
 

 

저작자표시 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

l 이차적 저작물을 작성할 수 있습니다.  

l 이 저작물을 영리 목적으로 이용할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

http://creativecommons.org/licenses/by/2.0/kr/legalcode
http://creativecommons.org/licenses/by/2.0/kr/


INTELLIGENT MACHINE LEARNING APPROACHES

TOWARDS SENSOR FAULT DIAGNOSTIC IN

WIRELESS SENSOR NETWORKS

———

DISSERTATION

for the Degree of

MASTER OF PHILOSOPHY

(Electrical Engineering)

———

UMER SAEED

OCTOBER 2020

[UCI]I804:48009-200000364554[UCI]I804:48009-200000364554



Intelligent Machine Learning Approaches Towards Sensor

Fault Diagnostic in Wireless Sensor Networks

DISSERTATION

Submitted in Partial Fulfillment

of the Requirements for the

Degree of

MASTER OF PHILOSOPHY

(Electrical Engineering)

at the

UNIVERSITY OF ULSAN

by

Umer Saeed

October 2020

Publication No.



©2020 - Umer Saeed

All rights reserved.





VITA

Umer Saeed was born in a small town of district Nowshera, situated in the

Khyber-Pakhtunkhwa province in Pakistan. He received the bachelor’s degree in Software

Engineering from Comsats University Islamabad (CUI), Pakistan in February 2019.

Since March 2019, he is pursuing his master’s degree from the University of Ulsan

(UOU), South Korea, under the supervision of Professor Insoo Koo. His current research

interests include machine learning algorithms development for sensors abnormal behavior

detection and diagnosis, wireless sensor networks, and the Internet-of-Things.

iii



Dedicated

To Mom;

To Dad;

To Sister;

To Friends.

iv



ACKNOWLEDGMENTS

First and foremost, I owe all the accomplishments of my life to my parents, my

father Mr. Aftab Saeed and mother Mrs. Zahida Begum. I will always be indebted of their

exertions towards my education despite all the hardships.

I wish to express my gratitude to my elder sister Mrs. Nida Saeed who stood

behind me everytime I came up with hardships in my life.

I am grateful to all my friends especially Hashim Khan, Abbas Gillani, and Zahoor

Ahmad for their extreme support. Their love and kindness remained with me along the way.

I would like to express profound gratitude to my advisor, Professor Insoo Koo, for

providing me the opportunity to be part of his research group. I am highly obliged to him

for his kindness and accessible guidance throughout my research.

I wish to express special thanks to Dr. Sana Ullah Jan and Dr. Young Doo Lee for

their helpful collaboration, encouragement, guidance, and care throughout this journey.

I gratefully acknowledge BK21+ for the financial support throughout my Master

studies.

Extremely thankful to all the talented members of the Multimedia Communication

Systems Laboratory. It was a pleasure to share the laboratory with all of you.

Finally, an extreme gratitude goes to the Pakistani community at UoU for their

love, respect, and support.

Umer Saeed

Ulsan, South Korea. October - 2020

v



ABSTRACT

Intelligent Machine Learning Approaches Towards Sensor

Fault Diagnostic in Wireless Sensor Networks

by

Umer Saeed

Supervisor: Professor Insoo Koo

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Philosophy (Electrical Engineering)

October 2020

Wireless Sensor Network (WSN) being highly diversified Cyber–Physical System

makes it vulnerable to numerous failures. These failures due to abnormal behaviors in the

network can cause serious threat towards safety, economy, and reliability of systems. Abnor-

mal behaviors of sensors are primarily triggered by low-quality production, electromagnetic

interference, and complex environments. The precise detection and diagnosis of abnormal

behaviors in WSN is a challenging issue due to the diversity of deployment and limitations

in the resources.

In this dissertation, a data-driven supervised machine learning-based techniques are

considered to scrutinize the behavior of sensors through their data for the timely detection

and diagnosis of abnormal behaviors (faults or anomaly). In this study, most of the faults

that commonly occur in WSN are considered such as drift, hard-over, spike, erratic, data-loss,

stuck, and random fault.

A trusted dataset published by the researchers at the University of North Carolina

composed of temperature and humidity sensor healthy measurements of multi-hop scenario
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Abstract vii

was acquired and the aforementioned faults were injected in the non-faulty (healthy) sensor

measurements. This practise is common among researchers due to the lack in availability of

defective datasets.

Events from fault occurrences were generated to replicate realistic scenarios of

WSN. For instance, fault may occur in WSN for a short length as well as long, or it may

occur in the combination of both. To detect and diagnose the faults in timely manner, an

ensemble learning-based lightweight machine learning classification technique is adopted,

which is known as Extremely Randomized Trees or Extra-Trees.

Furthermore, multiple data labelling approaches such as multi-label/multi-class

were utilized in order to get the best performance out of machine learning classifiers. In this

study, the proposed Extra-Trees-based detection and diagnosis scheme has shown the ability

of robustness towards signal noise and strong reduction of bias and variance error.

The performance of the proposed scheme was compared with those of the state-

of-the-art machine learning algorithms such as support vector machine, neural network,

random forest, and decision tree. Performance evaluation shows the efficiency of the proposed

scheme in terms of lightweightness and detection/diagnosis accuracy, precision, F1-score,

and area value under the ROC curve. To achieve the lightweight measure, the proposed

scheme training time was compared to the aforementioned state-of-the-art machine learning

classifiers.
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Chapter 1

Introduction

1.1 Motivation

Modern technologies such as Internet-of-Things (IoT) and Cyber-Physical Systems

(CPS) plays a vital role in our everyday life. In the modern era, from the revolution of

autonomous vehicles, smart homes, intelligent health care systems, advanced transportation,

disaster management systems, modern agriculture, and energy management systems heading

towards industry 4.0, the IoT and CPS has taken over the world. These advanced systems

have the ability to address social challenges such as environmental sustainability and economic

downfalls.

Encompassing human-to-machine and machine-to-machine communication, the

Tactile Internet (TI) is considered an evolution of IoT. However, these advanced systems

are based on the integration of diverse physical objects such as sensors. To monitor the

physical conditions, sensors are spatially dispersed and data is collected at the central node

engendering Wireless Sensor Network (WSN). Undeniably, sensors make our lives easier by

their innumerable usages. Nevertheless, they come at a cost of being prone to failures.

According to one study, about 50 billion smart devices and one trillion sensors to

1



2 Chapter 1: Introduction

be around and working by the year 2020. Deployment of sensors in complex environments

while facing natural factors, electromagnetic interference and other relevant factors can lead

towards the sensor abnormal behaviours. These abnormal behaviours (anomaly or faults)

are serious threat towards the safety, economy, and system’s reliability.

1.2 Thesis Objective

The primary objective of this thesis is to develop a lightweight effective system

utilizing data-driven supervised machine leaning-based algorithms for the detection and

diagnosis of abnormal behaviours occurring in WSN. In order to achieve this goal, multiple

sensor observations in healthy and non-healthy state are given as input to the distinct machine

learning classifiers while utilizing multi-label and multi-class classification approaches. With

the aim of accurate detection and diagnosis of sensor faults, ensemble learning approach,

Extremely Randomized Trees have been proposed that provides the robustness towards

signal noise and strong reduction of bias/variance error.

1.3 Thesis Outline

This thesis consists of four chapters as follows:

• Chapter 1 presents motivation, thesis objective, and thesis outline.

• Chapter 2 provides an ensemble learning-based fault detection and diagnosis approach

utilizing Extremely Randomized Trees in wireless sensor networks.

• Chapter 3 proposes a context-aware fault diagnostic scheme for the sensor faults

using intelligent machine learning classification approaches.

• Chapter 4 concludes the thesis contributions and presents future works.



