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Doctor of Philosophy (Electrical Engineering)

May 2020

Cognitive radio is considered an effective solution to the problem of spectrum

scarcity, which allows secondary users (SUs) to opportunistically access licensed spectrum

bands that are temporarily unused by the primary users (PUs). Therefore, it has attracted

much attention from both academic and industrial communities in recent years. In cognitive

radio networks (CRNs), the SUs frequently sense the presence of the PU on the licensed

channels and then transmit data on unoccupied channels. In modern communication sys-

tems, the security of CRNs is critical, since the legitimate communication in CRNs might

be vulnerable to hidden eavesdroppers due to the open characteristics of the networks. Fur-

thermore, energy conservation has been a primary concern for energy-harvesting powered

CRNs, in which the SUs harvest energy from ambient sources, such as solar power, wind

power, and radio frequency (RF) energy. Each energy-harvesting node uses its limited en-

ergy for spectrum sensing, data processing, and data transmission. To improve spectral

efficiency and energy efficiency, network operators tend to deploy more and more small-cell

radio networks with short-range and low-power base stations (BSs). Such a deployment

can enhance network coverage and capacity in highly populated areas. However, it also

brings challenges to efficient resource allocation due to the stochastic property of mobile

subscribers and the intensive characteristic of dense networks. Hence, how to effectively

manage scarce resources, such as spectrum and energy, is of critical importance in the de-

sign of energy harvesting-based wireless networks. Future wireless networks will become

vi



Abstract vii

more intelligent with the assistance of artificial intelligence (AI) techniques, such as ma-

chine learning (ML), optimization theory, game theory, and meta-heuristics. Among them,

reinforcement learning (RL) methods and deep neural networks (DNNs), which are two of

the most important sub-fields of ML, are well known for their useful applications in wireless

networks. Accordingly, RL methods and DNNs have shown their advantages in empowering

wireless communication systems in terms of network operation and optimization. Therefore,

it is essential to employ these innovative techniques into future mobile networks to ensure

long-term and maintenance-free operation of energy harvesting-based networks. In this dis-

sertation, we study the applications of AI techniques for efficient resource management and

security improvement in energy harvesting-based wireless networks. We aim to find the

optimal resource management scheme that can ensure long-term network performance.

In the first part of this dissertation, we investigate the problem of energy-efficient

data communications in an energy-harvesting cognitive radio network, in which SUs harvest

energy from solar power and opportunistically access a time-slotted primary channel for data

transmission. However, legitimate communication can be vulnerable to external attacks that

are carried out by hidden eavesdroppers. Therefore, we propose two energy-efficient data

encryption schemes for a SU in CRNs to increase the security level under energy constraints.

More specifically, based on the sensing result at the beginning of each time slot, the SU

decides whether to stay silent to save energy or to transmit data to the destination. The SU

also needs to choose an appropriate private-key data encryption method to maximize data

security in the long run. In the first scheme, the information about the environment (e.g.,

the activity of the PU and the model of harvested energy) is available to the SUs. Hence,

we model the problem as the framework of a partially observable Markov decision process

(POMDP). We then use a value iteration-based method to solve the formulated problem. In

the second scheme, the SU will interact with the environment through a sequential decision

process. During this process, the SU can decide its operation mode based on a reinforcement

learning-based algorithm, which can maximize its long-term data security.

In the second part of this dissertation, we study an optimal power allocation pol-

icy for energy-efficient data transmissions in a wireless sensor network in the presence of

a full-duplex (FD) eavesdropper. In this network, a sensor node (i.e., the source) powered

by renewable energy wants to transmit data to a cluster head (i.e., the destination). The

eavesdropper with FD capability can opportunistically launch jamming attacks to the des-

tination. We aim to find the optimal power allocation scheme for the source to maximize its
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long-term secrecy rate. We model the problem of transmit power allocation as the frame-

work of a Markov decision process and investigate the formulated problem in two different

scenarios. In the first scenario, we propose a POMDP-based method to solve the problem

using value iteration-based dynamic programming with the assumption that the informa-

tion about the harvested energy and the model of jamming activities of the eavesdropper

is available to the system. In the second scenario, we use a learning-based algorithm to

help the source find the optimal solution to the power allocation problem through interac-

tions with the environment. We verify the effectiveness of the proposed schemes through

numerical simulation results.

The third part of this dissertation mainly presents reinforcement learning-based

methods for efficient resource allocation and user scheduling in small-cell networks with

energy harvesting. First, we investigate the problem of bandwidth allocation for an opera-

tion controller in hierarchical cellular networks consisting of several small-cell base stations

(SBSs) that are powered by energy harvesters. We aim to find the optimal bandwidth

allocation policy in order to enhance user satisfaction and energy efficiency within the con-

straints of energy harvesting and bandwidth sharing. However, the arrivals of harvested

energy and traffic requests are unknown in advance, so it is necessary to design a learning

algorithm for the controller to predict the system dynamics before making decisions about

bandwidth allocation. Therefore, we employ a natural actor-critic algorithm to help the

controller effectively allocate bandwidth to the SBSs. Then, we introduce an actor-critic

deep learning framework for efficient user association and bandwidth allocation in dense mo-

bile networks with green base stations. The agent of the proposed algorithm learns about

the evolution of the environment through trial and error experience. In this framework,

we use deep neural networks to approximate the policy and the value functions so that the

algorithm can work effectively with large-scale problems. Simulation results show that the

proposed methods can improve network performance in the long run.

Then, we consider the problem of resource sharing in wireless virtualized networks

with energy harvesting, where several virtual network operators (VNOs) lease spectrum

resources from a mobile network operator (MNO) to provide data services to their sub-

scribers. We aim to find the optimal spectrum leasing schemes based on deep reinforcement

learning (DRL) algorithms in order to help the VNOs provide users with the best perfor-

mance while ensuring the minimal leasing costs. Since the spectrum resources are limited,

the VNOs need to compete for them by announcing their requested spectrum sizes to the



Abstract ix

MNO. We investigate the spectrum competition problem in both regular virtualized net-

works and cognitive virtualized networks with energy-harvesting base stations. In the first

scenario, each VNO leases spectrum only through a long-term contract with the MNO. In

the second scenario, the VNOs can obtain spectrum resources via both spectrum sensing

and leasing contract. We formulate the resource leasing problem in the mentioned scenarios

as the framework of a sequential decision-making process. We then develop a DRL algo-

rithm, which is a combination of DNNs and RL, for a VNO to learn the optimal leasing

policy by interacting with the environment. We compare the performance of the proposed

methods with other traditional learning and non-learning methods.

Finally, we summarize the main contributions of this dissertation and discuss fu-

ture research directions regarding deep reinforcement learning and its applications in mod-

ern wireless networks.
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Chapter 1

Introduction

1.1 Background

1.1.1 Cognitive Radio Network

Cognitive radio (CR) has been considered an effective solution to the problem of

spectrum scarcity and under-utilization in wireless networks [2]. In cognitive radio networks

(CRNs), secondary users (SUs) can opportunistically access licensed spectrum bands that

are temporarily unoccupied by primary users (PUs) at a particular time and a specific loca-

tion, which is also known as dynamic spectrum access (DSA) [3]. With DSA, the spectrum

holes should be accurately determined by spectrum sensing techniques in order to protect

the PUs from potential collisions. A SU can adapt to the operation of a PU on the licensed

channel by modifying its radio operating parameters (e.g., transmit power, modulation

mode, and carrier frequency) to sense and monitor the presence of the PU on that chan-

nel [4]. If the PU is sensed inactive, the SU can utilize the corresponding channel for data

transmission without causing harmful interference to the PU. The detection performance

can be further improved by using cooperative spectrum sensing (CSS) techniques. The core

idea is that several SUs perform spectrum sensing individually and send their local sensing

information to a fusion center (FC), where the data will be combined using specific rules to

generate a final decision about the state of the PU. The FC then broadcasts the decision to

the SUs in the network. In general, CSS can provide the SUs with more accurate decisions

(i.e., a higher detection probability and a smaller false-alarm probability). However, the

SUs should always be aware of the changes in the radio environment, which might happen

1
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from time to time and affect the final sensing results.

1.1.2 Dense Networks with Energy Harvesting

The ultra-dense networking is considered a promising network architecture for

future wireless communication. A typical dense network usually includes low power and

small-cell base stations, such as microcell, picocell, and femtocell base stations [5]. Ultra-

dense networking technology is expected to enhance the overall performance of the network

in terms of network coverage, spectral efficiency, and energy efficiency. In dense networks,

the small-cell base stations (SBSs) are usually powered by energy-harvesting modules, which

can extract energy from ambient sources, such as solar power, wind power, and radio fre-

quency (RF) energy. The recent advances in energy harvesting technologies have provided

the networks with an increased lifetime and ease of maintenance. For example, it is essen-

tial to deploy energy harvesting in an area that is not easy to reach by the human, where

the supply of traditional grid power is not guaranteed. The harvested energy is usually

stored in rechargeable batteries with finite capacity to support the autonomous operation

of the network. However, densely deploying SBSs in highly populated areas also brings new

challenges to efficient resource utilization and power conservation due to the high density

of subscribers and the stochastic property of energy harvesting. Therefore, it is necessary

to design an energy-efficient resource management scheme based on artificial intelligence to

improve long-term network performance.

