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ABSTRACT 

A study on the 3D dimension measurement using robot hand-eye calibration 

Man Chen 

Chair of Advisory Committee: Prof. Kyung-Kwan Ahn 

December 2019  

With the continuous progress of science and technology, industrial robots are entering 

factories to replace human beings. Industrial robots are highly efficient, but they mainly detect 

and locate fixed targets on a single production line in a specific environment. For this reason, the 

vision sensor and industrial robot are combined to complete the fixed target work by visual 

guidance. This paper mainly studies the techniques of camera calibration, feature point extraction 

and three-dimensional positioning in the binocular stereo vision system. A visual positioning and 

ranging system suitable for industrial production is constructed, and the distance measurement 

between multiple target points is realized. The results show that the average error of three-

dimensional positioning ranging is less than 0.5 mm, which proves the feasibility of the method. 

At the same time, the hand-eye matrix is calculated by matrix direct product, and the target point 

pose of the world coordinate system is converted into the pose of the robot coordinate system, 

which provides a basis for industrial production. 

The main work is as follows: 

(1) Build a simple hardware platform with a robotic arm, binocular camera and computer. 
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(2) The theoretical basis and principle of camera calibration are studied.Based on the 

linear calibration method of perspective transformation model in MATLAB software 

environment obtain camera parameters and distortion parameters.  

(3) The two images are acquired by using a binocular vision camera. The pre-processing 

of the acquired image is completed, and the specified target point is searched in the image by 

template matching to obtain the two-dimensional image parallax. 

(4) Based on the internal and external parameters of the camera and matching points, the 

depth of the feature points is calculated according to the stereo vision measurement principle, 

and corresponding three-dimensional space information is obtained. 

(5)  The hand-eye transformation matrix of the robot is calculated by using the direct 

product of the matrix and the eigenvector. The spatial relationship between the camera 

coordinate system and the robot arm coordinate system is determined by hand-eye calibration, 

and the relative position of the target point relative to the robot end tool is calculated, which 

provides a data basis for the spatial operation. 

Keywords : Camera calibration，binocular vision ,  hand-eye calibration 
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CHAPTER I 

INTRODUCTION  

1.1  Research Background and Significance  

The development of robots stems from the urgent needs of people. Invented industrial 

robots in order to liberate from dangerous work or repeated labor, and invented service robots for 

a better life [1]. The vigorous development of science and technology makes it possible to create 

robots of various types and different scenarios, which are widely used in industry, agriculture, 

aerospace and other fields.  

Manipulators are widely used in various fields because of their high stability, high 

efficiency, low environmental requirements and large storage space and fast operation speed. 

Manipulators can work in harsh environments where human beings are not suitable or unable to 

work, or can replace human beings for repetitive operations, thus reducing the risk and burden of 

human work and improving production efficiency. However, the manipulator has the 

disadvantages of low flexibility and low degree of autonomy. Traditional manipulators can only 

grasp the target according to the planned path, and can’t obtain external information. Therefore, 

in unknown or changing environment, it is necessary to changes, otherwise it is difficult to 

complete the grasping task. In order to enhance the flexibility of the manipulator control system 

and make it have the ability to perceive the surrounding environment, machine vision has been 

widely used in various robotic and has become an important research direction in the field of 

robotics [2,3]. 

The combination of robotic arm and machine vision can improve the perception ability of 

surrounding environment, intelligent decision-making and behavior ability of robotic arm, and 
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further promote the intelligent development of robotic arm.  Compared with monocular vision, 

binocular stereo vision technology can flexibly acquire the three-dimensional information of the 

target, which has obvious advantages. At present, binocular vision has been used more and more 

widely in many fields such as industrial inspection, robot navigation, medical machine imaging, 

pose detection, and military aviation [4].  

1.2  Research Content and Chapter Arrangement 

This paper mainly studies the application of vision positioning system in industrial production, 

and establishes a vision-based robot target positioning platform.  The proposed binocular stereo 

vision system consisted of a PC, two CCD colour cameras, a calibration board and software 

system. The cameras (model TGCAM-2000S) produced by TG SanBao company in Korea had a 

digital video output of 2000 effective pixels, and they were placed in parallel and mounted on the 

manipulator that had six DOF in order to obtain images flexibly.   The Image acquisition was 

programmed in OpenCV 3.0 (supplied by Intel Corporation at Santa Clara in California, USA), 

cameras calibration module was programmed in Matlab2018a (supplied by MathWorks 

Corporation at Nedik in Massachusetts, USA) ran in the PC with Windows 7 operating system. 

This paper mainly studies the following four aspects: 

Chapter 1:  Introduction.  It mainly expounds the research background and significance. 

Chapter 2: Camera Calibration. It mainly introduces the basic theory and principle of camera 

calibration, and uses Zhang Zhengyou's chessboard method to calculate the internal and external 

parameters and distortion parameters of the camera. 
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Chapter 3: Stereoscopic vision. The target is captured using a binocular camera and the pixel 

coordinates of the target point are calculated. The depth of the target is calculated by the parallax 

method, and finally the three-dimensional coordinate value of the target is obtained. 

Chapter 4: Hand-eye calibration. The theory and principle of calculating the hand-eye matrix 

using Rodrigue vector rotation formula and matrix direct product are introduced respectively. 

The hand-eye matrix is calculated by the matrix direct product method to determine the spatial 

relationship between the camera coordinate system and the robot arm coordinate system, and the 

relative position of the target point relative to the robot terminal tool is calculated. 

Chapter 5: Conclusions. Summarize the work of this paper and analyze the shortcomings of 

this paper.  
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CHAPTER II 

CAMERA IMAGING MODEL AND CALIBRATION 

2.1. Camera Model 

Camera imaging mainly analyses how to associate the points in three-dimensional space 

with their projection points in the camera imaging plane. The camera imaging plane is actually 

composed of  pixel, and the generated image is based on the pixel. Therefore, the camera 

imaging model needs the conversion relationship between the world coordinate system and the 

pixel coordinate system. In order to calculate the conversion relationship between the world 

coordinate system and the pixel coordinate system, it is necessary to add the camera coordinate 

system and the image coordinate system as the intermediate conversion coordinate system. The 

conversion relationship between the coordinate systems is shown in Figure 2.1. In this paper, we 

will analyze the conversion relations between pixel coordinate system, image coordinate system, 

camera coordinate system and world coordinate system. 

 

Fig.2.1 Coordinate System Conversion 

World coordinate system: User-defined coordinate system of three-dimensional world, 

describing the location of the target object in the real world. 
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Camera coordinate system: The coordinate system established on the camera, which is 

defined to describe the position of objects from the perspective of the camera, serves as the 

middle link between the world coordinate system and the image/pixel coordinate system. 

Image coordinate system: Describe the projection and transmission relationship between 

the object in the imaging process from the camera coordinate system to the image coordinate 

system, so as to further obtain the coordinates in the pixel coordinate system. 

Pixel coordinate system: The coordinate describing the image point on the digital image 

after imaging is the coordinate system where the information we really read from the camera is 

located. 

There is an imaging process when capturing a target image with a camera. At present, 

commonly used imaging models mainly include linear imaging models and nonlinear imaging 

models [5]. In this paper, a simplified pinhole camera model is used instead of a lens model to 

analyze the camera imaging process. The pinhole model, while briefly describing the imaging 

process of the camera, is very accurate. The geometric relationship of the pinhole model is 

shown in Fig 2.2. 
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Fig.2.2 Imaging Model of Pinhole Camera 

Generally speaking, the calibration process is divided into two parts: 

The first step is to transform the world coordinate system to the camera coordinate 

system. This step is the transformation from three-dimensional point to three-dimensional point. 

