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ABSTRACT

O-ring defect inspection is a challenging task because of their variable sizes as well as defect types.

Traditional quality inspection systems use image processing to extract hand-crafted features and machine 

learning models to classify defect types. However, they are very sensitive to different sizes of O-ring objects 

and various defect types. Moreover, software maintenance of traditional systems is hard and requires much 

effort and time. To solve those challenges, we proposed a fully deep learning (DL) – based O-ring defect 

inspection framework. Proposed system, firstly, uses DL object localization model to find the location of 

O-ring objects in an image, then inspects it via using DL classification model. We used pre-trained 

Convolutional Neural Networks (CNN) for both object localization and defect classification and trained 

using transfer learning technique. The proposed system is evaluated by using our custom O-ring dataset. 

Object localization was achieved 98.5 % accuracy on test data. 97 % accuracy was achieved on a 

classification task. From the experimental results, we see that proposed DL-based system is capable of the 

inspection of O-ring objects accurately and robust for the various O-ring objects as well as defect types.
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Chapter 1: INTRODUCTION

1.1 General Context

O-rings are the small rubber seals that are very widely used in the industry, starting from an individual tiny 

seal for repairs or maintenance to top-quality assured applications in aerospace, automotive or general 

engineering. A quality of Sealing is a significant measure for estimating the equipment quality and directly 

affects the accuracy and stability of the device. Therefore, vouching for the quality of the O-rings is 

significantly important [1].

Automatic defect inspection using image processing and traditional machine learning is being widely 

adopted in many industries. To improve the inspection quality many researchers used several useful 

methods over the past years.   Martinez et al. concentrated on the optimization of the visual examination 

of piston surface defects, the light source. [2] Roby et al. [3] proposed an inspection method of extremely

insightful chrome-coated rings used in machine vision textile equipment. A suitable real-time defect 

detecton and localization algorithm was investigated by Li et al. [4] on surfaces of circular object sequences. 

Gaoliang Peng, et al. also had a good approach that they proposed both hardware and software inspection

method for O-rings using traditional image processing and machine learning algorithm[5]

For the inspection of different industrial goods, Deep Learning-based methods have shown very good 

results in recent years. In 2012, Krizhevsky et al. made the breakthrough with AlexNet in object recognition 

by winning the ImageNet Broad Scale Visual Recognition (ILSVRC) rivalry with CNNN for the first time.[6] 

Masci et al. introduced Max-Pooling CNN model approach for supervised steel defect classification [7]. 

Later, in a different approach, Fatima A. Saiz and Ismail Serrano et al. Combining traditional Machine 

Learning techniques with CNN has yielded good results and had focused on increasing robustness and 

accuracy in detecting steel surface defects [8]. Recently, Chao-Ching Ho*, and Eugene Su at. al has been 

introduced the Deep Learning-based approach of Rubber Gasket Defect Detection using the TensorFlow 

open-source library. [9] 

However, traditional image processing and machine learning-based methods for O-ring defect inspection

methods have some drawbacks which low-accuracy, very time consuming and also high labor intensity.

These methods are very sensitive for different sizes of objects which means each model can only inspect a 

few sizes of O-rings, and can only inspect very limited types of defects that each defect needs to be declared 

properly (not dynamic).  Moreover, software maintenance is difficult that updating the system and bug 

fixing is time consuming and require domain experts. [5]
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In this paper, we proposed a fully DL-based O-ring defect inspection framework that learns the extraction 

of useful features along with defect classification jointly. The pretrained CNN models have been used by 

applying the Transfer learning technique. First, we use object detection to determine the location of the 

image given by a rectangular, axis-parallel bounding box. Then we crop an object one by one and apply 

some preprocessing techniques such as gamma correction on images of an O-ring to improve their quality. 

Finally, the classification part defined to extract, from images, features that can distinguish defective and 

non-defective O-rings and for classifying them into good or not-good.

1.2 Goal

The goal of this thesis work is to find an approach to detect and classify of O-ring defects, with high 

accuracy, and using modern Deep Learning algorithms. Moreover, we need to increase model robustness 

which should be able to inspect different size and defect types of O-ring objects. We also examine that what 

and which stage data preprocessing and postprocessing will improve the result. Our approach should also 

work in a real-time industrial environment.