1.1.3 Deep Reinforcement Learning

Reinforcement learning [1] is an area of machine learning, which allows a learning

agent to learn the optimal decision policy through a decision-making process. In wireless

communication, an RL agent periodically selects actions to interact with the network en-

vironment and then receives feedback signals that reflect the effectiveness of the actions

taken. An RL problem is usually formulated as the framework of a Markov decision process

(MDP), which is composed of several components, such as a state space, an action space,

a reward function, and a state transition distribution. At each particular time step in the

MDP, the agent first observes the environment state and then applies an action to the en-

vironment. Based on the received feedback and the state transition, the agent gradually

optimizes its strategy to obtain better rewards in the future. Recently, RL has been consid-
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ered one of the efficient approaches for resource management in time-variant systems, such

as wireless communication networks and cloud computing networks [6]. Furthermore, the

emerging deep reinforcement learning is considered an enhanced version of traditional RL,

which provides better solutions to large-scale and complicated problems. DRL embraces

the advantages of DNNs to improve the learning process and the performance of the RL al-

gorithms. In sophisticated network optimization, DRL can help network operators to solve

complex resource management problems (e.g., power allocation and spectrum allocation)

to achieve the optimal solutions without complete information about the network entities.

DRL also allows the network controller to learn the dynamics of the network environment.

Therefore, the controller can efficiently perform network management, such as user associ-

ation, spectrum assignment, and transmit power allocation in large-scale networks, where

there is a large number of mobile devices.

1.2 Thesis Motivation and Objective

The rapid growth in the number of mobile subscribers and multimedia services

has led to increasing demands for the radio spectrum recently. However, many studies show

that the current spectrum assignment policy was not so efficient since it causes spectrum

resources to be under-utilized. As a consequence, Mitola [7] proposed CRN as a promising

alternative to the traditional modes of wireless communications. A cognitive radio node

can modify its operational parameters to adapt to the changes in the environment by us-

ing specific cognitive radio techniques. In CRNs, unlicensed users (i.e., cognitive users or

secondary users) can utilize spectrum holes in the spectrum bands, which are temporarily

unused by the primary users, at a particular time and a specific location. However, legit-

imate transmissions in a CRN might be vulnerable to malicious attacks due to its open,

sharing, and random access characteristics. For example, data transmissions might be either

disrupted by an active jammer or overheard by a hidden eavesdropper. Hence, it is crucial

to guarantee the confidentiality and authenticity of the information traveling through the

network.

In recent years, network operators tend to deploy wireless mobile networks by

using small-cell base stations, which can enhance network coverage and capacity. How-

ever, spectrum efficiency in small-cell networks has become a challenging problem due to

the intensive characteristics of dense networks and the stochastic property of mobile users.
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Energy harvesting technology, which allows the harvesting devices to obtain energy from

ambient sources in the environment, is considered a promising solution to energy conser-

vation in dense networks. Base stations in an energy harvesting-based network are usually

equipped with energy-harvesting modules that can regularly recharge their finite-capacity

batteries. In addition to spectrum efficiency, energy efficiency has also become one of the

major concerns for green wireless networks due to the stochastic arrivals of harvested en-

ergy. Therefore, it is essential to attain an efficient resource management policy to improve

long-term network performance.

Since conventional network architectures might not satisfy bandwidth-intensive

and time-intensive data services in mobile communications, software-defined networking

(SDN) [8] and wireless network virtualization (WNV) [9] are emerging as the key technolo-

gies to enhance the network utility. WNV is a process of abstracting, slicing, and sharing

radio resources in a virtualized way. In mobile cellular networks, WNV allows mobile net-

work operators (MVNOs) to share the same network infrastructure (e.g., licensed spectrum

and base stations) owned by a mobile network owner, and it can thus provide better resource

utilization. However, deploying WNV, in practice, is much more complicated due to the

stochastic characteristics of wireless networks (e.g., time-varying wireless channels, signal

attenuation, and user mobility). Applying SDN to WNV can help to simplify the network

management process, and thus, can improve the overall performance of the whole network

in terms of higher data rates and lower operational costs [10]. However, only a few studies

consider the problem of spectrum leasing in SDN-based wireless virtualized networks with

energy harvesting and cognitive capabilities.

The objective of this dissertation is to solve the mentioned issues by using artificial

intelligence-based methods, such as value iteration-based dynamic programming, reinforce-

ment learning, and deep learning. The contributions of this dissertation are summarized as

follows:

(i) First, we investigate a security mode decision policy for a CRN, in which cognitive

users are solely powered by non-radio frequency energy harvesters.

(ii) Second, we investigate a novel energy-efficient data transmission scheme in CRNs

in the presence of full-duplex active eavesdroppers, which aims to maximize secrecy

transmission rate.

(iii) Third, we design different learning-based frameworks for efficient resource allocation
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and user scheduling in dense networks with small-cell base stations.

(iv) Finally, we study the optimal spectrum leasing strategy based on deep reinforcement

learning for virtualized wireless networks, where the shared spectrum resources are

limited, and the base stations are powered by solar energy.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapters 2 and 3 present secure data

transmission schemes for CRNs under energy constraints. Chapter 4 introduces efficient

bandwidth-allocation and user-association schemes in dense mobile networks. Chapter 5

studies competitive spectrum leasing strategies in virtualized wireless networks. Chapter

6 investigates a dynamic task association and resource allocation scheme for green edge

computing. A brief description of each chapter is given below.

Chapter 2 introduces energy-efficient data encryption schemes for a CRN to in-

crease the security level under energy limitation constraints. In this CRN, the secondary

users harvest energy from solar power while opportunistically accessing a licensed channel

for data transmission. The network is assumed to operate in a time-slotted manner. At the

beginning of each time slot, the SUs perform spectrum sensing individually and send the

local decisions about the state of the primary channel to a fusion center (FC). We first de-

velop a new cooperative spectrum sensing method by using convolutional neural networks,

which uses historical sensing data for classification problems, to improve detection perfor-

mance. We then propose two different methods for an SU to decide its operation mode in

order to increase security against a hidden eavesdropper. Based on the sensing result, the

SU can decide whether to stay silent to save energy, or to transmit data that is encrypted

with appropriate encryption methods. The problem is formulated as the framework of

a Markov decision process, and it will be solved by using either a value iteration-based

dynamic programming method or a transfer learning actor-critic algorithm.

Chapter 3 studies an optimal transmit power decision policy for energy-efficient

data transmissions in a wireless sensor network in the presence of a full-duplex (FD) active

eavesdropper. In this network, a sensor node (i.e., the source), which is powered by a

wireless energy harvester, needs to send information to a cluster head (i.e., the destination).

Meanwhile, an eavesdropper with FD capability tries to affect the legitimate transmissions
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by launching jamming attacks towards the destination while eavesdropping. We aim to

find an optimal power allocation policy for the source in order to maximize the secrecy

transmission rate. We study the problem in two different scenarios. First, the legitimate

nodes are assumed to have prior information about the system dynamics (e.g., the arrival

of harvested energy and the jamming model of the eavesdropper). Hence, the problem can

be solved by using a value iterations method. Second, the legitimate nodes do not know

the environmental dynamics in advance, so we propose an actor-critic learning framework

to find the solution from practical interactions with the environment.

Chapter 4 introduces efficient user-association and bandwidth-allocation schemes

based on reinforcement learning and deep learning for downlink data transmission in dense

mobile networks. More specifically, several small cells are deployed in a single macrocell and

share the same spectrum band with the macrocell. The small-cell base stations are powered

solely by solar-energy harvesters. This chapter is divided into two main parts. In the first

part, we aim to find the optimal bandwidth allocation policy in order to enhance network

performance in terms of user satisfaction and energy efficiency under energy harvesting and

bandwidth sharing constraints. Therefore, we employ an actor-critic reinforcement learning

algorithm to find the optimal policy under which the network controller can effectively

allocate the limited bandwidth to the SBSs for their data transmissions. The second part

is an extended version of the first part, in which we consider not only bandwidth allocation

but also user association for small-cell networks. We propose an actor-critic deep learning

framework, which is a combination of artificial neural networks and reinforcement learning,

to maximize long-term network performance while adhering to constraints on harvested

energy and spectrum sharing.