Chapter 2

Fault Diagnosis based on

Extremely Randomized Trees in

Wireless Sensor Networks1

2.1 Introduction

Wireless Sensor Network (WSN) often consist of hundreds of sensors connected

through wireless channels. Sensors in the current era perform an essential role by covering a

vast number of applications [2], [3]. Ground-breaking technologies like the Tactile Internet

(TI) are considered an evolution of the Internet of Things (IoT), encompassing machine-to-

machine and human-to-machine communication. The TI has to deal with interactive systems

in real-time, with high densities for sensors and actuators [4]. In these modern times, from

the revolution in smart grids, autonomous vehicles, smart homes, intelligent transportation

systems, advanced agriculture, disaster management, and health systems heading towards

1The study in this chapter was published in Elsevier Reliability Engineering and System Safety. [1]
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Industry 4.0, the cyber-physical system (CPS) has taken over the world [5], [6]. One estimate

is for about 50 billion smart devices and one trillion sensors to be around and working by

the year 2020 [7].

The potential of WSN has gained the attention of researchers from all over the

world due to their minimal cost and the enormous domain of applications. In WSN, the

collections of sensor data are smartly processed and communicated. However, technologies

like sensors, without a doubt, make our lives easier because of usages ranging from health

care systems to transportation. They also come with a vulnerability to distinct failures [8].

Sensors are prone to break down due to electromagnetic interference, deployment in complex

environments, and from other natural factors. Any of these considerations make sensors

susceptible to hardware, software, or communication failure [9].

WSN plays the role of interface between the physical and digital worlds. When

sensors communicate faulty data to the sink node, it may lead to serious outcomes in terms of

safety, economic impact, and system reliability. When a sensor is defective, it can completely

stop signal generation, or it may send incorrect signals. It can unstably switch between

normal and defective. Defects or faults can be expressed as an irregular property in the

behavior of the system [10].

Studies have been conducted mainly from the 1980s for the detection and diagnosis

of defects in physical facilities, i.e. industries. These approaches were restricted to certain

conditions and environments. It was hard to determine many model parameters due to a

system’s complexity. Recently, due to the emergence of Artificial Intelligence (AI) techniques,

data-driven modern approaches like Machine Learning (ML) have been widely considered

for fault detection and diagnosis of faults in rolling elements or bearings [11], [12]. For

example, Haedong et al. [13] studied fault detection and identification (diagnosis) of the

machinery systems utilizing model-based approach. In [14], Wasim et al. proposed the
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prognostic (Remaining Useful Life) technique for rotatory machinery utilizing machine

learning regression methods. However, faults also appear more frequently in sensors, and

they trigger serious consequences. Therefore, timely detection and diagnosis of sensor faults

in WSN are extremely important to ensure safety, strengthen network security, improve data

quality, extend the network lifetime, and shorten response times [8], [15].

The general approaches to the detection of abnormalities in WSN are knowledge-

based, signal-based, model-based, or a hybrid [16], [17]. Because of less equipment redundancy,

the knowledge-based methods are becoming more appealing in industries [11], [18]. To

gather historical data on industrial systems in large amounts, Supervisory Control and Data

Acquisition (SCADA) systems are generally installed.

Sensors are deployed everywhere in our surroundings and their smooth workflow

and reliable operations are compulsory to ensure safety and avoiding any economic loss.

With the increase of WSN in recent times, many studies have been conducted for fault

detection and identification in WSN to make it safe and reliable [19–25]. For constructing

an intelligent WSN, there are many complications such as resource limitations, energy, and

environmental constraints. Every technique considered to detect and diagnose faults in WSN

must be efficient enough to reduce these limitations with high reliability [26, 27]. In [28],

Xuedan et al. proposed an approach based on one-class SVM towards handling of streaming

data in WSN utilizing online distributed method and to detect abnormalities over networks.

Low misdetection and high true positives were achieved using the proposed solution. Minji

et al. [29] considered sensor faults for their work and estimated the resilience of the system

under sensor degradation and fault. In [15], Salah et al. proposed a technique of fault

detection in WSN using SVM classifier. This work is based on binary classification (2-classes)

which distinguishes only between normal and faulty signals and does not further predict the

exact occurring fault in WSN. Likewise, Zainib et al. [30] considered a multi-hop scenario to
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detect faults in WSN and proposed an ensemble learning algorithm (RF classifier). They

considered most of the faults commonly occur in WSN such as gain, offset, stuck-at, spike,

data-loss, and out of bounds, but did not propose a solution to diagnose (classify) each fault.

Lately, supervised ML classification algorithms [31], such as the Support Vector

Machine (SVM) [15], Neural Network (NN) [32], [33] and Random Forest (RF) [30] have

become well-known topics for anomaly detection. Salah et al. [15] presented effective

performance from an SVM, compared with other ML classifiers, while Zainib et al. [30]

showed the effectiveness of RF classifier for fault detection in WSN. Samanta and Al-

Balushi [12] revealed the efficiency of NN for rolling elements fault diagnostics. In this work,

we utilize a novel classifier, Extremely Randomized Trees or Extra-Trees (ET) [34], and

propose an ET-based diagnostic scheme for timely detection and diagnosis of sensor faults.

As shown in other literature such as [35–38], the Extra-Trees algorithm has shown the ability

of robustness towards noise and a strong reduction of bias and variance error. However, to the

best of our knowledge, this sort of tree-based ensemble classifier has never been considered

in prior research on the recognition of abnormalities in WSN. In addition, the randomization

scheme in ET makes it computationally much faster than other ML classification algorithms.

Subsequently, the proposed ET-based diagnostic scheme can achieve low training time when

implemented in practical scenarios. The proposed algorithm is discussed in detail in Section

2.4.

The rest of this chapter is structured as follows. Section 2.2 presents the taxonomy

of faults in WSN. In Section 2.3, the proposed scheme is discussed. A brief introduction

to the ET algorithm is presented in Section 2.4. Data acquisition, data pre-processing,

evaluation metrics, and simulation results are provided in Section 2.5. Finally, Section 2.6

concludes the chapter.
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Figure 2.1: The framework of the applied model for fault diagnosis.

2.2 Fault Taxonomy

Figure 2.1 shows the overall flowchart of the applied model for fault diagnostics.

As shown in Figure 2.1, the ET, SVM, RF, Multi-Layer Perceptron (MLP) and Decision

Tree (DT)-based multi-class classifiers are used to investigate sensor fault diagnosis after

preprocessing of data. In this work, the seven kinds of sensor faults such as hard-over, drift,

spike, erratic, data loss, stuck and random faults are considered. Multi-dimensional data
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Faults in
WSN

Time-span based Location based

Transient Persistent Data-centric System-centric

Figure 2.2: Fault taxonomy in WSN.

were given as input to the above-mentioned classifiers.

Faults in WSN are caused by various things which can be classified into two main

categories: timespan-based faults and location-based faults [39], as shown in Figure 2.2.

In the timespan-based faults, there are transient and persistent type faults based on the

period of the fault. At first, transient faults are temporary and occur for a short period

due to weather conditions, network congestion, etc [40,41]. On the other hand, persistent

faults are permanent and exist until recovery is carried out. The entire WSN is not normally

defective. Instead of the entire global network, faults usually impact only a limited number

of components. Therefore, the detection and identification of faults have to be based on the

specific location rather than the overall global network [42]. In the location-based faults,

there are data-centric and system-centric faults. At first, based on locality, data-centric

faults, also known as soft faults, take the attributes of the sensed data into consideration

when determining the specific fault. System-centric faults, also called hard faults, consider

the characteristics of the systems used in the WSN. Moreover, the faults examined in this

research can be considered in the context of soft faults. However, this categorization of

faults is not disjoint and the categories can overlap one another.

