of network topology on the system reward under

the proposed scheme and the conventional HD & FD scheme by changing the position of

the SBS in the network, as shown in Fig. 4.12(a) and Fig. 4.12(b), respectively. Intuitively,

the 3D-graph shows that the system reward grows notably when the SBS is placed near the

SUs’ positions and declines sharply when the eavesdroppers are located near to the SBS.

The cone on the right-hand side of both schemes takes a smaller value than on the left-hand

side, because there are more eavesdroppers located near the SU2 (with the coordinate (272,

267)). As a result, the average system reward sharply declines because many opportunities

exist for eavesdroppers to overhear the transmissions through the channels between the SBS
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and SU2. Consequently, we can infer that the more closely the eavesdroppers are located to

the links of SBS−SUs, the less system reward can be achieved.

4.5 Conclusions

In this chapter, we proposed a POMDP-based scheme for joint resource allocation

and transmission-mode selection for secondary users in multiple-channel cognitive radio

networks in the presence of passive eavesdroppers. This chapter aims to maximize the

long-term secrecy rate and also enhance efficient energy utilization of the secondary system

in the context of the energy-constrained issue for wireless users. In the network, FD-capable

secondary users powered by non-RF sources (solar energy) can share the currently free

primary channels and be allowed to transmit and receive signals with the secondary base

station at the same time. Eavesdroppers, located near the SBS and the SUs, can overhear the

data of the SBS−SU transmissions via a number of primary channels. A optimal transmission

policy consisting of assigned channels and an assigned transmission mode (HD/FD) with

the optimal amount of transmission energy for the SUs can be achieved by adopting the

POMDP framework. Subsequently, the proposed scheme was verified by comparing its

the operational performance with other conventional schemes in which the context of the

long-term reward is not considered. Eventually, the simulation results validated the great

improvement in the secondary system’s secrecy rate and energy efficiency, when compared

with conventional schemes under various conditions in the network.



Chapter 5

Data Rate Maximization with

Content Caching for Solar-Powered

UAV Communication Networks

5.1 Introduction

Lately, wireless communication has been evolving not only for high throughput,

but also for ultra-reliability, efficient energy consumption, and to support highly diversified

applications with heterogeneous requirements for quality of service (QoS) [90]. To this

end, extensive research efforts have mainly been devoted to fixed terrestrial infrastructures

such as ground base stations (BSs), access points, and relays, which generally restrict their

capability to cost-effectively meet the ever-increasing multifarious traffic demand. In order

to address this problem, there is a great deal of growing interest in providing wireless

connectivity from the sky under various airborne platforms, such as unmanned aerial vehicles

(UAVs) [91], balloons [92], and helikites [93]. In recent years, the reputation of non-orthogonal

multiple access (NOMA) has risen intensively as a promising solution to critical issues in

next-generation wireless systems [94]. By allowing multiple devices to operate with the

same frequency, time, or code resources, the NOMA technique has exhibited improved

spectral efficiency and balanced and fair access, compared to orthogonal multiple access

(OMA) approaches [95,96]. It should be noted that the NOMA method is typically based

on superposition coding (SC) at the transmitters and successive interference cancellation

83
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(SIC) at the receivers. Many research efforts have paid attention to combinations of NOMA

and UAV-enabled wireless communications technologies [97,98].

During the past few decades, the driving forces behind traffic development have

shifted from connection-centric communication demand (e.g., text messages and smart

phones) to content-centric communication demand (e.g., popular music or video streaming).

Although small base stations are densely employed to accommodate the ever-increasing

traffic demand, a heavy traffic burden is still imposed on the backhaul links. One potential

solution is to properly cache popular content at the network edge (i.e., UAVs, D2D devices,

or relays) to serve the same requests of users without duplicate transmissions via the

backhaul links. In [99], UAVs were dispatched to store enhancement layer segments of video

beforehand and then provided the transmissions to users who requested the videos. Chen

et al. [100] proposed appropriate content caching during off-peak times in a cloud radio

access network, which is based on the user’s behavior prediction. From the standpoint of

wireless communication, UAV-enabled communication system operations are quite energy

consuming owing to the support of the UAV’s propulsion in the air, the communications with

users, and application-based purposes. Therefore, UAVs usually have very limited endurance

due to energy constraints. To address this issue, several methods have been introduced to

alleviate UAVs energy consumption by, for example, reducing the UAV’s weight [101] and

planning energy-efficient UAV flight paths [102, 103]. The authors in [102] investigated a

path planning algorithm that minimizes energy consumption while satisfying coverage and

resolution. Meanwhile, an efficient approach was proposed to maximize the UAV’s energy

efficiency under the constraints on the trajectory [103]. However, the energy supply for

the UAVs is still basically unsustainable due to the limited battery capacity. Thus, the

fundamental UAV endurance problem remains unresolved.

5.1.1 Motivations and Contributions

Motivated by the above analysis, in this chapter, we propose two joint caching and

power allocation schemes for solar-powered, UAV-enabled NOMA communication systems

under two scenarios. In the first scenario, the system has the prior knowledge of the harvested

energy distribution of the UAV. On the other hand, in the second scenario, we consider

the case that the system does not know the harvested energy distribution of the UAV.

The GUs require the number of data items stored in the local station. Nevertheless, there
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are no available direct links between the local station and the GUs due to unexpected or

emergency circumstances such as natural disasters, obstacles, and long-distance transmissions.

The deployment of terrestrial infrastructure can be infeasible and challenging owing to

sophisticated environments, as well as high operational costs. Thus, the UAV is employed to

cache part of the content from the local station and deliver data to the GUs. In this work,

the UAV can harvest solar energy from the ambient environment. However, the solar panel

equipped on the UAV cannot sufficiently provide long-term operation due to its large mass,

high mobility energy, and communication energy. To address this problem, the battery is

fully recharged at the local station (LS) by the grid power whenever the UAV returns to the

station.

There are two portions in the battery: mobility capacity used for flight operation

and transmission capacity used for data transmissions. Mobility capacity representing

the space needed for flight energy occupies a large portion of the battery. Therefore, the

remaining space required for data transmissions (i.e., transmission capacity) in the battery

is significantly limited. The amount of initial energy for data transmissions in the battery is

not enough for providing the higher data rate to the GUs in the long term. It is supposed

that the UAV always harvests the energy during its flight. Hence, during the serving time of

each round, the UAV can leverage harvested solar energy to transmit data to the GUs. The

mobility energy is assumed to be preserved enough in each round; thus, the harvested energy

used for data transmission has a higher priority during the serving time. This means the

harvested energy is used for replenishing the transmission capacity before it is used to charge

the mobility capacity during the serving time. Besides, the battery is always recharged by

the harvested energy during the non-serving time to reduce the grid power consumption

required for charging and additional charging time when the UAV is at the LS. In other

words, the harvested energy is stored in the on-board battery, which can be used not only

for providing data transmission services to GUs during the serving time (i.e., the duration

time that the UAV flies around the circular trajectory), but also for recharging the battery

for its flight operation during the non-serving time (the time when the UAV approaches the

LS and the time when the UAV goes to the serving area). Therefore, it is worth applying

solar harvesting to the UAV-based communication system.

Instead of using conventional orthogonal multiple access (OMA) (e.g., TDMA,

FDMA, CDMA), which causes low spectrum efficiency, the NOMA technique is applied to

enhance the data rate of the UAV system in which the UAV can simultaneously transmit data
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to the GUs. In this chapter, there are three phases of the UAV’s operation: (1) performing

the caching update process and then approaching the serving area, (2) flying along the

circular trajectory while doing the communication process, and (3) returning to the LS for

re-caching the files and recharging the battery, as shown in Fig 5.1 (a). The caching update

process is implemented at the local station in which the UAV pre-caches part of the content

from the local station and replenishes the battery for the next round. Then, it approaches

its serving area to start flying along the predefined circular trajectory where the GUs can be

served. Next, the communication process of the UAV will be executed in which the UAV can

transmit data based on the content requests of the GUs during the UAV’s flight following

the predefined circular trajectory. After finishing a circular trajectory flight period, the

communication process will temporarily be terminated, and the UAV needs to go back to

the LS for re-caching the content and battery recharging. These processes will repeat until

the UAV satisfies the GU’s requests. In this chapter, using solar harvesting for the UAV will

help relieve the burden of grid power-based energy consumption. Furthermore, finding the

proper solution for the solar-powered UAV to provide the energy-efficient communications

is still a challenging task under the limited energy harvesting technology. This can make

the solar-powered UAV system more applicable to the real wireless system scenarios. In a

nutshell, the main contributions can be summarized as follows.

• Firstly, we study a model of a cache-enabled downlink UAV communication network.

Ground users request data items stored in the library of a local station, but direct

links are not available. The solar-powered UAV is employed to cache content from

the local station and then approach distant users to execute data transmissions using

NOMA technology.

• Secondly, we formulate the problem of the sum data rate maximization as the framework

of a partially observable Markov decision process (POMDP). An iteration-based

dynamic programming approach is proposed to obtain the optimal policy for the UAV

in order to maximize the system data rate under the assumption that the UAV has

prior environment information.

• Thirdly, we present another approach using an actor-critic-based reinforcement learning

algorithm to deal with the problem in the scenario where the UAV does not have

information on environment dynamics in advance. With the actor-critic-based method,
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Figure 5.1: (a) The considered network with one UAV (unmanned aerial vehicles) and

multiple ground users (GUs). (b) The time-frame structure.

the UAV can interact with the environment and gradually learn the optimal policy as

time goes on, based on trial-and-error without prior environment knowledge.

• Lastly, extensive numerical results are provided to validate the proposed algorithm’s

performance through various network parameters. We show that, with joint caching

and power allocation, the two proposed schemes are superior to the benchmark schemes.

The remainder of this chapter is organized as follows. The model for the EH-

powered UAV downlink communication system is presented in Section 5.2. Next, we describe

the proposed POMDP-based joint cache scheduling and power allocation scheme in Section

5.3, and the proposed actor-critic-based learning framework is presented in Section 5.4. The

discussions on the simulation results are elaborated in Section 5.5. Finally, we conclude this

work in Section 5.6.
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5.2 System Model

We consider a caching-based UAV-enabled downlink wireless transmission system

adopting non-orthogonal multiple access and content caching technologies where a UAV,

F , is employed as a mobile base station to serve a group of I ground users, denoted by

I = {1, 2, ..., I}. We assume GUs do not have direct links to the local station (LS) where all

content that the GUs requests is stored. This kind of network scenario can be a practical

instance in suburban environments where the deployment of communication infrastructures

is still restricted or in urban environments where damage of the infrastructures may happen

due to natural disasters. Thus, the remote users may not get services from a local station.

For that reason, the UAV is dispatched to obtain cached contents from the LS, and it then

flies along a predefined trajectory to transmit the requested data to GUs. The considered

network is illustrated in Fig. 5.1 (a).

Each data transmission is executed in every time slot t, and meanwhile, each

caching action is executed at the beginning of a flight period, which is determined as a

round in which the UAV flies to the serving area and then flies along its predefined circular

trajectory and returns to the LS. However, due to a limited cache capacity, it can only

periodically cache part of the content from the LS at the beginning of every flight period.

The GUs are assumed to have a fixed power supply, whereas the UAV has a limited-capacity

battery. Hence, UAV F is equipped with an energy harvester to scavenge solar energy

from the ambient environment to replenish its battery. We assume the UAV works in an

ideal environment without any environment factors (e.g., wind). Suppose that the UAV

continuously flies at a constant velocity, vF , in a circular trajectory with radius rF , at

altitude hF , and the UAV position repeats every TF (seconds). Thus, the flight length for

the circular trajectory is defined as TF = 2πrF
vF

, and the number of time slots discretized in

each circular trajectory length is determined as NF = TF
T , where T is the time slot duration.

Note that the UAV’s location is assumed to be unchanged during each time slot when T is

chosen sufficiently small in the system.

Without loss of generality, we consider three-dimensional (3D) Cartesian coordinates

(x, y, z) where (x, y, 0) represents the ground plane and z is the altitude. The location of GUi

is denoted as pi = (xi, yi, 0) , i ∈ I. In fact, when disasters occur, the network infrastructure

may be corrupted. However, the GUs can still position their location easily thanks to a

GPS decoder, which is integrated into most mobile devices currently. Thus, the GUs can
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report their locations to the UAV such that the UAV can calculate the flight trajectory to

serve the GUs’ requests. For the devices without GPS, the UAV can still estimate the GUs

locations based on the received signal strength indicator (RSSI), which is well studied in the

literature [104,105]. Furthermore, when the locations of the users are known, determining

the flight trajectory of the UAV was proposed in the literature. In this chapter, we do

not focus on an approach to obtain the GUs’ locations and the UAV’s trajectory. Instead,

we mainly focus on the power allocation with data caching at the UAV to maximize the

long-term data rate of the system. Therefore, it is assumed that the GUs’ locations and

the UAV’s trajectory are known in advance. Herein, we establish the formulation for the

circular trajectory of the UAV in the serving area, which is defined as the region where

the GUs are located. The 3D setup of the considered network consisting of the LS, the

UAV, and multiple GUs is illustrated in Figure 5.1 (a). Point O′, located at pO′ = (0, 0, hF ),

is the center of the circular trajectory with radius rF , in which F flies. Let ω denote the

angle of the circle of F ’s location with respect to the x-axis. The location of F at time slot

t can be determined as pF (t) = (xF (t), yF (t), zF (t)) = (rF cosω (t) , rF sinω (t) , hF ). The

time frame structure of the system is illustrated in Fig. 5.1 (b). The time frame is divided

into four phases: GUs’ requests (tre), UAV’s decision (tde), data transmission (ttr), and

information update (tup). At the start of a time slot, the GUs will send data item requests

to F . Then, a decision will be determined at F by allocating the transmission power to

the GUs based on the current state of the system. Subsequently, data transmission will be

conducted according to the assigned power portions for the GUs in the data transmission

phase. Finally, the system will update its state at the end of the time slot.