Chapter 5 considers the problem of resource sharing in a virtual mobile network

with energy-harvesting base stations, where several virtual network operators (VNOs) lease

radio resources (i.e., wireless channels) from a mobile network operator (MNO) to provide

data services to their subscribers. We consider this problem in two scenarios: (i) the VNOs

only acquire spectrum resources from the MNO via long-term leasing contract, (ii) the

VNOs obtain spectrum resources from the MNO via both spectrum sensing and leasing.

In both cases, the VNOs want to provide their subscribed users with the best performance

while ensuring minimal leasing costs. We formulate the problem as a Markov decision

process, during which the VNOs compete with each other for the spectrum resources by

dynamically announcing their resource requirements to the MNO. We then develop deep
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reinforcement learning algorithms for spectrum leasing strategy at a VNO in the network

to learn the optimal resource leasing policy by interacting with the network environment.

More specifically, we design a transfer deep Q-learning framework for the first case and a

double deep Q network for the second case.

Finally, chapter 6 concludes this thesis and provides discussions on future research

directions.



Chapter 2

Energy-Efficient Data Protection

in Cognitive Radio Networks

2.1 Introduction

Cognitive radio is a promising solution to the problem of spectrum scarcity and

under utilization of wireless communications networks. In cognitive radio networks (CRNs),

secondary users (SUs) with cognitive capability can utilize the spectrum bands licensed to

the primary users (PUs) for data transmission [11]. To achieve this, the SU needs to adapt

to the time-slotted operation of the PU on the channel of interest by modifying its radio

operating parameters (e.g., transmit power, modulation mode, and carrier frequency) in

order to sense the presence of the PU on that channel. When the PU is sensed as inactive

in a particular time slot, the SU can use the licensed channel during that time slot to

transmit data. We assume that the SU uses its limited energy for spectrum sensing, data

encryption, and data transmission.

2.1.1 Motivation

Many studies concerning energy management problems for energy harvesting nodes

have been conducted, primarily to maximize a system’s throughput [12–16]. For example,

Park and Hong [12] examined a decision policy for spectrum sensing in connection with a

detection threshold to enhance the average throughput concerning the constraints of energy

limitation and communication collision. Pappas et al. [14] examined the two-dimensional

8
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maximum stable throughput region for a simple cognitive system comprising two source-

destination pairs. Razaque and Elleithy [16] designed an intelligent decision-making (IDM)

model for wireless sensor networks, which allows the sensor node to obtain energy from the

Sun, and thus preserves its battery energy in an outdoor environment. Liang et al. [17]

studied the optimal sensing duration to maximize achievable throughput for a secondary

network while sufficiently protecting primary users. There is research that analyzes optimal

transmission power and density of secondary transmitters to maximize secondary network

throughput under the constraints of a given outage-probability [18]. In addition, Rossi et al.

[19] explored a multiple-input multiple-output (MIMO) technique for collaborative spectrum

sensing for the distributed detection framework in cognitive-radio scenarios. Specifically,

the authors focused on the reporting channel in a spectrum-sensing context and exploits

the results from decision fusion to improve probability of detection.

In addition, cognitive radio networks (CRNs), like any modern communications

system, must guarantee the confidentiality, integrity, and authenticity of the data traveling

through the network [20]. However, due to its open and random access nature, wireless

communications in CRNs is susceptive to security threats targeting the physical or media

access control layers (e.g., passive eavesdropping or radio frequency (RF) jamming). For

that reason, a remarkable number of contributions focus mainly on security technologies

for CRNs [21]. In particular, Wen et al. [22] presented physical layer approaches to defend

against security threats in CRNs. The authors first introduced a MIMO technique that

guarantees a low probability of interception, and that enhances the confidentiality of the

network; then, they proposed an identified scheme based on channel responses to defend

against primary user-emulation attacks. Ciuonzo et al. [23] studied channel-aware decision

fusion rules to classify the presence of a (either distributed or co-located) multi-antenna

jamming device in wireless sensor networks.

Moreover, physical layer security in CRNs has been widely studied to secure wire-

less transmissions, especially in the presence of a hidden eavesdropper [24, 25]. Besides

this, keeping the data classified from prying eyes by using encryption techniques is one

of the most feasible solutions to maintain security; but, in reality, it is not easy to im-

plement conventional encryption techniques in CRNs, since the networks have constrained

resources (e.g., limited energy or memory). As a consequence, encryption techniques such

as symmetric and asymmetric key algorithms are not preferred for data protection in CRNs.

Nevertheless, in modern CRNs, wireless energy harvesting technology can ensure the en-
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ergy autonomy of the network by using a small rechargeable battery integrated with an

energy harvester, thus providing the SUs with redundant energy to improve data security.

Therefore, protecting data using encryption methods still attracts a lot of interest in the

research community [26–28]. To illustrate, Sen [29] identified numerous security threats to

cognitive wireless sensor networks and the defense mechanisms against these vulnerabilities

by selecting the most appropriate cryptography algorithm for each class of attack.

Kim et al. [30] proposed a threshold-based security control scheme for a wireless

sensor network where a sensor node decides its encryption mode based on the energy level

in its battery. If the node has more energy than a certain threshold, it encrypts data

using asymmetric-key encryption algorithm without considering the effects of the decision

on future performance of the network. Motivated by this work, we propose two energy-

efficient data protection schemes for a CRN where the SU can determine its operation

mode (e.g., stay silent or transmit encrypted data) in the current time slot by estimating

the current decision’s effect on future time slots. More specifically, the Advanced Encryption

Standard (AES) [31] algorithms for the same data block length with three different cipher

keys (AES-128, AES-192, AES-256) are used for data protection. The security levels can be

measured by the complexity of the cracking method (for example, bruce force attacks [32]),

which increases in relation to the length of the cipher key. An SU that has remaining

energy greater than specific thresholds can encrypt data using algorithms with longer key

lengths to increase data confidentiality. Hence, the SU can encrypt data using an algorithm

with larger key sizes to enhance security, and then transmits the encrypted data on an

idle licensed channel. Furthermore, the SU determines the encryption key size based on

the impact of spectrum sensing error, the energy causality constraint, and the effect of the

current decision on future time slots. The proposed schemes aim to find an optimal policy

for the data encryption decision to maximize the long-term security level of the system.

2.1.2 Contributions

Our focus in this chapter is to solve the problem of reaching a data encryption

decision that aims to maximize the security of data transmissions in CRNs. In the first

proposed scheme, the problem is formulated as the framework of a partially observable

Markov decision process (POMDP), and is then solved by using value iteration-based dy-

namic programming in order to find the optimal decision policy. However, this solution
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is rarely directly useful in reality. It is akin to an exhaustive search, looking ahead at all

possibilities, computing the probabilities of occurrence and their desirability in terms of

expected rewards (i.e., security levels) [1]. The solution relies on the assumption that we

know in advance the dynamics of the environment (e.g., an arrival of harvested energy),

which is rarely true in practice. In the second proposed scheme, we investigate the problem

from a different point of view in which the solution does not require prior information about

the environment’s dynamics. More specifically, we solve the problem by using model-free

reinforcement learning [1], namely, an actor–critic algorithm. The main advantage of the

actor–critic solution over the POMDP-based approach is that it does not require complex

computations or information about the arrival of harvested energy.

We model the arrival of harvested energy and the primary traffic as a Poisson point

process and a time-homogeneous discrete Markov process, respectively. At the beginning of

each time slot, the SU carries out spectrum sensing to identify whether the primary channel

is busy or not; then, it either stays idle or transmits data on the free channel. Accordingly,

to increase the chances for the SU to transmit data on the primary channel and to reduce the

probability of collision with the primary user, we also propose a new cooperative spectrum

sensing technique using a convolutional neural network (CNN) and historical sensing data.

With the second scheme, we employ an actor-critic sequential learning model so the SU

can interact with the environment during the Markov process to acquire information on the

environment’s dynamics. Based on this method, the SU can learn the energy harvesting

model and the primary traffic variations from the learning practice. Afterwards, it can either

stay idle or select an appropriate key length for data encryption (also known as action),

and then verify the effect of the decision based on the returned rewards. By repeating this

kind of action over time, the SU can establish the policy to make determinations in the

future. However, it would take time for the actor–critic learning procedure to converge to

an optimal policy, especially with the large size of the state space [33]. To deal with such

an issue, we employ the idea of transfer learning, which exploits the historical relevance

of the harvested energy model and the primary user’s activity in order to speed up the

learning process of the conventional actor–critic algorithm [34]. We call this method a

transfer learning actor–critic (TLAC) algorithm. The main contributions of this work are

summarized as follows:

• We first introduce a new energy harvesting model, which is represented by a trans-
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Figure 2.1: A system model of an energy harvesting-based CRN.

formed Poisson distribution proven to give the nearest fit to the empirical measure-

ments of a solar energy harvesting node for time-slotted operation [35].