In this research, seven distinctive WSN faults are considered so they can be

diagnosed at an early stage to prevent serious consequences. The fault causes are related to

either sensor functionality or the gathered data. In this work, the data accumulated from a
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sensor node can be modeled as a time series, shown in equation 2.1:

d(n, t, f(t)) (2.1)

where n is the node id, t is the time instance of the sensed value, and f(t) indicates

the sensed value in node n during time t as modeled in equation 2.2:

α+ βx+ η (2.2)

where α is an additive constant (offset), β is a multiplicative constant (gain), x is

the normal (non-faulty) sensor value, and η denotes noise in the data. In an ideal scenario,

f(t) will be only x, but in real-world situations, a non-faulty node will have f(t) = x+ η.

In the present study, the types of faults include hard-over, drift, spike, erratic,

data-loss, stuck and random faults. Sample plots of these faults are illustrated in Figure 2.3.

These faults in the WSN can be described as follows.

2.2.1 Hard-over/Bias Fault

This fault occurs when the output of the sensor shifts from normal to a higher

state. In other words, adding a constant bias to the normal signal [43]. Hard-over fault

signal Shardovern can be acquired by adding a high constant bias value b to all non-faulty

Snormaln signal elements. This fault is represented by equation 2.3:

Shardovern = Snormaln + b, b = constt (2.3)

2.2.2 Drift Fault

This nature of fault appears when the output signal of the sensor keeps increasing

linearly over time, starting from the normal state [6], [44]. Fault signal Sdriftn can be acquired
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Figure 2.3: Sample plots of faulty and non-faulty signals.

in a non-faulty signal by adding a linearly rising bias term, where the added bias to the nth

element is n times the constant initial bias b0. This fault can be modeled by equation 2.4:

Sdriftn = Snormaln + bn, bn = nb0, b0 = constt (2.4)
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2.2.3 Spike Fault

In the output signal, this kind of fault is observed intermittently in the form of

high-amplitude spikes [8], [28]. Periodically, a constant bias is added to the nth element of

the non-faulty signal to obtain spike fault Sspiken , where n = v × η is the elements index in

the signal, with v = (1, 2, ..., ) as natural numbers, and η ≥ 2 as a positive integer. It is

modeled in equation 2.5:

Sspiken = Snormaln + bn,

bn =


b, n = v × η, v = (1, 2, ..., ), η = constt

0, otherwise

(2.5)

2.2.4 Erratic/Precision Degradation Fault

The sensor’s output variance increases significantly above the usual state [45]. To

acquire erratic fault Serraticn in non-faulty signal Snormaln , a signal Ṡn of mean 0 and high

variance, δ̇2 � δ2
normal

, where δ2
normal

is the variance of the non-faulty signal is added to the

raw non-faulty signal. This type of fault can be defined in equation 2.6:

Serraticn = Snormaln + Ṡn, Ṡn ∼ N(0, δ̇2), δ̇2 � δ2
normal (2.6)

2.2.5 Stuck Fault

This fault can be transient or persistent, according to the situation. There can be

nil, or almost nil variations in the output signal of the sensor for a period of time [39]. In the

case of complete failure, the output is stuck persistently at a constant value [46], [47]. To

acquire stuck fault Sstuckn in a non-faulty signal, a fixed value α is simply kept in all indices
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of the non-faulty signal. A stuck fault is revealed by equation 2.7:

Sstuckn = α, α = constt (2.7)

2.2.6 Data-loss Fault

Occurring mainly due to a hardware or calibration defect, the data-loss fault (as

the name suggests) is a null value sensed from a time series for a node. The detection of the

data-loss fault has been considered in several kinds of research [30], [48].

2.2.7 Random Fault

This kind of fault in sensors can be explained simply as an instantaneous error

where, for instance, the signal output is interrupted [15]. Not commonly explored by

researchers, the random fault can be described as multiple positive or negative rapid peaks,

which can affect WSN data.

2.3 Proposed Methodology

2.3.1 Data-Driven Approach

The data-driven approach has a wide number of real-world applications, which are

common to constructing an appropriate ML model [49]. In the case of classification, the

model is used to identify patterns and for structure discovery in the data. While AI methods

and statistical approaches are two dissimilar techniques in the data-driven world, it is now

common to apply intelligent techniques to solve fault detection and diagnosis problems. The

classification-based approach is considered one of the best solutions for the categorization

and identification of faults occurring in WSN. Figure 2.4 illustrates the common steps taken
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towards fault classification or diagnosis. After data acquisition and the identification of

certain classes, intelligent models are employed.

Data
Acquisition

Class
Identification

Generating
Model

Fault
Classification

Figure 2.4: Steps towards fault classification.

2.3.2 Fault Diagnosis System Model

As the data preparation block illustrates in Figure 2.5, to construct an observation

vector or data sample (Xτ ), four successive instances or data measurements were created:

(tn, tn+1...tn+N ). Each data measurement consisted of two temperature (T ) and two humidity

(H) sensor measurements. In each instance, the sensed readings were taken from both mote

1 and mote 2 of the network, as explained in Section 2.5. The faults induced in the data

for experimental purposes were hard-over, drift, spike, erratic, data-loss, random and stuck

faults. The prepared datasets were labeled with each faulty and non-faulty observation.

The classification function is based on data learning. In scenarios like fault detection

and diagnosis in WSN, having accurate data is an important key, which can give meaningful

information to resolve certain problems in the network. Therefore, to address the problems

discussed in the previous section, data must be classified so accurately that it can classify

any new observation (data) in real-time with tremendous accuracy. In this research, our

proposed solution is based on an ensemble learning technique called Extremely Randomized

Trees, which generates a decision function using a collection of decision trees. The classifier

takes an input feature vector and classifies it with each tree in a forest-like structure and,

based on a majority of vote, outputs the labeled class. A WSN is a collection of multiple

interconnected nodes having a cluster head that communicates with other layers of the
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Figure 2.5: Proposed system model for timely detection and diagnosis of faults in WSN.

network/nodes. For classifying data in the WSN scenario, this decision function, also known

as separation function, is deployed in the cluster head. After the deployment, to diagnose

the data, the output is classified into eight distinctive classes, which are composed of normal

and faulty functionalities, as shown in Figure 2.5.

2.4 Extremely Randomized Trees

Introduced in 2006, the Extremely Randomized Trees or Extra-Trees algorithm

is an ensemble approach based on a large number of decision trees [34]. The ensemble

technique is used in a vast number of applications for classification and regression tasks [50].
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The idea behind the ensemble technique is to combine the decisions of distinct models and

make a judgment based on that combination, which essentially results in better performance,

compared to the achievements of a single decision or model. The DT-based ensemble

technique can achieve high performance when the base learners are independent, and that

can be attained through randomization. When growing the trees, randomization entails

better tree diversity, and facilitates reducing the correlation [51]. One might say that

ensemble learning methodologies work on the principles of divide-and-conquer approach

(or the wisdom of the crowd) to achieve enhanced performance. In supervised ML tasks,

we can get a stable and more robust classifier (model) with precise predictions using an

ensemble technique because it reduces the factors, i.e. noise, bias, and variance. However,

an ensemble learner can cause a notable raise in computational costs due to the need to

train a number of individual classifiers. Consequently, we highlight the ET algorithm, which

works almost similar to, yet faster than, the tree-based ensemble method, i.e. random forest.

The ET algorithm consists of number of DT, where each tree is composed of a

root node, child/split nodes, and leaf nodes, as shown in Figure 2.6. Given a dataset X, at

the root node, ET selects a split rule based on a random subset of features and a partially

random cut point. In each child node, this procedure is repeated until reaching a leaf node.

