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ABSTRACT 

In this paper, the aim of it is to create additive manufacturing fabrication for high-

strength punches. In order to deal with the high-strength parts of the vehicle, it was confirmed 

that a full-additive manufacturing punch could be fabricated by cold punch mold metal 

powder materials (mold steel or high speed tool steel) using the 3D printing technology. For 

the manufacturing method, the analysis of the DED (Directed energy deposition) will be 

performed compare with other method of additive manufacturing method. Based on the 

previous studies, it can be seen that HWS powder metal material exhibits better mechanical 

properties in many powder materials such as M4, M300 and so on. Therefore, in this article, 

we focused on the performance of HWS powder metal material. The comparative specimens 

were produced by bulk materials of bulk D2 and bulk HWS. In order to obtain the better 

mechanical properties of the powder material, there is a post process for the additive 

manufacturing specimens which used the heat treatment after fabrication by additive 

manufacturing. In the experimental section, it was designed according to experimental 

principles and test standards. The problems in the experimental process and the evaluation 

indicators of the experimental results will be presented in this study. From the results of the 

experiment, the specimens produced by the additive manufacturing fully demonstrate the 

mechanical properties of the material. A material of HWS has an excellent mechanical 

property with the comparison of the test results. The results show that HWS has better 

mechanical properties and the possibility of replacing bulk materials to fabricate punch. In 

addition to this, various semi-additive manufacturing punch shapes are simulated and 

analyzed in order to select the partial shape for reinforcement of the piercing punch. After 

analyzing the simulation results, it was found that the shape of the flat type is the most stable, 
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and it has been found that the shape of the edge having a triangular sectional shape is stable. 

The semi-additive shape selected by this simulation will be used to intensify punches which 

fabricated by using metal powder and AM technology. In the future, the more simulation 

software was used for mechanical analysis of the punch during the stamping process. 

Laminated combination of multiple materials will be tested in order to achieve more excellent 

mechanical properties. Moreover, additive manufacturing punch should test the durability and 

wear resistance. The quality of punching should also be considered as an analysis indicator 

for the punch. 

Keywords: Strengthening punch mold; Punch strength prediction; Semi-additive 

punch; Directed energy deposition (DED); Metal powder material; Mechanical properties; 

Additive manufacturing (AM) 

 

  



iv 

 

CONTENTS 

ACKNOWLEDGEMENTS ........................................................................................................ i 

ABSTRACT ............................................................................................................................... ii 

CONTENTS .............................................................................................................................. iv 

LIST OF FIGURES ................................................................................................................ vi 

LIST OF TABLES ............................................................................................................... viii 

Chapter 1 Introduction ............................................................................................................... 1 

1.1 Hot stamping ............................................................................................................... 2 

1.2 Heat treatment ............................................................................................................. 3 

1.3 Additive manufacturing ............................................................................................... 5 

1.4 Semi-additive manufacturing punch .......................................................................... 6 

1.5 Previous research ......................................................................................................... 7 

Chapter 2 Additive manufacturing method ................................................................................ 9 

2.1 DED method ................................................................................................................ 9 

2.2 Other additive manufacturing method ..................................................................... 11 

2.2.1. PBF (Powder Bed Fusion) .............................................................................. 11 

2.2.2. SLS, SLM, and other methods .................................................................... 13 

Chapter 3 Additive manufacturing powder metal materials .................................................... 14 

3.1 SEM image of HWS powder ....................................................................................... 16 

3.2 Chemical compositions of HWS powder material ................................................ 18 

3.3 Particle analysis ......................................................................................................... 18 

Chapter 4 The fabrication of the specimens ............................................................................ 21 

4.1 The equipment and parameters ............................................................................... 21 

4.2 The specimens ........................................................................................................... 23 

Chapter 5 Experiment setup and results ................................................................................... 28 



v 

 

5.1 Hardness test ............................................................................................................. 28 

5.2 Wear test .................................................................................................................... 29 

5.3 Impact test ................................................................................................................. 31 

5.4 Compression test ....................................................................................................... 32 

5.5 Density test micro-CT .............................................................................................. 32 

5.6 Summary of experimental results ............................................................................ 34 

Chapter 6 The shape prediction of the semi-additive punch .................................................... 40 

6.1 Semi-Additive shape design ........................................................................................ 40 

6.2 Semi-additive simulation and results ...................................................................... 43 

6.3 The summary of the predication of the shape ............................................................. 51 

6.4 The fabrication of the semi-additive punch ................................................................. 51 

Chapter 7 Conclusion .............................................................................................................. 56 

REFERENCE ........................................................................................................................... 58 

CONFERENCES ..................................................................................................................... 61 

JOURNAL ............................................................................................................................... 62 

LIST OF PROJECT ................................................................................................................. 63 

 

  



vi 

 

LIST OF FIGURES 

Fig. 1.1 High strength components of the vehicle ..................................................................... 1 

Fig. 1.2 Graph of the recommended tempering process for high wear resistance ..................... 4 

Fig. 1.3 Graph of the recommended tempering process for high toughness ............................. 5 

Fig. 1.4 Punch condition after punching test: (a) additive punch of M300 powder material, (b) 
comparative punch of SKD11 bulk material, (c) comparative punch of HWS bulk material ... 8 

Fig. 1.5 Sheet specimen condition after punching test with additive and comparative punch: 
(a) holes shape by additive punch, (b), (c) holes shape by comparative punch of SKD-11and 
HWS ........................................................................................................................................... 8 

Fig. 2.1 Description of the laser melted metal deposition and DED system. .......................... 11 

Fig. 2.2 The schematic diagram of the PBF (Powder Bed Fusion) ......................................... 12 

Fig. 3.1 Powder particle size criterion according to 3DP method ........................................... 16 

Fig. 3.2 The SEM image of HWS powder material ................................................................. 17 

Fig. 3.3 The SEM image of CPM15V and M4 powder material ............................................. 17 