Including R, t (camera external parameters, determine the position and orientation of the camera 

in a three-dimensional space) and other parameters. 

The second part is the transformation from camera coordinate system to pixel coordinate 

system. This step is the transformation from three-dimensional point to two-dimensional point. 

Including K (camera internal parameters, is the approximation of the physical characteristics of 

the camera) and other parameters. 

2.1.1. World coordinate system  

The transformation between camera coordinate system and world coordinate system is 

the transformation between two three-dimensional coordinate systems [6]. The principle is the 

same as the coordinate transformation of the manipulator. The transformation can be completed 
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by determining the position and attitude relationship between the coordinate systems. The 

relationship between the camera coordinate system (DCS) and the world coordinate system 

(WCS) is as follows: 

                                             [

  

  
  

 

]  [
  
  

] [

  

  
  

 

]                                                   (2.1)  

The camera coordinate system is located inside the lens, so the position of the origin and the 

direction of each coordinate axis can not be accurately known from the outside. Therefore, it is 

necessary to use camera calibration to determine the parameters  
    

    
          . These 

six parameters are called camera external parameters. Where R is a rotation matrix and T is a 

translation matrix, which describes the transformation relationship between the camera 

coordinate system and the world coordinate system [7]. 

2.1.2 Camera coordinate system 

The camera imaging geometry is shown in the Figure 2.3. Where   is the camera's 

optical center,     and    axes are parallel to the X and Y axes of the imaging plane coordinate 

system. The    axis is the optical axis of the camera and is perpendicular to the image plane. The 

intersection of the optical axis and the image plane is the image origin o1. A Cartesian 

coordinate system composed of points O and    ,   , and    axes is called a camera coordinate 

system.     is the camera focal length. 
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Fig. 2.3 Camera Coordinate System and World Coordinate System 

The image plane is perpendicular to the    axis of the optical axis, and the distance from the 

projection center is f (f is the focal length of the camera). According to the trigonometric 

proportional relation, it can be concluded that: 

                                                                                
 

 
 

  

  

                                                                               

                                                                                
 

 
 

  

  
                                                                               

So: 
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The above process of mapping point P with coordinates (x, y, z) to point p with coordinates (x, 

y) on the projection plane is called projection transformation.  

The projection transformation matrix is: 

  [
 
 
 
]  [

   
   
   

] [
  

  
  

]                                                 (2.5) 

2.1.3 Image coordinate system 

The coordinate system is established with the upper left corner or the lower left corner of 

the image plane as the origin. As shown in Figure 2.4，Suppose that the origin    of the plane 

coordinate system is located in the upper left corner of the image, u-axis horizontally to the right 

and v-axis vertically. The coordinate system is established by taking the intersection point    of 

image plane and optical axis as the origin point. The horizontal axis is x axis and the vertical axis 

is y axis. 

 

Fig.2.4 Image Coordinate System and Pixel Coordinate System 
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The image coordinate system and the pixel coordinate system are on the same plane, but the 

origin is not the same. (u,v) represents coordinates in units of pixels, and (x,y) represents 

coordinates of physical units. Assuming that the physical size of each pixel is dx*dy, there are 

the following relationships: 

                                                                     
 

  
                                                              (2.6) 

                                                                      
 

  
                                                               (2.7) 

The form of matrix is as follows: 
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]                                              (2.8) 
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]  [𝑟 𝑟 𝑟      𝑡 ]  

                                                                    [

 𝑤

 𝑤
 𝑤

 

]  𝐾     [

  

  
  

 

]                                                  (2.9) 

In the formula,  K  represents the internal parameter matrix of the camera, 

[   ]represents the homogeneous coordinates of the object projected onto the image plane, 

[𝑟 𝑟 𝑟  ]and t are the external parameters of the camera, representing the rotation matrix and 

translation vector of the camera-centered coordinate system relative to the world coordinate 

system, respectively. The position of multiple corners can be obtained by checkerboard lattice, 

and the camera's internal and external parameters can be obtained by solving equations. 
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2.2. Distortion 

In the actual imaging process, nonlinear distortion is generally present in consideration 

of lens distortion. The distortion is mainly divided into radial distortion and tangential 

distortion. 

2.2.1 Radial distortion  

Radial distortion refers to a given image point moving inward or outward from its ideal 

position. That is, Pillow radial distortion and bucket radial distortion. As shown in Figure 2.5. It 

is mainly caused by defects in the change of radial curvature of lens surface. When light passes 

through the lens, the light that is farther away from the optical axis bends much more than the 

light near the optical axis [8].The negative radial displacement of image point is called barrel 

distortion, and the positive radial displacement is called pillow distortion. Radial distortion is the 

main reason that affects the accuracy of industrial machines. When the image is distorted, the 

image points are not in the position described by the linear model, which will lead to the 

inaccurate correspondence of the points in stereo matching and the distortion of the object after 

three-dimensional reconstruction. 

 

Fig.2.5 Pillow radial distortion (left) and Bucket radial distortion (right) 
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The distortion of the optical axis center of the imager is 0. It moves to the edge along the 

radius of the lens, and the distortion becomes more and more serious. The mathematical model 

of distortion can be described by the first several terms of Taylor series expansion around the 

main point. According to the position of a point in the radial direction, the adjustment formula is 

as follows: 

                                                              𝑘  𝑟  𝑘  𝑟                                        (2.10) 

       𝑘  𝑟  𝑘  𝑟                                        (2.11) 

Here       is the original position of the distortion point on the imager,        is the 

position after the distortion correction. 

2.2.2 Tangential distortion 

 Tangential distortion is caused by the lens itself and the camera plane or image plane is 

not parallel, this situation is mostly caused by installation deviation. As shown in Figure 2.6.  

 

Fig.2.6 Tangential distortion 
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The distortion model can be described by two additional parameters P1 and P2: 

     [           𝑟       ]                             (2.12) 

     [           𝑟       ]                             (2.13) 

Here       is the original position of the distortion point on the imager,        is the 

position after the distortion correction. 

2.3. Camera calibration 

In the process of image measurement and the application of machine vision, in order to 

determine the relationship between the three-dimensional geometric position of a point on the 

surface of a space object and its corresponding points in the image, the geometric model of 

camera imaging must be established. These geometric model parameters are camera parameters. 

These parameters must be obtained by experiment and calculation. The process of solving these 

parameters is called camera calibration. Whether in image measurement or machine vision 

applications, the calibration of camera parameters is a key link. The accuracy of the calibration 

results and the stability of the algorithm directly affect the accuracy of the results of camera work.   

2.3.1  Camera calibration method 

Camera calibration methods include traditional camera calibration method, active vision 

camera calibration method and camera self-calibration method. 

The traditional camera calibration method needs to use the calibrator with known size. By 

establishing the correspondence between the points with known coordinates on the calibrator and 

their image points, the internal and external parameters of the camera model can be obtained by 

using certain algorithms. According to the different calibration objects, they can be divided into 

three-dimensional calibration objects and plane calibration objects. Three-dimensional 
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calibration objects can be calibrated by a single image with high calibration accuracy, but it is 

difficult to process and maintain high-precision three-dimensional calibration objects. Planar 

calibrator is simpler and more accurate than three-dimensional calibrator, but two or more 

images must be used in calibration. The traditional camera calibration method always needs 

calibration objects in the calibration process, and the accuracy of calibration objects will affect 

the calibration results. At the same time, the inappropriate placement of calibrators in some 

occasions limits the application of traditional camera calibration methods. 