• We also introduce a new CNN-based technique for cooperative spectrum sensing to

enhance the performance of spectrum sensing by increasing the probability of detection

while guaranteeing a low probability of false alarm.

• We then formulate the stochastic problem of the data encryption decision policy as

the framework of a constrained MDP, and solve the problem by using either the

POMDP-based approach or the TLAC algorithm.

The rest of this chapter is organized as follows. In Section 2.2, we introduce the

system model of the proposed schemes. In Section 2.3, we describe the new CNN-based

cooperative spectrum sensing (CBCSS) technique. In Section 2.4, we present the proposed

energy-efficient data protection schemes in CRNs based on POMDP and TLAC. In Section

2.5, we evaluate the performance of the proposed schemes through numerical simulation

results. Finally, we conclude this chapter in Section 2.6.

2.2 System Model

We consider a system that consists of a pair of licensed primary users, several

secondary transmitters (denoted as SUs), a secondary receiver equipped with a fusion center,

and an eavesdropper (E), as shown in Figure 2.1. From now on, we will call the secondary
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Figure 2.2: Two-state Markov discrete-time model for the primary user’s states.

receiver as the fusion center or FC for simplicity. The SUs are assumed to always have data

to transmit to the fusion center. Thus, they would try to access the licensed channel of the

PUs for data transmission by carrying out cooperative spectrum sensing.

The primary user’s states (active [A] and not active [Ā]) are assumed to follow a

two-state Markov discrete-time process, in which the transition probabilities between the

states are denoted Pi,j : i, j ∈ {A, Ā}, as illustrated in Figure 2.2. The performance of the

sensing scheme can be evaluated by using the probability of correct detection Pd and the

probability of false alarm Pf . The former represents the probability of detecting the active

state (A) of the PU accurately, whereas the latter indicates the probability that the PU is

identified as active, but it is truly not (Ā), each of which are given by

Pd = P (H = A|A) (2.1)

and

Pf = P
(
H = A|Ā

)
(2.2)

respectively, where H denotes the state of the primary user as determined by spectrum

sensing. Although the PU state transition probabilities are unknown in practical situations,

the historical statistics information of the primary channel can be used to estimate the state

transition probabilities based on the Markov model [36]. Therefore, we assume that the SU

has a prior information about the PU state transition probabilities based on the historical

sensing results; and the global information of the network (e.g., channel state information,

probabilities of detection and false alarm) are available for all nodes in the network.

The system’s operation proceeds as follows. The system is assumed to operate

in a time-slotted manner. At the beginning of each time slot, the SUs separately perform

spectrum sensing on a selected channel and send the sensing outcomes to the fusion center,
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where the data are fused together using a certain rule to make a global decision about the

state of the PU on that channel. This global decision is then broadcast to the SUs. If the

final sensing result indidates that the PU is inactive, the primary channel is allocated to

one of the SUs for data transmission. The SUs take turns using the channel, based on the

arrival order of their transmission requests. Each SU can occupy the channel over many

time slots until it finishes transmitting data. Meanwhile, the eavesdropper is listening to

the communication quietly. Therefore, we are going to investigate a learning framework

for cooperative spectrum sensing and energy-efficient data protection schemes against the

hidden eavesdropper for the communication between one SU and the fusion center.

We first present a simple but effective cooperative spectrum sensing method based

on a CNN to improve the sensing performance. The CNN is constructed and trained to

predict the PU states by using individual sensing data as inputs, which leads to specific

target outputs. Hence, the fusion center can make global decisions about the PU state

based on the outputs of the neural network. Relying on the final decision, if the channel is

free, it is allocated to an SU (denoted as SU1) to transmit data. Furthermore, the SU is

assumed to have a finite-capacity battery regularly recharged by a non-RF energy harvester.

In addition to that, under energy constraint, the SU encrypts data using the AES algorithm

with an appropriate key length to maximize the long-term security level of the system.

Regarding data protection techniques, there are two primary types of cryptogra-

phy: symmetric (or private key) and asymmetric (or public key) algorithms. In general,

using private-key cryptography for data encryption is not a time-consuming process, and

thus expends less energy than public-key cryptography. For example, the experimental

results from Kim et al. [30] showed that a public-key algorithm named the elliptic curve

integrated encryption scheme (ECIES) consumes a thousand times more energy during the

encryption process than the popular AES-128 private-key method. Even though a public-

key algorithm can increase the security level by sacrificing a huge amount of energy, it is not

a favorable choice for many wireless systems like CRNs. Subsequently, we focus on using

the AES algorithm to secure the communications between SU1 and the FC. Specifically,

the SU can use one of the three key sizes (128, 192, and 256) to encrypt data using the

AES algorithm.

The security level is defined by the number of repetitions of the transformation

rounds that convert the input data into encrypted data [31]. Therefore, the security level

SNk is dependent on the key length Nk of the AES algorithm, as follows:
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• SNk = 10 if Nk = 128 bits,

• SNk = 12 if Nk = 192 bits,

• SNk = 14 if Nk = 256 bits.

Using the longer key lengths provides the SU with better data security but consumes more

energy [37]. As a result, at the beginning of each time slot, the SU decides its operation

mode based on the sensing result and the remaining energy to maximize the long-term

security level while efficiently using the limited energy. If the primary channel is busy, or

the energy level in the SU’s battery is too low, the SU stays silent to save energy for future

use. If the channel is free and the remaining energy is acceptable, by calculating the total

expected reward in future time slots, the SU can decide to keep silent to save energy, or to

be active and transmit the data that is encrypted by the AES algorithm with a proper key

length.

Regarding energy harvesting in the CRN, we assume that the SU operates based

solely on wireless harvested energy that is stored in a finite-capacity battery. Hence, in

designing network protocols, it is essential to obtain a reliable energy-harvesting model to

guarantee energy autonomy in the network. The extensive experimental results from Lee

et al. [35] showed that the transformed Poisson distribution model produces the nearest fit

for most of the empirical datasets. The number of energy packets that an SU can harvest

during a particular time slot, eh, is given as

eh ∈ {eh,1, eh,2, . . . , eh,max} (2.3)

where 0 < eh,1 < eh,2 < · · · < eh,max < Eca, and Eca is the battery capacity of the SU.

We assume that eh follows a Poisson point distribution with mean eh,avg. Furthermore, the

fit with the Poisson distribution can be improved by using a transformation x = eh−eh,min,

where eh,min is the minimum harvested energy. The probability mass function (PMF) of eh

is then given by

P (eh) = P (x = eh − eh,min) =
e−xavgx

(eh−eh,min)
avg

(eh − eh,min)!
(2.4)

where xavg = eh,avg − eh,min is the sample average of the new variable x. This new dis-

tribution is called the transformed Poisson distribution (TPD). This transformation of the

original variable can improve the fitting to the empirical datasets, as proven in [35]. In

practice, although it is not easy to measure the exact amount of harvested energy in a
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Figure 2.3: Comparison between the normal Poisson distribution and the transformed Pois-
son distribution with eh,avg = 8 and different values of eh,min.

time-slot interval, we can always estimate the average, the minimum and the maximum

values of the harvested energy. Meanwhile, if the normal Poisson point process is used, the

minimum harvested energy is assumed to be 0 (or zero) by default, which is rarely true in

practical scenarios. For simulation purpose, the maximum value of harvested energy can

be approximately determined if its cumulative distribution function is close enough to 1.

Figure 2.3 shows the difference in the PMF between the normal Poisson distri-

bution and the transformed Poisson distribution when the average harvested energy is

eh,avg = 8 packets, with different values of minimum harvested energy: eh,min ∈ {1, 2, 3, 4}
packets. As can be seen from the figure, the SU can harvest with a higher probability

those energy values located near the mean by using the transformed Poisson model. As a

consequence, we can also improve the learning rate of the actor–critic algorithm because

the SU can focus on learning the variations of the energy values that are adjacent to the

mean.

2.3 CNN-Based Cooperative Spectrum Sensing

In this section, we exploit the strength of the convolutional neural network, a

particular type of deep neural network, to design a new cooperative spectrum sensing solu-

tion for the FC to determine the state of the PU on the primary channel. The process of
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cooperative spectrum sensing is illustrated with the following steps:

1. The FC trains the CNN using historical sensing data represented by the local spectrum

decisions provided by the SUs.

2. At the beginning of each time slot, all the SUs are required to perform local spectrum

sensing by using an energy detection method and reporting their sensing outcomes to

the FC via a control channel.

3. The FC uses the new sensing data as input for the trained CNN to make a global

decision about the PU state on the channel of interest, and then feeds back the final

decision to the SUs.

Accordingly, the problem of neural network-based cooperative spectrum sensing is divided

into two important parts: local spectrum sensing by the SUs and global decision making

by the FC using the trained CNN.