Fig. 3.4 The circularity and the diameter ................................................................................. 19 

Fig. 3.5 The shape analysis image ........................................................................................... 20 

Fig. 3.6 The particle size analysis ............................................................................................ 20 

Fig. 4.1 DED equipment, (DMT 3D metal printers MX3, Insstek Co., Ltd.) .......................... 22 

Fig. 4.2 The conditions of DED machine ................................................................................ 22 

Fig. 4.3 (a) the standard dimensions of compression test specimens (unit: mm) (b) the 3D 
stereogram (c) after additive manufacturing (d) the compression test specimens. .................. 25 

Fig. 4.4 (a) the standard dimensions of impact test specimens (unit: mm) (b) the 3D 
stereogram (c) after additive manufacturing (d) the impact test specimens. ........................... 26 

Fig. 4.5 (a) the standard dimensions of wear test specimens (b) the 3D stereogram (c) after 
additive manufacturing (d) the wear test specimens. ............................................................... 27 

Fig. 5.1 Hardness test equipment and mounting condition of hardness test specimen 
(Hardness tester: HR-521 Rockwell hardness tester from Akashi, Japan) .............................. 29 



vii 

 

Fig. 5.2 Wear test equipment and test condition of wear test specimen .................................. 30 

Fig. 5.3 Impact test equipment and mounting condition of impact test specimen ................... 31 

Fig. 5.4 Compression testing machine: Model 5582 ............................................................... 32 

Fig. 5.5 Micro-CT Tomography: XT H 225 (Nikon, Japan) .................................................... 33 

Fig. 5.6 The histogram of the result for wear test .................................................................... 35 

Fig. 5.7 The histogram of the result for hardness test .............................................................. 36 

Fig. 5.8 The histogram of the result for impact test ................................................................. 37 

Fig. 5.9 The histogram of the result for compressive strength ................................................ 38 

Fig. 5.10 The histogram of the result for true density ............................................................. 39 

Fig. 6.1 (a) an example of a piercing punch body shape for a semi-additive, (b) a dimensional 
definition of a punch edge part shape for a semi-additive (c) variously types of semi-additive 
shapes. ...................................................................................................................................... 41 

Fig. 6.2 (a) the comparison of the breakage damage values According to the size of the hybrid 
friction condition (b) the comparison of the breakage damage values According to the kinds 
of the friction condition. .......................................................................................................... 42 

Fig. 6.3 Simulation analysis model: (a) contact boundary condition, (b) mesh element size . 44 

Fig. 6.4 Simulation results: (a) (b) Stress distribution of the semi-additive punch, (c) Stress 
distribution of the shear sheet material, (d) Shear shape of sheet material .............................. 45 

Fig. 6.5 Simulation results: (a) Stress distribution contour line of the plate shape type, (b) 
Stress distribution contour line of the equilateral triangle shape type, (c) Stress distribution 
contour line of the right triangle shape type ............................................................................ 45 

Fig. 6.6 Comparison of sheet material damage values by semi-additive shape ...................... 47 

Fig. 6.7 Example of slip and separation at the contact interface ............................................. 50 

 

  



viii 

 

LIST OF TABLES 

Table 1.1 Hot stamped TRB application in various vehicles. [2] .............................................. 3 

Table 3.1 Existing physical properties data of bulk materials ......................................... 15 

Table 3.2 Chemical compositions of HWS powder and compare items .................................. 18 

Table 4.1 Parameters for DED processing .......................................................................... 23 

Table 5.1 The results of wear test for AM HWS, bulk D2 and bulk HWS ................ 34 

Table 5.2 The results of hardness test for AM HWS, bulk D2 and bulk HWS ......... 36 

Table 5.3 The results of impact test for AM HWS, bulk D2 and bulk HWS ............ 37 

Table 5.4 The results of compression test for AM HWS, bulk D2 and bulk HWS ... 37 

Table 5.5 The results of true density for AM HWS, bulk D2 and bulk HWS ........... 38 

 

  



Chap

No

become

minimiz

introduc

increase

lightwe

automo

 

pter 1 Int

owadays, th

e stronger, w

ze the man

ced in Figu

es fuel effi

eight of the

otive produc

troduction

he vehicle 

which could

nufacturing 

ure 1.1 [1]. A

iciency, wh

e vehicle, 

ction.  

Fig. 1.1

n 

lightweight

d maintain h

cost. It is 

At the same

hich reduces

the ultra-h

1 High stren

 

t technolog

high safety w

mainly app

e time, the l

s emissions

high-strengt

ngth compon

gy requires 

with only a 

plied to the

lighter weig

s and prote

th steels p

nents of the

ultrahigh 

small amou

field of th

ght of vehic

ects the env

played a le

e vehicle 

strength pa

unt of mater

he vehicle b

cle compone

vironment. 

eading role

1 

arts that 

rials and 

body, as 

ents also 

For the 

e in the 

 



2 

1.1 Hot stamping 

The position of the technology which is important for reducing the weight of the 

vehicles would be the hot stamping molding technology. In the hot stamping molding 

technology, the strength of the materials would be twice as the material before. The effect of 

light weight would be increased by 25% through cooling channel immediately after heating 

the sheet material at a constant temperature as mentioned above. There are some advantages 

that these hot stamping techniques can ensure high safety even with a few materials and 

enjoy a chain effect such as reduction in manufacturing cost as well as improvement in fuel 

efficiency because of the reduction in weight and environmental protection by fuel saving. It 

is mainly applied to the field of the vehicle body, as introduced in Table 1.1. Many famous 

automobiles in the world are increasingly spread. Thus, despite technical demands and 

advantages of hot stamping, one of the disadvantages is that it is difficult in the post-

processing steps (piercing or trimming) of parts with increasing strength after hot stamping. 