At present, the self-calibration algorithm mainly uses the constraints of camera motion. 

Camera motion constraints are too strong, so it is not practical in practice. The use of scene 

constraints is mainly based on some parallel or orthogonal information in the scene. The 

intersection of spatial parallel lines on the plane of camera image is called vanishing point, which 

is a very important feature in projective geometry. So many scholars have studied the camera 

self-calibration method based on vanishing point. The self-calibration method is flexible and can 

calibrate the camera online. However, because it is based on absolute quadratic curve or surface, 

its robustness is poor. 

The camera calibration method based on active vision refers to the calibration of the 

camera with certain motion information of the camera. This method does not need calibrator, but 

needs to control the camera to do some special motion. Using the particularity of this motion, the 

camera internal parameters can be calculated. The advantage of the camera calibration method 

based on active vision is that the algorithm is simple and the linear solution can be obtained, so 

the robustness is high. The disadvantage is that the cost of the system is high, the experimental 
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equipment is expensive, the experimental conditions are high, and it is not suitable for situations 

where the motion parameters are unknown or uncontrollable. 

In 1999, Zhang Zhengyou proposed a camera calibration method based on moving plane 

template. Zhang's calibration method is between the traditional calibration method and the self-

calibration method, and is based on the two-dimensional calibration board for calibration [9]. 

Fixed the camera to a certain position, the mobile camera takes multiple pictures from different 

directions, and calculates camera parameters by calibrating the corresponding relationship 

between each feature point and its plane image points. In this model, a scene view is formed by 

projecting 3D points into the image plane using a perspective transformation [10]. 

2.3.2 Zhang’s chessboard calibration method 

In this paper, Zhang's calibration method is used to analyze and study the calibration 

process and principle of the calibration method. Suppose that the world coordinate system is 

constructed on the plane Z = 0. Then the homography is calculated. Let Z = 0 convert the upper 

form to the following form: 

 

      [
 
 
 
]  [

𝑘    

 𝑘   

   

] [
𝑟  𝑟  𝑡 
𝑟  𝑟  𝑡 
𝑟  𝑟  𝑡 

] [
 𝑤

 𝑤
 

]  𝐾  [𝑟 𝑟 𝑡]  [
 𝑤

 𝑤
 

]            (2.14) 

 Here we introduce a homology matrix H with a size of 3 x 3. H is written in the form of 

column vectors   [        ] , each h being a 3 *1 vector.  The homography matrix H is 

composed of physical transformation (rotation, translation) and camera internal parameters [11]. 

  [      ]  𝐾  [𝑟 𝑟 𝑡]                                       (2.15) 
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So: 

                                                             𝑟  𝐾                                                                (2.16) 

                                                                 𝑟  𝐾                                                                (2.17) 

We know R= [r1, r2, r3], because Z = 0, so r3 = 0. R is an orthogonal matrix. That is, the 

transformation of R equals the inverse of R. Each column vector of an orthogonal matrix is 

orthogonal and unitary (modulus=1), so r1 and r2 are orthogonal to each other. Orthogonal 

means two things: the dot product of two vectors is 0, and the length of two vectors is equal. We 

use these two constraints to solve the problem. 

                                                                        𝑟 
  𝑟                                                                   (2.18) 

                                                      𝑟    𝑟                                                               (2.19) 

It can be obtained:     
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Because B is a symmetric matrix, there are only six effective elements. The general form is 

expanded as follows: 

  [                       ]
                                   (2.25) 

Thus, 
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(2.26) 

It can be obtained: 

                                                               
                                                               (2.27) 

                                                       
     

                                                          (2.28) 

There are six unknowns in the formula, so more than three images can calculate all the 

parameters. 

In the above calibration process, the distortion factor of the camera lens was not considered. 

For systems with high precision requirements, the distortion is not negligible. Therefore, the 

distortion factor should be considered, and the maximum likelihood estimation algorithm is used 

to optimize the results, so that the algorithm has better robustness [12]. 

2.3.3 MATLAB Stereo calibration 

The calibration result of MATLAB calibration toolbox is more accurate than that of 

OpenCV3.0, this paper uses MATLAB to calibrate the camera.  

The specific steps of calibration are as follows: 



18 
 

(1)  The experiment used a standard 10*7 and each small square was a black and white 

square of 16.3mm*16.3mm, as shown in Figure 2.7. The checkerboard was printed 

and attached to a hard and flat plastic calibration plate. 

 

Fig.2.7 Two-dimensional calibration board 

(2) Fix the binocular camera to the end of the robot arm, and move the robot arm so that 

the binocular camera can take pictures of the calibration plate from different positions 

at the same time. In the acquisition process, the calibration image should be placed in 

the middle of the camera field of view. 

(3) In order to improve the accuracy of the experimental results, a total of 10 pairs of 

image pairs taken at different angles were collected in this experiment. Read the 

camera image for stereo calibration. 

The calibration image is as follows: 
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Fig.2.8 Left Camera Calibration Image Set 

 

Fig.2. 9 Right Camera Calibration Image Set 

Position relationship between chessboard calibration board and two cameras in calibration: 

 

Fig.2.10 Positional relationship between the camera and the calibration plate 
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After stereo calibration, the results are as follows: 

Table 1 Calibration result of stereo camera 

Camera parameter Result 

 

Left Camera 

Focal Length [233.9621   234.1415] 

Principal Point [157.6331   116.1187] 

Distortion [-0.0346,-0.2230,0.7652,-0.0017,-0.0030] 

 

Right Camera 

Focal Length [232.3806  232.9353] 

Principal Point [164.6956   118.4452] 

Distortion [-0.0120,-0.4240,1.1344,-0.0003,0.0028] 

 

Binocular 

camera 

 

Rotation vector 

[0.9983 -0.0253  -0.0518 

0.0246  0.9996  -0.0138 

0.0521  0.0125  0.9986] 

Translation vector [-76.1284   -3.9527   -1.5264] 

 

2.4. Conclusion 

In the binocular vision system, the calibration of the binocular camera has a great 

influence on the accuracy of the final reconstruction result. Therefore, in this chapter, the basic 

theories and concepts such as the camera calibration principle, the camera calibration model, and 

the camera calibration method are studied in detail. Considering the actual needs, the Zhang 

Zhengyou board method was chosen as the camera calibration method for this experiment. The 

experimental results show that Zhang's chessboard method has higher accuracy and meets the 

experimental requirements. 
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CHAPTER III 

BINOCULAR STEREO VISION 

Vision is the main source of human access to outside information. In large-scale industrial 

production processes, the use of artificial vision often fails to meet the requirements of high 

efficiency and high-precision product quality, and the use of machine vision methods can greatly 

improve the degree of automated production [13]. Combine the manipulator with machine vision 

to enhance the ability of the arm to sense the surrounding environment. If the main computer is 

the brain of the industrial robot and the manipulator is the arm of the industrial robot, then the 

vision system is the eye of the industrial robot.  