1.3 Outline

This thesis begins with an explanation of the operation process of the O-ring Inspection machine and how 

data is collected. Then in the chapter 3, we will briefly explain the theory of Neural Networks and 

Convolutional Neural Networks. In the chapter 4, we show our fully deep learning framework and what 

types of pre-processing methods are used. The chapter 5, Experiments and Result section is divided into 

two parts. First, we check the overall performance of our model based on test data. In the second part, we 

compare the effects of different processing measures. Finally, the conclusion will be given in chapter 6.
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Chapter 2: DATA

In this section, we present a method used when acquiring the data, and we also present the O-ring Inspection 

machine which is used to acquire data and classify the O-ring defects in a real-time factory application 

scenario.

2.1 O-ring Inspection machine 

O-ring inspection equipment uses two Grayscale cameras, a PC equipped with a GPU, and a 27-inch 

monitor. This technology is used to detect surface defects and burrs of O-rings.

The whole process begins when the O-ring is inserted and the equipment is started. Before starting the O-

ring shooting process, the O-ring Auto Aligner flattens the O-rings and places them one by one on the 

camera. Then, the camera shoots continuously at 25.7 FPS per second, inspecting one O-ring about 3-4 

times in a 1 frame. The resolution of the camera is 2400 ×  1800, which acquires high-precision images. 

One of the cameras acquires the image of the top of the O-ring and O-rings will be flipped to the other side 

and uses the second camera to acquire the image as shown in Figure 1. Even if, one of several images 

acquired from one O-ring is read as defective, it is judged that there is a defect in the O-ring. When the 

entire O-ring is not visible over the end, the test result is ignored.

Figure 1. O ring Inspection machine workflow. 
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2.2 Data acquisition

Data was collected in O-ring Inspection project on the factory environment. Generally, the main portion of 

the gathered data is viewed as training and the other half test data. In the training data, 2439 defective O-

rings have been annotated as an "NG" and 1071 non-defective O-rings have been annotated with the name 

of "OK". On the test data, there are 286 O-ring samples with the label of "NG" and 133 with the label of 

"OK". A total of 4,321 O-ring images were used in our dataset. A complete description of the final dataset 

is given in Table 1.

Table 1. Detailed description of O-ring objects dataset. Good O-ring objects given as OK and not good 
O-ring objects as NG.

In this thesis, we divide the O-rings into two different categories. Those are “Non-defective” and “defective” 

O-rings which are shown in Figure 2. Images of these O-rings, taken by the two cameras at the O-ring 

Inspection machine, are shown in Figure 1.

Figure 2. Raw images of the different types of O-rings. The images are captured with the Grayscale 
cameras at the O-ring inspection machine with 25.7 FPS per second, inspecting one O-ring about 3-4 

times in a single frame. Non-defective O-ring (on the left side), defective O-ring (on the right side).

OK NG

Train 1071 2439

Validation 120 272

Test 133 286

Total 1324 2997
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Chapter 3: NEURAL NETWORKS

3.1 The Basics of Neural Networks 

A Neural Network is an machine learning algorithm used to make non-linear models for regression and 

classification. Neural networks are comprised of a number of different functions which are the reason they 

are called networks. Neural networks are the most utilized deep learning strategy today. In the 

accompanying section, we present a fundamental structure of neural networks which is known as a 

perceptron and multilayer perceptron.  Then, we explain the various functions and general techniques that 

we used to build, train and evaluate neural networks. After that, we present CNN, which is the sort of neural 

network that we used in this thesis work. CNN is usually utilized for image-based computer vision tasks, 

including defect detection and classification.

3.1.1 Perceptron and Multilayer Perceptron

A perceptron is a unit of the neural network which makes certain computations in the input data to detect 

or classify the features. It is designed to imitate a neuron, which is modeled afterward the functioning of 

the human brain. Although the perceptron structure is simple, it is capable to learn and solve even complex

problems [10]

The input of x, which is multiplied by the weighted coefficient learned, is represented by the perceptron 

function and the output value f(x) is generated:

�(�) = �
1 if � ∙ � + � > 0
0 otherwise

(1)

In the equation given above:

w = vector

b = bias 

x = vector of input values

∑ ����
�
���

(2)

k = perceptron number of inputs.
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All inputs of x are multiplied by weights w by the summation ∑ function and applied as follows:

�� + ���� + ���� + ⋯ + ���� (3)

It is possible to express the output as "1" or "0". It can also be defined as "1" or "-1" based on which 

activation feature it is. Figure 3 displays the perceptron's input and output:

Figure 3. Perceptron Input and Output.