Furthermore, the three most important parameters of ET can be outlined as the number of

trees in the ensemble (k), the number of attributes/features to select randomly (f), and the

minimum number of samples/instances required to split a node (nmin).

As an ensemble of individual trees, the ET algorithm is similar to the regular

RF, but with two key differences. First, instead of training a bootstrap sample, the entire

learning sample is used to train each tree. Second, the top-down splitting of nodes in the tree

is with completely random splits, not the best splits. A random cut-point is used instead

of calculating the locally optimal cut-point for each attribute being considered, based on
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Figure 2.6: Illustration of the Extremely Randomized Trees algorithm (an ensemble of

decision trees).

gini impurity or information gain. This value is selected from a uniform distribution within

the attribute’s empirical range (in the training set of the tree). Subsequently, the split

that produces the highest score of all the randomly generated splits is selected for splitting

the node. Since finding the best split at every node for each attribute or feature is highly

time-consuming when growing a DT, the process of ET makes it much faster to train than

an ordinary RF algorithm. Also, ET outperforms RF when there are noisy points in the

data, which is usually the case with sensors, as detailed in the findings in Section 2.5.

Furthermore, in the testing process, a test sample proceeds through each of the

DT and to each child node, choosing the best splits and forwarding the test sample to the

right/left child node of the tree before a leaf node is reached. Class for the test sample in

any DT is determined by the leaf node and the final prediction is called as the majority of

votes by the k decision trees of the ET algorithm (Figure 2.6).

The generalization error of the ML model can be declared as the sum of unique

errors, i.e. bias and variance. A high bias can give rise to underfitting, which can be

calculated as the ability to generalize unseen data accurately. In other circumstances, a
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Table 2.1: Steps towards the Extra-Trees algorithm.

1: Construct a training set of size S.

2: Randomly select n learning samples without replacement from training

set S (Bootstrap=False).

3: Build a tree from the entire learning sample. At each node:

3.1: Randomly select f features without replacement.

3.2: Split the node by random cut-points.

4: Repeat, k times, steps 2-3.

5: Aggregate the results of each tree to assign the respective class

(majority voting).

high variance can arouse overfitting, which is provoked by the intense sensitivity of the

model to inconsequential variations in the training set. The ET algorithm has the ability to

strongly reduce bias and variance error better than any other randomization method, i.e.

random forest. The variance is minimized by the selection of the cut-point and the explicit

randomization of the subset of attributes, whereas the bias is minimized due to the complete

use of the original training set to learn the individual DT [34].

Furthermore, a major advantage of ET during implementation is that it does not

need immense concentration towards the selection of hyperparameter values. The ET model

is quite robust to noise from an individual DT such that, typically, there is no need to prune.

The general working steps of the ET algorithm are summarized in Table 2.1. In practice,

the number of trees k (step 4) is considered to be the single parameter that needs to be

taken care of while constructing the ET model.
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2.5 Experimental Results

To conduct this research, we did simulations in Python [52]. For data preparation,

we used the NumPy, and Pandas libraries. To evaluate the performance of the classifiers, we

performed simulations on a system with an Intel Core i5 CPU and 8 GB RAM. Details on

the datasets and simulations are as follows.

2.5.1 Data Acquisition

In our research, a data-driven approach was adopted for fault classification, which

used historical data for training. For this research, we used a dataset published online by

researchers at the University of North Carolina at Greensboro. They collected temperature

and humidity sensor data using Telos B motes, generating single-hop and multi-hop WSN

scenarios [53]. For our research, we considered the data from the multi-hop scenario (Figure

2.7).

Figure 2.7: Multi-hop scenario.

2.5.2 Data Preparation

To prepare our dataset, we considered the multi-hop indoor dataset. Following a

set of observations, we generated 16-dimension data. Each vector or data sample contained

measurements in four successive instances (t0, t1, t2, t3). We considered two temperature

measurements (T1, T2) and two humidity measurements (H1, H2) for each instance. In
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each instance, T1 and H1 belonged to the first mote, while T2 and H2 belonged to the

second mote of the WSN.

In total, 600*16 normal data samples (data observations or vectors) were gen-

erated, and then, several types of sensor faults (hard-over, drift, spike, erratic, data-loss,

random, stuck) were infused into the normal (no-fault) data with different fault parameters

(0.2, 0.4, 0.6, 0.8, 1.0). In each faulty dataset, 1
2 of the observations were used to introduce

faults in mote 1 measurements, with the other 1
2 for mote 2, so a realistic scenario could be

introduced into the WSN.

Considering five different fault parameters and a normal dataset with seven different

faulty datasets, a total of 8*5 datasets were prepared to conduct this research. From each

dataset, 400*16 data samples were used to train the classifiers, and 200*16 were used for

testing. Following the techniques of multi-class classification, labels were assigned to the

normal and faulty observations. The resultant dataset of each fault parameter consisted of

4800*16 samples.

2.5.3 Results

To evaluate the performance of the classifiers in our proposed scheme, we selected

three different metrics:

• Accuracy

• Precision

• F1-score/F-measure

It is usually not a good practice in ML to use one metric as an evaluation point. If

the classifier does not report numerous sensor faults, the accuracy may still be higher, i.e. high

false positives (FP), low true positives (TP). However, the precision will decrease significantly.
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Figure 2.8: Assessment metrics terminology for sensor fault detection.

Thus, it is inadequate to use only accuracy to determine a classifier’s performance. To

efficiently deal with sensor failures, sensor fault detection and diagnosis systems use some

common expressions to classify the data points (data samples) effectively. A typical example

shown in Figure 2.8 elaborates on the terminologies generally used in sensor fault detection

systems [54].

• True Positives (TP): Data points stated as positive (faulty) and are in fact positive.

• True Negatives (TN): Data points stated as negative (non-faulty) and are in fact

negative.

• False Positives (FP): Data points stated as positive (faulty) and are in fact negative

(non-faulty).

• False Negatives (FN): Data points stated as negative (non-faulty) and are in fact

positive (faulty).

The accuracy ratio can be defined as, the number of correct predictions to the total

number of predictions, i.e. TP, TN, FP, FN, which can be evaluated with equation 2.8:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.8)
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where TP and TN refer to the accurately identified data samples, whereas FP and FN are

samples incorrectly identified.

Precision can be defined as the measure of correctly identified positive classes from

all the positive predicted classes. Thus, when the costs of false positives are high, precision

is a better measure, which is defined in equation 2.9:

Precision =
TP

TP + FP
(2.9)

where TP is the number of true positives and FP is the number of false positives. TP

are the observations accurately identified, according to their respective class, e.g. data

samples classified as hard-over faults are, in fact, hard-over faults. FP are the observations

inaccurately identified, e.g. data samples classified as hard-over faults are, in fact, normal.

Classifiers with the lowest false positives will have a high precision rate.

F1-score/F-measure is the weighted average or harmonic mean of recall and precision.

As a statistical measure, this metric is used based on FN and FP to check the performance

of the classifier. F1-score is defined with equation 2.10:

F1 − score =
2 × (Recall × Precision)

(Recall + Precision)
(2.10)

The parameters used in this work are related to datasets generation or ML classifiers.

Firstly, the fault parameter is related to the rate of faults (0.2, 0.4, 0.6, 0.8, 1.0) in the

datasets. For example, the value 0.2 in the fault parameter corresponds to the lowest

fault value while the value 1.0 is the highest one. Secondly, the algorithm parameters (or

hyperparameters) are used for training classifiers. The algorithm parameters are selected

by exhaustive grid-search approaches. Table 2.2 summarizes the algorithm parameters for

training the models used in this research.

In Figure 2.9, SVM performance can be noted on testing data in terms of precision

for different fault types and normal data at different fault parameters (0.2, 0.4, 0.6, 0.8,
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Table 2.2: Algorithm parameters selected by grid-search for training the models.