 Binocular stereo vision technology is based on the stereoscopic imaging principle of the 

human eye. The object to be measured is taken from different angles by using two cameras of the 

same performance, and then the three-dimensional coordinates of the target are acquired by 

techniques such as camera calibration, image calibration, stereo matching，feature extraction, 

and stereo measurement. The main difficulty of the binocular stereo vision method is stereo 

matching [14]. Since the center point of the circle is used as a feature point, it can be extracted 

by image processing technology, so stereo matching can be avoided. 

3.1. Image acquisition 

Connect the USB line used by the camera with the computer interface, and Image pairs 

are acquired by OPENV programming. As shown in Figure 3.1. 
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Fig.3.1 Image Acquisition Equipment 

3.2. Stereo rectify 

There are many errors in the camera imaging process, such as noise, brightness difference, 

occlusion [15], distortion and the two cameras are not placed in parallel, which will cause errors 

in the corresponding points of the image pair. So it is necessary to stereo correct the original 

image. The correction matrix can be calculated from the camera parameters obtained in the 

previous section. Then, the correction matrix is used to obtain the corrected picture. The specific 

role of stereo correction is shown in the figure below. 

Before stereoscopic correction: 
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Fig.3.2 Original image 

After stereoscopic correction： 

 

Fig.3.3 Correction image 

3.3. Image processing  

3.3.1. Color space conversion 

The image acquired by the camera is a color image. Color images are mainly divided into 

two types: RGB and HSI.  



24 
 

The RGB color space is composed of three basic colors of red, green and blue. It can be 

superimposed into any color by combining the three basic colors in different proportions. The 

RGB color space can be represented by a spatial cube space model. The three basic colors are 

located on the unit length of the coordinate axis, and the brightness of each basic color is divided 

by the maximum value of the brightness to represent the coordinate value of the color, thereby 

establishing an RGB color space. As shown in Fig. 3.4. 

 

Fig.3.4 RGB color space 

The HSI color space is composed of hue, saturation, and intensity. The hue indicates the 

type of color, the saturation indicates the vividness of the color, and the intensity indicates the 

degree of color shading. The HSI color space can be represented by a conical space model, as 

shown in Fig. 3.5. The center of the conical bottom is taken as the coordinate origin, and the hue 

is represented 360 degrees along the ground with the origin as the center. The distance from the 

center line passing through the origin indicates saturation, and the distance from the ground 

indicates intensity. 
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Fig.3.5 HSI color space 

The pixels of each image typically correspond to a particular location in a two-dimensional 

space, and have one or more sample values associated with that point that constitute a value. In 

order to make the boundary features of the image clearer, the color image is usually converted 

into a gray image. A grayscale image, also known as a grayscale image, can be represented by an 

intensity value (intensity) from 0 (black) to 255 (white). Between 0 and 255 represents a 

different gray level. 

The process of converting a color image into a grayscale image is called grayscale processing of 

the image. Each assumed color in a color image is determined by three components R, G, and B, 

and each component has 255 values, so that a point can have a range of colors of more than 16 

million. On the other hand, in the digital image processing, the image of each format is first 

converted into a grayscale image so that the calculation amount of the subsequent image 

becomes less. The description of the grayscale image, like the color image, still reflects the 

distribution and characteristics of the overall and local chromaticity and brightness levels of the 
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entire image. For the method of graying, there are a component method, a maximum value 

method, an average value method, a weighted average method, and the like. In this paper, the 

image is grayscaled using the weighted average method. The expressions it implements are as 

follows: 

                                                        Gray=R*0.3+G*0.59+B*0.11                                             (3.1) 

Call the rgb2gray ( ) function to convert an RGB color space image to a grayscale image. 

As shown in Fig. 3.6. 

 

Fig.3.6 Gray image 

3.3.2. Image thresholding 

The acquired grayscale image is binarized. For binarization, the purpose is to classify the 

target user background to prepare for the identification of subsequent targets. The most common 

method for gray image binarization is the threshold method. He uses the difference between the 

target and the background in the image to set the image to two different levels, and selects an 
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appropriate threshold instead of a replacement for the target or the background. Thereby a 

binarized image is obtained. 

For the threshold method binarization, assuming that the threshold is set to T, the value 

can be divided into two parts with T as the boundary, The pixel with the gray value greater than 

or equal to the threshold is set as the maximum gray value, and the pixel with the gray value 

smaller than the threshold is set to the gray value of 0. 

The formula for binarization is as follows: 

                                          {
     𝑟       𝑡 𝑟   

   𝑟       𝑡 𝑟   
                                         (3.2) 

In threshold binarization, the most important thing is to choose the appropriate threshold, 

which is also the difficulty of binarization. Commonly used binarization threshold selection 

methods include bimodal method, p-parameter method, large law method (Otsu method), 

maximum entropy threshold method, iterative method and so on. This article uses the Great Law 

(Otsu method) to select the threshold. 

The graythresh (image) function input is an image and the output is a threshold. In this 

function, a suitable threshold for the picture is found using the maximum interclass variance 

method. The found threshold satisfies the low (ie, below the selected threshold) portion and the 

high (ie, above the threshold portion) class variance is greatest. 

 Then use the imbinarize (image, threshold) Function, input the found threshold, we can 

convert gray image to binary image. Fig. 3.7 is the binary images after thresholding. 
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Fig.3.7 Binary image 

3.4. Target Recognition and Location 

After image binarization, it usually contains multiple regions that need to be extracted 

separately by markers. A simple and effective way to mark areas in a segmented image is to 

check for alternating adjacent alternating connections. 

In the binary image, the pixel value of the background area is 0, and the pixel value of the 

target area is 1. The connection area mark allows each individual connection area to form one 

identification block by marking white pixels (targets) in the mark area. Thereby further  obtaining 

the contour and centroid of the target.  In this paper, the target region is extracted by an eight-

connected region algorithm. 

The ranging system only needs to calculate the distance of the target, so only one pair of 

matching points is needed. Considering the simple shape of the target, the paper uses the centroid 

of the target as the matching point. The centroid extraction is performed on the images obtained 

by the two cameras to complete the matching of the corresponding points. 
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Figure 3.8 is an extraction of the centroid of the left camera target image and the pixel 

coordinates of the centroid. Figure 3.9 is an extraction of the centroid of the right camera target 

image and the pixel coordinates of the centroid. 

 

 

Fig.3.8 Left Camera Image Target Detection 
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Fig.3.9 Right Camera Image Target Detection 

3.5. Three-dimensional reconstruction of spatial point coordinates 

3.5.1 Projection matrix method 

When the binocular cameras are not parallel, the spatial point reconstruction method based 

on least squares method is used to realize Three-dimensional positioning [16].  The basic model 

of spatial point 3D reconstruction is shown in Figure 3.10. For a point P in space, the imaging 

points in the camera Cl and the camera Cr are Pl and Pr, respectively, and the constraints of the 
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two rays of OlPl and OrPr are established between the optical point Ol and Or of the two 

cameras. Solving the intersection point P is the problem of solving the intersection of spatial 

lines. 

 

Fig.3.10 Binocular vision 3D information schematic  

The calibration of the binocular camera is introduced in the second chapter, and the 

parameter matrices M1 and M2 of the left and right cameras are obtained. In this chapter, the 

corresponding feature points Pl and Pr of the two images are obtained. The algorithm for solving 

P point three-dimensional coordinates is: 
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          is the homogeneous coordinate value of the image point P1 on the left image, 

         is the homogeneous coordinate value of the image point Pr on the right image, 

            is the homogeneous coordinate value of the spatial point P,      is the projection 

matrix of the left camera,    is the projection matrix of the right camera,     is the depth value of 

the pixel point in the corresponding depth image [17]. 