Currently, most processing stages after hot stamping are solved using laser processing 

equipment. In the method, a large number (at least three) of expensive laser equipment are 

required for each process line. In addition, when there are pluralities of work parts for one 

part, the batch work is difficult and the productivity is lowered. In order to improve these hot-

stamping post processes, it could be solved by introducing a press process. However, there 

are some problems in introducing the press process. The biggest problem is to secure the 

strength of the mold that can cope with the shear of super high strength parts. 
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Table 1.1 Hot stamped TRB application in various vehicles. [2] 

 

But in the post-manufacturing process of an ultra-high-strength steel sheet such as a hot 

stamping part manufacturing process, mold damage has become the biggest problem. In order 

to solve this problem, the current factory uses a laser process. But the laser equipment costs 

are high and the production efficiency is low. Another solution is to use mold surface 

treatment. But the deep and strong heat treatment will cause the mold chipping [3].  

1.2 Heat treatment 

Heat treatment refers to a metal thermal processing process in which the material is in 

the solid state. It includes three steps about heating, heat preservation, and cooling to obtain 

the desired structure and properties. The surface heat treatment is a metal heat treatment 

SOP Make/Model Hot Stamped TRB Application 

2006 BMW X5 B-Pillar, 5 thicknesses: 1.2 to 2.2 mm, saved 4 kg 

2006 Dodge Caliber B-Pillar, 4 thicknesses: 1.0 to 1.9 mm 

2006 JeepPatriot & Compass B-Pillar, 4thicknesses: 1.09 to 1.95 mm 

2007 Mercedes C Rear bumper, 3 thicknesses, saved 2 kg 

2008 BMW X6 B-Pillar, 4 thicknesses: 1.2 to 2.2 mm, saved 4 kg 

2010 Volvo S60 Cantrail, saved 3 kg 

2011 Audi A6 Cowl beam, 4thicknesses:1.0to1.75 mm 

2011 Ford Focus B-Pillar, 8 thicknesses:1.35 to 2.7mm, saved 1.4 kg

2012 Audi A3 Heel piece, 7 thicknesses: 0.95 to 1.7 mm 

2012 BMW 3 B-Pillar, 3 thicknesses: 2.4 to 2.9 mm, saved 1.3 kg

2012 VW Golf B-Pillar, 3 thicknesses: saved 4 kg 
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shapes, preheating and cryogenic treatment were successfully put back into application [11]. 

Park et al. studied the effect of heat treatment on the tool steel materials of H13 and D2 by 

DED (Direct Energy Deposition) method from comparison with the deposited tool steel 

before and after heat treatment through the test of hardness and microstructure [12]. Also, in 

the area of AM (Additive Manufacturing), new applications and emerging markets have also 

emerged as new processes, new technologies, new materials, and increasingly complex and 

powerful systems emerge including construction, aerospace, medical and automotive 

industries [13]. The researchers' results demonstrate the possibility of using additive 

manufacturing to increase the strength of the punch. This also serves as a reference and a 

starting point for our research. 

1.4 Semi-additive manufacturing punch 

Currently, punches made by using powder metal and 3D printing technology are very 

weak in productivity and price competitiveness. This article defines the partially additive 

manufacturing punch which is called semi-additive manufacturing punch. Because the full 

additive manufacturing punch is very expensive, it is reflected in the price of the material and 

the price of the equipment. So, the way to manufacturing semi-additive punch is an important 

solution to save materials and reduce costs. Semi-additive punches are based on bulk punches 

for post-processing. However, the shape of the partial additive manufacturing parts has 

become the biggest problem. So, analyzing the shape of the additive manufacturing section 

has become a basic requirement. Moreover, semi-additive punch can regenerate low strength 

punches and damaged punches. So in this paper, we predict the force range of the punch and 

design a variety of semi-additive punch shape solutions. After using DEFORM simulation, 

the excellent shape will be selected to manufacture the semi-additive punch. 
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1.5 Previous research 

In previous research of our research, in order to deal with the high-strength parts of the 

vehicle, it was confirmed that a full-additive manufacturing punch could be fabricated by 

high strength mold steel powder material using the 3D printing technique [14]. And, the 

prediction of punch shape range was proposed for improving punch strength by partial semi-

additive method using metal 3D printing technique [15]. In previous research and analysis, 

three kinds of metal powder of H13 M300 and KP4 with excellent additive composition were 

selected from metal powder materials. The additive manufacturing specimens and punches 

were produced by PBF (Powder Bed Fusion) method. Then, the specimens of the additive 

manufacturing were performed in hardness test, the density test and Charpy impact test. Also, 

the durability of the full-additive punch fabricated would be tested in the piercing press 

process for high strength sheet material after post treatment. M300 was finally selected as the 

metal powder material for manufacturing the punch with the analysis of SEM, EDS and 

mechanical properties. The full-additive manufacturing punches were fabricated by M300 

powder material and PBF 3D printing method. In the 10,000 stamping process, the additive-

manufactured M300 punch showed the same performance as the SKD-11 and HWS. But the 

damage was seen on the edge of the M300 punch as shown in Figure 1.4. There are different 

degrees of glitches appearing on sheet material as shown in Figure 1.5. From the results, the 

additive manufacturing punch didn’t reach a practical standard. So, the use of other types of 

additive manufacturing method and metal materials is proposed [16]. 
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Chapter 2 Additive manufacturing method 

2.1 DED method 

Directed Energy Deposition (DED) is a 3D printing technology used to create 3D 

models from metals and alloys [17]. DED is a very important additive manufacturing method 

for metallic materials. It uses metal powder or metal wire as the raw material, and directly 

melts the metal on the substrate to form a stacking layer under the action of a high-energy 

heat source, thereby completing the rapid prototyping of parts. At present, the metal direct 

deposition manufacturing process can be divided into Laser Engineered Net Shaping (LENS), 

electron beam fuse deposition manufacturing (EBF) and Wire Arc additive manufacturing 

(WAAM). The advantage of it is possible to make excellent quality products by perfect fusion 

between materials. AM products have a dense structure, which is suitable for making tools 

such as molds. But the disadvantage of it is the high cost and low efficiency. It should take a 

long time, and the surface to be printed is coarse [18]. 