5.2.1 Channel and Transmission Models

According to the above network setup, the time-dependent distance between F

and GUi can be calculated as:

dFUi(t) = ‖pF (t)− pi‖, (5.1)

where ‖.‖ denotes the Euclidean norm operation. In practice, the air-to-ground wireless

channels from the UAV to GUs are normally dominated by LOS links, where the quality

of the channel only depends on communication distance [106]. Moreover, UAV-assisted

information dissemination is more necessary in rural regions than in urban regions [91]. In

rural regions, building density is very low, and thus, the probability of non-line-of-sight links
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is also low. Therefore, in this chapter, wireless channels from F to the GUs are assumed to

follow a free-space path loss model. As a consequence, channel power gain from F to GUi

at time slot t can be expressed as [107]:

hFUi (t) = β0d
−α
FUi

(t) =
β0

‖pF (t)− pi‖α
, (5.2)

where β0 represents the channel power gain at the reference distance, d0 = 1m, which depends

on the carrier frequency, antenna gain, etc; and α is the path loss exponent. Suppose that

F has access to the flight control and location information of the GUs for power allocation.

Besides, it is worth noting that the channel gain between F and the GUs varies over period

TF due to the movement of F . Given the location of F at time slot t, the channels of the

GUs are sorted in F to apply NOMA.

Typically, a NOMA scheme enables a base station to serve multiple users simul-

taneously over the same frequency band. The power portions for users are assigned in an

inversely proportional manner based on their channel conditions, in which the low channel

gain user requires a higher allocated transmission power, and vice versa. We assume that

each GU’s channel gain is placed in an ascending manner in time slot t.

According to the downlink NOMA principle, UAV F will transmit a combined

signal, sF (t), to all GUs with the assigned power portions in time slot t. Specifically, with

the content requests of the GUs in time slot t, the transmitted signal by UAV F can be

written as:

sF (t) =
I∑
i=1

√
λi(t)PF (t)si(t), (5.3)

where si (t) is the normalized information for GUi in time slot t with E
[
|si|2

]
= 1; PF (t) =

etr(t)
ttr

represents the total transmission power that F uses to transmit data to the GUs, in

which etr(t) is the amount of transmission energy used by F in the time slot; and λi(t)

denotes the power portion allocated for GUi in time slot t (s.t.
I∑
i=1

λi = 1). The received

signal at GUi in time slot t can be given by:

yUi(t) =
√
hFUi(t)

I∑
i=1

√
λi(t)PF (t)si(t) + ni, (5.4)

where ni is the zero-mean additive Gaussian noise with variance σ2 at GUi. Let us denote

the descending order vector of power portions, as o(t) = [o(1), o(2), ..., o(I)] |o(n) ∈ I . The
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GU with the highest power portion (with index o(1)), treats all signals of other GUs as

interference and directly decodes its own information without using SIC. Nevertheless, other

GUs need to employ the SIC process where they first decode signals that are stronger (i.e.,

the GUs with a higher assigned portion) than their own desired signals. Then, those signals

will be subtracted from the received signal, and this process will continue until the GUs’ own

signals are decoded. In other words, each GU will decode its own information by treating

other GUs’ signals (with smaller power portions) as interference. As explained above, assume

that all the signals of GUo(l), for l < n, have been perfectly decoded by GUo(n). Thus, the

signal-to-interference-plus-noise ratio (SINR) at GUo(n) for decoding its own information is

given as:

γGUo(n)
(t) =

λo(n)(t)PF (t)hFUo(n)
(t)

hFUo(n)
(t)
∑I

j=n+1 λo(j)(t)PF (t) + σ2
. (5.5)

Consequently, the achievable rate at GUo(n) in (b/s/Hz) to decode its own information in

time slot t can be calculated as:

RGUo(n)
(t) =

ttr
T

log2

(
1 + γGUo(n)

(t)
)
. (5.6)

Additionally, the SINR at GUo(n′) to decode the information of GUo(n), for n < n′, can be

expressed as:

γ
o(n′)
GUo(n)

(t) =
λo(n)(t)PF (t)hFUo(n′)(t)

hFUo(n′)(t)
∑I

j=n+1 λo(j)(t)PF (t) + σ2
, (5.7)

Similarly, the achievable rate at GUo(n′) in (b/s/Hz) to decode the information of GUo(n)

for n < n′ in time slot t can be calculated as:

R
o(n′)
GUo(n)

(t) =
ttr
T

log2

(
1 + γ

o(n′)
GUo(n)

(t)
)
. (5.8)

Finally, the sum rate of the system in time slot t can be expressed as follows:

R(t) =
I∑
i=1

RGUi(t) =
I∑

n=1

RGUo(n)
(t), (5.9)

where RGUi(t) represents the achievable rate at GUi in time slot t subject to o(n) = i ∈ I.

More specifically, for a better understanding, let us take an example with I = 2:

if hFU1 (t) > hFU2 (t), then λ1(t) < λ2(t) and o(t) = [2, 1]. At GU1, by using SIC, it first

decodes s2(t) and then cancels it out from (4) to decode its own signal, s1(t). Meanwhile,
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at GU2, s2(t) is directly decoded without performing SIC. As a result, the achievable data

rates at GU1 and GU2 can be respectively calculated by:

RGU1(t) =
ttr
T

log2

(
1 +

λ1(t)PFhFU1 (t)

σ2

)
(5.10)

and:

RGU2(t) =
ttr
T

log2

(
1 +

λ2(t)PFhFU2 (t)

λ1(t)PFhFU2 (t) + σ2

)
. (5.11)

Eventually, the sum rate of the system in time slot t can be given as follows:

R(t) = RGU1(t) +RGU2(t). (5.12)

5.2.2 Data Request Behavior of the Ground Users

In this chapter, library K in the LS contains K different finite data items for the

requests of GUs. Data items are essentially an abstraction of application data, which might

range from database records, web pages, ftp files, etc. We consider the content requests of

the GUs to be unrelated to each other. Let us assume that the probability that each GU

accesses the same data item in the two consecutive time slots is pretty high, but accesses

to the other data item are smaller. That is realistic since the users tend to frequently

access the same data source of their interest for a long duration. Thus, we model the

request of each GU as a discrete-time Markov chain where the state transition probability

of GUi for two adjacent time slots is illustrated in Fig. 5.2 (a). Pmm,i and Pm̃m̃,i (where

Pmm,i = Pm̃m̃,i |m̃ ∈ K\ {m}) represent the probabilities that GUi requests the same data

item, m, or another data item, m̃, respectively, in two adjacent time slots. Pmm̃,i and

Pm̃m,i (where Pmm̃,i = Pm̃m,i) are the probabilities that GUi requests different items in two

adjacent time slots. It is assumed that if the request of GUi in time slot t is item m, then

the probability that GUi requests item m̃ in time slot t+ 1 can be computed as:

Pmm̃,i =
1− Pmm,i
K − 1

, (5.13)

where K is the total number of data items in library K. It is worth noting that when GUi

requests an item that is not among the cached data items in the UAV, it cannot receive

that requested data from the UAV, and thus, no transmission power will be allocated for

GUi in this time slot, i.e., λi(t) = 0.
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Figure 5.2: (a) The request model of GUi. (b) An example of caching and serving procedures

by the UAV, where NF = 30, CF = 5, I = 3, and K = 10.

5.2.3 Content Caching Model of UAV

This chapter adopts a traditional caching technique for UAV F for serving the

requests of the GUs in the network. Since the number of data items that can be cached by F

is restricted to a caching capacity, CF , the UAV needs to cache new data items from K after

each flight period j to replace the old cached items. With periodical caching, performance

can be enhanced according to the GUs’ requests. In this chapter, the non-serving time that

includes the duration for the UAV to cache the items, approach the serving area, and return

to the LS is approximately unchanged and will not affect the data rate maximization during

the serving time. Therefore, the non-serving time can be ignored in the chapter, and the

term flight period can be referred to as the circular trajectory period of the UAV henceforth.

Let cj = [cj,1, cj,2, ..., cj,CF ] denote the cache content vector of UAV F in period j. Based

on the data request behavior of the GUs, the cache content vector, cj , where the data items

are cached in period j is divided into two parts: the request-based cache vector, creqj , and

the random cache vector, cranj , and can be expressed as cj =
[
creqj , cranj

]
, s.t. |cj | = CF .

The former consists of the items cached based on the latest requests of the GUs, while the
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latter is determined by randomly caching items from the library, except for the items in

the request-based cache. In particular, at the start of new flight period j, F will cache the

same data items based on the latest items requested by the GUs (i.e., the items requested

at the last time slot of previous period j − 1), and the rest of the space in cj is fulfilled by

randomly selecting another items from library K in the LS, such that each item cached in cj

is unique in the current period. The reason for this caching model is because the probability

that GUi requests the same item is assumed to be much greater than that of GUs requesting

a different item between two adjacent time slots, i.e., Pmm,i � Pmm̃,i, as presented in the

previous subsection.

We use q(t) = [q1(t), q2(t), ..., qI(t)] to denote the item request vector of the GUs,

where qi(t) ∈ {1, 2, ...,K} represents the item request of GUi at the start of time slot t, and

meanwhile, NF denotes the total number of time slots in each circular trajectory period.

If the GUs request data items different from each other in the last time slot of period j,

i.e., qi (jNF ) 6= q̃i (jNF ), the request-based cache vector, creqj+1, and the random cache vector,

cranj+1, for the next period, j + 1, can be respectively determined as follows:

creqj+1,i = qi (jNF ) |i ∈ {1, 2, ..., I} , (5.14)

and:

cranj+1,i |i ∈ {1, 2, ..., CF − I} is randomly cached

in K\
{
creqj+1,1, c

req
j+1,2, ..., c

req
j+1,I

}
,

(5.15)

where creqj+1,i ∈ {1, 2, ...,K} is the cached item ith of creqj+1. It is worth noting that if there are

similar requested items among the GUs’ requests in the last time slot of period j, then UAV

F will only cache these same items one time in creqj+1 for use in the next period, j + 1, to

save cache space in cj+1.

An example of the caching process by UAV F can be illustrated in Fig. 5.2 (b) with

NF = 30, CF = 5, I = 3, and K = 10. In time slot t = 30, which belongs to period j = 1,

the requests of the GUs are q1(30) = 5, q2(30) = 8, and q3(30) = 3, and then, creq2 = [5, 8, 3]

and cran2 = [7, 2]. In time slot t = 60 with j = 2, the requests of GU1 = GU2 = 6 are

duplicates, and the request of GU3 = 4; thus, creq3 = [6, 4] and cran3 = [2, 3, 1].
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5.2.4 Energy Harvesting Model of the UAV

In this chapter, UAV F is assumed to have a limited-capacity battery, EBat, and it

is equipped with an energy harvesting circuit to harvest solar energy for its operation. UAV

F can simultaneously harvest solar energy and perform other operations such as forward

movement, climbing up and down, and data transmissions. In this work, we aim at efficiently

using the harvested solar energy in the UAV in order to allocate proper transmission power

to the GUs during the serving duration. Since the amount of flight energy consumed for a

round trip of the UAV can be approximately estimated, for simplicity, the energy portion

for the mobility of the UAV is not shown in the formulation. Thus, we only consider the

battery capacity portion required for the data transmission (i.e., transmission capacity),

and it is also denoted as EBat for our simplified formulation purposes. If EBat is full during

the serving time (i.e., the maximum value of the transmission capacity portion is achieved),

the rest of the amount of harvested energy will be stored in the mobility capacity portion

that is used for the UAV’s flight. Herein, the amount of energy harvested by F in time

slot t, denoted as Eh(t), is finite, where Eh(t) ∈
{
Eh1 , E

h
2 , ..., E

h
ξ

}
; 0 ≤ Ehz < EBat, and

z ∈ {1, 2, ..., ξ} and is assumed to follow a Poisson distribution [81]. The authors in [81]

carried out empirical measurements for the modeling of a solar-powered wireless sensor

node in time-slotted operation and showed that the stored energy characteristics depend on

many factors such as the time slot duration, light intensity, power level, and the deployment

environment. As a result, the Poisson distribution model achieved a near fit for the collected

measurements. The probability distribution of the energy harvested by F can be given by:

P h(z) = Pr
[
Eh(t) = Ehz

]
=

(
Eh,avg

)z
exp(−Eh,avg)
z!

, (5.16)

where Eh,avg represents the mean energy harvested by F . For tractability in the simulation,

the amount of harvested energy can be approximated, and the maximum harvested energy

can be determined according to network parameters such that the cumulative distribution

function is close enough to one.