Eliminate    in the two matrices to obtain four linear equations for point P. Expressed in the 

form of a matrix: 
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(3.5) 

There are three unknowns in the four equations, and theoretically the unique value of the 

unknown can be calculated. However, linear correlation is almost impossible to occur due to the 

influence of the errors of the matching points P1 and Pr and the noise in the image. In practical 

applications, we use the least squares method to solve the three-dimensional coordinates of P. 

Rewriting as A*X=B, a last square fit solution can be calculated by: 

                                                                                                                         (3.6) 

3.5.2 Parallax method  

When the parameters in the two cameras are the same and placed horizontally, they are called 

parallel stereo vision models or standard visual models. In this paper, two cameras of the same 

model are used, and the stereo corrected image also conforms to the parallel condition. Therefore,  

the method of obtaining the 3D geometric information of the target from two images based on 
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the principle of parallax is adopted， which is simpler and more efficient [18]. As shown in the 

figure 3.11. 

 

Fig.3.11 Sketch map of parallel binocular stereo vision principle  

Binocular stereo vision is based on parallax, and the three-dimensional information is acquired 

by the trigonometric principle.that is, a triangle is formed between the image plane and the target 

point of the two cameras.The baseline distance b is distance between the  projection centers of 

the two cameras.  The projection points of the spatial point P on the left and right image planes 

are PL and PR. Since the images of the two cameras are on the same plane, the Y coordinates of 

the two projection points must be the same, ie Yl = Yr = Y. The following relationship can be 

obtained from the triangular geometric relationship: 
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Disparity d=Xl-Xr is known, and the three-dimensional coordinates of the feature point P in 

the camera coordinate system can be calculated: 

                                                                          
    

 
                                                        (3.10) 

                                                                           
   

 
                                                         (3.11)  

                                                                           
   

 
                                                        (3.12)  

Any point on the image plane of the left camera can determine the three-dimensional 

coordinates of the point as long as it can find the corresponding matching point on the image side 

of the right camera [19].  The three-dimensional coordinates of the target point obtained by 

parallax methodare shown in Table 2. 

Table 2 Target point camera coordinates 

three-dimensional coordinates(mm) 

Point 1 [6.7829   45.5581 -342.6538] 

Point 2 [-35.6734   39.7020 -342.6538] 

Point 3 [-31.2814   11.8859 -342.6538] 

Point 4 [28.2007   -8.4478 -336.1886] 

 

The relative distances of the four target points can be calculated from the three-dimensional 

coordinates of the four target points. 
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Use a ruler to get the actual length of the target. 

 

Fig.3.12 L12 Measured length 

 

Fig.3.13 L23 Measured length 
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Fig.3.14 L34 Measured length 

 

Fig.3.15 L41 Measured length  
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Table 3 compares the three-dimensional positioning distance with the measured distance.  

Table 3 3D ranging and actual distance comparison 

Distance 3D ranging length(mm) Measured length(mm) Error(mm) 

L12 42.86 42.50 0.36 

L23 28.16 28.00 0.16 

L34 62.86 63.00 0.14 

L41 58.10 58.00 0.10 

3.6. Conclusion 

In this chapter, the geometric feature centroid point of the target is used as the matching 

point, and based on the parallax method is used to calculate the three-dimensional coordinates, 

thereby achieving the target ranging. It can be seen from the analysis that the three-dimensional 

ranging and the actual ranging have certain errors but can meet the actual needs. The main 

source of error is the matching accuracy of the two images, so future research will optimize the 

matching algorithm, improve the matching accuracy, and further improve the accuracy of 3D 

positioning. 
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CHAPTER IV 

HAND-EYE CALIBRATION 

4.1. Hand-eye system model 

The camera and the end of the robot's hand constitute the hand-eye system. The hand-eye 

system is divided in to Eye-in-Hand system and Eye-to-Hand system according to the different 

positions between the camera and the robot. 

The camera of Eye-in-Hand system is installed at the end of the robot's hand (End-

Efcctor), and the robot moves together randomly in the process of working. The camera of Eye-

to-Hand system is installed in a fixed position outside the body of the robot, and the robot does 

not move together randomly during the working process of the robot.  

Eye-in-Hand system is widely used in industrial robots. As the manipulator approaches 

the target, the distance between the camera and the target decreases, and the absolute error of the 

camera measurement decreases accordingly. In Eye-in-Hand system, image-based visual control, 

position-based visual control and hybrid visual control can be used. For image-based visual 

control, the camera calibration error can be effectively overcome due to the formation of closed-

loop in image space, so the accuracy of camera calibration is not required. For position-based 

visual control, although the camera calibration error can not be effectively overcome in the 

control system, with the approaching of the target, the absolute error of the measured target 

position decreases. Even if there are some errors in the camera calibration, it can generally meet 

the application requirements. Similarly, hybrid vision control has some errors in camera 

calibration, and can generally meet the application requirements. However, in practical 
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application, the Eye-in-Hand system's vision is changing, which can not guarantee that the target 

is always in the field of view, sometimes there will be the phenomenon of losing the target.  

Eye-to-Hand system has wide application prospects in mobile robots. In this kind of 

system, when the robot reaches a certain distance from the target and the target is already in the 

scope of mechanical operation, the robot stops moving towards the target. Thereafter, according 

to the results of visual measurement, the manipulator moves to the target and operates the target. 

Generally, when the manipulator moves towards the target and operates, it will occlude the target. 

Therefore, image-based visual control and hybrid visual control are not suitable for such tasks. 

Because the camera does not move with the manipulator in the course of moving towards the 

target, the measurement result of the camera to the target will not change. Because of the 

distance between the camera and the target, when the camera calibration accuracy is not high, 

there will be a relatively large absolute error. When the error is large, the manipulator can not 

reach the target. 

In hand-eye vision system, the camera is usually installed on the end-effector of the robot 

to obtain the position information of the object in space. Then, the decision-making is made by 

the control system and the robot is ordered to perform the corresponding actions. The key link is 

to obtain the coordinate conversion relationship between the camera and the end-effector of the 

robot, that is, the hand-eye calibration. This paper chooses the mode of Eye-in-Hand is used for 

hand-eye calibration. And Zhang Zhengyou's chessboard calibration method is used for camera 

calibration. Because hand-eye calibration requires camera calibration results, it is necessary to 

ensure that the calibration board is fixed and the hand-eye group takes pictures when taking 

chessboard photos in different directions. 
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4.2. Hand-eye calibration equation 

 

Fig.4.1 Set Up of Deduction Model 

W coordinate system is a checkerboard coordinate system for calibration. R coordinate 

system is a robot base coordinate system. W coordinate system and R coordinate system are 

fixed and invariable.  

Step1: The coordinate transformation from E1 point to E2 point at the end of the 

manipulator: 

At point E1: 

                                                                                                                                   (4.1) 

                                                               𝑤                                                                   (4.2) 

 At point E2: 

                                                                                                                            (4.3) 
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                                                                𝑤                                                         (4.4) 

Here,   𝑤  and   𝑤  are relative poses of the camera coordinate system and world 

coordinates.     and      are relative poses of the end of the robot arm relative to the 

coordinates of the robot arm.  𝑤  is the space coordinate of the target point in the world 

coordinate system, and    is the space coordinate of the target point in the base coordinate 

system of the robot arm. 