A single layer perceptron can only learn patterns that can be linearly separable. It consists of four main 

sections, namely values of data, weights, bias, net sum and functions of activation.

Multilayer perceptrons (MLP) are groups of perceptrons composed of many layers that can address specific 

questions correctly. In the second layer, all the perceptrons in the first layer (on the left) send signals to 

each of the perceptrons, and the loop goes on like that. The MLP includes, as seen in Figure 4, at least one 

hidden layer and an output layer in the input layer.
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Figure 4. A basic structure of Multilayer Perceptron.

Figure 5. The Perceptron Learning Process.

The perceptron learns as follows:

· Initially, it takes the input supplied to the input layer's perceptron, multiplies it by its weight, then  

calculates the sum.
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· Second, add the number 1 and multiply with "bias weight". It is a technical step that enables to each 

perceptron’s activation function up, output function to be moved up, down, left and right in the 

numerical graph.

· Third, through the activation function, the sum is fed. The activation function is a step-function in 

a normal perceptron system.

· The result of the step function is the output.

3.1.2 Activation Functions

The activation function is used to generate nonlinearities or to expand the results in a neural network. 

Without activation function, a neural network will just be a linear model. Nowadays ReLU is the activation 

function most mostly used in neural networks, which stands for Rectified Linear Unit [11]. ReLU is defined 

as:

�(�) = ���(0; �) (4)

where x is the weighted input to the node, combined with the node specific bias. Another activation function, 

generally used only neural network’s final layer, is the SoftMax function. SoftMax is used in many 

classification algorithms, such as the polynomial logistic regression, to measure all outputs so they are all 

positive and together sum up to 1. For a class �, � = 1, … � in a neural network as in equation 5, the 

SoftMax function is defined as follows:

��(�) =
���

∑ ����
���

(5)

where �� is the output node for the class k. Because SoftMax always has positive outputs which sums to 1, 

it is possible to view the outputs as probabilities for the observation belonging to each respective class [9].

3.1.3 Regularization

A predictive statistical model ought to have the option to generalize and predict the values or classes of 

new, has not been trained objects. If the statistical model has very few observations relative The model may 

run the risk of overfitting with the number of parameters,. When the model is overfitted , it is too well 

adapted to the training data and cannot effectively classify new observations. Regularization is a restriction 

on the model in order to reduce overfitting [10]. Early stopping is a common method of regularization when 

training statistical models. The early stopping method has some rules in order to stop training the model. 

The rule could be training the network until validation loss function reaches a minimum, or validation 
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accuracy reaches a maximum, or until a certain determined number of epochs. The one epoch consists of 

all learning observations that go through the model and the corresponding development.

Batch normalization is a transformation that involves enlarging the input to a button so that the inputs have 

zero and the average value of the unit variance. Batch normalization makes the model can converge easier 

and the loss surface smoother. It reduces the risk of a model, to get drawn in towards an unwanted local 

minimization. Mean and variance of k inputs and the for the batch B can be described as:

��� =
1

�
� ���

�

���

(6)

��
�� =

1

�
�(��� −

�

���

���)� (7)

the batch  size of b is B and ��� is the k:th input to the node of the i:th observation.

For K input dimensions, k = 1.…., K, and I = 1,….,b, we will have that:

���� =
��� − ���

���
�� + �

(8)

where ���� is the k:th input of the i:th observation after the normalization step. � is a small value to prevent 

dividing with zero in case of zero-variance batches.

The final step of batch normalization is to transform ���� with the parameters �� and �� . �� and �� are 

learned through backpropagation. The transformation is performed as:

��� = ������ + ��
(9)

��is the �:th new input for the �:th observation to the node [12].

Dropout is a method of standard regularization it used in the final layers of the neural network. It avoids

overfitting by taking away a certain percentage of the nodes from a layer for each batch. Therefore, the 

network cannot get dependent on certain nodes or a combination of nodes for its prediction and thus the 

risk of overfitting is decreased.
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3.1.4 Backpropagation

Backpropagation is the process of optimizing neural networks. It consists of a "forward pass", where 

training data is predicted and a loss function is calculated, and a "backward pass", where the network 

weights are updated and tuned. These weights are tuned hierarchically, which means they are first tuned in 

the output layer, which then tunes the second-last hidden layer, and so on until all layers are tuned.