Classifiers Parameters

Support Vector Machine

C=1.0

kernel=rbf

decision function shape=ovr

gamma=auto

Multilayer Perceptron

activation=relu

solver=lbfgs

hidden layer sizes=30

learning rate=constant

Random Forest

bootstrap=True

n estimators=30

criterion=gini

max features=auto

max depth=None

min samples split=2

Decision Tree

splitter=best

criterion=gini

max depth=30

min samples split=2

Extra-Trees

bootstrap=False

n estimators=30

criterion=gini

max features=auto

max depth=None

min samples split=2
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Figure 2.9: Support Vector Machine classifier precision rate vs. fault parameters of distinctive

classes.

1.0). After extensive parameter tuning, the best results were obtained using a radial-basis

function (rbf) kernel with cost parameter C = 1 based on one-versus-rest manner. The SVM

performed well on drift, spike, erratic, data-loss, and random faults. Hard-over faults were

gradually caught by the SVM as the fault parameter increased, whereas it showed unusual

and poor precision with stuck fault and normal samples. Misclassification occurred between

normal samples and stuck fault samples due to high resemblances in the data samples, which

makes it difficult for every classifier to differentiate between these two classes.

In Figure 2.10, from among all the classifiers, MLP showed abnormal behavior.

For training MLP, there is no concrete rule to declare a specific number of hidden layers,

and they vary based on each distinct dataset. Extensive tuning of the number of neurons

in a hidden layer with relu as an activation function at a default constant learning rate,

we concluded our results. At different fault parameters, unusual oscillations can be noted,

caused by slow convergence and network paralysis because MLP uses a backpropagation

technique for training.

In Figure 2.11, RF showed tremendous performance on drift, spike, data-loss, and
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Figure 2.10: Multi-Layer Perceptron classifier precision rate vs. fault parameters of distinctive

classes.

random faults, while hard-over fault detection gradually increased as the fault parameter

increased. Furthermore, for erratic faults at a 0.8 fault parameter, the classifier reached a

maximum 87% precision, whereas RF misclassified normal samples and stuck fault samples.

However, optimal learning rates were obtained at n estimators=30, which describes the

number of trees in the forest; but RF did not overfit the model on generating enough trees.
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Figure 2.11: Random Forest classifier precision rate vs. fault parameters of distinctive

classes.
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Figure 2.12: Decision Tree classifier precision rate vs. fault parameters of distinctive classes.
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Figure 2.13: Extra-Trees classifier precision rate vs. fault parameters of distinctive classes.

In Figure 2.12, DT performance can be seen, which is the all-purpose ML algorithm,

and usually performs well in classification tasks. The DT precision rate drastically changed

as the fault parameter increased. We used the default Gini criterion to measure the quality

of a split. Between random and best splitter functions, best was used. Drift, data-loss,

and random faults were classified well, while hard-over and spike fault detection improved

as the fault parameters increased. At 1.0, detection of erratic faults went down by up to

69%, showing uncommon behavior in the classifier. Moreover, like other classifiers, DT also

misclassified normal and stuck samples, which are, in fact, the most difficult ones for a
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Table 2.3: F1-Score of classifiers against eight distinct classes, taking the average from each

fault parameter considered. ET had the highest F1-score, on average.

Classes Classifiers

ET SVM RF MLP DT

Normal 44.6 0.8 47 36.6 31.6

Hard-over 85.6 54.6 80.8 19.2 59.8

Drift 98 99.4 99 61 92.2

Spike 88.2 81.2 87.2 43.4 72.8

Erratic 93 99.6 84 92.8 70

Data-loss 100 100 100 100 100

Random 100 100 100 99.6 100

Stuck 46 56 39.4 19.4 40.4

classifier to distinguish.

In Figure 2.13, after a fault parameter of 0.4, ET revealed an immense precision

rate, more than 90% for six different classes. It reached 100% at 0.8 and 0.1 fault parameters.

Normal samples and stuck fault samples were still a problem for the classifier to distinguish.

Furthermore, to train ET, we used the same optimal learning rates as RF (n estimators=30).

While generating sufficient trees did not overfit the model, it showed the same behavior as it

had for an optimum learning point.

In Table 2.3, the F1-score for five different classifiers are shown against non-faulty

and faulty classes. ET had the highest F1-score for all classes, an average of 81.92%, as
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illustrated in the bar graph (Figure 2.14).

Figure 2.14: F1-Score for ET, SVM, RF, MLP, and DT.

(a) (b)

Figure 2.15: Classification accuracy comparison of Extra-Trees with state-of-the-art ML

approaches on (a) unseen data and (b) seen data.

As illustrated in Figure 2.15, we compared the average classification accuracy of

ET, SVM, RF, MLP, and DT for eight differing classes, i.e. normal samples plus hard-over,

drift, spike, erratic, data-loss, random, and stuck faults with individual fault parameters, i.e.

0.2, 0.4, 0.6, 0.8, 1.0. We tested the performance of the classifiers on testing data (unseen),

as well as training data (seen).

With testing data, MLP and DT did not perform well with low fault parameters,
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Table 2.4: Performance comparison between ET and other classifiers on training (seen) and

testing (unseen) data.

Classifiers Average Classification

Accuracy on Unseen-Data

Average Classification

Accuracy on Seen-Data

ET 81.20% 100%

SVM 78.60% 85.40%

RF 79.60% 100%

MLP 63% 72.80%

DT 71.20% 90.60%

but as the parameters increased, accuracy rose. MLP significantly improved in its accuracy,

whereas DT showed the same behavior on fault parameters of 0.8 and 1.0. SVM and RF

accuracy increased with the number of fault parameters, but overall, ET outperformed the

rest of the classifiers. As we can see with the performance on the seen data, ET and RF

noticeably surpassed SVM, MLP, and DT.

Table 2.4 presents a performance comparison of the models with both training

and testing data. ET clearly outperformed the rest of the classifiers, while RF showed

competitive performance but did not surpass ET accuracy. SVM, MLP, and DT did not

perform well in terms of diagnosing the desired non-faulty and faulty classes, even on the

seen data.

Figure 2.16 illustrates the training time taken by the classifiers on each dataset.

We observed that DT can achieve the lowest training time against other algorithms, but at

the cost of low performance. ET achieved the second-best training time, and also performed
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tremendously well in terms of accuracy. It is easy to highly recommend the ET classifier for

lightweight systems, which can achieve low computational power as well as high accuracy

compared to state-of-the-art ML approaches.

Figure 2.16: Computational training time vs. different training datasets for the proposed

Extra-Trees classifier against state-of-the-art ML classifiers.

2.6 Conclusions

In this work, we proposed an Extra-Trees-based diagnostic scheme to detect and

diagnose faults in a timely fashion for WSN. In addition, we compared the performances

of the proposed scheme with those of several ML classification algorithms such as SVM,

RF, MLP, and DT. For performance analysis, we used an online dataset that is trusted and

has been used by others in the research community. The dataset, which was published by

researchers at the University of North Carolina, contains sensor measurements collected by

single-hop and multi-hop networks. Several faults commonly observed in WSN are hard-over,

drift, spike, erratic, data-loss, random, and stuck faults. Subsequently, these faults were
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injected into the real dataset for experimental purposes. The simulation results showed that

the proposed ET-based diagnostic scheme outperformed other ML approaches, in terms

of performance metrics such as accuracy, precision, and F1-score. It is also observed that

the proposed scheme has lower training time than other ML approaches. Therefore, the

prospective usages include scrutinizing the behavior of sensors through their data for the

timely detection and diagnosis of faults in WSN.