Step2: The camera moves from C1 to C2. Hw1 and Hw2 are the external parameters 

obtained by camera calibration. That is, the relative pose matrix of the chessboard coordinate 

system and the camera coordinate system. 

According to：  

                                                                
                                                       (4.5) 

So: 

                                                                   
                                               (4.6) 

Where: 

                                                                           
                                              (4.7) 

Step3: The manipulator moves from E1 to E2. He1 and He2 are homogeneous 

transformation matrices of forward kinematics. 

According to： 

                                                                                                                        (4.8) 

So: 

                                                                  
                                                     (4.9) 
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Where:  

                                                                        
                                                   (4.10) 

Step4: The transformation relationship between the camera and the end of the manipulator is 

as follows: 

According to： 

                                                                                                                              (4.11) 

                                                                                                                            (4.12) 

Thus: 

                                                                                                                 (4.13) 

So: 

                                                                                                                             (4.14) 

Step5: The matrix relation is: 
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]                  (4.15) 

4.3. Hand-eye Matrix method 

4.3.1 Rodrigue vector rotation formula  

The approach is based on the geometric interpretations of the eigenvalues and 

eigenvectors of a rotational matrix. Homogeneous transforms [20] can be viewed as the relative 

position and orientation of a coordinate frame with respect to another coordinate frame. The 

homogeneous transform is usually denoted as follows: 
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  [

      

      

      

    

  

  

  

             

]                                                (4.16) 

We also denote [      ]  as n, [      ] as o, [      ]  as a, and 

[      ]  as p.  n, o, and a can be interpretated as unit vectors which indicate the x, y, and 

z directions of coordinate frame T;  p can be viewed as the origin of T. 

We will refer to the upper-left 3 x 3 submatrix of T as the rotational submatrix since it 

contains information about the orientation of the coordinate frame. A rotational submatrix can be 

expressed as a rotation around an arbitrary axis. The matrix representing a right-hand-rule 

rotation of   around an axis [𝐾 𝐾 𝐾 ]  is as follows [20]: 

      

 [

𝑘  𝑘    𝑟            𝑘  𝑘    𝑟     𝑘         𝑘  𝑘    𝑟     𝑘         

𝑘  𝑘    𝑟     𝑘         𝑘  𝑘    𝑟            𝑘  𝑘    𝑟     𝑘         

𝑘  𝑘    𝑟     𝑘         𝑘  𝑘    𝑟     𝑘         𝑘  𝑘    𝑟            

] 

(4.17) 

This matrix is Rodrigues’ vector rotation matrix. Where                   Rodrigues’ 

rotation formula is a new formula for calculating vectors in three-dimensional space after a 

vector rotates around a given angle of rotation axis. This formula uses the original vector, the 

axis of rotation and their cross product as the frame to represent the vector after rotation. 

We get the following equation easily from equation (4.17): 

       
 

 
                                           (4.18) 

We can now calculate k using   .The set of equations used depends on which of          or 

   is maximum. 

                   : 
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𝑘  
     

        𝑠   
                                            (4.26) 

𝑘  
     

        𝑠   
                                            (4.27) 

 

𝑘       𝑘  can be obtained by matrix A and matrix B. 

According to: 
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𝑘  𝑘  𝑘                                               (4.28) 

        |𝑘  𝑘 | 𝑘  𝑘                                       (4.29) 

We can get: 

                                                                                𝑘                                                   (4.30) 

According to: 

                                                                                                              (4.31) 

We can get: 

                                                   (4.32) 

Rewriting as: 

                                                 (4.33) 

Least squares fit solution can be calculated by: 

                                                                                                       (4.34) 

4.3.2 Matrix Linear Algorithms 

Shiu [21] proposed a mathematical solution to the problem of hand-eye (sensor) 

calibration, and summed it up as AX = XB, where        
   is the relative relationship 

between the camera coordinate system before and after moving, and     
      is the 

transformation relationship between the robot end-effector coordinate  system before and after 

moving, as shown in Fig.4.2. Ai is the conversion from camera to world coordinate system, 

which is determined by the external parameters of camera calibration; Bi is the conversion from 

base coordinate system of manipulator to end-effector of manipulator, which is calculated by 

forward kinematics.  
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Fig.4.2 Set Up of Modeless Calibration 

All homogeneous transformation matrices are expressed in the following forms: 

[
 𝑡
  

]                                                      (4.35) 

So we can get: 

 

                                      {
           

   𝑡  𝑡     𝑡  𝑡 
                                  (4.36) 

 

 The linear operator VEC and tensor product are used to linearize the matrix. The VEC 

operator arranges the matrix elements of     into a vector whose length is     according to 

row priority. 

                             
                            (4.37) 

The tensor product satisfies the equation                      . The product of 

matrices is transformed into the product of matrices and vectors by direct product.  

According to: 
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{
                   

      𝑡         𝑡  𝑡 
                                     (4.38) 

We can get: 

  {
            

            

    𝑡 
                 𝑡  𝑡 

                              (4.38) 

Where: 

[
              

  

              
  

]                                            (4.39) 

Since the rotation matrix     is not 0, the vector         is not 0, so there is at least one 

eigenvalue (singular value) of 0 in the left coefficient matrix.  

The coefficient matrix obtains the eigenvector v corresponding to the singular value 0 by 

singular value decomposition. The scale factor of the solution of the equation and v is a, and the 

scale factor is substituted into the equation to be solved. 

 We can get: 

                                 {
    𝑡  

               𝑡  𝑡  

    𝑡  
               𝑡  𝑡  

                                      (4.40) 

Where: 

                                 {
       𝑡  

    

       𝑡  
    

             {
         

         
                               (4.41) 

The matrix is transformed into a linear system of equations AX=B for calculation. 

                     [
    

    
]           [ 𝑡     𝑡  𝑡    ]          [𝑡  

 𝑡  
 ]            (4.42)  

Least squares fit solution can be calculated by: 

                                                                                                              (4.43) 
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The first element of the vector X is a constant scale factor a, and the next three elements are 

the components of the hand-eye translation matrix. 

According to: 

                                                                                                                           (4.44) 

We can get the hand-eye rotation matrix: 

                                                                                                                        (4.45) 

4.4. Computational experiment and analysis 

Tsai [22]
 
pointed out that in order to uniquely determine the components of the hand-eye 

matrix, at least two sets of motion with non-parallel rotation axes are needed. The camera is 

calibrated to obtain 10 sets of external parameters. Since the first 3 pictures have too much error, 

6 position transformations are calculated from the last 7 sets of external parameters. One hand-

eye matrix can be calculated for every 2 position transformations, and 15 hand-eye matrices can 

be calculated by combining the 6 position transformations in pairs. The average of the 15 hand-

eye matrices is calculated as the solution of the hand-eye matrix. The two methods are 

respectively solved and the obtained result is substituted into                 to obtain the 

residual value of the hand-eye equation. The error values are shown in Table 4. 

Table 4 Error of hand-eye matrix calculation 

 

Error Formula Matrix Linear Algorithms Rodrigues vector rotation formula 

err1           0.0016 0.0015 

err2           0.0012 0.0016 
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The linear form of the hand-eye matrix of the robot is deduced by the direct product of the 

matrix, and the linear solution is obtained by the least square method [23]. The rotational part of 

the solution is orthogonalized by the RO-drigues formula. The calulation experiment proves that 

the error introduced by the orthogonalization is permissible in most cases. 