The process of DED is similar to the process of material extrusion. However, in the 

DED printing method, nozzles for supplying material particles or wires are mounted on the 

multi-axis arm. Thus, the feed is not limited to a particular axis compared to material 

extrusion. The model is built on the surface from bottom to top. The nozzle for supplying the 

wire or powder may project the supply from any angle onto the target surface because the 

multi-axis arm allows movement in four or five axes. The laser beam or laser is directed 

towards the metal powder immediately. It is deposited on the target surface. The shape of the 

model is controlled by controlling the feed rate and the angle at which the wire or powder 

deposits on the structure surface. The material is initially deposited on the substrate. As the 

deposit cools, a new layer of deposition is deposited on the upper layer, which accumulates 
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parts one layer by layer.  

DED equipment is developed from DMT (Direct Metal Tooling) MX3 metal printing 

equipment developed by Insstek (Korea) Co., Ltd. The schematic is shown in Figure 2.1. The 

equipment is built up by a laser heat source, numerical control system, five axis NC machine 

tool, powder feeding system and corresponding software system. For this equipment, it uses a 

TRUMP TLF 4000 with a maximum output of 2kW, the beam diameter of 0.8 to 1.0mm and 

a laser of 4kW CO2. Numerical control system includes industrial operation computer, tilting 

and rotating device. The five axis NC machine tool includes X, Y, Z, tilt and rotation. A 

powder feeding system is consisted of three hoppers and a coaxial powder nozzle. Software 

system is MX-CAM software.  

The track moves back and forth in a fixed direction. The beam spot diameter was 1.0mm 

with a top-hat intensity distribution. Overlapping tracks have a pitch of 0.5mm. Argon is used 

as a shielding gas. The machining head with concentric powder is integrated with the optical 

system to supply powder coaxially with the laser beam to the substrate surface which is 9 mm 

away from the nozzle tip.  
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2.2.2. SLS, SLM, and other methods 

Selective laser sintering (SLS) is an additive manufacturing (AM) technique that uses a 

laser as the power source to sinter powdered material (typically nylon/polyamide), aiming the 

laser automatically at points in space defined by a 3D model, binding the material together to 

create a solid structure. It is similar to direct metal laser sintering (DMLS); the two are 

instantiating of the same concept but differ in technical details. Selective laser melting (SLM) 

uses a comparable concept, but in SLM the material is fully melted rather than sintered, 

allowing different properties (crystal structure, porosity, and so on). SLS (as well as the other 

mentioned AM techniques) is a relatively new technology that so far has mainly been used 

for rapid prototyping and for low-volume production of component parts. Production roles 

are expanding as the commercialization of AM technology improves. 

Selective laser melting (SLM) or direct metal laser sintering (DMLS) is a particularly 

rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use a 

high power-density laser to melt and fuse metallic powders together. In many SLM is 

considered to be a subcategory of Selective Laser Sintering (SLS). The SLM process has the 

ability to fully melt the metal material into a solid 3D-dimensional part unlike SLS. 

Also, there are some other 3D print methods like EBF (Electron-beam freeform 

fabrication), EBM (Electron-beam additive manufacturing) and SHS (Selective heat sintering) 

which used in different conditions of the materials. 

In the field of manufacturing, many different kinds of 3D printing technologies have 

emerged. Different technologies have their own advantages and disadvantages. In this paper, 

the main method is DED technology and the PBF method will be the reference and 

comparison [20].   
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Chapter 3 Additive manufacturing powder metal materials 

Metal powder refers to a group of metal particles having a size of less than 1 mm. Single 

metal powders, alloy powders, and certain refractory compound powders with metallic 

properties are the main raw materials for powder metallurgy. Metal powders are loose 

materials.  The properties of metal powders are generally classified into chemical properties, 

physical properties, and process properties. Chemical properties refer to metal content and 

impurity content. The physical properties include the average particle size and particle size 

distribution of the powder, true density of the powder, the shape of the particles, and the 

microstructure. Process performance is a comprehensive property which mainly embodied in 

specimens after additive manufacturing.  

For material selection, the mechanical properties of the bulk material are the basic 

criteria initially selected. However, the choice of materials depends on the certain purpose. 

For example, if the material to be printed has high strength, high-strength bulk materials will 

be of particular concern during the initial selection process. Similarly, the goal is to have a 

material with high strength and high wear resistance in this study. At the beginning, there are 

many bulk materials that meet the goals such as SKD-11 HWS SKD-51 and so on as shown 

in Table 3.1. The reason for choosing these types is that they have high hardness, high 

toughness, and high wear resistance. In the PBF method, the material metal is used as high-

strength mold steel powder materials. But in the DED method, the high wear resistance steel 

is used such as HWS. 
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Table 3.1 Existing physical properties data of bulk materials 

Items 
SKD11 

(D2) 
HWS 

SKH51 
(M2) 

K340 
VANDA

DIS 
SKD61 
(H-13) 

HTCS-
130 

Density [kg/m3] 7670   7680  4230 8060 
Young 

Modulus[GPa] 
207  190-210 206.1 225-234  210 

Achievable 
hardness [HRc] 

60-62 60-64 62 
57-59 
/60-62 

62 314Hv 
44 

(50-65) 

Charpy resilience 
[J] 

25(77) 110 67  17.5 33  

Wear resistance 100 700      
Yield tensile 

strength [MPa] 
  350-550 2173  215 1225 

Ultimate tensile 
strength [MPa] 

2181 2715 650-880 2550  493  

Strain [%] 1.62 2.24  2.81    

Poisson’s ratio 
0.27-
0.3 

 0.27-0.3    0.3 

Compression 
strength [MPa] 

3472 4306  
2480/267

0 
   

Fracture toughness 
[MPa.m1/2] 