5.2.5 Sum Rate Maximization Formulation

In this chapter, we aim to optimize the transmission power allocated to the GUs

and the content caching by UAV F such that the sum cumulative data rate of ground users

can be maximized in a long-term operation. Thus, the problem formulation can be expressed
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as follows:

max
λi(t),PF (t),cj

( ∞∑
k=t

I∑
i=1

RGUi(k)

)
s.t.

I∑
i=1

λi(t) = 1, (a)

0 ≤ PF (t) ≤ Pmax
F , (b)

cj,i 6= c
j,i
|i ∈ {1, 2, ..., CF } , (c)

(5.17)

where cj is the cache content vector of UAV F in flight period j; Pmax
F represents the

upper bound of the transmission power that F can use to transmit data to the GUs.

Constraint (a) specifies that the UAV totally assigns its transmission power, PF (t), to GUs

that request items from the UAV’s cache in time slot t. Constraint (b) guarantees that

the total transmission power for GUs in each time slot is no greater than the maximum

transmission power that the UAV can use without causing it to be inactive owing to an

energy shortage. Finally, Constraint (c) ensures that every cached item is unique in the

cache content vector for period j, where cj,i represents the ith item of cache content vector

cj .

It is worth noting that although maximizing the energy utilization in the current

time slot can optimize the temporal data rate of the system, it may cause inactivity upon

data transmission in the subsequent time slots due to an energy shortage in F . Consequently,

it can significantly degrade the long-term sum rate of the network. Furthermore, dynamic

data requests of the GUs will also affect the performance of the system, since the caching

constraint on F is taken into account. Therefore, according to the system state, finding an

optimal policy for joint cache scheduling and power allocation in F to obtain the maximum

long-term sum rate of the system is the main goal of this study.

5.3 Proposed Solution Using the POMDP Framework

In this section, we propose a joint optimal cache scheduling and power allocation

scheme using a POMDP framework for F over the long run, based on prior information for

the harvested energy distribution and the request model for the GUs. To be more specific,

after receiving the requests by the GUs, F will allocate the optimal transmission power for

each GU in order to obtain the maximized long-term sum data rate for the system. The

problem of sum data rate maximization is first formulated as the framework of a partially
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observable Markov decision process where the effect of the decision in the current time slot

on the subsequent time slots is taken into account [108]. Subsequently, the optimal policy can

be obtained by adopting the approach of value iteration-based dynamic programming [67].

5.3.1 Markov Decision Process

The Markov decision process (MDP) is generally defined as a tuple 〈S,A,P, ϕ〉,
where S, A, and P are the state space, action space, and state transition probability space,

respectively; ϕ : S× A 7→ R represents the reward function.

We define the system state as s(t) = (erm(t), ω(t),θ(t), tin(t), cj) ∈ S, where erm(t)

is the remaining energy in F ; 0 ≤ ω(t) ≤ 2π is the angle of the circle for F ’s location

with respect to the x-axis; θ(t) = [θ1(t), θ2(t), ..., θI(t)] is the belief vector, with θi(t) as the

belief (probability) that the requested content of GUi will be in the current cache content

vector, cj , in time slot t; tin(t) ∈ {1, 2, ..., NF } is the index of time slot t in terms of flight

period j. Note that cj will only be updated based on the requests of the GUs at the

end of time slot t when tin(t) = NF in each flight period, and meanwhile, s(t) is always

updated based on the selected action by F and the amount of harvested energy at the

end of each time slot. The set of actions can be denoted as A =
{
a1,a2, ...,a|A|

}
, where

aυ =
[
etrυ , λ1,υ, λ2,υ, ..., λI,υ

]
|υ ∈ {1, 2, ..., |A|} is the action υ in A; where etrυ (0 ≤ etrmin ≤

etrυ ≤ etrmax) is the transmission energy in UAV F , and 0 ≤ λi,υ ≤ 1 is the power portion

assigned for GUi. The notations etrmin and etrmax represent the minimum and maximum

transmission energy in the UAV. We further define the reward for the system as the sum

data rate of the network. Thus, given state s(t) and action a(t), the corresponding reward,

denoted by R (s(t),a(t)), is computed by using Eq. (5.9).

The operation of UAV F can be expressed as follows. At a given time instant t, F

employs action a(t) based on the system state and the content requests of the GUs, and

then, the reward for the system, R (s(t),a(t)), will be achieved at the end of the time slot.

Action a(t) causes the system to transit from state s(t) to a new state, s(t+ 1). Thus, the

state of the system will be updated for the next operation when the data transmission in

time slot t is finished.

In this chapter, we aim to find the optimal transmission power allocation policy

based on the cache scheduling discussed in Section 5.2 C for UAV F in each slot t in order

to maximize the accumulated reward from the time slot to the time horizon. In addition,
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transmission power is determined by using transmission energy etr and transmission data

duration ttr, i.e., PF (t) = etr(t)
ttr

. Therefore, according to the above MDP formulation, Eq.

(5.17) can be rewritten as follows:

aopt(t) = arg max
a(t)∈A

{ ∞∑
k=t

βk−tR (s(k),a(k)) |s(t)

}
, (5.18)

where 0 ≤ β ≤ 1 is the discount factor, which indicates the effect of the current action on

the future rewards. According to the dynamic item requests of the GUs, the observation is

defined as the probable case that shows whether the item requests of the GUs are in cached

items of F in a given time slot and will be discussed in the next subsection.

5.3.2 Observation Description

This section introduces possible observations, the respective rewards, and the ways

to update the system state for the next time slot according to the selected action of a given

time slot. Let us consider a network with two GUs (I = 2) connecting to UAV F to acquire

data according to their requests. At the given state, s(t), the requests of the GUs are q1(t)

and q2(t), and the UAV executes action a(t). It is obvious to note that for all possible

observations, the angle of UAV F in the next time slot is updated as ω(t+ 1) = ωnext(t),

where ωnext(t) denotes the next angle of the UAV in its predefined circular flight trajectory.

In the following, we present a way to update other information regarding the remaining

energy, the belief vector, the transition probability, the time slot index, and the cache

content vector in each observation for this particular circumstance. These can be respectively

described as follows.

5.3.2.1 Observation 1 (O1)

The requests of both GU1 and GU2 are in the cached items in cj of UAV F . The

probability that the event happens can be calculated as:

Pr [O1] = θ1(t)θ2(t). (5.19)

The reward can be obtained as follows:

R(s(t),a(t) |O1 ) =

2∑
i=1

RGUi = RGU1 +RGU2 , (5.20)
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where RGUi can be obtained by using Eq. (5.6). The belief vector can be updated as follows:

θ(t+ 1) = [Pmm,1 + τ1, Pmm,2 + τ2] , (5.21)

where τi =
(

1−Pmm,i
K−1

)
(CF − 1) |i ∈ {1, 2, ..., I} . Next, the remaining energy in F for the

next time slot is:

erm(t+ 1) = min
(
erm(t)− etr(t) + Eh(t), EBat

)
EBat

if tin(t) < NF

otherwise

(5.22)

with transition probability:

Pr [erm(t+ 1) |erm(t) ] = Pr
[
Eh(t) = Ehz

]
1

if tin(t) < NF

otherwise
,

(5.23)

where Pr
[
Eh(t) = Ehz

]
can be calculated as in Eq. (5.16). To explain Eq. (5.22) and (5.23)

with the case of tin(t) = NF , the remaining energy (i.e., the energy in transmission capacity)

at F is always full because UAV F finishes one circular trajectory and returns to the LS for

recharging its battery. The index of the next time slot in terms of flight period j can be

updated as:

tin(t+ 1) =

 tin(t) + 1

1

if tin(t) < NF

otherwise
. (5.24)

Finally, the cache content vector can be updated by:

cj =

 cj[
creqj+1, c

ran
j+1

] if tin(t) < NF

otherwise
, (5.25)

where creqj+1 and cranj+1 can be determined with Eq. (5.14) and (15), respectively. It is important

to note that the UAV will only update the cache content vector when it is in the last time

slot of period j.

5.3.2.2 Observation 2 (O2)

The request of GU1 is in the cached items in cj , but that of GU2 is not in cj of

UAV F . The probability that the event happens can be calculated as:

Pr [O2] = θ1(t) (1− θ2(t)) . (5.26)
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The reward can be obtained as follows:

R(s(t),a(t) |O2 ) = RGU1 , (5.27)

where RGU1 can be calculated with Eq. (5.6). The belief vector can be updated as follows:

θ(t+ 1) =
[
Pmm,1 + τ1,

(
1−Pmm,2
K−1

)
CF

]
if tin(t) < NF

[Pmm,1 + τ1, Pmm,2 + τ2] otherwise
,

(5.28)

where τi is calculated in a way similar to Eq. (5.21). The remaining energy, the transition

probability, the index of the time slot, and the cache content vector can be updated with

Eq. (5.22)–(5.25), respectively.

5.3.2.3 Observation 3 (O3)

The request of GU1 is not in the cached items in cj , but that of GU2 is in cj . The

probability that the event occurs can be calculated as:

Pr [O3] = (1− θ1(t)) θ2(t) . (5.29)

The reward can be obtained as follows:

R(s(t),a(t) |O3 ) = RGU2 , (5.30)

where RGU2 can be computed with Eq. (5.6). The belief vector can be updated as follows:

θ(t+ 1) =
[(

1−Pmm,1
K−1

)
CF , Pmm,2 + τ2

]
if tin(t) < NF

[Pmm,1 + τ1, Pmm,2 + τ2 ] otherwise
,

(5.31)

where τi is calculated as it is in Eq. (5.21). The remaining energy, the transition probability,

the index of the time slot, and the cache content vector can be updated with Eq. (5.22)–(5.25),

respectively.

5.3.2.4 Observation 4 (O4)

The requests of both GU1 and GU2 are not in the cached items in cj of UAV F .

The UAV will stay silent; and hence, there is no reward in this case, i.e., R(s(t), a(t) |O4 ) = 0.
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The probability that the event occurs can be calculated as:

Pr [O4] = (1− θ1(t)) (1− θ2(t)) . (5.32)

The belief vector can be updated as follows:

θ(t+ 1) =
[(

1−Pmm,1
K−1

)
CF ,

(
1−Pmm,2
K−1

)
CF

]
if tin(t) < NF

[Pmm,1 + τ1, Pmm,2 + τ2 ] otherwise
.

(5.33)

The remaining energy in F for the next time slot is:

erm(t+ 1) = min
(
erm(t) + Eh(t), EBat

)
EBat

if tin(t) < NF

otherwise

(5.34)

with the transition probability being the same as Eq. (5.23). Similarly, the index of the

time slot and the cache content vector can be updated with Eq. (5.24) and Eq. (5.25),

respectively.

5.3.3 Value Iteration-Based Dynamic Programming Solution

According to the POMDP principle, the value function is defined as the maximum

value of the cumulative discounted system reward that starts from the current time slot

to the infinite time horizon, and it is used to select the optimal action for the UAV. Thus,

given a state s(t), the value function can be given as follows:

Vs(t) = max
a(t)∈A



∞∑
k=t

βk−t ×
∑
Om

Pr [Om]

×
∑

erm(k+1)

Pr [erm(k + 1) |erm(k), Om ]

×R (s(k),a(k)) |s(t)


, (5.35)

where Pr [Om] represents the probability that observationOm occurs; Pr [erm(k + 1) |erm(k), Om ]

is the probability that the remaining energy of the UAV will transfer from erm(k) to erm(k + 1)

with corresponding observation Om; R (s(k),a(k)) indicates the reward of the system when

it takes the action a(k) at the state s(t).

The value function in Eq. (5.35) can be obtained by using value iteration-based

dynamic programming [67]. Owing to the dynamic item requests of the GUs and the
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harvested energy, the expected reward for the possible actions in the current time slot will

be considered in each time slot. Accordingly, the optimal decision of the UAV in time slot t

can be obtained as follows:

aopt(t) = arg max
a(t)∈A


Rim (s(t),a(t))

+
∑
t+1

Pr [erm(t+ 1) |erm(t) ]Vs(t+1)︸ ︷︷ ︸
expected reward of action a(t) at state s(t)


, (5.36)

where Rim (s(t),a(t)) is the expected immediate reward for the system based on action

a(t), which can be obtained by Eq. (5.9). The term
∑
t+1

Pr [erm(t+ 1) |erm(t) ]Vs(t+1) is the

expected future reward from action a(t) in time slot t+ 1, where Vs(t+1) can be achieved by

solving the problem in Eq. (5.35). For the above setup, the MDP problem in Eq. (5.18) can

be transferred to Eq. (5.36), and the optimal policy for long-term data rate maximization can

be obtained by using the POMDP framework. The flowchart of the proposed POMDP-based

approach is given Fig. 5.3. For further details, the procedure of the slot-by-slot operation of

the system when using this scheme is presented in Algorithm 5.1.
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Figure 5.3: The flowchart of the proposed partially observable Markov decision process

(POMDP)-based scheme.
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Algorithm 5.1 Operation of the UAV when using the proposed POMDP-based scheme to

obtain the maximum long-term data rate in N time slots.