In the previous chapter, we calculated the spatial coordinates of the target point in the 

camera coordinate system through the principle of vision. Therefore, the spatial coordinates of 

the target point in the coordinate system of the end of the robot arm can be calculated through the 

hand-eye matrix. 

                                           [

  

  
  

 

]    [

  

  
  

 

]                                             (4.46) 

[      ]
   is the spatial coordinates of the target point in the camera coordinate 

system. [      ]
   is the spatial coordinates of the target point in the coordinate system of 

the end of the robot arm. 

4.5. Conclusion 

In this chapter, the hand-eye calibration methods are studied in detail, and two aspects are 

summarized. Firstly, the general steps of Rodrigue vector rotation formula robot hand-eye 

calibration method are summarized, which makes the calibration process easier to understand. 

Secondly, an improved hand-eye calibration algorithm is presented by solving some problems 

encountered in the Rodrigue vector rotation formula method, and the principle and steps of the 

algorithm are given in detail. This improved algorithm deduces the linear equation of the hand-

eye conversion matrix of the robot by using the direct product of the matrix and the eigenvector 
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of the matrix. It does not need other mathematical tools and simplifies the calculation. Both 

methods have some error and the error is within the allowable range. 
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CHAPTER V 

DISCUSSIONS 

In this thesis, I focus on three-dimensional target localization, especially the coordinates of 

the target in the robot arm coordinate system by hand-eye calibration. 

In Chapter II, the camera imaging model is established, the camera distortion is analyzed 

and the internal and external parameters of the camera are calculated by MATLAB stereo 

correction. 

In Chapter III, the pixel coordinates of the corresponding target points of the left and right 

images are obtained by stereo matching of the camera, and the three-dimensional coordinates of 

the target are calculated based on the least squares method. 

In Chapter IV, the hand-eye matrix is calculated by two methods, and the coordinates of the 

target in the tool coordinate system are obtained, which provides data support for the next path 

planning and target capture. 
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Appendix: 

1. Hand-eye matrix by Rodrigues vector rotation formula 

  a=[]; 
  b=[]; 
  X1=[]; 
  Error1=[]; 
  Error2=[]; 
  x=zeros(4,4); 
  err1=zeros(4,4); 
  err2=zeros(4,4); 
  

t=importdata('C:\\Users\\Administrator\\Desktop\\Eye_Hand\\Eye_Hand\\HandEyeC

alibrate\\robot1.txt'); 

   
for i=4:9 
     

TI=[stereoParams.CameraParameters1.RotationMatrices(:,:,i);stereoParams.Camer

aParameters1.TranslationVectors(i,:)/1000]; 
     

TJ=[stereoParams.CameraParameters1.RotationMatrices(:,:,i+1);stereoParams.Cam

eraParameters1.TranslationVectors(i+1,:)/1000]; 
     Ti=[TI';0 0 0 1]; 
     Tj=[TJ';0 0 0 1]; 
     A=Ti*(inv(Tj)); 
     a=[a;A]; 

   
     Zi=t(i,6)*pi/180; 
     Yi=t(i,5)*pi/180; 
     Xi=t(i,4)*pi/180; 

  
     ti1=(t(i,1)/1000); 
     ti2=(t(i,2)/1000); 
     ti3=(t(i,3)/1000); 
     ti=[ti1 ti2 ti3]'; 

      
     RZi=[cos(Zi)  -sin(Zi)   0; 
      sin(Zi)   cos(Zi)    0; 
         0        0        1]; 

      
     RYi=[cos(Yi)    0     sin(Yi); 
         0      1        0; 
      -sin(Yi)   0     cos(Yi)]; 

  
     RXi=[1          0        0; 
       0       cos(Xi)   -sin(Xi); 
       0       sin(Xi)    cos(Xi)]; 

  

     Ri=RZi*RYi*RXi; 
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     Zj=t(i+1,6)*pi/180; 
     Yj=t(i+1,5)*pi/180; 
     Xj=t(i+1,4)*pi/180; 

  
     tj1=(t(i+1,1)/1000); 
     tj2=(t(i+1,2)/1000); 
     tj3=(t(i+1,3)/1000); 
     tj=[tj1 tj2 tj3]'; 

      
     RZj=[cos(Zj)  -sin(Zj)   0; 
      sin(Zj)   cos(Zj)    0; 
         0        0        1]; 

      
     RYj=[cos(Yj)    0     sin(Yj); 
         0        1        0; 
      -sin(Yj)    0     cos(Yj)]; 

   
    RXj=[1          0        0; 
       0       cos(Xj)   -sin(Xj); 
       0       sin(Xj)    cos(Xj)]; 

  
    Rj=RZj*RYj*RXj; 

  
    Hi=[Ri ti;0 0 0 1]; 
    Hj=[Rj tj;0 0 0 1]; 
    B=(inv(Hi))*(Hj); 
    b=[b;B]; 
end 

  
 for g=1:6 
     for k=g+1:6 
  A1=a(4*g-3:4*g,1:4);   
  A2=a(4*k-3:4*k,1:4);   
  B1=b(4*g-3:4*g,1:4);   
  B2=b(4*k-3:4*k,1:4);   

   
  Date = [A1 B1 A2 B2]; 
RovVecAssm = []; 
for i = 1:4 
A = Date(1:4,(1+(i-1)*4):4*i); 
DuiJiaoVector = [A(1,1),A(2,2),A(3,3)]; 
MaxDuiJiaoVector = max (DuiJiaoVector); 
CosSaita = (A(1,1)+A(2,2)+A(3,3)-1)/2; 
VersSaita = 1-CosSaita; 
if A(1,1) == MaxDuiJiaoVector 
    kx = (sign(A(3,2)-A(2,3)))*sqrt((A(1,1)-CosSaita)/VersSaita); 
    ky = (A(2,1)+A(1,2))/(2*kx*VersSaita); 
    kz = (A(1,3)+A(3,1))/(2*kx*VersSaita); 
    RovoteVector = [kx;ky;kz]; 
elseif A(2,2) == MaxDuiJiaoVector 
    ky = sign(A(1,3)-A(3,1))*sqrt((A(2,2)-CosSaita)/VersSaita); 
    kx = (A(2,1)+A(1,2))/(2*ky*VersSaita); 
    kz = (A(3,2)+A(2,3))/(2*ky*VersSaita); 



58 
 

    RovoteVector = [kx;ky;kz]; 
else  
    kz = sign(A(2,1)-A(1,2))*sqrt((A(3,3)-CosSaita)/VersSaita); 
    kx = (A(1,3)+A(3,1))/(2*kz*VersSaita); 
    ky = (A(3,2)+A(2,3))/(2*kz*VersSaita); 
    RovoteVector = [kx;ky;kz]; 
end 
    RovVecAssm = [RovVecAssm  RovoteVector]; 
end 
 

for j=1:2:3 
XRotVec = cross(RovVecAssm(:,j+1)',RovVecAssm(:,j)'); 
WAngle = atan2(abs(norm(XRotVec)),RovVecAssm(:,j+1)'*RovVecAssm(:,j)); 
XRotVec = abs(XRotVec/norm(XRotVec));¯ 

  
VersSaita = 1-cos(WAngle); 
Rot11 = (XRotVec(1)^2)*VersSaita+cos(WAngle); 
Rot21 = (XRotVec(1)*XRotVec(2))*VersSaita+sin(WAngle)*XRotVec(3); 
Rot31 = (XRotVec(1)*XRotVec(3))*VersSaita-sin(WAngle)*XRotVec(3); 