Chapter 3

CAFD: Context-Aware Fault

Diagnostic Scheme towards Sensor

Faults utilizing Machine Learning1

3.1 Introduction

The Cyber-Physical Systems (CPS) such as Industrial Control System (ICS),

Smart Grids (SG), and Wireless Sensor Networks (WSN) often consist of hundreds of

sensors that may be deployed in relatively harsh and complex environments. Natural factors,

electromagnetic interference, and system defect can affect the performance of the sensors.

When the sensor becomes faulty, it may completely stop generating signals or produce

incorrect signals. In some cases, it can unstably jump between normal and faulty states. To

improve safety, reliability, shorten response time, strengthen network security, and prolong

network lifespan, many studies have focused on sensor fault detection. These faults or

1The study in this chapter is to be submitted.
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anomalies can be expressed as an unusual property or behavior of a system [10].

Studies have been carried out mainly since the 1980s for the detection and diagnosis

of defects in industrial facilities, i.e., physical-based or mathematical. These approaches

were limited to specific environments and conditions. It is difficult to determine extreme

model parameters due to system complexities. To overcome these limitations, data-driven

approaches using Machine Learning (ML) techniques have been proposed lately, which

analyses data to develop the best-fit models. These models in fact use historical data to

find hidden patterns and identify expected outcomes. As modern systems are becoming

complex, previous approaches are becoming difficult to implement. On the other hand, the

data-driven approach can be developed to adequately approximate real systems based on

the collected data.

In recent times, machine learning classification techniques such as Support Vector

Machine (SVM) [33] and Neural Networks (NN) [32] have gain eminence in fault detection

and diagnostic systems. In the past, algorithms for fault detection and diagnosis in rolling

elements of machines have been explored in a vast number of studies reporting efficient

results [11], [33], [12], [18]. However, sensors as well can be defective frequently leading to

serious consequences in terms of safety, economy, and operation. The techniques used for

bearing fault detection and sensor fault detection are homogeneous, however, the signal

characteristics of sensor faults are different from the rolling elements. Therefore, using similar

approaches for both does not guarantee the same accuracy in results. Precise detection and

diagnosis of sensor anomalies in a timely manner is extremely important to ensure the safety

and reliability of systems.

A typical sensor along with the data flow through major components is shown in

Figure 3.1. These major components are primarily responsible for the abnormal behavior of

sensors. Each component is associated with certain static limiting properties, which can be
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Figure 3.1: Illustration of sensor and its key components.

described by specifications and may affect the resulting data. However, the sensor’s output

can also be affected by the external environment such as communication or battery defect,

which are common to occur in WSN.

Figure 3.2 represents the abnormal behaviors (or faults) in sensor according to

its context. These contexts can be explained as the internal or external environment of

sensor, which are accountable for the abnormal behaviours. As shown in Figure 3.2, there

can be a single or multiple causes for a fault to arise. For instance, drift and hard-over fault

is primarily caused by the calibration defect (or error), while data-loss fault is caused by

either calibration or hardware defect. Moreover, spike fault can appear as a consequence of

hardware, communication, or battery defect. The erratic fault is the result of battery defect,

whereas stuck-at fault is triggered by several causes, such as hardware, communication,

battery, and clipping defect. Further detail about drift, hard-over, data-loss, spike, erratic,

and stuck-at fault is given in Section 2.2.

In this chapter, a new Context-Aware Fault Diagnostic (CAFD) scheme towards

the detection and diagnosis of fault or anomaly in sensors has been employed. First, the

data under consideration is multi-labelled according to the context of faults. Then, these

data samples are given as an input to the context-based ML classifier to diagnose. Upon

diagnosing (or classification), the output of the context-based classifier along with the

original data samples (or sensor output signal) are given as an input to the fault-based ML
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Figure 3.2: Representation of sensor abnormal behaviours (or faults) according to their

context.

classifier. Finally, fault-based classifier categorizes the data samples to detect and diagnose

any abnormal behaviour occurred in the network. The proposed scheme is discussed in

detail in Section 3.3.

The rest of this chapter is organized as follows. Section 2.2 presented the taxonomy

of faults in sensors. A brief introduction towards the machine learning classifiers and

classification techniques under consideration is given in Section 3.2. In Section 3.3, the

proposed CAFD scheme is discussed. Section 3.4 provides simulations and results. Finally,

Section 3.5 concludes the chapter.

3.2 Machine Learning Classifiers and Classification Tech-

niques

Classification is a supervised machine learning approach, which can be defined as

a means of categorizing some unknown items into a discrete set of classes. In this work,

multi-label and multi-class classification approaches are used, which identifies the hidden

patterns between normal and faulty states. The classification algorithms and approaches

used in this work are explained as follows.
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3.2.1 Classification Algorithms

3.2.1.1 Support Vector Machine

Developed in the 1970s, SVM deals with the concept of statistical learning theory.

In the field of machine learning, precisely for fault detection and diagnosis, SVM is one of

the well-known algorithms [8]. Linear line or hyper-plane is generated as a decision boundary

for classification tasks between data points of the distinct classes. The nearest data points

to the hyper-plane, which impart construction of the hyper-plane are called support vectors

(as presented in Figure 3.3). The optimized hyper-plane can be mathematically expressed

by equation 3.1:

wTx+ b = 0 (3.1)

where w is the vector of weights, x is an input vector, and b represents the bias.

Figure 3.3: Illustration of Support Vector Machine Classifier.
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The equation of the support vectors of each class is given as

wTx+ b = +1, for di = +1

wTx+ b = −1, for di = −1

(3.2)

where di corresponds to the respective class, i.e., di = +1 for class A, and di = −1

for class B. In this research, multi-label as well as multi-class SVM-based classifier is used to

analyze the results for sensor fault classification. The cost parameter C was set to default

(C = 1).

3.2.1.2 Artificial Neural Network

A class of feed-forward Artificial Neural Network (ANN), Multi-Layer Perceptron

(MLP) consists of, at least, three layers of nodes: an input layer, hidden layer, and an output

layer. Each node is a neuron that uses a nonlinear activation function except for the input

nodes. For training, MLP utilizes supervised learning technique known as backpropagation.

An instance of MLP is shown in Figure 3.4.

The number of nodes in hidden layers of ANN can be decided according to the

nature of data. There are no rules defined to declare a specific number of layers. Large

number of nodes can over-fit the training data, while fewer nodes can lead towards under-

Figure 3.4: Illustration of Feed-forward Neural Network.
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fitting. In both cases, the classifier will not be able to categorize the data accurately.

An optimal number of hidden layers, as well as nodes, shall be chosen to minimize the

misclassification.

3.2.1.3 Extremely Randomized Trees

Extremely Randomized Trees or Extra-Trees (ET) algorithm is generally used for

classification and regression tasks. A large number of integrated Decision Trees (DT) creates

an ensemble approach known as ET. As shown in Figure 3.5, ET algorithm operates on

number of DT, where each DT is composed of root node, child nodes, and leaf nodes. Given

a data point x, ET selects a split rule based on a random subset of features and a partially

random cut point at the root node. This phenomena makes the process faster and exhibits

strong reduction towards bias and variance error.

The concept behind the ensemble technique is to generate several DT models and

make a judgement based on the association of it. This approach is based on principal

’wisdom of the crowd’, which eventually results in better performance compared to a single

DT model. The ET algorithm is explained in detail in Section 2.4.

Figure 3.5: Illustration of Extremely Randomized Trees (an ensemble of decision trees).
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Figure 3.6: Types of classification.

3.2.2 Classification Techniques

An instance of supervised learning, classification is a technique to identify data

observations according to where it belonged on the basis of training data. Classification

is primarily divided into three categories: binary, multi-class, and multi-label. Figure 3.6

exemplifies the types of classification.