The loss function, categorical cross entropy, R(�), calculates the entropy between the different classes and 

is defined as:

�(�) ≡ � ��

�

���

= − � � ��� log(��(��))

�

���

�

���

(10)

where  �  is the complete set of weights, N is the number of observations, K is the number of classes, �� =

(���, … , ���) is the i:th observation with P being the dimension of the input, ��� is the true probability 

distribution of observation i belonging to class k, and f is a classification function for class k [12]. �� is the 

categorical cross entropy for the observation i.

The most common way of tuning the weights of the layers in a neural network is through a gradient descent

on the loss function. In gradient descent the goal is to reach a minimum through following a function’s 

steepest descent. In Neural networks, we strive to minimize the loss function, in this case the categorical 

cross-entropy R(�), The steepest descent is calculated separately through partial derivatives for every 

parameter. The steepest descent is traditionally calculated on the full training set. Calculating the steepest 

descent on a randomly selected subset of the training set (batch) is called Stochastic Gradient Descent. [13]. 

When working with a big amount of data, the common measure is to use the stochastic gradient descent.

For the same scenario as explained in the two-step neural network as ��
� = (���, ���, … , ���)�, and ��

� =

(���, ��� , … , ��� )�, where � = 1, … , � and � = 1, … , �. The partial derivative of the loss function for 

the parameters ��� and ��� for a batch of size N, is defined as following:

�
���

����
(�)

�

���

(11)

�
���

����
(�)

�

���

(12)
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The �-parameters are dependent on the � -parameters, so the partial derivative with regards to the �-

parameters will be dependent on the partial derivatives of the � -parameters, which is why its called 

backpropagation. Using the partial derivatives, the formula for updating weights of the parameters ��� and 

��� are given below in equation 13-14.

���
��� = ���

� − �� �
���

����
(�)

�

���

(13)

���
��� = ���

� − �� �
���

����
(�)

�

���

(14)

Where � is the iteration step and �� is the learning rate, which is decided by the optimization algorithm. 

Adam, or adaptive moment estimation, is an optimizer of the loss function based on the stochastic gradient 

descent. It utilizes the stochastic gradient descent but with momentum and adaptive learning rate for all 

parameters. Adam is today considered a default optimizer when using neural networks.

3.1.5 Performance Metrics

Performance metrics are used to evaluate purpose after training the models. There are various evaluation 

metrics to estimate, the performance of machine learning algorithms. In order to evaluate machine learning 

performance, we need to choose the metrics carefully because:

· Measured and compared performance of the algorithms for machine learning can depend entirely 

on the metric that we chose.

· As a result, how we measure the status of different features will have a complete impact on the 

metrics we choose.

We used various common metrics in this thesis such as : Confusion Matrix, Accuracy, precision, recall and 

F1 score.
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The best way to calculate the output of a classification problem, which may be a class of two or more forms, 

is by a confusion matrix. The matrix of uncertainty is a two-dimensional table viz. "Actual" and 

"Anticipated." In comparison, as seen below, all dimensions are 'True Positives' (TP), 'True Negatives' (TN), 

'False Positives' (FP), 'False Negatives' (FN):

The definition of terms related to the confusion matrix is as follows:

· True Positives (TP) − It is the case that both the real data point class and the expected class are 1.

· True Negatives (TN) − It is the case that both the real data point class and the expected class are 

0.

· False Positives (FP) − That is the case where the real data point class is 0 and the expected data 

point class is 1.

· False Negatives (FN) − This is the case where the real data point class is 1 and the expected data 

point class is 0.

Accuracy is the percentage of correctly classified objects. It is calculated on the full set of predictions [5]. 

For classification algorithms, it is the most common efficiency metric. As a ratio of all predictions, this can 

be defined as the amount of correct predictions made. With the aid of the following equation, we can 

conveniently quantify it by the uncertainty matrix:

�������� =  
�� +  �� 

�� +  �� +  �� + ��

        [14]

Predicted

1 0

1 True Positive (TP) False Positive (FP)

0 False Negative (FP) True Negative (TN)

Figure 7. Confusion Matrix. 