2.3.1 Local Spectrum Sensing

The considered CRN is assumed to be composed of K SUs. Each of them performs

spectrum sensing independently using an energy detection algorithm, and then sends the

outcome to the FC. Moreover, we assume that the status of the PU remains unchanged

during each time slot. The hypothesis test statistics for local spectrum sensing at SU i can

be formulated as follows [38]:A : xi(t) = his(t) + wi(t)

Ā : xi(t) = wi(t)
∀i ∈ {1, 2, . . . ,K} (2.5)

where xi(t) is the received signal by the ith SU in time slot t, hi denotes the channel gain

of the link between the PU and the ith SU, s(t) denotes the PU signal, and wi(t) is zero

mean and unit variance additive white Gaussian noise (AWGN).

Regarding energy detection, the observed energy at the ith SU is expressed as

follows [39]:

xEi =

Ni∑
j=1

|xi(j)|2; ∀i ∈ {1, 2, . . . ,K}, (2.6)

where xi(j) is the jth sample of the received PU signal at the ith SU, and Ni is the number

of sensing samples during each sensing period. For simplicity, we assume that the number
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of sensing samples collected by each SU is the same for all the SUs. When Ni is sufficiently

large (e.g., Ni ≥ 200), xEi can be approximated by a Gaussian random variable under the

two hypotheses (A and Ā) with mean µA, µĀ and variance σ2
A, σ2

Ā
, given as follows [40]:

xEi ∼

N
(
µA = Ni(1 + γi), σ

2
A = 2Ni(1 + 2γi)

)
, A

N
(
µĀ = Ni, σ

2
Ā

= 2Ni

)
, Ā

(2.7)

where γi is the average gain of the sensed channel in terms of signal-to-noise ratio (SNR).

We assume that γi follows a Gaussian distribution with mean µi and variance σ2
i as γi ∼

N
(
µi, σ

2
i

)
.

For a single-SU spectrum-sensing scheme, the local decision, Di, is given by

Di =

1, if xEi ≥ λi

0, otherwise
(2.8)

where 1 and 0 are single-bit data that represent states A and Ā of the primary user,

respectively; and λi is a predefined decision threshold.

2.3.2 Global Decision Making

In a deep-learning research, the CNN is widely used in computer vision fields, such

as image classification, speech recognition, and handwriting recognition, by making use of

spatial characteristics. In this section, we present the process of creating and training a

CNN for making a global decision about the PU state using the local sensing data as input.

Network Configuration

The first step in designing a CNN is to define the network layers that specify the

structure of the CNN, as depicted in Figure 2.4. This network consists of the following

layers [41].

• The input layer stores the input sensing data in the form of a gray scale image with

size 1×K × 1, where K is the number of secondary users.

• The convolutional (CONV2D) layer contains K neurons that connect to the local

subregions of the input image to learn its features by scanning through it. Each

region has a size of 1× 2.
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Figure 2.4: The structure of the CNN for cooperative spectrum sensing in CRNs.

• The rectified linear unit (ReLU) layer uses the ReLU function to introduce nonlinearity

to the CNN by performing a threshold operation on each input element, simply defined

as

f(x) =

x, x ≥ 0

0, x < 0
(2.9)

• The fully connected layer combines all the local information from the original image

(e.g., the results of feature extraction) determined in the previous layers to classify

the status of the PU, which is active (A) or inactive (Ā). Consequently, the size of

the output data is equal to the number of states of the primary user.

• The softmax and output layers follow right after the fully connected layer for the

classification problem. The softmax layer uses an output unit activation function,

also known as a normalized exponential function, to create a categorical probability

distribution for the two input elements (A and Ā), as follows:

P (Hi) =
exp(q(Hi))∑

Hj∈{A,A}
exp(q(Hj))

, i = 1, 2 (2.10)

where P (Hi) is the class prior probability; Hi ∈ {A, Ā} is an element class; and q(Hi)

is the output value from previous layer of the sample given class Hi. Thereafter, the

output (or classification) layer takes the values from the softmax function and assigns

each input to one of the two classes.

It should be noted that the original image with size 1×K×1 is a vector containing

the local decisions from K SUs; thus, a one-dimensional (1D) convolution layer can be used
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in the CNN to solve the problem of PU state classification instead of using a two-dimensional

(2D) convolution layer. However, using a 2D CNN is more useful than 1D CNN in image

classification. Furthermore, it would be easier to further develop the current approach to

deal with three-dimensional data without making many changes in the current architecture

of the CNN. For this reason, the size of the input image is generalized as 1×K × 1; thus, if

the number of secondary users cooperating in spectrum sensing is large enough, the image

size could be changed to M × N × 1, where M × N = 1 ×K. Moreover, we can enhance

the sensing accuracy by placing other information (e.g., the channel SNRs, the distances

between the SUs and the PU) in the second and the third layers of the image, and performing

some modifications (e.g., permutation, repetition) to the original data structure to provide

the CNN with more features.

Network Training and PU Status Prediction

The local sensing decisions from the SUs, Di ∀i ∈ {1, 2, . . . ,K}, are used as input

for the CNN. Because a CNN is mostly used for image classification, the local decisions

from K secondary users are rearranged to form a grayscale image with the size of 1×K×1,

where the last figure describes the number of color channels in the image. A stochastic

gradient descent (SGD) optimizer with an adaptive learning rate is used in training the

network. With this algorithm, the initial learning rate of 0.01 is later reduced based on

a pre-defined schedule. For instance, it can be multiplied by a factor of 0.1 after every

10 epochs. The training set is a collection of local decisions from K SUs under different

environmental conditions (i.e., a wide range in the sensed channel gain).

The FC uses the historical sensing data to train the CNN for the classification

problem in advance. Thereafter, the FC determines the presence of the primary user on the

licensed channel in every time slot by using the new individual sensing outcomes received

at the beginning of each time slot as input for the trained network.

2.4 Energy-Efficient Data Encryption Schemes

In this section, we present two data protection schemes for an SU to enhance data

security and energy utilization by determining its operation mode based on the current

energy level in the battery and the sensing result. We assume that the SU always has

enough energy for spectrum sensing, and that the SU determines its operation mode at the
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beginning of each time slot. In particular, if the SU does not have enough energy to transmit

data, or if the sensing result indicates the PU is in state A, the SU will stay silent during

the remainder of the time slot. Otherwise, it can decide to transmit the data encrypted by

the AES algorithm with one of the three key lengths, Nk ∈ {128, 192, 256}, considering the

effect of the decision on the long-term security level of the system.

2.4.1 Markov Decision Process

The problem of the operation mode decision is first formulated as the framework of

a Markov decision process that is defined as a tuple 〈S,A,P,R〉, where S is the state space,

A is the action space, P : S× A 7→ S is a transition probability function, and R is the reward

function. The state of the SU at the tth time slot is defined as s(t) = (er(t), ρ(t)) ∈ S, where

er(t) is the remaining energy of the SU, and ρ(t) is the probability (also called belief ) that

the PU is inactive in that time slot. The action state space is defined as A = {ID, TRNk}.
At the tth time slot, the SU can choose to stay idle (action a(t) = ID) or it can choose

to transmit data encrypted by the AES algorithm with key length Nk ∈ {128, 192, 256}
(action a(t) = TRNk). This action provides the SU with an immediate reward, R(t), and

causes the SU to transit into a new state, s(t+ 1).

The reward (i.e., security level) achieved at the tth time slot when the SU is in

state s(t) and taking action a(t) is defined as

R(t) ∈ {0, SNk} (2.11)

where

• R(t) = 0 if the SU stays idle, or the transmission is not successful.

• R(t) = 10 if the transmission is successful, and the data are encrypted by AES-128.

• R(t) = 12 if the transmission is successful, and the data are encrypted by AES-192.

• R(t) = 14 if the transmission is successful, and the data are encrypted by AES-256.

The value function is defined as the total discounted reward from the current time

slot (t = 0), when the SU’s state is s(t) = s, which is given as follows [1]:

V (s) =
∞∑
t=0

ηtR(t)|(s(0) = s) (2.12)
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where η is the discount factor. We aim to find the optimal action for the SU in the current

time slot to maximize the value function as

a∗(0) = arg max
a(t)∈A

{ ∞∑
t=0

ηtR(t)|(s(0) = s)

}
(2.13)

The solution to the problem of the operation mode decision can be found by solving this

equation.

2.4.2 A POMDP-Based Approach

In this part, we present the mode decision policy for the current time slot based

on the POMDP framework. After taking action a(t), the SU receives an instant reward,

R(t), and transforms to a new state, s(t+ 1), which can be updated based on the following

observations and transition probabilities.