• Binary Classification involves two classes. A set of data observations (or data

sample) can only be assigned to one of two classes. For instance, in the case of sensor

fault detection, data samples are categorized to either normal or abnormal class.

• Multi-Class Classification problem comprises more than two classes, which are

mutually exclusive. A single data observation can belong to only one class. For

example, sensor output signal may belong to multiple classes such as normal, drift

fault, hard-over fault and so forth. Nevertheless, the output of multi-class classifier

can only belong to one class of the target variables.
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• Multi-Label Classification is contrary to multi-class classification. In case of multi-

label, a single data observation can concurrently belong to two or more classes of the

target variables. For instance, in the circumstances of stuck-at sensor fault, a data

sample under observation can simultaneously belong to multiple defective classes (as

shown in Figure 3.2).

3.3 Proposed CAFD Scheme

The term context in the Context-Aware Fault Diagnostic (CAFD) scheme refers

towards the interior or exterior conditions (or environment) of sensors, whereas aware

terminology relates to the conscious intelligent ML algorithm. The idea behind CAFD

system is to utilize the context of sensors, which are primarily responsible for the occurring

abnormal behaviours (anomalies or faults).

In Figure 3.2, the data-centric or soft faults (i.e., drift, hard-over, data-loss, spike,

erratic, and stuck-at faults) are represented by lines to their context, respectively. The

system-centric or hard defects, (i.e., calibration, hardware, communication, battery, and

clipping defects) which can be declared as the context of sensors, are the prime causes of

data-centric sensor faults. The framework of the proposed CAFD system is presented in

Figure 3.7.

Following data acquisition and preparation explained in Section 3.4.1, the data

samples are given as an input to the ML classifier for training. Firstly, each data sample is

labelled according to the corresponding context. For instance, hard-over fault samples are

labelled 1 for calibration, while 0 for rest of the contexts. Since hard-over fault substantially

transpire due to calibration. Table 3.1 explicates the labels for each class under consideration

in this work.
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Figure 3.7: Framework of the proposed Context-Aware Fault Diagnostic (CAFD) scheme.

Furthermore, the context-based multi-label data is first trained using Extra-Trees

algorithm for classification purposes. Subsequently, the context-based classifier (Extra-

Trees) were given distinct sensor output signals or data samples to identify. This technique

classified each sample according to its context (C1, C2, ...Cn), which belonged to any one of

the aforementioned contexts such as calibration.

Afterwards, the output of context-based classifier in the form of labels were utilized

as an input features in the fault-based classifier. The fault-based multi-class data is consisted
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of legitimate and faulty data samples along with the additional features (or data points)

from the context-based classifier. Further, the fault-based multi-class data, labelled with

normal and data-centric faulty classes as above-mentioned, was trained by ET classifier.

To detect and diagnose the data-centric faults, the fault-based classifier were given

the sensor output signals Sn in the form of data observations. The final classification was

performed by fault-based classifier (Extra-Trees), which led towards the diagnostics of faults

in sensors.

3.4 Simulations and Results

3.4.1 Data Acquisition and Preparation

To evaluate the performance of ML classifiers, the data under consideration plays

an essential role. Unfortunately, it is ideal to get data with genuine faults obtained from

realistic scenarios. There are no publicly available datasets, which in fact addresses all

the faults in sensor. Therefore, to conduct this research, we acquired a dataset (healthy

measurements), which is published by the researchers of the University of North Carolina [53].

This dataset is composed of temperature and humidity sensor measurements. The data was

acquired using Telos B motes, while creating single-hop/multi-hop WSN scenario. For our

research, we first obtained the multi-hop data (healthy state), and then injected it with the

six diverse faults (such as hard-over, drift, spike, erratic, data-loss, and stuck faults). This

approach is common among researchers to obtain faulty datasets [8] [15] [30].

To prepare the dataset, we generated 16-dimensional data samples (measurements or

vectors). Each sample was composed of 16 data points in 4 successive instances (t0, t1, t2, t3).

Each instance was constructed from 2 temperature sensor measurements (T1, T2), and

2 humidity sensor measurements (H1, H2). In each instance, T1 and H1 measurements
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Figure 3.8: Illustration of data preparation.

belonged to the first node, whereas T2 and H2 to the second node of the multi-hop scenario.

Overall, 400 ∗ 16 normal (legitimate/healthy) data points or observations were

initiated. Afterwards, above-mentioned six distinct sensor fault types were injected in the

normal (non-faulty) data via simulations using equation 2.3, 2.4, 2.5, 2.6, 2.7. Figure 3.8

illustrates the data wrangling process. To replicate realistic scenario of WSN, half of the

data points were used to introduce faults in the first node, while another half in the second

node of the multi-hop network. Some of the faults (such as hard-over, drift, spike, erratic)

were induced with different intensity of fault (0.1, 0.2. . . , 1.0), whereas, in case of data-loss

and stuck fault, the sensor’s output is either null, or unchanging constant value. The higher

the fault intensity value, the higher the rate of fault in the data. For instance, the value

0.1 in the fault intensity corresponds to the lowest rate of fault, while 1.0 is the highest.

However, the data-loss and stuck fault samples remained unchanged throughout. Intuitively,

the accuracy of classifier improves with the increase in fault intensity.

Considering normal class (or data) and the six above mentioned faulty classes,

the final dataset was composed of 7 ∗ 400 ∗ 16 data points. In each class, 60% of the data

samples were used to train ML classifier, whereas 40% for testing. In this work, two different

labelling techniques were used to classify data (i.e. multi-class classification, multi-label

classification), as explained in Section 3.2.2. In the case of multi-class, a single column of



Chapter 3: CAFD: Context-Aware Fault Diagnostic Scheme towards Sensor Faults utilizing
Machine Learning 43

Table 3.1: Representation of labels for each class according to the context.

Label Class

1 Normal/Legitimate

2 Hard-over

3 Drift

4 Spike

5 Erratic

6 Data-loss

7 Stuck

Calibration
Defect

Hardware
Defect

Communication
Defect

Battery
Defect

Clipping
Defect

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 1 1 1 0

0 0 0 1 0

1 1 0 0 0

0 1 1 1 1

labels was introduced, while for multi-label, five distinct columns of binary numbers were

taken into consideration according to the context of each class. Table 3.1 shows the labels

in terms of numerical value for each class.

3.4.2 Results

To perform the experiments, all the algorithms under consideration in this work

were simulated in Python using Scikit-learn and NumPy libraries. The Grid-Search Cross-

Validation (CV) technique with CV = 5 was used on the dataset to obtain the optimal

hyperparameters for each algorithm to train. This technique works on the principles of fit

and score method in order to determine the best parameters, which can be used to train the

ML models.

Generally using a single performance evaluation metric for ML models is not

considered a good practice. In this work, three distinct metrics were taken into consideration

to assess the performance of the classification algorithms. These metrics are defined as

follows.
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• Diagnostic Accuracy can be defined as the ratio of correctly identified faulty or

defective data samples to the total number of defective samples.

Diagnostic Accuracy =
Number of correctly identified defective samples

Total number of defective samples
(3.3)

• F1-Score or F-Measure is the harmonic mean of recall and precision. This weighted

average is commonly used to assess the performance of ML classification models.

F1 − Score = 2 ×
(
Recall × Precision

Recall + Precision

)
(3.4)

where,

Recall =
True Positives

Actual Positives
, (3.5)

Precision =
True Positives

Predicted Positives
(3.6)

• Area value under the ROC Curve (ROC-AUC) is an evaluation metric, which

calculates a scalar value in the range of [0, 1]. This measure determines how accurately

the ML classifier can distinguish between faulty and non-faulty data observations. An

accurate classifier can have the ROC −AUC value up to 1.0.