   17.2    

Strain under 
compression [%] 

8.5 12.46      

Bending strength 
[MPa] 

2951 4382      

Bending strength 
transversal [MPa] 

1526 4315      

Isotropy of 
bending strength 

[%] 
52% 98%      

Specific heat 
capacity [J/(g.K)] 

   0.49   0.47 

Thermal 
conductivity 
[W/(m.K)] 

   17.8   58 

Thermal expansion 
coefficient(100℃) 

[10-6m/(m.K)] 
10.4   11.0   12.2 

 

From the materials of the physical properties data, the HWS shows a better overall 

performance. The hardness of it is 60.64 and the Charpy resilience is 110J. Best of all, it 

shows a high wear resistance. So, the powder material of HWS is selected as the preliminary 

analysis.  
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3.2 Chemical compositions of HWS powder material  

Table 3.2 Chemical compositions of HWS powder and compare items 

Materials 
used 

Element (wt %) 

C Si Mn P S Ni Cr Mo Cu V W 

HWS 
powder 

1.08 1.38 0.34 - - - 7.80 1.86 - 2.66 1.73

SKD11 OR 
D2 

(substrate) 

1.56 0.24 0.25 0.025 0.001 0.175 11.31 0.83 0.14 0.25 - 

AISI M4 
powder 

1.33 0.33 0.26 0.03 0.03 0.3 4.25 4.88 0.25 4.12 5.88

CPM15V 
powder 

3.55 0.91 0.40 0.023 0.017 0.17 5.24 1.26 0.11 14.84 0.09

The HWS powder contains alloying elements such as chromium (Cr), molybdenum 

(Mo), tungsten (W), vanadium (V), manganese (Mn), silicon (Si). It is a high carbon alloy 

tool steel as shown in Table 3.2. 

3.3 Particle analysis 

An imaging particle size distribution test was developed by the image particle analysis 

system and multi-functional particle analysis system such as particle type appearance analysis. 

It is a product that combines traditional microscopic measurement methods with modern 

image processing techniques. Its basic workflow is to capture the image of the microscope 

through a dedicated digital camera. The particle image is transmitted to the computer with 

USB data transfer. Processing and analysis of images through specialized particle image 

analysis software. The analysis results are output through the monitor. The system has 

features such as intuitiveness, image, accuracy, wide test range, automatic identification, 

automatic statistics, and automatic calibration. Not only it can be used to observe the particle 

morphology, but also can obtain the particle size distribution, the average aspect ratio, and the 
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Chapter 4 The fabrication of the specimens 

4.1 The equipment and parameters  

DED equipment is developing from DMT (Direct Metal Tooling) MX3 metal printing 

equipment developed by Insstek (Korea) Co., Ltd. The schematic is shown in Figure 4.1 and 

Figure 4.2. The equipment is built up by a laser heat source, numerical control system, five 

axis NC machine tool, powder feeding system and corresponding software system. For this 

equipment, it uses a TRUMP TLF 4000 with a maximum output of 2 kW, the beam diameter 

of 0.8 to 1.0 mm and a laser of 4 kW CO2. Numerical control system includes industrial 

operation computer, tilting and rotating device. The five axis NC machine tool includes X, Y, 

Z, tilt and rotation. A powder feeding system is consisted of three hoppers and a coaxial 

powder nozzle. Software system is MX-CAM software.  

The track moves back and forth in a fixed direction. The beam spot diameter was 1.0 

mm with a top-hat intensity distribution. Overlapping tracks have a pitch of 0.5mm. Argon is 

used as a shielding gas. The machining head with concentric powder is integrated with the 

optical system to supply powder coaxially with the laser beam to the substrate surface which 

is 9 mm away from the nozzle tip. 

The powder feed gas supplies powder for the formation of molten pool on the substrate 

surface, while the coaxial gas prevents oxidation of the molten pool by injecting the protect 

gas around the laser beam. In order to prevent substrate oxidation due to heat from the laser, 

metal powder is continuously injected into the pool which is melted with inert argon (Ar). 

The metal powder supplied in real time through the coaxial powder feeder to melt state and 

rapidly solidified to form a metal layer having a dense structure. 
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Table 4.1 Parameters for DED processing 

Laser power (W) 800 
Slicing layer height (mm) 0.25 

Overlap spacing(mm) 0.5 
Powder feeding rate (g/mm) 5 

Substrate traverse speed (mm/min) 850 
Powder gas (ℓ/min) 2.5 
Coaxial gas (ℓ/min) 8.0 

Particularly, in this study, the most important factor in the semi-additive manufacturing 

part (partial layer) of the heterogeneous material using the DED method is the completed 

bonding between the substrate material and the AM material. It is important to find a key 

point that can be satisfied according to the applied material. The process of optimizing the 

process conditions between heterogeneous materials requires a lot of trial and error. In this 

study, the AM process conditions between the substrate material D2 and the HWS powder 

material are shown in Table 4.1. 

4.2 The specimens  

The use of DED technology for additive manufacturing requires post-processing of the 

specimen after printing. This is due to the fact that the surface quality after additive 

manufacturing is very rough, and that the additive manufacturing portion is printed on the 

substrate. The portion to which the HWS powder material is added is one layer. If full 

additive manufacturing specimens are required, a certain thickness must be printed on the 

substrate and then cut. However, in order to ensure the purity of full additive part, it is 

necessary to pay attention to leaving enough margins. In this study, the compression test 

specimens are fabricated by full-additive manufacturing. But the impact test specimens and 

wear test specimens are manufactured by semi-additive manufacturing. Compared to the PBF 

method, partial additive manufacturing is difficult to achieve. So, the semi-additive 

manufacturing specimens and punches will not be fabricated. 
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Chapter 5 Experiment setup and results 

5.1 Hardness test 

Hardness test was performed using HR-521 Rockwell hardness equipment from Akashi, 

Japan, shown in Figure 5.1. The hardness area was measured in the vertical direction, and a 

load of 150 kg was applied to each indentation for 15 seconds according to ASTM Standard 

Test Method E384 [24].  