Idle mode

If the SU decides to stay in idle mode (i.e., a(t) = ID), no reward is achieved, as

R(t) = 0. In our work, we assume that the SU always has enough energy in its battery for

spectrum sensing. Therefore, the remaining energy of the battery for the next time slot can

be updated as follows

er(t+ 1) = min(er(t) + eh(t)− Es, Eca) (2.14)

with the transition probability

P (er(t+ 1)|er(t), ID) = P (eh(t)) (2.15)

where P (eh(t)) is the probability that the SU can harvest eh(t) energy packets in time slot

t. The belief that the PU is inactive in the next time slot is given as

ρ(t+ 1) = ρ∗(t)PĀĀ + (1− ρ∗(t))PAĀ, (2.16)

where ρ∗(t) is the updated belief about the current time slot, which is calculated based on

two observations at the end of the time slot, as follows.
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a) Observation φ1: The primary channel is sensed to be busy with probability

P (H(t) = A|ρ(t)) = ρ(t)Pf + (1− ρ(t))Pd (2.17)

where H(t) denotes the state of the PU by spectrum sensing in time slot t. Then the belief

in the current time slot is updated using Bayes’ Rule as

ρ∗(t) =
ρ(t)Pf

ρ(t)Pf + (1− ρ(t))Pd
(2.18)

b) Observation φ2: The sensing result indicates that the primary channel is free with

the following probability

P (H(t) = Ā|ρ(t)) = ρ(t)(1− Pf ) + (1− ρ(t))(1− Pd) (2.19)

The belief about the current tth time slot needs to be updated as follows:

ρ∗(t) =
ρ(t)(1− Pf )

ρ(t)(1− Pf ) + (1− ρ(t))(1− Pd)
(2.20)

Transmission mode

If the sensing result indicates that the PU is absent from the primary channel with

the probability that is given in Equation (2.19), the SU can change to transmission mode

when it has enough energy for data communications. In this mode, the SU transmits the

data that is encrypted using the symmetric key algorithm with a proper key length, Nk,

to maximize the effective security level. The remaining energy for the next time slot is

updated as

er(t+ 1) = min(er(t) + eh(t)− etr(t)− Es − ENk, Eca) (2.21)

with the transition probability

P (er(t+ 1)|er(t), TRNk) = P (eh(t)) (2.22)

The reward and the belief will be updated according to the acknowledgement (ACK) feed-

back signal that can be received from the SU recipient after the transmission is finished, as

described in the following situations.
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c) Observation φ3: The SU transmitter receives an ACK message confirming that the

transmission is successful, with the probability of correct detection as p(t)(1 − Pf ). Then,

the reward for this case is

• R(t) = 10 if Nk = 128 bits

• R(t) = 12 if Nk = 192 bits

• R(t) = 14 if Nk = 256 bits

The belief that the channel will be free in the next time slot can be updated as

ρ(t+ 1) = PĀĀ (2.23)

d) Observation φ4: The transmission is unsuccessful (i.e., no ACK feedback is received),

which means that a missed-detection event has occurred, with the probability (1−ρ(t))(1−
Pd); then, there is no reward: R(t) = 0. The belief that the channel will be vacant for the

next time slot is given as

ρ(t+ 1) = PAĀ (2.24)

Based on those observations, the optimal mode decision policy in Equation (2.13)

can be rewritten as

a∗(0) = arg max
a(t)


∞∑
t=0

ηt
∑
φi

P (φi)
∑

er(t+1)

P (er(t+ 1)|er(t))×R(t)|(φi, s(0))

 (2.25)

The final decision can be found to maximize the security level of the CR system by solving

this equation using a value iterations method [42].

2.4.3 A Transfer Learning Actor-Critic Approach

In previous section, we propose a POMDP-based approach to solving the prob-

lem in Equation (2.13) on the assumption that the SU already has information about the

harvested energy model. In this section, we introduce a new solution to the problem based

on the actor–critic learning framework, which does not require the SU to already know

the dynamics of energy harvesting. Instead, the SU determines those dynamics by directly

interacting with the environment. A regular actor–critic model comprises three main ele-

ments: an actor (related to a learning policy), a critic (related to a learning value function),

and the environment, as shown in Figure 2.5.
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Figure 2.5: A regular actor–critic model. TD: temporal difference.

At time step t, the actor selects action a(t) based on the current state, s(t), and

the policy, π(s(t)), which is defined by using a Gibbs softmax function as follows [1]:

π(s, a) = P (a(t) = a|s(t) = s) =
eθ(s,a)∑

a′∈A
eθ(s,a′)

(2.26)

where θ(s, a) is the tendency to select action a when the SU is in state s. The final objective

is to find an optimal mode decision policy for the SU at the tth time slot, and the problem

in Equation (2.13) can be rewritten as

π∗(s) = argmax
a∈A

{
R(s, a) + η

∑
s′∈S

P (s′|s, a)V (s′)

}
(2.27)

where P (s′|s, a) is the transition probability from state s to state s′ after taking action a.

After that, the SU transits into a new state, s(t+1), and receives an instant reward

R(s(t), a(t)). The critic evaluates the new state and computes a temporal difference (TD)

error as

δ(t) = R(s(t), a(t)) + ηV (s(t+ 1))− V (s(t)) (2.28)

The critic uses the TD error to improve the estimate of the value function as well as the

policy. The value function is updated as

V (s(t))← V (s(t)) + αc · δ(t) (2.29)

where αc is a positive parameter of the critic. The action resulting in a positive TD error is

favorable, since the state value is better than expected. Hence, the probability of selecting

action a(t) = a in state s(t) = s in the future should increase, and vice versa. Following

that, the tendency to select this action is updated as

θ(s(t), a(t))← θ(s(t), a(t)) + αa · δ(t) (2.30)
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Figure 2.6: The transfer learning actor–critic model.

where αa is a positive parameter of the actor. Furthermore, we exploit the idea of transfer

learning to increase the convergence speed to the optimal solution by making use of historical

learning data, as depicted in Figure 2.6.

The obtained information is transferred to the new actor–critic algorithm for real-

time training in which the initialized value function is the same as the transferred function

while the overall policy, θo(s(t), a(t)), for choosing an action at time step t is given as

θo(s(t), a(t)) = ε(t)θl(s(t), a(t)) + (1− ε(t))θn(s(t), a(t)) (2.31)

where θl(s(t), a(t)) is the transferred policy; θn(s(t), a(t)) is the new policy, which will be

updated in every time slot by using Equation (2.30); and ε(t) is the transfer rate, which

will be reduced after each time step to gradually remove the effect of the transferred policy

on the new one.

The training process of the actor–critic learning framework for the SU to decide

its operation mode is illustrated as follows. At the beginning of the tth time slot, the SU

chooses an action according to policy π considering the sensing result and the remaining

energy in its battery. The SU can decide to stay idle, a(t) = ID, to save energy, or it can

transmit the encrypted data, a(t) = TRNk, to the FC. The immediate reward, R(s(t), a(t)),

and the next state, s(t+1), are updated at the end of the time slot based on the observations

that are presented in the POMDP-based scheme. Thereafter, the value function and the

new policy are updated based on the received reward and the new state. This process

repeats until it converges into the optimal solution that maximizes the long-term reward of

the system, which means that value function V (s) and policy π(s) will finally converge to

V ∗(s) and π∗(s) as k →∞ [43].
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2.5 Performance Evaluation

In this section, we present simulation results to demonstrate the efficiency of the

proposed CNN-based cooperative spectrum sensing and data protection schemes in CRNs.

We first present simulation results to evaluate the performance of the proposed CBCSS

technique compared with other fusion techniques, such as a half-voting rule [44], an energy

detection (ED) method performed by a secondary user, and the Chair–Varshney rule [45].

We then investigate the potential of the TLAC solution for establishing an operation mode

decision policy by comparing it with the POMDP-based solution, the myopic scheme, and

the fixed encryption methods, which will be described in detail later.

2.5.1 CNN-Based Cooperative Spectrum Sensing (CBCSS)

The proposed CBCSS for the two-state classification problem was implemented

using the Neural Network Toolbox in Matlab (R2017a, The MathWorks Inc., USA, 2017).

Unless presented otherwise, the simulation parameters were as listed in Table 2.1.

Table 2.1: Simulation parameters for the CBCSS scheme.