In this work, without-context (or traditional) approach can be simply distinguished

from the context-aware approach as the technique, where sensor output signals are given in
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its genuine state to the ML classifier without considering the additional features extracted

through multi-label classification techniques. Furthermore, fault intensity depicts the rate

of fault injected in the datasets. For instance, 0.1 fault intensity corresponds to the lowest

fault rate, whereas 1.0 is the highest. As the fault intensity increases, the performance of

the classifier is also expected to increase.

ET performance can be noted in terms of F1-score for normal and distinct fault

classes at various fault intensities in Figure 3.9. Context-aware approach has revealed the

ability to distinguish between different set of classes precisely compared to without context

approach. However, normal and stuck fault class have highly identical data points, which

makes it hard for the classifier to discriminate in both cases.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fault Intensity

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

Normal/Legitimate Class
Hard-over Fault
Drift Fault
Spike Fault
Erratic Fault
Data-loss Fault
Stuck Fault

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fault Intensity

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

Normal/Legitimate Class
Hard-over Fault
Drift Fault
Spike Fault
Erratic Fault
Data-loss Fault
Stuck Fault

(b)

Figure 3.9: Extra-Trees F1-score comparison of individual class on (a) context-aware approach

vs. (b) without context.
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Figure 3.10: F1-score of context-aware vs. without context approach for Extra-Trees on

distinctive classes.

Nevertheless, the bar graph displayed in Figure 3.10 explicitly provides the perfor-

mance differences between the two approaches in terms of F1-score average. Each number in

the graph depicts different class: (1) Normal, (2) Hard-over, (3) Drift, (4) Spike, (5) Erratic,

(6) Data-loss, and (7) stuck fault. While some of the classes have shown somewhat similar

F1-score on both approaches, most of them were improved on context-aware approach.
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Figure 3.11: ROC-AUC against diverse fault intensity of the proposed ET-based context-

aware approach compared with traditional approach.
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Figure 3.12: Diagnostic accuracy of context-aware vs. without context approach for Extra-

Trees on diverse fault intensity.

In Figure 3.11, the ROC-AUC of ET versus different fault intensity of the proposed

scheme is revealed. Starting from the lowest fault intensity 0.1 up to 0.3, the ET-based

context-aware approach AUC value considerably increased. The lowest AUC value noticed

was 0.89. However, from 0.3 to 1.0, proposed approach constantly achieved maximum AUC

value up to 0.97. On the other hand, same classifier (ET) in without context approach with

the identical hyperparameters (as context-aware approach) revealed the performance as low

up to 0.81, whereas with the increase in fault intensity, ROC-AUC also elevated.

Figure 3.12 discloses the average diagnostic accuracy of the approaches under

consideration. As can be seen, both approaches significantly improved with the rise in fault

intensity. Nonetheless, utilizing ET classifier, the proposed context-aware approach achieved

maximum accuracy up to 90%, whereas the contrary approach had utmost diagnostic

accuracy up to 81%.

Furthermore, we also tested the proposed approach on other state-of-the-art ML

algorithms such as SVM and NN and compared the performance with traditional approach.

As shown in Table 3.2, exploiting the proposed CAFD approach, ET provides the best
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Table 3.2: Performance comparison between ET and state-of-the-art ML classifiers in terms

of average classification accuracy.

Classifiers Context-Aware

Approach

Without Context

Approach

ET 86.5% 77.4%

SVM 83.1% 81.4%

NN 80.4% 78.1%

performance on average compared to other classifiers. Additionally, the diagnostic accuracy

of each classifier on different fault intensity is presented in Figure 3.13. Indubitably, ET

achieves the highest diagnostic accuracy under the proposed scheme.

Finally, the time taken by each classifier to train on the number of training samples

is illustrated in Figure 3.14. We observed that, ET is computationally inexpensive compared

to SVM and NN. It is easy to state, utilizing ET for the lightweight systems under the
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Figure 3.13: Accuracy comparison of ET with state-of-the-art approaches on the proposed

CAFD scheme.
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proposed CAFD scheme can achieve high performance by precisely detecting and diagnosing

sensor faults.

200 400 600 800 1000
Number of Training Samples

0

1000

2000

3000

4000

5000

Tr
ai

ni
ng

 T
im

e 
[m

s]

ET
SVM
NN

Figure 3.14: Training time against number of training samples for distinct ML classifiers.

3.5 Conclusions

In this work, a lightweight CAFD scheme is proposed for the timely detection and

diagnosis of low intensity faults in sensors. First, a dataset composed of healthy temperature

and humidity sensor measurements was acquired. Afterwards, the commonly occurred faults

in sensors (i.e., hard-over, drift, spike, erratic, data-loss, and stuck) were injected with

different intensity into the healthy dataset in order to generate realistic defective WSN

scenario. Healthy and faulty data observations were labelled utilizing multi-label/multi-class

classification techniques for experimental purposes. These data observations were then used

to train ML classifiers. An extensive simulation study revealed that, using the context of

sensors as additional features in the original data observations can significantly improve the

classifiers’ performance. Furthermore, the proposed ET classifier in the CAFD scheme has

shown efficiency over SVM and NN in terms of diagnostic accuracy and training time.



Chapter 4

Summary of Contributions and

Future Works

4.1 Introduction

This chapter provides the contribution of this dissertation. The problem statement,

objective, methodologies, and results carried out by the proposed solutions are presented

in chapter 2 and 3. The first section 4.2 of the current chapter summarizes the primary

contributions of those investigations, whereas the outline of the future direction is given in

section 4.3.

4.2 Summary of Contributions

This dissertation investigated and addressed problems related to the abnormal

behaviors originated in the domains of Wireless Sensor Network. Efforts were made to timely

detect and diagnose the low-intensity abnormal behaviors utilizing data-driven supervised

machine learning-based techniques. The contribution of this dissertation, in the context of

50
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machine learning-based effective detection and diagnosis of sensors abnormal behaviors in

the WSN is outlined as follows.

• Most of the abnormal behaviors or faults that commonly occur in WSN are considered:

hard-over, drift, spike, erratic, data-loss, stuck, and random fault.

• Dataset composed of temperature and humidity sensor measurements of multi-hop

scenario was acquired and the aforementioned faults were injected into the healthy

dataset at distinct intensities.

• The intensity of fault (or fault parameter) is simulated in a way to replicate realistic

scenarios of WSN. For instance, fault can occur in WSN for a short length as well as

long, or it can be occurred in a combination of both.

• Following that, Extremely Randomized Trees-based detection and diagnostic scheme

was proposed, which is an ensemble-based machine learning algorithm. Additionally,

multiple classification techniques such as multi-label/multi-class were utilized to gener-

ate a context-aware diagnostic system for the timely detection and diagnosis of faults

with high precision.

• Furthermore, an extensive simulation experiments are conducted on the prepared

datasets to demonstrate the efficiency of the proposed schemes. Four different machine

learning algorithms such as support vector machine, neural network, random forest,

and decision tree are compared with the proposed classifier.

• Finally, the performance of the proposed technique is evaluated by widely used measures

such as accuracy, F1-score, precision, and area value under the ROC curve. These

performance evaluations revealed the efficiency of the proposed scheme to detect and

diagnose the abnormal behaviors in a timely fashion.
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• In addition, the training time taken by distinct classifiers were calculated in order to

describe the lightweight measure.

4.3 Future Direction

In the future, it is aimed to work on further improvement of the abnormal behavior

detection and diagnostic systems. Identification of abnormal behaviors precisely at the

node level is needed alternatively to the central node. Furthermore, the robustness of the

proposed schemes will be verified by deploying a large number of sensors in the network,

while focusing on extreme low-intensity faults. Finally, it is intended to generate a prognostic

system, which will help to estimate the remaining useful life of sensors in the network.
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