A
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u
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In the search for documents, precision is applied, which can be defined as the number of correct documents 

that our deep learning model returns. With the aid of the following equation, we can easily calculate it via 

the uncertainty matrix:

��������� =
��

�� + ��

        [14]

The recall can be defined by our deep learning model as the number of positive elements recovered. With 

the aid of the following equation, we can easily calculate it via the uncertainty matrix:

������ =
��

�� + ��

        [14]

The F1 score would give us the harmonic calculation of accuracy and recall. Mathematically, we should 

think of the F1 score as the weighted average of precision and recall. The highest F1 value would be 1 

and the worst value would be 0. With the help of the following equation, we can compute the F1 score:

�� = � ∗ (��������� ∗ ������) / (��������� + ������)         [14]

There is an equivalent proportional contribution to precision and recall to the F1 score.
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3.2 Convolutional Neural Networks

CNNs are neural networks that conduct convolutional layer feature mappings before using dense layers to 

classify the object. In deep learning, CNNs have been at the center of developments. Although CNNs were 

used to solve character recognition tasks as early as the 1990s[16], their present common use is due to much 

more recent work when using a deep CNN in the ImageNet image classification challenge to beat the state-

of-the-art[6].

CNN consists of a large number of neuron layers, each of which is a nonlinear operation in linearly altering 

the outputs of the anterior layer. The layers mainly include a convolutional and pooling layer. Weights in 

convolutional layers need to be trained, while pooling layers change the activation using a fixed function.

There are two additional parameters, typically connected to the convolution layer calculation: stride and 

padding. The stride of the convolution kernel is shifted (step 1. has both height and weight of regular 

convolution 1. The padding parameter defines how the calculations of the boundary are handled. The first 

choice is not to do so  that step = 1 and convolution kernel 4 × 4 creates outputs smaller by 5 pixels with 

height and weight. Another alternative is to enable performance or to avoid a possibly big ramp in the signal 

the border values be the similar values as the nearest pixel. 

3.2.1 Convolution

Bread and butter are related transformations of the neural network: a vector is obtained as an input and 

multiplied by a matrix to produce an output.  This applies to any data, whether it's a picture, a sound clip, 

or a cluttered set of characteristics: their change is always the same no matter what their size. First the 

vector can be flattened. Pictures, sound clips and lots of other similar kinds of images:

· as multi-dimensional arrays they are stored.

· they have one or more axes where it is important to order 

· To access various data views, a single-axis called a channel axis is used

When a transformation is introduced, these properties are not exploited; actually, all the dimensions are 

viewed in the similar technique and thus the topological knowledge has not been taken into account.

However, getting benefit of the tacit knowledge system can prove to be very helpful in solving such tasks, 

such as machine vision and understanding of voice, and it would be better to maintain it in these instances.

It's here where convolutions used for. A convolution is a linear transformation that retains this ordering 

notion. An instance of a discrete convolution is given in Figure 8. The white grid is called the map of the 

input function. One input feature map is shown to make the drawing straightforward, although it is not 

unusual to have several feature maps piled on top of each other A kernel (4 x 4) of value slides through the 
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map of the input function. The merchandise among to each portion of  kernel and hence, an input data  

overlaps is calculated at each location and the results are summarized to get the output at the current location.

Using different kernels, the procedure can be replicated to form as many maps of output features as needed. 

The final outcomes of this process are called maps of the output function. The kernel will have to be 3-

dimensional whether there are several input feature maps, or all feature maps tend to be transformed with 

a certain kernel equivalently, and then the feature map results will be summarized elementally to provide 

the output of the feature map.

1 1 -2 2

3 2 1 0

-2 -3 -2 2

0 1 1 2
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2 × 1 + 2 × 1 − 1 × 2 + 3 × 2 + 1 × 3 + 0 × 2 + 2 × 1 + 1 × 0 − 0 × 2 − 0 × 3 − 1 × 2 + 3 × 2 + 3 × 0 + 1 × 1 + 1 × 1 + 0 × 2 = 19

Figure 8. Computing a single convolution's performance values.

Figure 9. Computing the discrete convolution output values for D = 2, i1 = i2 = 5, k1 = k2 = 4,               
s1 = s2 = 3, and p1 = p2 = 1.
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The example of a 2-D convolution is illustrated in Figure 8, but it tends to be summed up in N-D 

convolutions in any case. For example, the kernel can be a cuboid during 3-D convolution.