Symbol Description Value

K The number of SUs 10
Ni The number of sensing samples collected by each SU 300
γi Average SNR of the sensed channel (dB) −16 to −6

PAĀ, PĀA PU state transition probabilities 0.2

The average SNR of the sensed channel, γi, that was used for training the CNN

ranged from −16dB to −6dB. Furthermore, the number of training samples for each SNR

was 2000. We consider three different performance metrics: probability of detection Pd,

probability of false alarm Pf , and sensing error Pe. The total number of time slots for

testing the performance of the proposed CBCSS was 10,000. Furthermore, the process was

performed 10 times to get average values for Pd, Pf , and Pe. The first two parameters are

calculated by using Equations (2.1) and (2.2), whereas sensing error is defined as the sum

of the probability of false alarm (Pf ) and the probability of missed detection (1 − Pd), as

follows:

Pe = Pf + (1− Pd). (2.32)

In Figures 2.7 and 2.8, we compare the performance of the proposed CBCSS with
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Figure 2.7: Probabilities of detection and false alarm according to average SNRs of sensed
channel for different sensing schemes.

those of the conventional half-voting fusion rule for cooperative spectrum sensing, the local

sensing result based on the energy detection method from one of the K = 10 secondary

users, and the Chair–Varshney fusion rule. Regarding the half-voting rule, the fusion center

makes a global decision based on the local sensing data. Specifically, the FC decides that

the PU is active (A) if at least half of K SUs report the decision Di = 1. With respect to the

energy detection method, the local decision from SU1 was obtained for comparison. Under

the Chair–Varshney rule, the detection statistics are expressed as the weighted sum of the

local decisions; and the weights are functions of detection probability and false alarm [46].

The Chair–Varshney rule is the optimal decision fusion rule but requires a prior knowledge

of the PU’s activities and the local sensing performance of the secondary users.

From the figures, we can confirm that the proposed CBCSS outperforms other con-

ventional methods, except for the Chair–Varshney optimal fusion rule, in terms of detection

probability and sensing error. We can also see that with an increment in the average SNR,

the probability of detection increases while the probability of false alarm and the sensing

error decrease. This is because the effect of AWGN on the local decisions, and thus the

training accuracy, decreases as SNR increases. Accordingly, larger sensed channel SNRs at

the SUs provide better detection performance and fewer false alarms. Although the proba-

bility of false alarm with the proposed scheme is a little higher than with the half-voting and

the Chair–Varshney rules, the total sensing error of the proposed CBCSS almost reaches

to that of the Chair–Varshney optimal fusion rule and is lower than those of conventional
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Figure 2.8: Sensing error according to average SNRs for different sensing schemes.
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Figure 2.9: Probabilities of detection and false alarm with the proposed CBCSS according
to average SNRs when the number of SUs, K, changes.

methods.

In Figures 2.9 and 2.10, we examine the effect of the number of secondary users,

K, on the performance of the proposed CBCSS. To verify this, we evaluated the output

results from three distinct CNNs that were trained with K ∈ {5, 10, 20}, while keeping the

number of sensing samples unchanged at Ni = 300. For each value of K, the performance

metrics were calculated again for comparison purposes. As can be seen from the figures,

the increases in the number of SUs that cooperate in spectrum sensing can significantly

improve the performance of the CBCSS. This is caused by the increase in spatial diversity
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Figure 2.10: Sensing error with the proposed CBCSS according to average SNRs when the
number of SUs, K, changes.
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Figure 2.11: Probabilities of detection and false alarm according to average SNRs when the
number of sensing samples for each SU changes.

when using more SUs, which can help the CNN to extract more information from the sensing

data. Moreover, in Figure 2.10, there is almost no sensing error at SNR = −10 dB with

K = 20 sensing nodes.

Finally, we measured the performance of the CBCSS by varying the number of

sensing samples, Ni, as shown in Figures 2.11 and 2.12, for K = 10 secondary users. The

training process is the same as with the changing K, but now the number of sensing samples

is varied instead of K: Ni ∈ {200, 300, 400}. We assert that the effectiveness of the new

cooperative spectrum sensing system can be improved by increasing the number of sensing
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Figure 2.12: Sensing error according to average SNRs when the number of sensing samples
for each SU, N , changes.

samples that are collected by the SUs for individual spectrum sensing using the energy

detection method. Again, the larger value of γi provides better detection accuracy as well

as a lower sensing error.

Since we focus on developing a new CNN-based cooperative spectrum sensing

technique, for the sake of simplicity, we use a simple energy detection method for local

spectrum sensing. However, the sensing efficiency can be further enhanced by improving

the local spectrum sensing. That is, if the local sensing outcomes provide more accurate

sensing data, the CNN can learn the features of the data with higher accuracy, which will

produce more precise classification results. From the simulation results, we can observe that

larger values of the channel SNR can ensure the better local sensing results, which leads to

better overall sensing performance of the system.

2.5.2 Energy-Efficient Data Protection Schemes

This section verifies the performance of the proposed TLAC schem in comparison

to the POMDP-based scheme, the myopic scheme, and AES algorithms with a fixed key

length. With regard to the myopic scheme, if the PU is found absent from the channel, the

SU will sacrifice its energy to maximize data security [47]. The POMDP framework requires

complex numerical computations as well as prior information about the arrival of harvested

energy. The complexity of the problem depends on the required amount of the computation

space (e.g., the sizes of the input states, actions, transition probabilities, and observations).
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Table 2.2: Simulation parameters

Symbol Description Value

γi Average SNR of the sensed channel (dB) −10
PAĀ, PĀA Transition probabilities between states (A and Ā) of the

primary user
0.2

Eca Battery capacity (packets) 160
Es Energy consumption for spectrum sensing (packets) 1
ENk Energy consumption for data encryption using the AES al-

gorithm with key length Nk ∈ {128, 192, 256} (packets)
{4, 6, 8}

eh,avg Average harvested energy (packets) {2, 4, 6, 8, 10}
etr Energy consumption for data transmission (packets) 40
η Discount factor 0.9
αc Critic learning rate 0.2
αa Actor learning rate 0.1
ε(0) Initial transfer rate 0.5
ρ(0) Initial belief that the primary channel is free 0.5

In a POMDP, an agent controls the process by choosing the action at each time step based

on the observation history to maximize the expected long-term reward. The optimal policy

for the agent to choose an action can be found by solving the Bellman’s equation using

value iteration-based dynamic programming. Each iteration requires O(|A||S|2) operations

to compute all the probabilities of transitioning from one state, s ∈ S, to another state,

s′ ∈ S, after taking an action, a ∈ A. The actor–critic method, on the other hand, does not

require the agent to compute all the occurrence probabilities to find the solution in advance.

In addition to that, the agent learns the optimal policy from actual experienced transitions

by directly interacting with the stochastic environment.

The basic simulation parameters for this exercise are shown in Table 2.2. For

analytic convenience, we fixed the SNR value of the sensed channel at −10dB, and thus

the probabilities of detection and false alarm are approximated as Pd ≈ 0.9 and Pf ≈ 0.1,

respectively (based on the results of the proposed CBCSS method). We assume that the SU

transmits a packet of 16-byte data in every time slot, which is equivalent to the minimum

encryption block length in the AES cryptography; and the transmission channel gain is

unchanged during a time slot. It is worth noting that one packet of energy is equivalent to

25µJ , and each simulation was run over a thousand of time slots for several iterations to

obtain average values.

We first examined the convergence speed of the TLAC algorithm during the train-
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Figure 2.13: Actor–critic training convergence rate, eh,avg = 4.
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Figure 2.14: Average reward according to harvested energy for different data protection
schemes.

ing process by calculating the average reward received after every 1000 time slots. The

average harvested energy was fixed at eh,avg = 4 packets. As can be seen from Figure 2.13,

there is a significant rise in the convergence rate of the algorithm during the first 10,000 time

slots of the training process; after that, the reward keeps increasing, but at a slower speed.

Finally, the algorithm converges to an optimal policy for the SU to determine operation

mode after 20,000 time slots when the reward is about 0.91.

In Figure 2.14, we show the efficiency of the proposed scheme compared with the

POMDP-based and myopic schemes under the effect of harvested energy. As can be seen
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from the figure, a larger harvested energy yields a higher reward, indicating that data are

protected better. The reason is that, if the SU can harvest more energy, it has a greater

chance to operate in transmission mode, and can transmit more data to the FC. Further-

more, the result of the proposed TLAC algorithm is better than the myopic one and a little

lower than the POMDP method. To explain this, in the myopic scheme, the SU makes

a decision on its working mode without considering the effect of this action on the future

reward. In particular, if the primary channel is found free via spectrum sensing, the SU

uses too much energy for data encryption to enhance data protection, which causes the

SU to stay in idle mode over many time slots due to limited remaining energy. Regard-

ing the POMDP-based solution, the SU is assumed to already have information about the

harvested energy model, which is hardly ever true in practice. As a result, by using value

iteration-based programming, we can compute all possible happening states and the corre-

sponding occurrence probabilities to find the optimal policy beforehand. Consequently, the

SU can predict the next state of the primary user and the upcoming harvested energy before

effectively distributing the energy over future time slots. Meanwhile, employing the TLAC

algorithm requires the SU to frequently interact with the environment to determine the

dynamics of the arrival of harvested energy, which can result in a locally optimal policy [1].

In particular, the SU makes decisions based on a predefined policy (i.e., local or immediate

consideration), which is updated at the end of every time slot, to improve future behavior

without needing to have any information about the environment’s dynamics.