  
Rot12 = (XRotVec(1)*XRotVec(2))*VersSaita-sin(WAngle)*XRotVec(3); 
Rot22 = (XRotVec(2)^2)*VersSaita+cos(WAngle); 
Rot32 = (XRotVec(2)*XRotVec(3))*VersSaita+sin(WAngle)*XRotVec(1); 

  
Rot13 = (XRotVec(1)*XRotVec(3))*VersSaita+sin(WAngle)*XRotVec(2); 
Rot23 = (XRotVec(2)*XRotVec(3))*VersSaita-sin(WAngle)*XRotVec(1); 
Rot33 = (XRotVec(3)^2)*VersSaita+cos(WAngle); 
 

Rx=[Rot11 Rot12 Rot13; Rot21 Rot22 Rot23; Rot31 Rot32 Rot33]; 
Rx = Rx/norm(Rx); 
end 

  
RA1 = A1(1:3,1:3); 
RA2 = A2(1:3,1:3); 
PA1 = A1(1:3,4); 
PA2 = A2(1:3,4); 
PB1 = B1(1:3,4); 
PB2 = B2(1:3,4); 
I=eye(3); 
E = [RA1-I;RA2-I]; 
F = [Rx* PB1-PA1;Rx*PB2-PA2]; 
Px=(inv(E'*E))*E'*F; 
X=[Rx Px;0 0 0 1]; 

X1=[X1;X]; 
x=x+X; 
     end 
 end 
x=x/15 

   
 for j=1:6 
   for k=j+1:6 

          
    A1=a(4*j-3:4*j,1:4); 
    A2=a(4*k-3:4*k,1:4); 
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    B1=b(4*j-3:4*j,1:4); 
    B2=b(4*k-3:4*k,1:4); 

     

    error1=A1*x-x*B1; 
    error2=A2*x-x*B2; 
    Error1=[Error1;error1]; 
    Error2=[Error2;error2]; 

     

    err1=err1+error1; 
    err2=err2+error2; 

   
    end 
 end 

  

  
  er1=err1/15 
  er2=err2/15 
  er1= norm(er1) 
  er2= norm(er2) 

 

2. Hand-eye matrix by matrix linear algorithms 

  a=[]; 
  b=[]; 
  X1=[]; 
  Error1=[]; 
  Error2=[]; 
  x=zeros(4,4); 
  err1=zeros(4,4); 
  err2=zeros(4,4); 
  

t=importdata('C:\\Users\\Administrator\\Desktop\\Eye_Hand\\Eye_Hand\\HandEyeC

alibrate\\robot1.txt'); 
for i=4:9 
     

TI=[stereoParams.CameraParameters1.RotationMatrices(:,:,i);stereoParams.Camer

aParameters1.TranslationVectors(i,:)/1000]; 
     

TJ=[stereoParams.CameraParameters1.RotationMatrices(:,:,i+1);stereoParams.Cam

eraParameters1.TranslationVectors(i+1,:)/1000]; 
     Ti=[TI';0 0 0 1]; 
     Tj=[TJ';0 0 0 1]; 
     A=Ti*(inv(Tj)); 
     a=[a;A]; 

   
     Zi=t(i,6)*pi/180; 
     Yi=t(i,5)*pi/180; 
     Xi=t(i,4)*pi/180; 

  
     ti1=(t(i,1)/1000); 
     ti2=(t(i,2)/1000); 
     ti3=(t(i,3)/1000); 
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     ti=[ti1 ti2 ti3]'; 

      
  RZi=[cos(Zi)  -sin(Zi)   0; 
      sin(Zi)   cos(Zi)    0; 
         0        0        1]; 

      
  RYi=[cos(Yi)    0     sin(Yi); 
         0      1        0; 
      -sin(Yi)   0     cos(Yi)]; 

  
  RXi=[1          0        0; 
       0       cos(Xi)   -sin(Xi); 
       0       sin(Xi)    cos(Xi)]; 

  
   Ri=RZi*RYi*RXi; 

  

    
     Zj=t(i+1,6)*pi/180; 
     Yj=t(i+1,5)*pi/180; 
     Xj=t(i+1,4)*pi/180; 

  
     tj1=(t(i+1,1)/1000); 
     tj2=(t(i+1,2)/1000); 
     tj3=(t(i+1,3)/1000); 
     tj=[tj1 tj2 tj3]'; 

      
  RZj=[cos(Zj)  -sin(Zj)   0; 
      sin(Zj)   cos(Zj)    0; 
         0        0        1]; 

      
  RYj=[cos(Yj)    0     sin(Yj); 
         0        1        0; 
      -sin(Yj)    0     cos(Yj)]; 

  
  RXj=[1          0        0; 
       0       cos(Xj)   -sin(Xj); 
       0       sin(Xj)    cos(Xj)]; 

  

   Rj=RZj*RYj*RXj; 

  
   Hi=[Ri ti;0 0 0 1]; 
   Hj=[Rj tj;0 0 0 1]; 
   B=(inv(Hi))*(Hj); 
   b=[b;B]; 
end  
for j=1:6 
     for k=j+1:6 

          
  A1=a(4*j-3:4*j-1,1:3);   
  A2=a(4*k-3:4*k-1,1:3); 
  B1=b(4*j-3:4*j-1,1:3);   
  B2=b(4*k-3:4*k-1,1:3);   
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  ta1=a(4*j-3:4*j-1,4); 
  ta2=a(4*k-3:4*k-1,4); 
  tb1=b(4*j-3:4*j-1,4); 
  tb2=b(4*k-3:4*k-1,4); 

   
  C = [kron(A1,eye(3))-kron(eye(3),B1');kron(A2,eye(3))-kron(eye(3),B2')]; 
  [U,S,V] = svd(C); 
  EigVector = V(:,length(V(1,:))); 

    
  M1 = (kron(eye(3),(tb1')))*EigVector; 
  M2 = (kron(eye(3),(tb2')))*EigVector; 
  N1 = eye(3)-A1; 
  N2 = eye(3)-A2; 
  CoffMat = [M1 N1;M2 N2]; 
  ConsNum = [ta1' ta2']'; 
  Y = (inv(CoffMat'*CoffMat))*CoffMat'*ConsNum; 
  EigVector = orth(EigVector); 
  vec = Y(1)*EigVector; 
  Rx=reshape(vec,3,3)'; 
  Rx = Rx/norm(Rx); 
  Tx= [Y(2);Y(3);Y(4)]; 
  X=[Rx Tx;0 0 0 1]; 
  X1=[X1;X]; 
  x=x+X; 
     end 
 end 

  
   x=x/15 

  
 for j=1:6 
   for k=j+1:6 

          
    a1=a(4*j-3:4*j,1:4); 
    a2=a(4*k-3:4*k,1:4); 
    b1=b(4*j-3:4*j,1:4); 
    b2=b(4*k-3:4*k,1:4); 

     
    error1=a1*x-x*b1; 
    error2=a2*x-x*b2;   
    Error1=[Error1;error1]; 
    Error2=[Error2;error2]; 
    err1=err1+error1; 
    err2=err2+error2; 
    end 
 end 
  er1=err1/15 
  er2=err2/15 
  er1= norm(er1) 
  er2= norm(er2) 
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