1: Input: dFUi , K, σ2, T , Tre, Tde, Tup, CF , EBat, Eh,avg, etrmin, etrmax, Pmm, Pmm̃, hF , rF ,

TF .

2: Output: Optimal action aopt(t).

3: Define S, A, and P.

4: Obtain the value function for every possible state of S in Eq. (5.35).

5: for t = t0 // Start from time slot t = t0

6: Define the current system state, s(t).

7: Receive the requests of GUs, q(t).

8: if no request by GUs is in cj

9: Stay silent.

10: else

11: Calculate Rim (s(t),a(t)) using Eq. (5.9).

12: Calculate expected future reward of action a(t) using Eq. (5.16) and Eq. (5.35).

13: Determine aopt(t) using Eq. (5.36).

14: if Action is “stay silent” (i.e., etr(t) = 0)

15: Stay silent.

16: else

17: if only one GU’s request is in cj

18: Transmit data to that GU.

19: else

20: Transmit data to GUs by using NOMA.

21: end if

22: Obtain the immediate reward for the system.

23: end if

24: end if

25: Update cj when tin(t) = NF with Eq. (5.14) and Eq. (5.15).

26: Update system state s(t+ 1).

27: end for// The number of considered time slots N .
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5.4 Proposed Solution Using the Actor-Critic Learning Frame-

work

In this section, we formulate and propose a kind of model-free reinforcement

learning (namely, an actor-critic-based method) to deal with the MDP problem assuming

there is no prior information on the energy harvesting distribution. Although applying the

actor-critic learning approach may lead the system to a locally optimal policy [109], it helps

the system learn information about the dynamic wireless environment by interacting directly

with the environment to generate a policy without having information on essential network

models a priori. Hence, this model-free learning approach can benefit from less formulation

and fewer computational effort, compared to the POMDP-based algorithm. In the following,

we present the classic actor-critic learning-based scheme to obtain the solution to the MDP

problem described in the previous section.

5.4.1 Actor-Critic Framework Formulation

Generally, the actor-critic framework is composed of three main components: an

actor, a critic, and the environment. The actor is responsible for taking an action according

to a policy; meanwhile, the critic evaluates the quality of the action and adjusts the policy

through temporal difference (TD) [110]. The generalized actor-critic framework is illustrated

in Fig. 5.4.
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Figure 5.4: The schematic of the classic actor-critic learning framework.

The value function for the actor-critic-based framework in this chapter is the total

discounted reward from the current time slot, and it can be modified according to policy Ω
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during the training phase, which can be obtained as follows [111]:

Vs = R (s,Ω (s)) + β
∑
s′∈S

Pr
[
s′ |s,Ω (s)

]
Vs′ , (5.37)

where Pr [s′ |s,Ω (s) ] represents the transition probability that the system will transfer to

state s′ after taking an action based on policy Ω (s) in state s. Similar to the POMDP-based

scheme, in this chapter, the actor-critic framework is in charge of determining the optimal

policy, Ω∗(s), and thus, the problem in Eq. (5.18) can be rewritten as:

Ω∗(s) = arg max
a∈A

{
R (s,a) + β

∑
s′∈S

Pr
[
s′ |s,a

]
Vs′

}
. (5.38)

In time slot t, the UAV selects and then executes an action, a(t), based on the

current state, s(t), and the current policy, Ω, which is determined by applying a Gibbs

soft-max function [111] as follows:

Ω (a(t) |s(t)) = Pr [a(t) ∈ A |s(t) ] =
eΘ(a(t)|s(t) )∑

a∈A
eΘ(a|s(t) )

, (5.39)

where Θ (a(t) |s(t)) is the tendency of the UAV to select action a(t) when the system is in

state s(t). Note that this parameter can be adjusted over time such that the UAV can select

the best action for each state when the training phase finishes. After the action is executed,

the system will transit to a new state, s(t+ 1), with transition probability:

Pr
[
s′ ∈ S |s(t),a(t)

]
=

 1 if s′ = s(t+ 1)

0 otherwise
(5.40)

and the corresponding immediate reward, R (s(t),a(t)), will be obtained as expressed in Eq.

(5.9). By applying Eq. (5.40) to Eq. (5.38), it obviously implies that the actor-critic-based

scheme does not need to have information on the energy arrival distribution in advance,

since it actually explores the next state, s(t+ 1), at the end of time slot t after performing

action a(t). As a result, at the end of the time slot, the critic component will evaluate

the quality of the action performed by the UAV by using the TD error. In other words,

determining the value function’s difference from current state s(t) at the end of each time

step will help the UAV gradually find the maximum value function that maps state s(t) to

optimal action aopt(t). Consequently, the TD error in time slot t, which is referred to as the
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difference between the left and right sides of the Bellman equation [111], is computed as

follows:

∆(t) = R (s(t),a(t)) + βVs(t+1) − Vs(t). (5.41)

Then, the value function for state s(t) will be updated by:

Vs(t) = Vs(t) + αc∆(t), (5.42)

where αc denotes the critic step size. Furthermore, the actor component will modify the

policy according to the tendency as:

Θ (a(t) |s(t)) = Θ (a(t) |s(t)) + αa∆(t), (5.43)

where αa represents the actor step size. According to Eq. (5.42) and Eq. (5.43), the training

stage will be terminated as convergence occurs, and the convergence rate will significantly

depend on the values of both αc and αa. Therefore, the optimal value of these parameters

can be adjusted by following empirical designs on various applications.

5.4.2 Actor-Critic Training Description

The details of the training process for the proposed actor-critic-based scheme,

presented in Algorithm 5.2, can be summarily expressed as follows. At the start of time

slot t, the UAV will execute action a(t) based on current state s(t) and the item requests

of the GUs, q(t). The UAV has to stay silent when none of requests of GUs are in the

content cached in the UAV, or it will transmit the corresponding data to the GUs when at

least one GU’s request is in cj . The corresponding immediate reward, R (s(t),a(t)), and the

information of the next state, s(t+ 1), will be gained based on the observations presented

in Section 5.3.2. The UAV then modifies its parameters, such as ∆(t), Vs(t), Θ (a(t) |s(t)),

and Ω (a(t) |s(t)), at the end of each time slot. In addition, it is worth noting that the UAV

will only re-cache the LS items into cj when it finishes a flight period. Unlike the proposed

POMDP-based scheme, where the optimal policy is obtained based on an offline formulation

that requires energy harvesting distribution information, the proposed actor-critic-based

scheme determines the policy from a practical learning process, and thus, it can converge to

the locally optimal policy [109]. In other words, by applying the actor-critic solution, we do

not need to know the energy harvesting distribution in advance for the transition probability
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Algorithm 5.2 The training process of the UAV using the proposed actor-critic-based

scheme.

1: Input: dFUi , K, σ2, T , Tre, Tde, Tup, CF , EBat, etrmin, etrmax, Pmm, Pmm̃, hF , rF , TF .

2: Output: Optimal policy Ω∗(s).

3: Define S, A, and initialize Θ (a |s), Vs, and Ω (s) where a(t) ∈ A, s ∈ S.

4: repeat

5: Observe current system state, s(t) and receive the requests of GUs, q(t).

6: if no request by the GUs is in cj

7: Stay silent.

8: else

9: Choose an action a(t) ∈ A according to Ω (s(t)).

10: if Action is “stay silent” (i.e., etr(t) = 0)

11: Stay silent.

12: else

13: if only one GU’s request is in cj

14: Transmit data to that GU.

15: else

16: Transmit data to GUs by using NOMA.

17: end if

18: Obtain the immediate reward.

19: end if

20: end if

21: Calculate TD error, ∆(t), using Eq. (5.41).

22: Adjust value function, Vs(t), using Eq. (5.42).

23: Update Θ (a(t) |s(t)) and Ω (a(t) |s(t)) using Eq. (5.43) and Eq. (5.39) .

24: Update cj when tin(t) = NF with Eq. (5.14) and Eq. (5.15); then update s(t+ 1) .

25: until // the training converges or t = Nt.

calculation in order to achieve the optimal policy, as in the POMDP-based solution. As a

result, it can make this scheme more practical in various network scenarios where no prior

knowledge regarding the environment dynamics is known.

For the comparison of complexity between the two proposed methods, the main

computational difference between the two approaches is that the POMDP-based scheme
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Table 5.1: Simulation parameters.

Parameter Notation Value

Number of training time slots Nt 2× 105

Number of data items K 300 items

Time slot duration T 200 ms

Request sending time tre 1 ms

Action decision time tde 1 ms

Updating time tup 1 ms

Caching capacity CF 120 items

Battery capacity EBat 300 µJ

Minimum transmission energy etrmin 50 µJ

Maximum transmission energy etrmax 250 µJ

Mean harvested energy Eh,avg 75 µJ

Transition probability: from item m to item m Pmm 0.8

Transition probability: from item m to others Pmm̃ 0.2

Altitude of the UAV hF 40 m

Flight radius of the UAV rF 10 m

Flight period TF 8 s

Actor step size αa 0.1

Critic step size αc 0.1

Path loss exponent α 3

Channel power gain at the reference distance β0 −40 dB

Noise variance σ2 −120 dBm

Discount factor β 0.95

needs to find the value function for the state-space through an offline approach. This leads to

higher computational complexity when using Algorithm 5.1. Specifically, the complexity for

each iteration in the POMDP scheme can be computed as O
(
|A| |S|2

∣∣Oobs
∣∣ |P|), where

∣∣Oobs
∣∣

is the number of possible observations. Let us define that the computational complexity

for the UAV in each state during the training in Algorithm 5.2 is O(1). Thus, the total

complexity of Algorithm 5.2 depends on the system state and action spaces and can be
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calculated as O (|A| |S|). Furthermore, the convergence rate of the actor-critic scheme is

considerably dependent on the actor and critic step sizes. As a consequence, these values

should be carefully chosen according to other system parameters.

5.5 Simulation Results

In this section, we present the numerical simulation results regarding the per-

formance of the two proposed schemes and those of other benchmark schemes based on

the Myopic method [112]: a Myopic-NOMA scheme, a Myopic-NOMA-RC scheme, and a

Myopic-OMA scheme. The term “Myopic” represents the solution in which the optimal

decision is made only for the current time slot without considering the future evolution. In

the Myopic-NOMA scheme, the UAV always transmits data with optimal transmission power

to the GUs by using NOMA whenever more than two GUs’ requests are in the cached content

of the UAV. Similarly, in the Myopic-NOMA-RC scheme, the UAV randomly caches items

from the LS and always transmits data to the GUs with the optimal transmission power by

using NOMA. Lastly, in the Myopic-OMA scheme, OMA data transmission is always used

with the optimal transmission power. In particular, with this scheme, the data transmission

phase is divided into Ioma equal sub-slots, where Ioma(t) is the number of involved GUs for

the data transmissions in time slot t, and the UAV will transmit the corresponding data to

each GU through each sub-slot. Therefore, the sum data rate of the Myopic-OMA scheme

in time slot t can be calculated with ROMA(t) =
Ioma(t)∑
i=1

ttr
Ioma(t)T log2

(
1 +

λiPF (t)hFUi (t)

σ2

)
.

Nevertheless, these benchmark schemes only consider the current time slot for maximizing

the sum rate. In the following, we can verify the effectiveness of the two proposed schemes

under changes in network parameters. Table 5.1 shows the parameter setup, and the network

topology with I = 3 is illustrated in Fig. 5.5.

Unless otherwise stated, the transmission energy in the UAV is divided into five

equal levels ranging from 0 ≤ LV 1 ≤ LV 2 ≤ ... ≤ LV 5 ≤ EBat, and there are eight levels

in the UAV’s battery, from zero to EBat. The span of power portion λ is 0.025. In this

chapter, the simulation results were achieved by averaging N = 2× 105 time slots. Besides,

the harvested energy was stochastically generated in each slot by a Poisson distribution with

the mean value of harvested energy Eh,avg = 75µJ . During the serving time, there might be

no energy for data transmissions by the UAV, which is referred to as energy shortage. In

that case, it has to stay silent and wait for upcoming harvested energy in subsequent time
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Figure 5.5: The network topology.

slots to transmit data to the GUs.

We first examine the convergence rate of the actor-critic-based scheme during the

training process under various values of λc and λa for the mean value of harvested energy,

[Eh,avg = 75µJ , based on the achievable sum rate calculated every 1000 time steps, as shown

in Fig. 5.6. Besides, the optimal value line is plotted according to the policy obtained by

the POMDP-based approach. It is noted that the convergence condition of the algorithm

is defined as the convergence condition of the sum data rate. That means that during the

training process, the sum data rate is averaged after every batch of 1000 training time slots,

and then, the difference between two adjacent updates, ∆c, is calculated. In the simulation,

we set the convergence condition for the algorithm at |∆c| < 7× 10−3. It is observed from

Fig. 5.6 that the sum rate of the system after each iteration of 1000 slots sharply increases

in the first 100,000 time slots and then gradually converges to a locally optimal policy that

depends on the values of λc and λa. Therefore, in the simulation, we repeated the training

process a number of times and then selected the policy with the proper actor and critic step

size values that provide the maximum average rate. In particular, with step sizes greater

than 0.1, the proposed scheme provides faster convergence; however, it leads to a lower

data rate after 200,000 time slots of training. We can also see that if we keep decreasing

the step size values to less than 0.1, the algorithm might converge to a worse policy due

to overfitting. Besides, it is obvious that with the network parameters in this chapter, the

proposed scheme with critic and actor step sizes αc = αa = 0.1 provides better performance,

in which the data rate mostly converges to the optimal value, given by the POMDP-based
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mean value of harvested energy.
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Figure 5.7: The sum data rate according to the mean value of harvested energy.

scheme, after 200,000 time slots of training. Therefore, we chose actor-critic step size values

at αc = αa = 0.1 for the rest of the simulations.