The collection of kernels that define a discrete convolution has a shape such as some permutation of 

(�, �, ��, … , ��), where

� ≡  output of feature maps;

� ≡  input of feature maps;

�� ≡ kernel size 

The characteristics influence the output size of a convolutional layer along with axis j:

· ��: input size 

· ��: kernel size 

· ��: stride along with axis j,

· ��: zero padding along with axis j.

Figure 9 for example, indicates a 4 × 4 kernel extended to a 5 × 5 input padded with a 1 × 1  zeros using 

3 × 3 strides.

3.2.2 Pooling

Pooling operations form another essential block in CNN, in addition to discrete convolutions. By using a 

certain function to generalize sub-regions, such as obtaining an average or maximum value, pooling 

operations minimize the scale of feature maps.

Pooling operates by moving a window over the input and taking control of a pooling function for the content 

of the window. In some sense, pooling functions just like a separate convolution, except it substitutes the 

kernel's designated linear combination with some distinct function. For max pooling, Figure 10 shows an 

example, and Figure 11. For regular pooling, it does the same.
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Figure 10. Computing of a 2 × 2 max pooling operation on a 5 × 5 input using 1 × 1 strides output 
values.

Figure 11. Computing of a 2 × 2 average pooling operation on a 5 × 5 input using 1 × 1 strides output 
values.
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Chapter 4: METHOD

This section describes the methods and programs used in this thesis.

Traditional image processing-based O-ring defect inspection systems first extract hand-crafted features and 

then passed to a machine-learning algorithm to detect defects [5]. The main problem of traditional image 

processing-based defect inspections systems is sensitivity to object sizes as well as defect types. 

Additionally, the maintenance of these kinds of systems is difficult because of the requirement of much 

effort and time. We proposed a fully DL-based O-ring defect inspection framework that learns the 

extraction of useful features along with defect classification jointly. An overview of the proposed O-ring 

defect inspection framework is illustrated in Figure 12. 

Figure 12. Proposed fully deep learning (DL) based O-ring defect inspection framework. FV - feature 
vector, FC – fully connected layer.
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4.1 Data collection and Data Preprocessing

In this section, we illustrate that how we collected the training and testing data of the models in order to 

detect and classify O-ring defects. The preprocessing methods that will be evaluated in the Result section 

are also explained.

If we want to build robust defect inspection system using deep learning (DL) algorithms, we have to fill 

several DL requirements. For instance, number of training samples should be sufficient in each class for 

DL model to learn and generalize the solution to problem. There are many public image datasets such as 

ImageNet [17] for computer vision problems for instance object detection, image classification. However, 

when it comes to solve computer vision problems similar to object localization and defect inspection in 

industry, we have to build our own dataset. Dataset was collected via taking pictures from industrial camera 

which was installed in the O-ring Inspection machine which were presented in section 2.

As DL models require more samples for better accuracy, number of defect samples in each size of O-ring 

object should be sufficient. Actually, collecting enough number of defective O-ring samples is not easy task

than we think. At first, we had very few sizes of defective O-ring data with small number of samples which 

was insufficient for training process. Hence, to fulfill this requirement, we used 2 types of image 

augmentation method to increase number of samples in dataset. First one is zooming. In this method we 

zoomed small sizes of O-ring objects 1.5 and 2 times. The second method is creating artificial defect 

samples using photoshop program. The second method was applied when number of defect samples were 

very few in certain size and defect types of O-ring objects. Finally, we have enough number of O-ring 

samples for training DL object localization and classification models.

4.2 Data cropping and cleaning 

After finding the location of the O-ring object, some post-processing steps were applied. Fist one is 

cropping. The reason is cropping the O-ring objects after detection is to make the task easier for 

classification model and increasing the robustness. 

However, after applying cropping method we need to cleanse the data, because of the industry camera 

shoots continuously, some frames have more than one object that one of them good and another one is not 

good, and also some of the objects are semi-defined as they enter and exit the frame. To remove redundant 

data from the input image, firstly, the system detects the O-ring object location in an input image via using 

DL object detection model Figure 14 for the detection of the O-ring object in an input image, EfficientDet-

D2 [18] pre-trained CNN model was retrained using transfer learning [19] technique. We consider half-

cropped objects to be defective so, we manually separate the defective and half-cropped images to the “NG” 

folder and non-defective objects to the “OK” folder in the training data.
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4.3 Gamma correction.