In Rockwell hardness test, the test force (initial test force F0 and total test force F0+F1) 

is applied to the surface of the test material twice in succession with a standard indenter, and 

the indenter is pressed into the surface of the sample under the test force. After the total test 

force is maintained for a certain period of time, the main test force F1 is removed. The 

indentation depth is measured with the initial test force F0 retained. The hardness is 

characterized by the difference between the indentation depth under the total test force and 

the indentation depth under the initial test force (residual indentation depth). The hardness 

value was obtained by calculating the area of the indentations made on the specimen using a 

penetrator. For different test pieces, we select more than three points on the same surface for 

measurement. Wear test specimens have one surface fabricated by AM HWS powder material.  

The number of selected surfaces for impact tests is relatively large, especially for the surfaces 

on both sides of U-shaped ports. Compression test specimens are not suitable for measuring 

hardness. Because the hardness test is after the original test, the compression test will destroy 

the quality of the surface.  
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5.6 Summary of experimental results 

Through the wear test, the wear resistance of the material can be evaluated. Second, 

using the wear test results, the wear coefficient of each material could be calculated. So we 

can develop the appropriate heat treatment specifications to improve the mechanical 

properties of the material. The materials have more useful value, and can prolong the service 

life of the products and save the cost. Due to the narrow bandwidth of the wear portion, it is 

difficult to determine the amount of wear using the bandwidth. So in the results, only the 

amount of quality reduction is used to express. From the wear conditions of the surfaces, the 

trace of AM HWS after heat treatment is obviously light than the AM HWS before heat 

treatment. It means the wear resistance of the AM HWS becomes better after heat treatment. 

The results of the AM HWS after heat treatment is close to bulk HWS as shown in Table 5.1. 

But the AM HWS before shows the poor wear resistance. The wear resistance of AM HWS 

after heat treatment shows a better property. The results of the AM HWS after heat treatment 

is close to bulk HWS as shown in Figure 5.6. Under a unified standardized test method, the 

friction and wear performance indexes of various materials are measured.  

Table 5.1 The results of wear test for AM HWS, bulk D2 and bulk HWS 

Materials 
Weight loss (mg) 

Before heated After heated 
AM HWS 2.4 0.9 
Bulk D2 - 3.75 

Bulk HWS - 0.54 
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Fig. 5.6 The histogram of the result for wear test 

In the results, only the HWS hardness value is relatively low, and the remaining results 

do not reflect a large difference as shown in Figure 5.7. Moreover, the hardness of HWS after 

heat treatment is 60.59HRc similar to the bulk HWS as shown in Table 5.2. Relatively 

speaking, the same kind of material is different according to the surface treatment and the 

hardness is proportional to the wear resistance. But not all high hardness materials will have 

good wear resistance. On the contrary, if it simply pursues the surface hardness, the hard 

materials will reduce the wear resistance of the friction surface. Additive manufacturing 

hardness values have been achieved the high hardness status like bulk materials and it shows 

a better wear resistance.  
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Table 5.2 The results of hardness test for AM HWS, bulk D2 and bulk HWS 

Materials 
Hardness (HRc) 

Before heated After heated 
AM HWS 55.77 60.59 
Bulk D2 - 61.0 

Bulk HWS - 62.0 

 

Fig. 5.7 The histogram of the result for hardness test 

The purpose of the Charpy impact test is to test the notch sensitivity (toughness) of 

metallic materials. Toughness represents the ability of a material to absorb energy during 

plastic deformation and fracture. The better the toughness, the less likely it is to have a brittle 

fracture. In the results, the impact energy of the HWS powder AM specimens before and after 

the heat treatment was 5.0J and 5.64J as shown in Table 5.3. It was found that the target value 

is 22.5J, which is higher than the test value as shown in Figure 5.8. But it is 3.8 times better 

than D2, which is the comparative sample of this study. Because of the close to the bulk 

materials, it is necessary to tune the target value or the evaluation method 
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Table 5.3 The results of impact test for AM HWS, bulk D2 and bulk HWS 

Materials 
Absorbded Impact energy (J) 

Before heated After heated 
AM HWS 5.00 5.64 
Bulk D2 - 1.425 

Bulk HWS - 5.7 

 

Fig. 5.8 The histogram of the result for impact test 

The compression strength is one of the most important indexes for detecting punches. As 

shown in Table 5.4, the compression strength of AM HWS after heat treatment is 5044MPa 

which is higher than the other two value. The compression strength value becomes smaller 

with the heat treatment as shown in Figure 5.9. Compared to bulk materials, AM specimens 

show a good compression resistance obviously. 

Table 5.4 The results of compression test for AM HWS, bulk D2 and bulk HWS 

Materials 
Compressive strength (MPa) 

Before heated After heated 
AM HWS 5,513 5,044 
Bulk D2 3,472 

Bulk HWS 4,306 
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Fig. 5.9 The histogram of the result for compressive strength 

The X-ray tomography results of the HWS powder AM HWS before heat treatment 

specimens showed a porosity of 0.01% and a true density of 99.99% as shown in Table 5.5.  

The X-ray tomography results of the HWS powder AM HWS after heat treatment specimens 

showed a porosity of 0.0% and a true density of 100.0% as shown in Figure 5.10. The 

hardness, toughness and true density of AM HWS specimens were improved by heat 

treatment. It has reached a considerable level with bulk materials. 

Table 5.5 The results of true density for AM HWS, bulk D2 and bulk HWS 

Materials 
True density (%) 

Before heated After heated 
AM HWS 99.99 100 
Bulk D2 0 100 

Bulk HWS 0 100 
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Fig. 5.10 The histogram of the result for true density 
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Chapter 6 The shape prediction of the semi-additive punch 

We proposed a manufacturing method of semi-additive punching mold by using high 

strength powder material and 3DP technology to increase the strength of the part where 

strength is required. In order to select the shape range for the semi-additive punching mold 

which required for high-strength sheet material, the analytical simulation based on process 

analysis parameters is used to predict.  