Fig. 5.7 shows the sum rate according to the mean value of harvested energy

in the UAV. It can be seen that the throughput of the system increases when the mean

value of the harvested energy goes up. That is because the UAV can harvest more energy

from the environment; thus, a number of higher power transmissions can be used for data

transmissions during its flight period. We can see that the system rates of the proposed

schemes dominate the conventional schemes in which the actor-critic-based method can be

approximately as good as the POMDP-based method, and the two proposed schemes can

provide a system data rate 10% higher than the Myopic approaches. Next, we compare
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the energy efficiency of the schemes with respect to mean value of harvested energy in Fig.

5.8. In this study, we aim to efficiently utilize the solar harvested energy of the UAV in the

long-term operation. When the transmission capacity is full during the serving time, the

rest of harvested energy can also be stored for the mobility capacity portion to support the

UAV’s flight. Moreover, the overflow energy of the battery is considered as the wasted energy

consumption of the system. For that reason, in the simulation, the energy consumption

is calculated as the total harvested energy during the UAV’s operation. All schemes with

each mean value of harvested energy, in Fig. 5.8, have the same total amount of energy

consumption in N = 2× 105 time slots. In the chapter, energy efficiency is defined as the

sum data rate over the total harvested energy during the UAV’s operation. As a consequence,

the curves in Fig. 5.8 can be interpreted as the sum-rate according to energy consumption.

In order to explore the behavior in terms of transmission power by the UAV,

in Fig. 5.9, we plot the statistics of the actions in the POMDP scheme, the actor-critic

scheme, the Myopic-NOMA scheme, and the Myopic-OMA scheme over 200,000 time slots.

The notation TM − LV x represents the transmission mode with a level of LV x where

LV x ∈ {LV 1, LV 2, ..., LV 5} is the level of transmission energy. We can see in Fig. 5.9

that the Myopic-NOMA scheme and the Myopic-OMA scheme tend to choose the highest

transmission power for the purpose of maximizing the instant reward. Obviously, the

statistics of selected actions in these myopic schemes are similar, but the achievable reward of

the NOMA scheme is higher than that of the OMA scheme owing to the effective utilization

of the NOMA technique. However, due to the limitation on harvested energy, using too

much energy in a time slot may cause the energy shortage, in which the UAV has to stay
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Figure 5.10: The sum data rate with respect to caching capacity.

silent for many future time slots. This will lower the data rate of the system. On the other

hand, simultaneously assigning an appropriate amount of transmission energy can give the

UAV more chances to stay active and transmit data to the GUs under the environment

dynamics, such that a maximum long-term data rate can be guaranteed.

In Fig. 5.10, we plot the sum data rate according to different values of caching

capacity. The curves show that the system performance is enhanced if the UAV has a higher

caching capacity. Obviously, with a larger value of CF , the UAV can store more items from

the LS, and then, the probability that the GUs’ requests are in the cached content of the

UAV will increase, which leads to the higher data transmission rate. On the other hand, we

can see that the higher Pmm also brings higher performance of the system. The reason is



114
Chapter 5: Data Rate Maximization with Content Caching for Solar-Powered UAV

Communication Networks

-130 -125 -120 -115 -110

Noise variance σ
2 (dBm)

3

4

5

6

7

8

9

10

S
u
m

d
at
a
ra
te

(b
/s
/H

z)

POMDP-based scheme

Actor-critic-based scheme

Myopic-NOMA scheme

Myopic-NOMA-RC scheme

Myopic-OMA scheme
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Figure 5.12: The sum data rate versus various values of the altitude of the UAV.

that the GUs will more frequently request their own items of interest during the time slots.

Fig. 5.11 and Fig. 5.12, respectively, show the impact of noise variance at the GUs

and the effect of the altitude of the UAV on the system reward. We can see that system

performance notably declined as the noise power at the ground users (as well as the altitude

of the UAV) grew. In order to explain this, noise power will lower the throughput for each

GU’s data recipient, and meanwhile, a farther distance between F and the GUs will increase

path loss during data transmissions.

Finally, we further investigated the joint effect of both the number of items, K,

in the library, and caching capacity CF in the UAV on the system data rate. Fig. 5.13

indicates that the system reward will increase with an increment in the ratio of CF over

K. For example, if the number of items is K = 300, the data rate of the system will go



Chapter 5: Data Rate Maximization with Content Caching for Solar-Powered UAV
Communication Networks 115

S
u
m

d
a
ta

ra
te

(b
/
s/
H
z)

3
400

4

5

150

6

7

300

8

100

200 50

Cac
hing

capa
city

CF

Number of files K

3.5

4

4.5

5

5.5

6

6.5

7

7.5POMDP-based scheme

Myopic-NOMA scheme

Actor-critic-based scheme
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up when increasing caching capacity CF . Furthermore, the results of the POMDP-based

and actor-critic schemes are superior to the Myopic-NOMA scheme. The reason is that the

proposed POMDP scheme exploits prior information on the harvested energy distribution

and on the request model of the GUs, and then, it calculates the possible situations and

corresponding probabilities. The actor-critic method can explore the information from

interacting directly with the environment, and it then learns the optimal policy through

trial and error. Consequently, the next state of the system can be predicted, and the

UAV can efficiently allocate transmission power for the GUs based on NOMA and caching

technologies under the long-term operation considerations. On the other hand, the presented

numerical results validate the effectiveness of the proposed approaches through various

network parameters.

5.6 Conclusions

In this chapter, we investigated non-orthogonal multiple access with data caching

for UAV-enabled downlink transmissions under constraints on energy and the caching

capacity in the solar-powered UAV. The two innovative approaches, based on POMDP

and the actor-critic frameworks, were proposed for a joint cache scheduling and resource

allocation issue to maximize the long-term data rate of the system in cases with and without

prior information of the energy arrival distribution. The optimal policy can be obtained

by using the two proposed schemes, such that the UAV can efficiently use harvested solar

energy to transmit data to a group of ground users that need a service fulfilling their item
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requests. Eventually, the numerical results via MATLAB simulations verified the superiority

of the proposed schemes, compared to baseline alternatives in which the context under

long-term data rate maximization is not taken into account under diverse network conditions.

The shortcoming of this work is that the high formulation complexity and computational

complexity may be considerably imposed on multi-UAV systems, where the coverage region

for data communications is extended by deploying multiple UAVs to meet surging data

transmission demands. In this regard, a deep reinforcement learning framework can be one

of the promising solutions to the optimization issues in large state and space UAV systems

for 5G and beyond 5G, which is considered in our future research directions. Furthermore,

the cooperative UAV-assisted communications to serve the transmissions between the local

station and distant GUs will be taken into account. On the other hand, designing the

optimal serving coverage for the UAV in various network topology, where the UAV’s altitude

and flight trajectory can be adaptively optimized to serve the requests of the randomly

distributed GUs, becomes a topic for our future study.



Chapter 6

Joint ISM and CR channel

scheduling for industrial wireless

systems using deep reinforcement

learning algorithm

6.1 Introduction

WirelessHART [113], the first open wireless communication standard that was

designed for industrial process monitoring, has been introduced. For supervisory control,

WirelessHART networks require multiple sensor nodes to periodically report data of their

measurements to the controller. Aggregating data from multiple sources to a single destina-

tion is a many-to-one transmission paradigm whose corresponding networking primitive is

named convergecast. In recent years, several study efforts focus on multi-channel converge-

cast protocols [114,115]. In [114], the authors proposed joint link scheduling and channel

assignment approaches for both cases of single-packet buffering and multiple-packet buffering

constraints in a linear convergecast topology. Meanwhile, the latency-optimal link scheduling

problem is investigated for the tree-routing topology with and without restriction on the

number of channels in [115]. Although the solutions proposed in these works can optimize

the latency and the channels in the convergecast operation, the system performance still

be remarkably degraded by the interference such as noise or other devices that affect the

117
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connectivity and induce the low reliability on the ISM channels. Some techniques have

been directly applied to improve the convergecast reliability such as allowing retransmis-

sions [116,117] or constructing mutiple routing choices [118]. Nevertheless, these methods

might only enhance convergecast reliability for some extent, but generally can not maximize

reliability under the stringent latency constraints.

This chapter proposes a deep reinforcement learning solution to optimally schedule

the joint CR/ISM channels for the transmissions of the devices in the WirelessHART con-

vergecast network. More particularly, we focus on the hybrid ISM/CR channel allocation

scheme for the linear convergecast system in which the CR channels are exploited oppor-

tunistically to improve the long-term throughput under the interference constraints on ISM

channels. The main contributions of this chapter can be summarized as follows.

• We first investigate a energy-harvseting powered linear convergecast model in which the

dynamic transmission scheduling is implemented with the help of APs that can harvest

the solar energy. In the network, there are several field devices that have sensing

data needed to send to the gateway in every convergecast round. The constraints

of single-buffer capability in devices and the energy capacity in APs are taken into

account.

• The problem of long-term throughput maximization is formulated as a framework

of a Markov decision process (MDP). Subsequently, the deep Q-learning scheme is

adopted to solve the MDP problem such that the agent can directly interact with

the environment and learn the optimal policy as time goes on via trial-and-error. As

a result, the field devices can be scheduled with proper ISM/CR channels for the

convergecast operation through each superframe by using the proposed algorithm.

• Numerical simulation are given to validate the proposed scheme under the various

network conditions. The results show that our proposed algorithm is superior to

benchmark schemes where the context of the long-term consideration is not considered.

The remainder of this chapter is organized as follows. The network model is presented in

Section 6.2. Next, we present the joint ISM channel, device and data flow scheduling in

Section 6.3 and the proposed deep reinforcement learning approach is presented in Section 6.4.

Subsequently, the joint time and ISM/CR channel scheduling and sub-schedule extraction

are given in Section 6.5. We discuss about simulation results in Section 6.6. Finally, this
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work is concluded in Section 6.7.

6.2 Network Model

6.2.1 Brief Overview of WirelessHART

WirelessHART is a complete wireless mesh networking protocol based on low-

power radios using IEEE 802.15.4-2006 standard that supports 16 channels in the 2.4GHz

license-free ISM band with total data rate of up to 250 kbits/s. To minimize the influence

of noise in channels with high interference levels (e.g. due to the coexistence with 802.11),

the channel blacklisting is utilized through the consideration of the wireless channel quality

such as signal-to-interference-noise ratio (SINR) [119], received signal strength indication

(RSSI) [120] and packet reception ratio (PRR) [121]. In order to appropriately establish

the global transmission schedule, WirelessHART supports multiple superframes for data

communications. A superframe is a collection of number of time slots and repeats at a

constant rate, determined by a network manager. Each slot in a superframe can be scheduled

for one or more links associated with it. Based on TDMA protocol, all devices have specific

times to transmit and sense the medium. For more details about the values of those times

can be found in [122] and the further WirelessHART standard description can be referred to

the book [123].

6.2.2 Cognitive Radio-Assisted Linear Convergecast Model

The considered linear convergecast network is shown in Fig. 6.1. We model

the an industrial wirelessHART topology as a graph G = (V,E), in which vertices in

V = {vo, v1, ..., vN} denote network devices and the edges in E represent communication

links (device pairs). There is a set of N field devices, denoted by N = {v1, v2, ..., vN}, in the

network and a gateway (GW) denoted by vo. For simplicity, we will use the terms “device”

and “field device” interchangeably throughout this chapter. We adopt TDMA transmission

protocol, in which time is synchronized and slotted with the standard duration of 10 ms,

which enables exactly one packet transmission and its corresponding acknowledgement. In

the linear convergecast network, each field device generates one data packet at the beginning

of a convergecast operation (i.e. at the start of each superframe) and transmits it to the GW.

This kind of convergecast is used for periodic data collection in WirelessHART. We assume
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Figure 6.1: The linear convergecast system model

that each device has a single-packet buffering capacity. The field device has a half-duplex

capability from which it can either transmit or receive a packet at a time slot. Furthermore,

each device is only scheduled on one channel at a given time slot. Channel hopping is carried

out via time slot basis and parallel transmissions can be scheduled concurrently in different

channels.

In this work, according to IEEE 802.15.4-2006 standard in 2.4 GHz license-free

ISM band, there is a set of U (U = 16) ISM channels, denoted by U = {C1, ..., Cu, ....CU}
where Cu represents the ISM channel u. A primary network includes a primary base station

(PBS) and multiple primary users (PUs), as shown in Fig. 6.1. We have a set of M CR

channels, denoted by M = {CU+1, ..., CU+m, ..., CU+M} where CU+m is the CR channel m.