Since it is hard, to not say impossible to see a defect in just one channel, we chose to use multiple channels 

when classifying a patch to include more information about the surface in the patch. The case of a defect 

showing in some of the channels but not in others is visualized Figure 13.

Input image comes to the system from a high-quality industry camera that is installed on the top of the O-

ring inspection machine. The lighting is given from the bottom side of the O-ring rubber. Thus, the O-ring 

object looks darker than actually, it should be in an input image. When light is not enough in image then 

defects will be difficult to analysis and detection. In this case, it is difficult to see and detect defects on the 

surface of the O-ring objects. To solve this problem, we applied gamma correction [20] in order to fix the 

lighting condition. The purpose of applying gamma correction is to see defects in images more clearly. 

Some types of defects which is located on the surface of an object is difficult to recognize when image is 

dark. So, after gamma correction it can be seen clearly. Classification model also recognize that kind of 

defects better when gamma transformation is applied before giving to classification model. As shown in 

Figure 13, O-ring defect on the surface can be seen clearly after applying gamma correction.

Figure 13. O-ring image samples after applying gamma correction method.

We can control brightness of an image with gamma value. If gamma value is higher than 0.5 then an image 

will be lighter. If gamma value is less than 0.5 then the processed image will be darker than original image. 

The formula for calculating the resulting output of gamma correction is given Equation 15. Where I is input 

image, � is gamma value to change the brightness, and �� is output image. 

  

�� = 255 × �
�

255
�

�

  
(15)

Since the object detection model performs both object localization and classification, we can use the object 

detection model for defect inspection task. However, O-ring defects are not easy to inspect, so object 
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detection model was used only for object localization. Moreover, this increases the robustness of the 

proposed system to the sizes of different O-ring objects and locations in an input image. General workflow 

for object detection model is given in Figure 14 .

Figure 14. Object detection model workflow.

The final step is extraction of robust salient features from O-ring input image by using EfficientNet-B0 [21] 

pre-trained CNN model and classifying it into “OK” and “NG” classes. Instead of final fully connected 

layer of EfficientNet-B0 pre-trained CNN model, we used 2 fully connected layer with 128 and 64 hidden 

nodes respectively. We used transfer learning [19] technique to train DL classification model with modified 

fully connected layers. The reason to use pre-trained CNN models and transfer learning is that pre-trained 

CNN models have already been optimized with big dataset to solve general image classification problems. 

Our dataset was not big, thus using pre-trained models will provide high performance even with small 

number of samples. The size of feature vector (FV) is 1280, first fully connected layer (FC1) has 128 hidden 

nodes, and the second fully connected layer (FC2) has 64 hidden nodes. General workflow of DL 

classification model is given in Figure 15.
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Figure 15. General DL classification model workflow. FV - feature vector, FC – fully connected layer.
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Chapter 5: EXPERIMENTS AND RESULTS

5.1 Experimental setup

For DL models training, we used TensorFlow (version 2.2 or above) DL framework and Python (with 

version 3.7.0) programming language. First of all, we trained DL model for object localization. We used 

EfficientDet-D2 [10] pre-trained convolutional neural network (CNN) for transfer learning. As object 

detection model does both object localization and classification, we can use only object detection model 

for defect inspection. However, O-ring defects are not easy to inspect, so object detection model was used 

only for object localization. Training parameters for object detection model were set as in the following: 

batch size was 10, learning rate was 0.0005, and momentum was 0.99. Model was trained on NVIDIA 

GeForce RTX 2060 GPU which has 6 GB of graphic memory. 

EfficientNet-B0 [21] pre-trained CNN model was retrained by changing its last fully connected layer with 

2 custom fully connected layers. We applied transfer learning [19] technique to train pre-trained CNN 

models. Because those models are already trained with big data to solve image classification problem. They 

are very good for solving general image classification and object detection problems. Additionally, we do 

not have large dataset to train new CNN model and achieve high accuracy. EfficientNet-B0 [21] pre-trained 

CNN model gave high classification accuracy after retraining with a few epochs. Training parameters were 

set as following: batch size was 64, epochs were 50, activation function was RELU, and optimizer was 

Stochastic Gradient Descent (SGD). The size of feature vector (FV) is 1280, first fully connected layer 

(FC1) has 128 hidden nodes, and the second fully connected layer (FC2) has 64 hidden nodes. For training 

80 % of overall data was used, other 10% data for validation, and the rest 10% was used for testing in both 

object detection and classification models training.