From the previously research, the average maximum stress acting on the punch in the 

piercing process of the high strength sheet material (CP1180) was 2,256MPa. The depth of 

the punch shape in which the stress is concentrated in the piercing process of the high 

strength sheet material (CP1180) is 1.21 mm. The height of the punch shape in which the 

stress is concentrated in the piercing process of the high strength sheet material (CP1180) is 

2.625 mm. It was confirmed that the range (depth / height) of the semi-additive shape 

predicted in this study is within the range of 2 to 3 mm, which is a possible for the additive 

manufacturing of the high-strength metal mold powder material by 3D printing [15]. On this 

basis, we further analyzed the shape of the semi-additive punch. 

6.1 Semi-Additive shape design 

A simulation was performed to predict the punch strength required for the piercing 

process of the high strength sheet material CP1180 (1200MPa). From the simulation results, 

we predicted that the shape ranges for the depth (Ld) and height (Lh) of the punch shape 

affecting the punch strength due to shearing action are 1.21mm and 2.625mm. From the 

predicted punch shape range, several of shape types for the semi-additive were defined as 

showed in Figure 6.1.  
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So there is no explanation of this part. However, under the hybrid friction condition as shown 

in Figure 6.2 (a), the size of the damage value is small compared to other friction conditions. 

But it can be seen that tendency is significant according to the adjustment of the friction 

coefficient. It should be noted that the magnitude of the coefficient of friction presented here 

is conceptually different from the coefficient of friction applied as a condition for general 

molding operations. It is an exceptional value determined by software as a trial and error 

method for analysis. The fracture damage value according to the type of friction condition is 

shown in Figure 6.2 (b). It shows a similar tendency in other conditions except the tau 

condition. A friction coefficient at 1 and 5 shows significantly different trends under mixed 

friction conditions. The hybrid friction condition means that the boundary condition can be 

controlled at the joint surface according to the user's definition. Therefore, friction coefficient 

(shear and coulomb) of the hybrid type was selected as 5.0 for the friction condition of the 

process analysis to optimize the semi-additive shape for reinforcing the piercing punch 

function. Analytical studies and selected interfacial friction conditions were used as boundary 

conditions for the interface analysis of semi-additive shapes designed into various shapes. 

6.2 Semi-additive simulation and results 

The simulation of the selection of the shape of the half-plate is performed by studying 

the analysis conditions and software characteristics of the stamping process for the boundary 

friction conditions of the heterogeneous material interface. The simulation model is shown in 

Figure 6.3.  
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In the simulation analysis of this semi-additive shape selection, the stability at the joint 

interface was indirectly judged by comparing the damage value which acts on the sheet 

material according to the designed shape analysis. The range of stress distribution, the slip 

and peel state at the interface, the size of the stacking range, and the difficulty of additive 

were defined as criteria for the selection of shapes. Figure 6.6 shows the results of the 

analysis. Figure 6.7 shows examples of slip and separation at the interface. As shown in 

Figure 6.6, it can be seen that change of the damage value shows a relatively smooth curve 

tendency as compared with other shapes. However, the change of the damage value is greatly 

observed in other shapes. It seems that the influence of the slip and the bending moment 

depend on the shape and size of the joint interface which affects instantaneous damage value. 

The sudden increase of the damage value in a small stroke seems to be a temporary increase 

in the damage value at the corner contact portion due to the separation and bending moment. 

It is considered that the small value of the damage value at the large stroke is the influence of 

slip. 
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It is found to be both vulnerable to flake and slip. Therefore, it is more stable to have an 

isosceles triangle section than an acute angle triangle section. Also, it is shown that the 

interface composed of pure lines is more stable. Figure 6.7 (e) and (f) show the case of the 

ring type which has a rectangular cross section with a vertical interface. As the interface 

moves away from the punch blade, the phenomenon of separation becomes large and No 

sliding occurs. And there is a phenomenon that a step is generated. Therefore, in the case of 

the ring-shaped Additive shape, it considered to be advantageous to reduce the separation, if 

possible, to Additive as thin as possible in the depth direction of the punch body. 

The most stable shape of the semi-additive shape was a simple plate type. There is no 

slip or separation phenomenon occurred at the additive interface. The sheer force of the 

punch is stably transmitted to the material so that the stress distribution is in the shape of the 

punch of the same material, and the same tendency is observed. It was confirmed that the 

corner edge of the punch was partially or vertically machined to cause warping due to 

separation, slip phenomenon and the additive shape at the interface. Particularly, it was found 

that the separation occurred more in the shape having the interface near the vertical, and the 

slope was more influenced by the slant angle closer to an acute angle. Therefore, in the case 

of a ring type of additive shape, it is considered to be advantageous to reduce the separation 

as thin as possible in the depth direction of the stamped body. 

In this study, there is a design of a partial semi-additive shape for reinforcing punching 

strength which is aimed at minimizing the stacking capacity and minimized the stacking time 

for high-priced high-strength powder. However, because of the limited range, the purpose of 

overcoming the limit of the shape range is to be larger in the case of additive manufacturing 

high-strength metal steel. On the other hand, the range of strengthening the mold is small 

when the range of additive is not large like the piercing punch. It may be disadvantageous in 
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terms of cost rather than the advantage of strengthening the gold by processing the punch 

blade part into a complicated shape. It is advantageous to select a simple shape that can 

reduce the punch body machining and facilitate the stacking as much as possible in the case 

of this semi-additive shape selection study. For this purpose, it is necessary to excavate high-

strength powder which can be desired range without any restrictions on the range. 