The PBS and PUs have licensed right to utilize M cognitive channels while the devices has

ability to opportunistically share the cognitive channels to transmit their packets. There are

K cognitive radio-enabled access points (APs) that are linked with each other and connected

to the GW through a dedicated cognitive channel. APs are assumed to be placed in the

roof-tops of the buildings such that it can harvest the solar energy for its operation while

the devices and the GW are powered by grid energy. Each AP is used to supervise region of

the groups of Ks field devices. Accordingly, APs can make the cooperative spectrum sensing
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at the beginning of each superframe to check the whether the cognitive channels are free or

not. A fusion center, denoted by FC, is the centre entity that determines the global sensing

results on the status of the cognitive channels when obtaining the local sensing from APs

and then send back the global sensing results to APs such that they can broadcast them to

the devices. The network manager is assumed to be integrated in the GW and thus GW is

responsible for making the scheduling for all devices in each superframe.

We consider the cognitive system with M uncorrelated cognitive channels in which

the status of the channel may changed by every cognitive frame f . In this chapter, we assume

the cognitive frame has the same length with each superframe. During each cognitive frame,

the state of the cognitive channel is denoted as either A or I and assumed to be unchanged.

A represents the hypothesis that the cognitive channel is “active” (i.e. busy) while I indicates

the state “inactive” (i.e. free) of the cognitive channel. In this chapter, we assume that the

state transition probability of each cognitive channel between two adjacent cognitive frames

follows a discrete time Markov chain model, as depicted in Fig. 6.2. Pxy,m |x, y ∈ {A, I}
refers to the state transition probability of channel m from state x in cognitive frame f to

state y in frame f + 1.

IA

 IA m
P

 AA m
P

 II m
P AI m

P

Figure 6.2: Actitity model of cognitive channel m.

6.2.3 Sensing Imperfection

In this chapter, the sensing error of the APs is taken into account. At the

start of a superframe, APs perform the cooperative spectrum sensing on the cognitive

channels that are assigned by the GW to find the state of the cognitive channels and then

make the global sensing H [τ ] = [H1 [τ ] , H2 [τ ] , ...,HM [τ ]], in which Hm [τ ] ∈ {A, I} is

the global sensing result that indicates the status (active or inactive) of cognitive channel

m in the superframe τ . The global sensing result is obtained by using soft combination

approach [82]. Nevertheless, the sensing error is inevitable in the wireless channel, especially

in cooperative spectrum sensing. There are two metric representing the sensing performance,
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Pf,m = Pr (Hm[τ ] = A |I ) and Pd,m = Pr (Hm[τ ] = A |A). The former represents the

probability that the channel m is sensed as “active” but it is actually “inactive”, while

the latter indicates the probability that the channel is sensed correctly as “active”. The

performance of the WirelessHART system can be lowered by the values of false alarm and

misdetection probabilities. In particular, the GW will not received the packet in the case

that the GW assigns cognitive channel m to the devices when the sensing result indicates

“inactive” but it is actually “active”. This misdetection event leads to transmission collision

on cognitive channel m between the devices and PUs. On the other hand, the field devices

may lose their opportunity to use cognitive channel k when the false alarm event happens

(i.e. the sensing result indicates “active” but it is actually “inactive”). In this chapter,

the probabilities of all cognitive channels will be updated by the GW at the end of each

superframe. Besides, given the maximally allowable collision probability between the devices

and PUs, the value for detection probability, Pd,m, can be maintained to be greater than a

threshold, ς, by modifying sensing parameters to protect the PU communications on the

cognitive channels [83].

6.2.4 Energy Harvesting

Each AP has a limited-capacity battery, EB, and it is applicable of harvesting solar

energy. It can simultaneously harvest solar energy while implementing other operations

such as processing data, sensing, and so on. Herein, harvested energy in superframe τ of

each AP, denoted as Eh[τ ], is finite, in which Eh[τ ] ∈
{
Eh,1, Eh,2, ..., Eh,ξ

}
; 0 ≤ Eh,z < EB,

and z ∈ {1, 2, ..., ξ}, and is assumed to follows a Poisson distribution with mean harvested

energy Eh,mean. Empirical measurements were performed for a solar-powered wireless sensor

node to model the energy harvesting [81].

There are N data flows pn in a convergecast operation, where pn |n ∈ {1, 2, ..., N}
is defined as the data packet generated by the the device vn. In this chapter, the throughput

of the network (or reward), defined as the total number of successfully received packets at

the GW in superframe τ can be described by

R [τ ] =

N∑
n=1

Rn [τ ] (6.1)

where Rn [τ ] =

 1 if pn is succesfully received by GW

0 otherwise
represents the result indicator
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of the transmitted packet pn in superframe τ . Due to the limited ISM channels for Wireless

HART, the efficient ISM channel utilization is critical for scheduling. More specifically, in

practice, some channels might be blacklisted to protect wireless services that share a fixed

portion of the ISM band with the WirelessHART, so, the number of available ISM channels

for WirelessHART system can be restricted less than 16. Furthermore, the scheduling

length is also taken into account in this chapter, in which the scheduling is made to finish a

convergecast with a minimum number of time slots. Thus, the CR technique is leveraged

to enhance the performance of the WirelessHART system by opportunistically using the

free CR channels. However, the energy for sensing CR channels significantly affects the

efficiency when the number of channels is large and the harvested energy at APs is limited.

Hence, managing the number of channels for sensing and CR channel assignment at the

beginning of each superframe is critical issue to obtain the maximum long-term throughput.

We denote Im [τ ] ∈ {0, 1} as the sensing indicator of cognitive channel m in superframe τ .

If it is selected to be sensed, Im [τ ] = 1, and otherwise Im [τ ] = 0. In addition, let Es denote

the amount of energy required for sensing each cognitive channel, and the term
M∑
m=1

EsIm [τ ]

represents the total amount of sensing energy required in the superframe τ , and it may

change due to the dynamics of CR channels.

By considering the above analysis, we aim to find the optimal hybrid ISM/CR

channel assignment to all devices for maximizing the throughput of the WirelessHART in

the long-term operation under the constraints such as limited harvest energy, resource, time,

and buffer capability. The problem formulation can be expressed as follows:

max
S[τ ],SD[τ ]

( ∞∑
τ=1

R [τ ]

)
s.t.

M∑
m=1

EsIm [τ ] ≤ Emax

Nsl, and NISM are minimized

S and SD satisfy buffer constraints

(6.2)

where S =



C1,1 C1,2 ... C1,Nsl

C2,1 C2,2 ... ...

...
... ... ...

Clmax,1 ... ... Clmax,Nsl


represents the joint time and ISM/CR channel

scheduling for the superframe τ , where Ci,t = u∪m |u ∈ {1, 2, ..., U} ,m ∈ {U + 1, ..., U +M}
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is the ISM/CR channel assigned for the link i of the slot t. lmax is the maximum number of

parallel links assigned in a time slot of each superframe. Emax is the maximum amount of

energy required for sensing of each AP. SD =



v1,1 v1,2 ... v1,Nsl

v2,1 v2,2 ... ...

...
... ... ...

vlmax,1 ... ... vlmax,Nsl


is the device

scheduling (i.e. assignment for transmitting devices of links) for superframe τ , in which

vx,t = n ∈ {1, 2, ..., N} denotes that the device n is assigned to transmit data in time slot

index t. Nsl, is the number of slot in the superframe. NISM represents the total maximum

number of ISM channels assigned in a superframe (i.e. the maximum number of parallel

transmissions using ISM channel in a time slot of the scheduling S). By defining the proper

S and SD, we allow multiple parallel transmissions on ISM/CR channels in each time slot to

improve the latency as well as the data transmission performance of the system.

It is difficult to directly obtain the solution for the problem (6.2) due to the

dynamic of the CR channels and the complexity of the joint time slot and ISM/CR channel

allocation for all devices. So, the problem (6.2) can be decomposed into three processes:

joint ISM channel and data flow allocation process, CR channel allocation process, joint

time and ISM/CR channel scheduling process. The main idea is that, the ISM channels

will be scheduled offline first with minimum ISM channel and number of time slots in the

superframe. Subsequently, the CR channels will be allocated according to the dynamics of

the CR channels and the remaining energy of the APs in each superframe. Specifically, in

joint ISM channel, device and data flow scheduling process, the GW determines the ISM

channel scheduling, device scheduling and data flow scheduling, respectively denoted by

SISM, SD and SDF, in which only ISM channels are assigned to transmit the respective data

flows for all the devices. The objective of this process is to determine SISM, SD and SDF

with a minimum number of required ISM channels and time slots, which is expressed as

follows:

min
SISM,SD,SDF

NISM and min
SISM,SD,SDF

Nsl

s.t. SISM, SD, and SDF satisfy buffer constraints
(6.3)
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where SISM =



CISM
1,1 CISM

1,2 ... CISM
1,Nsl

CISM
2,1 CISM

2,2 ... ...

...
... ... ...

CISM
NISM,1

... ... CISM
NISM,Nsl


is the ISM channel scheduling, where

CISM
i,t = u |u ∈ {1, 2, ..., U} indicates that the device n is assigned to transmit data on ISM

channel i in time slot index t. SDF =



p1,1 p1,2 ... p1,Nsl

p2,1 p2,2 ... ...

...
... ... ...

pNISM,1 ... ... pNISM,Nsl


, is the data flow

scheduling, in which pi,t = n |n ∈ {1, 2, ..., N} denotes that packet n is transmitted on ISM

channel i in slot index t.

It is noted that the joint ISM channel, device and data flow allocation process is

determined off-line by the GW according to the system parameters, which will be presented

in Section III, and then these are disseminated to all field devices to store in their local

memory storage. Furthermore, once the logical ISM channels are assigned in SISM, these can

be easily mapped to the actual ISM channels for the real-time convergecast operation. After

defining SISM, SD, and SDF, the second process, called CR channel allocation process, will

be implemented based on the dynamics of primary channel activity. In the second process,

the CR channel allocation, A, is determined in which the cognitive channels are allocated to

the data flows through each superframe based on system state and predefined SISM and SDF

by using deep reinforcement learning as follows:

max
A[τ ]

( ∞∑
τ=1

R [τ ]

)
s.t.

M∑
m=1

EsIm [τ ] ≤ Emax

(6.4)

where A [τ ] = [A1 [τ ] , A2 [τ ] , ..., AN [τ ]] represents the CR channel assignment for data flows

in the superframe τ , with An [τ ] ∈ {0, 1, 2, ...,M} |n ∈ {1, 2, ..., N} denotes the assigned CR

channel for the data flow n. An [τ ] = 0 indicates that the data flow n is not allocated to any

CR channel. In the third process, the joint time and ISM/CR channel scheduling, S, is made

by each device after receiving the corresponding global sensing results H (broadcasted by

APs) such that only the CR channels sensed to be free according to A, are used to replace

the ISM channels based on SISM. It is highlighted that, with joint ISM channel, device
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Figure 6.3: An example of a joint ISM channel, device and data flow allocation (N=4).

and data flow scheduling, each data flow may be assigned with different ISM channels and

devices in a superfarme, however, when once a data flow is assigned to a CR channel, all the

links associated to that data flow will be assigned to the same CR channel in the current

superframe. To sum up, to solve problem (6.2), we first find the solution for the problem

(6.3) through off-line scheduling to obtain SISM, SD, and SDF. Subsequently, we leverage

the deep reinforcement learning to deal with the problem (6.4) by directly interacting with

the environment to learn the optimal scheduling for each system state.

At the beginning of each superframe, each node generates a new data packet for

forwarding to the GW. Our objective is to efficiently make a scheduling in a superframe for

all devices to transmit their packets to the GW. Accordingly, in this section, we investigate

joint ISM channel, device and data flow scheduling that requires minimum number of ISM

channels and time slots, in which each device is allocated to transmit a data flow on a ISM

channel with time slot index, as depicted in Fig. 6.3.

The reliability of each link (vi, vj) on each ISM channel, defined as the successful

packet reception ratio, is denoted as ρijm. In this chapter, we consider the constraint of

interference on the ISM channels in each link. In a convergecast operation, each data flow

needs to be successfully transmitted via all links that are routed to the GW. Thus, the

successful packet reception ratio on ISM channels becomes relatively low if the size of the

network (i.e. the total number of field devices) is large. To reduce the impact of interference

on ISM channels, the CR channels are exploited such that the devices can switch to currently

free channels for attaining more reliable transmissions in each superframe. Let us denote
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Algorithm 6.1 Joint ISM channel, device and data flow scheduling

1: Input: N , G = (V,E).

2: Output: SISM, SD, and SDF.

3: ∆n = 0 |∀n ∈ V ; ∆′ = 0.

4: for t = 1 : 2N − 1 //

5: iISM = 1

6: if t mod 2 == 1 then

7: SISM(iISM, t) = 1.

8: SD (iISM, t) = iISM.

9: SDF(iISM, t) = ∆′ + 1.

10: iISM = iISM + 1.

11: end if

12: for each vn scheduled in SD of time slot t− 1

13: if (n+ 1 ≤ N) ∩ (∆n+1 < N − (n+ 1) + 1) then

14: SISM(iISM, t) = iISM.

15: SD (iISM, t) = n+ 1.

16: ∆n+1 = ∆n+1 + 1.

17: if t mod 2 == 0 then

18: SDF(iISM, t) = SDF(iISM, t− 1) + 1.

19: else

20: SDF(iISM, t) = SDF(iISM − 1, t) + 1.