5.2 Experimental results

Figure 16 demonstrates the result of object detection model on test data. It can be seen from the Figure 16

that localization error is only 1.5 %. As we used DL object detection only for object localization, 98.5 %

localization accuracy is quite sufficient for applying this model for finding O-ring objects location in an 

image in real time. 
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Figure 16. Object detection result on test data.

Training and validation accuracy result is given in Figure 17. Figure 17 illustrates that DL classification 

model learned well during training without overfitting and underfitting problems and achieved over 95 % 

of accuracy for both training and validation data. Training and validation loss result is shown in Figure 18. 

Both training and validation losses were decreased gradually during optimization of DL classification 

model. Model gave good classification accuracy on both training and validation data. When DL model 

gives accurate result on unseen data, then it can be applied to solve real world problem. Testing result of 

DL classification model is given in Table 3. It can be seen from Table 3 that DL classification model gave 
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Figure 18. Training and Validation loss result during the training

Figure 17. Training and Validation accuracy result during the training
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97 % of accuracy on test data. This means that DL classification model can be applied to solve real world 

O-ring defect inspection problem.

Table 2. Confusion matrix on a test data.

Table 3. Final testing result of DL classification model.

               Predicted

OK NG

OK 281 5

NG 7 126

Precision Recall F1 Num of images Total accuracy

97% 96% 97% 419 97%

A
ct

u
a

l



33

5.3 Comparing Preprocessing Measures

We compared the different processing measures, by training the models in the O-ring dataset and comparing 

its performance with the reference model. All of these models use the same structure as the reference model. 

The performance of the different redesigned models is shown in Table 4 and Figure 19.

Experiments Confusion Matrix Accuracy (%)

Non-preprocessing
Predicted

A
ct

ua
l OK NG

OK 261 25

NG 34 99

85.91

With cropping
Predicted

A
ct

ua
l OK NG

OK 263 23
NG 23 110

89.02

Cropping & Gamma
correction

Predicted

A
ct

u
al

OK NG
OK 281 5

NG 7 126

97.13

Table 4. Comparison of models excluding different preprocessing measures.
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Figure 19. Recall of each class for our differently preprocessed models. Data is

based on the confusion matrices in Table 2 and Table. 4.
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5.4  Preprocessing Conclusions

Since the original training data set was imbalanced with 1256 non-defective and 714 defective O-ring 

samples, we created artificial samples by using two augmentation methods, to ensure that training dataset 

is more balanced to increase accuracy and the ability to distinguish between two classes. Cropping objects 

and adding gamma correction seems to be the most important measure of pre-processing to achieve higher 

accuracy. Without any preprocessing, the model still can determine whether O-ring has a defect or not, but 

it’s hard for the model to learn and predict small defects with high accuracy. Therefore, we used such pre-

processing measures and achieved a sufficient result.
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Chapter 6: CONCLUSION

In this thesis work, we used a custom dataset which images taken from an O-ring inspections machine and 

annotations made by ourselves. With the development of deep learning methods, we intended to apply them 

as a method to perform an automated defect inspection. The first goal of this thesis is to find an approach 

to detect and classify of O-ring defects, with high accuracy, and using modern Deep Learning algorithms

such as convolutional neural networks. We also examine that what and which stage data preprocessing and 

postprocessing will improve the result. And finally, our approach should also work in a real-time industrial 

environment.

O-ring defect inspection system was built using 2 DL models. Object detection model achieved 98.5 % 

accuracy on object localization problem. We used transfer learning technique [19] for both object 

localization and O-ring defect inspection problems. We used EfficientDet-D2 [18] pre-trained CNN model 

for object localization. For classification problem we used EfficientNet-B0 [21] pre-trained CNN model. 

After training EfficientNet-B0 [21] CNN model, it achieved 97 % accuracy on test data. From the results, 

we see that our approach, using CNN models with Transfer Learning technique and preprocessed data, is 

effective at detecting and classifying defects on the O-ring objects. We have also found that our 

preprocessing measures have a positive effect on the ability to detect and classify the small defects. The 

importance of different pre-processing measures is not statistically confirmed, but they all appear to be 

positive. This means that if no pre-processing measures are taken, the model will perform even worse.

Finally, our approach was demonstrated as an achievable approach for a real-time factory environment and 

together with the accuracy of the classification and the time spent performing these classifications.
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