As shown in this research, the results obtained from the analysis of the various semi-

additive shapes presented to absorb the impact force acting on the punches. It was analyzed to 

be susceptible to impacts as the shape was complicated. The results of the analysis show that 

the stress is maximized at the beginning of shearing. The stress concentration is at the punch 

edge and the side of the punch. Therefore, in the semi-additive for punch reinforcement will 

be a means to increase the life of the punch. The area of additive as thin as possible would be 

a means of increasing life. 

Through this study, the selected semi-additive shape will be used in fabricating partially 

semi-additive punch using 3D printing of AM DED technology. And it will be validated 

through durability test in hot stamping process of high strength automobile parts production 

line. 



 

Figg. 6.7 Exammple of slip aand separatiion at the coontact interfface 
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6.3 The summary of the predication of the shape 

In the selection of the semi-additive shape, the shape of the flat type was found to be the 

most stable to the next the shape of the edge having the triangular sectional shape was found 

to be stable. The boundary with pure line is more stable than the case with 45 degree 

boundary and the case with curve. In the shape of a rectangular cross section having a vertical 

interface in this semi-additive shape selection, as the interface moves away from the punch 

edge, separation phenomenon may occur. Therefore it is advantageous if it is possible to 

additive thinly in the depth direction of the punch body. In the selection of the semi-additive 

shape, the more complex the shape, the more susceptible to impact, and the larger the 

additive area, the more slip or separation easily occurs.  

 

6.4 The fabrication of the semi-additive punch 

Based on the previous experiments and analysis, the process of semi-additive 

manufacturing punch was finally determined as shown in the flow chart. 

 

  



- Sem

- An

- Re

The

 

 

mi-Additive

nalysis softw

sult 

e shape of 

e shape de

ware: DEF

the flat ty

STEP 1

sign 

OR 

  

ype was fou

 

 

: Shape pr

  

und to be 

rediction

        

the most s

 

 

   

stable. 

52 

 

 



 

- Ch

 

- SE

- On

- Th

 to s

 

hemical com

Powder 

HWS 1

EM of HW

n average 8

e shape an

spherical. 

mpositions o

C Si 

1.08 1.38 

S 

80-160μm p

nalysis of 5

STE

of HWS pow

Mn P

0.34 -

powder is 

5000 sampl

 

EP 2: Mate

wder 

S N

- -

the mostly

les of HW

erial 

Ni Cr 

- 7.80

y distributed

WS showed 

Mo Cu 

1.86 - 

 

d 

that the po

V W

2.66 1.7

owder was

53 

W 

3 

 close 



 

- Dire

- DED

equ

- Para

 

 

 

 

 

 

 

ected Energ

D equipmen

ipment dev

ameters for

Su

STEP

gy Depositio

nt is develo

eloped by I

r DED proce

Laser
Slicing la

Overlap
Powder fee

ubstrate trav
Powde
Coaxia

 3: Additi

on (DED)

ping from D

nsstek (Kor

essing 

r power (W
ayer height (
p spacing(m
eding rate (g
erse speed (
er gas (ℓ/mi
al gas (ℓ/mi

 

ive manufa

DMT (Direc

rea) Co., Lt

W) 
(mm) 

mm) 
g/mm) 
(mm/min)
in) 
in) 

facturing m

ct Metal Too

d. 

method 

oling) MX3

800
0.25
0.5 
5 

850
2.5 
8.0 

3 metal prin

0 
5 
 

0 
 
 

54 

 

nting  



 

- Sem

 

 

mi-additive

P

STEP 4

 manufactu

AM part m

Punch body

AM me

Semi-additi

4: Fabricat

uring punch

material 

y material 

ethod 

ive shape 

 

tion of Sem

h 

mi-additivve punch 

HWS 

bulk D2 

DED 

flat type 

55 

 



56 

Chapter 7 Conclusion 

In this paper, there was a comparison and analysis of the additive manufacturing 

technology which included DED, PBF and other additive manufacturing methods. The result 

showed that DED technology is more suitable for partial additive manufacturing. HWS 

additive manufacturing powder metal materials showed good properties after particle analysis. 

Then the additive manufacturing specimens fabricated by DED method and HWS powder 

material. The experiment was been setup including hardness test, Charpy impact test, 

compression test, wear test and true density test. The test specimens were designed according 

to the test standards, and the analysis of the test procedures and results were also strictly in 

accordance with the standard. For the test results, the mechanical properties of additive 

manufacturing specimens are already close to bulk materials.  

Then, the shape prediction of the semi-additive punch was performed. The range (depth 

/ height) of the semi-additive shape predicted in this study is within the range of 2 to 3 mm. 

According this range, various shapes were designed to get the optimal solution. In the 

selection of the semi-additive shape, the shape of the flat type was found to be the most stable, 

and the shape of the edge having the triangular sectional shape was found to be stable. Finally, 

two semi-additive punches were fabricated successfully. 

In this project, the first reward is familiar with the background technology of 3D 

printing technique for the additive manufacturing especially in the knowledge of DED 

(Directed energy deposition) technology and PBF (Powder Bed Fusion). Secondly, there is 

also a profound study of the current state of powder materials like the mold steel and high 

speed tool steel. The analysis of additive manufacturing powder metal materials include the 

average particle size and particle size distribution of the powder, true density of the powder, 

the shape of the particles, and the microstructure. Then, in the experimental part, the test 
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standard is the basis. The solution to the problem and the analysis of the results during the 

test is an indispensable part. Finally, the application of software let me know the importance 

of simulation. A more comprehensive engineering analysis capability is my next goal. 

For the future work, two different size of semi-additive punched will be performed for 

the durability test in order to validate the application. Then it will be combining with different 

software to analyze additive manufacturing process. More metal powder material and 

additive manufacturing methods will be applied. During the experimental analysis phase, 

analysis like SEM and EDS will be added in research. Finally, it is necessary to improve the 

toughness of the HWS powder by additive manufacturing the powder with excellent 

toughness as an intermediate layer. 
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