21: end if

22: end if

23: iISM = iISM + 1.

24: end for

25: end for

∆n the number of packets that field device vn has transmitted since the beginning of a

convergecast operation. By adopting the jointly optimal convergecast time and channel

scheme in [114], the design of joint ISM channel, device and data flow scheduling to obtain

the minimum number of time slots and ISM channels can be expressed in Algorithm

6.1. The number of time slots required for the single-buffer linear convergecast is 2N − 1,

meanwhile the minimum number of required ISM channels to complete the convergecast in
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2N − 1 slots is 1
2N [114]. Note that SISM, SD, and SDF will be used to generate joint time

and ISM/CR channel scheduling, which is presented in Section 6.5.

In this section, we reformulate the CR channel allocation problem in (6.4) as the

framework of a MDP. Generally, the MDP problem can be solved by using the value iteration-

based dynamic programming in partially observable Markov decision process (POMDP)

algorithm [124]. However, the POMDP solution requires high formulation and computational

cost, which might reduce the system performance in the practice. Another popular approach

to MDP problem is Q-learning algorithm where the agent is able to learn the optimal

policy by regularly interact with the working environment. By taking an action at a given

state, the agent makes the environment transit to another state. Then, the agent receives

the corresponding reward according to the quality of the taken action. By that way, the

agent can maximize the cumulative reward by interacting with the environment through

trial-and-error basis. However, the Q-learning method is not suitable for the problems with

high-dimensional state and action spaces. Therefore, we adopt the deep Q-learning to solve

the MDP problem in which a deep neural network, represented by a weigh vector, is used

to approximate the Q-value of each state-action pair. Consequently, deep learning scheme

is considered one of the effective approaches for MDP proplem where the complexity is

significantly degraded and the nearly optimal solution can be acquired.

6.2.5 Markov Decision Process

Herein, the CR channel allocation problem in (6.4) is reformulated as the framework

of a MDP based on the decision-making model. We first define the state and action spaces

of the MDP framework. The state space of the system is denoted as S in which each state

of the system at superframe τ is composed of the remaining energy of APs and the belief of

CR channels, as follows:

s [τ ] = (Erm [τ ] ,b [τ ]) , (6.5)

where Erm [τ ] = [Erm1 [τ ] , Erm2 [τ ] , ..., ErmK [τ ]] is the energy vector including current energy

of APs at the beginning of superframe τ ; b [τ ] = [b1 [τ ] , b2 [τ ] , ..., bM [τ ]] represents the

probabilities that the CR channels are active.

Based on the system state, the GW, considered as the learning agent, is in charged

of selecting an action. Particularly, the GW makes the CR channel allocation in which the

CR channels are assigned to the data flows such that, the number of successful received
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packets is maximized over the long run. The action space of the system can be denoted as

follows:

a [τ ] = A [τ ]

= [A1 [τ ] , A2 [τ ] , ..., AN [τ ]] ∈ A,
(6.6)

where An ∈ {0, 1, 2, ...,M} |n ∈ {1, 2, ..., N} is the CR channel allocation for data flow n,

which is described in Section II.F.
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Figure 6.4: An example of joint time and ISM/CR scheduling S [τ ] with a [τ ] = [0, 3, 1, 4]

and H [τ ] = [A,NA, I, I] .

The operation of the system in a superframe can be described as follows. At the

start of a superframe τ , the agent observes the system state and decides an action a [τ ], then

forwards it to FC and APs through the dedicated cognitive channel. The APs sense the

cognitive channels based on a [τ ] and then sends to the FC for deciding the global sensing

results. Subsequently, the global sensing results H [τ ] = [H1 [τ ] , H2 [τ ] , ...,HM [τ ]], where

Hm [τ ] ∈ {I, A,NA}, made by the FC, will distribute to APs and the GW. The notation

I, A show the state “inactive” and “active” of the CR channel m, respectively while NA

indicates that the CR channel m is not assigned to be used in the superframe τ . After that,

APs broadcast a [τ ] and H [τ ] to the devices for their joint time and ISM/CR scheduling,

S [τ ]. Note that, the CR channels assigned in a will not be used by the devices in case of the

global sensing results shows the active state of the CR channels. That means only the CR

channels that are currently free in the current superframe can be used by the devices. Fig.

6.4 illustrates an example of a joint time and ISM/CR channel scheduling, given the joint

ISM and data flow allocation in Fig. 6.3 where a = [0, 3, 0, 4] and H [τ ] = [A,NA, I, I]. We

can see that the CR channel 1 is assigned for the data flow 3 in a, but three links of data flow

3 are finally allocated to the channel ISM in the joint time and ISM/CR channel scheduling

S [τ ] because the global sensing result of CR channel 1 is “active”. Meanwhile, the links of
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data flow 2 and 4 are successfully assigned to the CR channel 3 and 4, respectively, because

the sensing results are “inactive”.

After determining S [τ ], the devices create the sub-scheduling Ssub [τ ] for itself

in which each device is set to one of the possible states such as “transmit”, “receive”, or

“sleep” in time slots in the superframe. As a result, the devices perform their transmission

assignment in the corresponding time slot index based on Ssub [τ ]. At the end of a superframe,

the GW receives an immediate reward, R [τ ], which is defined as the received packets in the

current superframe τ and is calculated by (1). At the end of a superframe, the GW updates

the remaining energy information reported by the APs and the belief of the CR channels.

The action taken makes the system transfer from state s [τ ] to another state s [τ + 1], which

is updated at the end of each superframe as follows. The energy level at each AP in the

next superframe can be expressed by

Ermk [τ + 1] = min

(
Ermk [τ ]− Eb −

M∑
m=1

EsIm [τ ] + Ehk [τ ] , EB

)
, (6.7)

where Eb represents the broadcasting energy of each AP for broadcasting the scheduling

information (i.e. the global sensing results and CR channel assignment) to the devices. Ehk [τ ]

represents the total amount of harvested energy of the APk during the superframe τ , and

Im [τ ] =

 0 if Hm [τ ] = NA

1 otherwise
is the sensing indicator of CR channel m in superframe τ .

In case Hm [τ ] = I, the devices then use CR channel m for their data transmissions, and the

GW successfully receives and decodes the data flow transmitted on CR channel m at the

end of the superframe τ , then the belief of the CR channel m is updated by

bm [τ + 1] = PII,m. (6.8)

In case Hm [τ ] = I, the devices then use CR channel m for their data transmissions, but the

GW unsuccessfully receives and decodes the data flow transmitted on CR channel m at the

end of the superframe τ , then the belief of the CR channel m is updated by

bm [τ + 1] = PAI,m. (6.9)

In case Hm [τ ] = A, the devices then do not use CR channel m for their data transmission,

then the belief of the CR channel m is updated by

bm [τ + 1] =
bm [τ ]Pf,mPII,m + (1− bm [τ ])Pd,mPAI,m

bm [τ ]Pf,m + (1− bm [τ ])Pd,m
(6.10)
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For the example in Fig. 6.4, if the channel CU+3 is sensed as “active”, i.e. H3 [τ ] = A, then

v2 and v1 will use channel C1 in time slot index 2 and 3, as defined in Fig. 6.3, for current

superframe. On the other hand, if Hm [τ ] = NA, it indicates the APs did not sense the

status of the CR channel m. Hence, the updated belief of the channel m in this case is

bm [τ + 1] = bm [τ ]PII,m + (1− bm [τ ])PAI,m. (6.11)

This work aims to generate the joint time and channel scheduling policy to maximize

long-term reward from the current superframe. Accordingly, the proper CR channel allocation

is required in each superframe to maximize the total discounted reward. We define the

state−action value function as expected sum of rewards when the system is in state s and

action a ∈ A =
{
a1,a2, ...,a|A|

}
, as follows:

Q(s,a) = E

[ ∞∑
i=τ

γi−τR [τ ] |s [τ ] = s,a [τ ] = a

]
, (6.12)

where γ is the discount factor, and E [.] represents the expectation operator. Our goal is to

find the optimal action, a∗, in the current superframe to maximize the Q-value function, as

follows

a∗ = arg max
a∈A

{Q (s,a)} (6.13)

By using the Q-learning algorithm, the agent calculates the Q-value in each step (i.e each

superframe) and store it to a Q-table such that the optimal solution can be obtained. The

simplest form of updating the state-action value function can be given as

Q(s,a) = Q(s,a) + α

[
R+ γmax

a′∈A
Q
(
s′,a′

)
−Q(s,a)

]
, (6.14)

where α ∈ (0, 1) is the learning rate; s′ and a′ represent next state and action, respectively;

R is the immediate reward that the GW receives at the end of the current superframe. With

the appropriate configuration, the Q-learning can offer the optimal value function after the

training phase, from which the agent can choose the optimal action in each superframe.

Nevertheless, traditional Q-learning method might face with the wide variance in function

approximation when system size gets larger, which might make the scheme to converge to a

locally optimal policy. For that reason, we investigate a method to approximate the Q-value

function, which is called deep Q-learning. More specifically, we build a neural network with

a vector of weight to approximate the Q-value function, denoted by Q(s,a,w), such that

the proposed scheme can effectively be applied in the large-size systems.
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Figure 6.5: The structure of the proposed Q-network.

6.2.6 Deep Q-learning Based Solution

6.3 Joint time and ISM/CR Channel Scheduling and Sub-

Schedule Extraction

In the section, we present the proposed DQL algorithm to solve the problem of

the MDP, as described the the previous section. DQL is a combination of a value-based

approach and a neural network. Herein, the feed-forward neural network (FNN) is employed

to approximate the Q-value function of each action according to a given state, named a

Q-network. The network is composed of an input layer, multiple hidden layers, and an output

layer, as illustrated in Fig. 6.5, in which, the input of FNN is defined as the system state s

while the output is the Q-value of any state-action pair. The input layer contains (K +M)

neuron units representing elements of each state. Each hidden layer is fully connected layer

which includes a finite number of neuron units where the rectified linear unit function is

utilized as a nonlinear activation function. The output vector of the hidden layers can be

expressed by

y = max (0,w.s + u) , (6.15)

where w and u stand for the weight and bias parameters, respectively. The output layer

of the FNN is a vector with the size of |A|, which matches the output values of the last

hidden layer to estimated Q-value of each state-action pair by applying the linear action

function. During the training, the network parameters are modified to minimize the loss

function defined as the mean square error between the current value and the target Q-value,



Chapter 6: Joint ISM and CR channel scheduling for industrial wireless systems using deep
reinforcement learning algorithm 133

Algorithm 6.2 Training Process of Deep Q-learning Algorithm

1: Input: U , M , N , K, Eb, Es, EB, α, δ, γ, PAI , PII , Pd,m, Pf,m, dε, εmin.

2: Output: Q-network parameter w.

3: Initialize w, w′, ε, and D.

4: while not converged do

5: Initialize a random action s ∈ S

6: for each superframe τ = 1, 2....T do

7: Observe the current state s[τ ].

8: Select an action for current step: a[τ ] =


arg max
a[τ ]∈A

Q (s[τ ],a[τ ],w) w.p. 1− ε

any action a([τ ] ∈ A otherwise

9: Perform the chosen action a[τ ], obtain the reward R[τ ], and the next state s′.

10: Store the transition 〈s[τ ],a[τ ], R[τ ], s′〉 in replay memory D.

11: Randomly sample the mini batches, 〈sj ,aj , Rj , sj+1〉 from replay memory D.

12: for j in mini-batches size do

13: Calculate the current Q-value Q (sj ,aj ,w).

14: Calculate the target Q-value:

15: Qtarget =


Rj terminal sj+1

Rj + γmax
a′∈A

Q (sj+1,a
′,w′) otherwise

16: end for

17: Update Q-network parameter w.

18: Update next state s′.

19: Update exploration rate ε = max (ε× dε, εmin).

20: end for

21: Copy network parameter from w→ w′.

22: end while

as follows:

L (w) = E

[(
R+ γmax

a′∈A
Q
(
s′,a′,w

)
−Q(s,a,w)

)2
]
, (6.16)

in which R+ γmax
a′∈A

Q (s′,a′,w) denotes the target Q-value. We also adopt two well-known

methods, namely experience replay [125] and fixed target network [126] to get rid of the

oscillation owing to the data correlations between consecutive transitions in Q-function

approximation. More particularly, we use another neural network with network weight w′
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Algorithm 6.3 Joint time and ISM/CR channel scheduling

1: Input: NISM, SISM, SDF, a, and H.

2: Output: Scheduling S.

3: S = [].

4: for t = 1 : 2N − 1 do

5: for u = 1 : NISM do

6: n = SDF (u, t).

7: if n is not empty then

8: if An 6= 0 ∩HAn == “I” then

9: S (u, t) = U +An. // CR channel allocation

10: else

11: S (u, t) = SISM (u, t). // ISM channel allocation

12: end if

13: end if

14: end for

15: end for

to calculate the target Q-value meanwhile the network parameters remain unchanged during

some training iterations. In the experience-replay technique, the transition tuples (s,a, R, s′)

are stored in a replay memory, D, in which the mini batches are randomly selected to train

the Q-network to increase sample efficiency as follows

L (w) = ED

[(
R+ γmax

a′∈A
Q
(
s′,a′,w′

)
−Q(s,a,w)

)2
]

(6.17)

The target network parameters are repetitively replaced those of Q-network in a number

of training steps. The temporal different (TD) error between the current Q-value and the

target value is calculated by

δ = R+ γmax
a′∈A

Q
(
s′,a′,w′

)
−Q(s,a,w) (6.18)

By using the stochastic gradient descent to minimize the loss function in the direction of

gradient, the weight parameter w can be updated as

w = w + αδ∇wQ(s,a,w). (6.19)



Chapter 6: Joint ISM and CR channel scheduling for industrial wireless systems using deep
reinforcement learning algorithm 135

During the training phase, the agent selects an action a at the beginning of each superframe

according to an ε−greedy policy, in which 0 ≤ ε ≤ 1 represents the exploration rate. The

exploration rate ε decays over each time step at the rate of dε. The training repeats until

convergence. The algorithm for the proposed deep Q-learning is described in Algorithm 6.2.

Algorithm 6.4 Extraction for sub-scheduling of device vn

1: Input: NISM, SD and S.

2: Output: Sub-scheduling Ssubn .

3: S = [].

4: for t = 1 : 2N − 1 do

5: for u = 1 : NISM do

6: if SD(u, t) == n then

7: Ssubn (1, t) = Tr.

8: Ssubn (2, t) = S(u, t).

9: else if SD(u, t) == n+ 1 then

10: Ssubn (1, t) = Re.

11: Ssubn (2, t) = S(u, t).

12: else

13: Ssubn (1, t) = Sl.

14: end if

15: end for

16: end for

This section presents the way the field devices generate the joint time and ISM/CR

channel scheduling S [τ ] and the sub-scheduling Ssub [τ ] when receiving a [τ ] and H [τ ]. The

joint time and ISM/CR channel scheduling is described in the Algorithm 6.3. In S [τ ], the

ISM/CR channels are assigned for data transmissions with the specific time slot index. Then,

they need to create the sub-scheduling Ssub [τ ] for itself based on the generated S [τ ] and

SD in which the sub-scheduling shows the assigned state for each device in each time slot

of the whole superframe τ . At each time slot in a superframe, each device can operate in

three states: transmit (Tr), receive (Re), and sleep (Sl). The sub-scheduling of device vn,

denoted by Ssubn [τ ], is a matrix that has the size of a 2 × 2N − 1, in which, the first row

indicates the state of the device vn meanwhile the second row shows the allocated channel.

The algorithm for generating the sub-scheduling of each device is presented in Algorithm 6.4
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and the example of the sub-scheduling generations of the device v1 and v2 is illustrated in

Fig. 6.6, respectively.
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Figure 6.6: An example of sub-scheduling generation of device v1 (a) and device v2 (b),

based on the example of Fig. 6.4.

6.4 Simulation Results

In this section, we present the performance of the proposed scheme in comparison

with the conventional scheme [83], and random scheme through numerical simulation by

using Python 3.7 with TensorFlow deep learning libraries. For the conventional scheme (also

called myopic approach), the system selects the optimal action by maximizing the current

reward in which the CR channel assignment with the largest amount of sensing energy is

made in each superframe. For random scheme, the action of CR channel assignment is

randomly taken. There are 4 field devices and 4 CR channels in the network. The battery

of each AP, EB is set to 20 µJ . We set the broadcasting energy Eb = 3µJ and the sensing

energy for each CR channel is Es = 2µJ . There are four layers in the neural network: an

input layer, two hidden layers with 64 nodes each, and an output layer. The learning rate is

α = 2×10−2. The ReLU function and the linear function were used as an activation function

of for the hidden layers and the output layer of the DQN, respectively. Furthermore, we

utilize an adaptive optimization algorithm (i.e. the Adam optimizer) in order to periodically

update the weights of the Q-network. The size of replay memory and minibatch were set to
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Figure 6.7: Convergence behavior of the proposed method

Figure 6.8: Received packets versus the harvested energy

3000 and 300, respectively. We set the initial exploration rate at 1, the decay rate was chosen

as 0.9999, and minimum exploration rate was 0.02. The mean value of harvested energy is

Eh,mean = 5µJ and each AP is assumed to manage two field devices. The successful packet

reception ratio of a link on each ISM channel is assumed to be identical, i.e. ρijm = ρm = 0.7.

The Q-network was trained over 200 episodes, each of which contains 4× 103 superframes.

The simulation results were obtained by averaging 105 superframes.

We first examine the convergence rate of the proposed algorithm with the incre-

ment of training episodes in Fig. 6.7. In the simulation, the ISM-channel-only scheme

is implemented by merely using the ISM channels. It is observed that the throughput of

the proposed scheme converges to the optimal value after 100 episodes. Meanwhile, the

conventional and ISM-channel-only schemes offer lower reward at 2.1 and 1.7 (received

packets), respectively. The reason is that the conventional scheme always maximizes the
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Figure 6.9: Received packets according to the number of devices

Figure 6.10: Received packets according to the false alarm probability

current reward regardless of the status of the current battery of APs and the CR channels in

each superframe. As a consequence, it would not have enough energy for future utilization.

Furthermore, we can see the great improvement on the system performance as the CR

channels are used in the network. In Fig. 6.8, we plot the received packets according to

the harvested value of the APs. We can see that the number of packets increases as the

harvested energy goes up. It is because the APs has more chances to sense the CR channels.

In Fig. 6.9, we show the network performance of the schemes versus the increasing

number of devices. Obviously, the curves show that with larger number of devices, the GW

can obtain higher throughput. On the other hand, we further plot the received packets at

the GW according to the various false alarm probability in Fig. 6.10. As can be seen from

the figure, the false alarm can significantly degrade the network performance. Therefore,

the sensing error is one of the key factors we should consider when designing schemes for
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hybrid CR/ISM channel allocation in the network. On the other hand, the proposed scheme

can outperform the traditional schemes since it not only considers the current reward but

also the future reward for the long-term throughput maximization.

6.5 Conclusions

In this chapter, we propose the deep Q-learning scheme for hybrid CR/ISM channel

allocation to the devices with the purpose of maximizing the throughput of the linear

convergecast network. By considering the long-term reward, the system can select the

optimal scheduling for field device’s transmissions through each superframe under the

awareness of limited energy in APs and dynamics of the cognitive radio channels. We

compared the system performance of the proposed scheme to those of other traditional

schemes where the context of long-term reward maximization was not considered. Finally,

the simulation results were presented to assess the effectiveness of the proposed scheme

under the various network parameters. From the simulation, the agent in the proposed

algorithm can adapt its policy to the variations in harvested energy, number of devices and

false alarm, thus, acquires a greater reward than the others. As a result, the maximum

long-term throughput of the network can be gained by using the proposed scheme.



Chapter 7

Summary of Contributions and

Future Works

7.1 Introduction

In previous chapters, we have presented the research motivations, the problems,

and solutions regarding information security and radio resource management. This chap-

ter summarizes the main contributions of this dissertation and discusses future research

directions.

7.2 Summary of Contributions

Firstly, by considering a multi-hop, multi-channel data transmission between two

secondary users in a CR network under jamming attacks, we proposed two novel schemes

using energy-harvesting technique to allocate the best relays and channels over hops to

transfer the number of data frames from the source to the destination. Specifically, we

determine the throughput/delay ratio as a key metric to evaluate the performance in

MHCRNs; and then by applying the proposed schemes, the source can select proper relays

and channels for each data transmission frame to optimize overall network performance

in terms of end-to-end delay, throughput, and energy efficiency. Simulation results were

provided to prove the efficiency of the proposed schemes compared to an optimally unrelated

scheme and a random scheme.

Secondly, by investigating an attack strategy for a legitimate full-duplex eavesdrop-

140
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per in cognitive radio networks, we aim to maximize the legitimate wiretap rate for the

legitimate eavesdropper while degrading the data reception rate of a suspicious receiver.

The proposed scheme adopts a POMDP framework to deal with the energy-constrained

problem in a wireless network. As a result, the legitimate eavesdropper equipped with an

energy harvester can adopt the proposed scheme to obtain high performance in attacks

against suspicious transmissions in which the legitimate eavesdropper considers the long-term

achievable reward during its operations. The intensive simulation results demonstrate the

effectiveness of our proposed scheme, compared with other schemes where the LE only

considers the immediate reward over each single time slot.

Thirdly, by considering multiple-channel cognitive radio networks in the presence

of passive eavesdroppers, we proposed a energy-efficient scheme for joint resource allocation

and transmission-mode selection for secondary users. The objective is to maximize the

long-term secrecy rate and also enhance efficient energy utilization of the secondary system

in the context of the energy-constrained issue for wireless users. A optimal transmission

policy consisting of assigned channels and an assigned transmission mode (HD/FD) with

the optimal amount of transmission energy for the SUs can be achieved by adopting value

iteration-based dynamic programming. Subsequently, the proposed scheme was verified by

comparing its the operational performance with other conventional schemes in which the

context of the long-term reward is not considered.

Next, we investigated non-orthogonal multiple access with data caching for UAV-

enabled downlink transmissions under constraints on energy and the caching capacity in the

solar-powered UAV. The two innovative approaches, based on POMDP and the actor-critic

frameworks, were proposed for a joint cache scheduling and resource allocation issue to

maximize the long-term data rate of the system in cases with and without prior information

of the energy arrival distribution. The optimal policy can be obtained by using the two

proposed schemes, such that the UAV can efficiently use harvested solar energy to transmit

data to a group of ground users that need a service fulfilling their item requests. Eventually,

the numerical results via MATLAB simulations verified the effectiveness of the proposed

schemes under the variation of network parameters.

Finally, with the purpose of improving the transmission performance of Wire-

lessHART network, we propose the deep Q-learning algorithm for hybrid CR/ISM channel

allocation to the devices with the purpose of maximizing the throughput of the linear

convergecast network. In the proposed scheme, the cognitive radio (CR) technique is applied
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such that joint CR/Industrial Scientific Medical (ISM) channels are scheduled for data

transmissions of the field devices. Particularly, the system can select the optimal scheduling

for field device’s transmissions through each superframe under the awareness of limited

energy in APs and dynamics of the cognitive radio channels. The simulation results were

presented to assess the effectiveness of the proposed scheme under the various network

parameters. From the simulation, the agent in the proposed algorithm can adapt its policy

to the variations in harvested energy, successful packet reception on ISM channel, number of

devices and false alarm, thus, acquires a greater reward than the others.

7.3 Future Works

In order to close this dissertation, we discuss some future research directions

regarding the deep reinforcement learning algorithms for the radio resource management in

wireless networks as follows:

In communications and networking, DRL has been recently used as an emerging

tool to effectively address drawbacks of traditional dynamic programming and reinforcement

learning, such as scalability, computational complexity, and network information requirement.

Furthermore, modern networks such as Internet of Things (IoT), Heterogeneous Networks

(HetNets), and Unmanned Aerial Vehicle (UAV) network become more decentralized and

autonomous in nature. Network entities such as IoT devices, mobile users, and UAVs need

to make local and autonomous decisions in the intelligent manner, e.g., spectrum access,

transmission power control, and base station association, to obtain the objectives of different

networks including throughput maximization or energy consumption minimization. Although

the systems may suffer from a large state space and action space, DRL can be adopted to

efficiently solve optimization problems in wireless networks.

In information-centric networking, data caching can significantly reduce access

delays and energy consumption. Besides, due to limited computation, memory and power

supplies, IoT devices become the bottleneck to support advanced applications such as

online gaming and face recognition. To deal with such a challenge, IoT devices can offload

their computational tasks to nearby Mobile Edge Computing (MEC) servers, integrated

with the BSs, APs, and even neighboring Mobile Users (MUs). Consequently, data and

computation offloading can degrade the processing delay, save the battery energy, and

improve information security for computation-intensive applications. Therefore, joint content
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caching and offloading can address the gap between the mobile users’ large data demands

and the limited capacities in data storage and processing. This motivates the study on

employing both computational resources and caching capabilities close to end users to

improves energy efficiency and QoS for applications that require intensive computations and

low latency. Moreover, the optimal data caching at the ground users for the UAV-assisted

communications needs to be intensively investigated in which the ground users can cache the

content to help the neighboring nodes achieve high data recipient ratio. Another interesting

work of designing serving coverage for UAVs can be studied by applying the reinforcement

learning and deep learning methods. DRL approach becomes one of promising solutions to

manage large state space and optimization variables in these network scenarios.

Nowadays, the physical layer in CRN is more complicated than a traditional

wireless communication system owing to spectrum sensing and the dynamic spectrum access

mechanism, which is more vulnerable to be invaded. Because of the open nature of wireless

communications and the increment of available SDR platforms, collaborative spectrum

sensing also poses many new research challenges regarding security and privacy. This

technique opens a window for malicious users and attackers such as primary user emulation

(PUE) and spectrum sensing data falsification (SSDF). The PUE attack can severely interfere

with the spectrum sensing process and significantly degrade the radio resources available to

legitimate SUs; meanwhile SSDF attack happens in cooperative spectrum sensing due to the

false reports sent by participating SUs. In recent years, DRL method has been employed

to detect the potential attackers and prevent attacks. Although the DRL algorithm can

improve the network security, the application of DRL for CRNs are relatively limited and

thus needs to be further studied.
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