Figure 2.15 illustrates the channel utilization by the SU for its data communica-

tions, computed as the ratio of the total number of successful data transmissions to the

total time slots in which the primary user is sensed as inactive. From the figure, we can

see that the primary channel is utilized more effectively when harvested energy eh,avg in-

creases. In addition, the proposed TLAC algorithm utilizes the free channel better than

the myopic scheme about 2% of the total successful transmissions. We can also see that

the POMDP technique provides an optimal solution to the problem of the operation mode

decision. However, the TLAC solution without requiring too much effort in mathematical

computation or prior information about the environment’s dynamics can provide the SU

with a locally optimal policy that almost reaches the result of the POMDP scheme, espe-

cially when the amount of harvested energy is large. This is because the SU can encrypt

data with a longer key size (e.g., Nk = 256) by utilizing extra energy in the battery when

the average harvested energy increases. Therefore, the policy would be updated to favor
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Figure 2.15: Channel utilization according to the harvested energy for different data pro-
tection schemes.
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Figure 2.16: The number of successfully transmitted data packets according to the harvested
energy for different data protection schemes.

the action that gives a better reward in the future.

Figure 2.16 depicts the total number of data packets transmitted from the SU to

the fusion center based on harvested energy under three different data protection schemes.

As can be seen from the figure, the SU can transmit more packets of data when using

the TLAC algorithm, compared to the myopic scheme. The reason is that the proposed
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Figure 2.17: Comparison among the proposed schemes and the myopic scheme, based on
harvested energy.

learning scheme can allocate the harvested energy more efficiently than the myopic one.

Consequently, the SU can operate in transmission mode in more time slots, and thus, can

transmit more encrypted data packets to the FC. Meanwhile, using the myopic scheme can

cause the SU to be inactive due to lack of energy for future use. For that reason, the

proposed TLAC framework can guarantee the security level, and can effectively utilize the

limited energy resource. More specifically, in Figure 2.17, we present the detailed number

of successfully transmitted data packets that are encrypted using the AES algorithm with

different key lengths. We can see from the figure that the total number of data packets

delivered under the TLAC algorithm is 10% higher than when using the myopic scheme,

and that the POMDP scheme can provide the SU with the greatest number of transmitted

packets. In particular, more packets are encrypted with longer key sizes (i.e., AES-192 or

AES-256) with a rise in the arrival of harvested energy.

Finally, we examine the performance of the proposed schemes by comparing them

with that of AES algorithms with fixed key length. In the fixed key length schemes, the SU

uses only one key size to encrypt data at each time step even when it has enough energy. In

Figure 2.18, the rewards under the proposed schemes and other schemes grow persistently

with the increment in the harvested energy. While the proposed approaches provide the

high average reward, the fixed encryption method with the shortest cipher key (AES-128)

shows the lowest security level. The reason is that the proposed methods can efficiently
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Figure 2.18: Reward comparison between the proposed schemes and the fixed key-length
schemes according to the harvested energy.
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Figure 2.19: The number of successfully transmitted data packets according to the harvested
energy, compared with the fixed key-length encryption methods.

allocate the energy to every time slot by estimating expected reward in the future time

slots. Meanwhile, the AES-128 algorithm always uses the lowest amount of energy for data

encryption, and thus, does not utilize the redundant energy in the SU’s battery to enhance

the security level as the arrival speed of the harvested energy increases.

On the other hand, the AES-256 uses maximum energy to encrypt data whenever

the energy is sufficient to increase data security. However, this action reduces the chance
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for the SU to operate in transmission mode, which leads to low successful transmissions,

as shown in Figure 2.19. From the figure, we can see that the proposed POMDP scheme

provides the SU with the highest channel utilization since the SU can transmit more data

packets in comparison to other methods. This is because the fixed encryption techniques do

not utilize the energy effectively for future use. Among those fixed encryption methods, the

AES-128 with lower energy consumption allows the SU to transmit more data packets than

the AES-192 and the AES-256, but provides the SU with the lowest reward. Consequently,

we can verify that the proposed schemes can ensure effective data communications between

the SU and the fusion center in terms of security level and channel utilization.

2.6 Conclusion

In this chapter, we present a CNN-based cooperative spectrum sensing and two

energy-efficient data protection schemes in CRNs, by which the SUs can effectively utilize

the primary channel under the constraint of limited harvested energy. We first design a new

CNN-based cooperative spectrum sensing method. In this approach, the CNN is trained

by using historical sensing data collected from secondary users under various environmental

conditions. At the beginning of each time slot, the SUs individually perform spectrum sens-

ing using an energy detection method, and then send the local decisions to a fusion center

to make a global decision about the state of the primary user. The proposed CBCSS can

increase the detection probability and remarkably reduce the sensing error, which can also

contribute to effective communications between the SUs and the fusion center. Regarding

the proposed data protection schemes, the SU determines its operation mode based on the

remaining energy and the sensing result considering the effect of this decision on future

time slots. By calculating the expected accumulated reward from the current time slot, the

SU can decide to stay in idle mode to save energy for future use, or operate in transmission

mode and transmit cypher data that are protected by using the AES algorithm with an ap-

propriate key length. We then present simulation results to evaluate the performance of the

proposed solutions, which show that the proposed schemes can guarantee energy-efficient

data communications in cognitive radio networks.
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Optimal Power Allocation for

Energy-efficient Data Transmission

Against Full-duplex Active

Eavesdroppers in Wireless Sensor

Networks

3.1 Introduction

Wireless sensor networks (WSNs) are increasingly being deployed to monitor many

sensitive and critical activities, and have become a promising solution to a wide range of

applications. Typically, a WSN may contain a large number of compact, low-cost, and low-

power wireless sensor (WS) nodes, which are connected through wireless channels to observe

some phenomenon of the environment [48]. Furthermore, WSNs are normally deployed in

unattended target areas; thus, the energy efficiency of WS nodes is always a crucial concern

in order to guarantee self-sustainability and the lifetime of the nodes with respect to the

energy required for operation, thereby having a significant impact on the performance of the

entire network [49]. One of the most effective ways to improve the network lifespan is to use a

small rechargeable battery integrated with an energy harvester to ensure energy autonomy,

and thus, enable long-term and maintenance-free operation of the WS nodes. Recently,

39
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wireless energy harvesting has become a promising technology for improving a battery’s

limited capacity and lifespan as renewable energy resources become available in many forms,

including solar energy [50], wind power [51], thermal energy [52], and electromagnetic energy

[53]. Therefore, it is essential to employ a self-sustaining scheme for energy autonomy in

WSNs. For example, Valera et al. [54] characterized various existing environmental energy

harvesting schemes that employ adaptive learning frameworks to achieve energy neutrality

and maximize network performance in WSNs. Besides, Akhtar and Rehmani [55] described

different efficient battery recharging techniques that not only extend the lifetime of a node

but can also provide extra energy for enhanced functionality of the node.

Among the different types of renewable energy, solar power is one of the most

common and effective energy resources in outdoor applications, and it can be scavenged

from sunlight by using photovoltaic materials (i.e., solar cells). However, the solar power

that can be harvested is highly dependent on environmental conditions like cloud, dust

on the cells’ surface, and illumination. In addition to solar power, radio frequency (RF)

energy harvesting has recently become a promising solution for wireless communications

networks due to the wide availability of radio sources (e.g., radio broadcasting towers, base

stations, WiFi networks, and even mobile phones), which are not limited by space or time.

An RF energy harvester can collect and convert radio signals into usable direct current

(DC) voltage [56]. Furthermore, a crucial advantage of RF energy harvesting in WSNs

is that a transmission from one WS node can provide power to all nodes that receive or

listen to the transmission [57]. For this reason, Lee et al. [18] proposed a method for a

primary wireless network to coexist with a secondary transmitter that harvests RF energy

from transmissions by nearby primary transmitters while opportunistically accessing the

licensed spectrum. The harvested energy is stored in a rechargeable battery with a finite

capacity, which is then used for subsequent transmissions. More importantly, it is possible

for a sensor node to integrate RF energy-harvesting modules with other energy-harvesting

solutions, such as solar cells, to utilize the ambient energy [58].

Along with the emergence of low-powered wireless sensor networks, there has been

growing consideration of wireless communications security [59]. The wireless signal, which

is transmitted through open, random access, and shared wireless media, is easily vulnerable

to malicious attacks by illegitimate users, such as data interception by an eavesdropper or

transmission disruption by a jammer [60]. In this respect, physical layer security techniques

in wireless networks have been widely studied as promising solutions to secure wireless
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data transmissions, especially against eavesdropping [61]. Recently, full-duplex (FD) radio

has become an emerging research topic for future wireless networks [62]. In contrast to

half-duplex transmission, FD technology allows a radio to simultaneously transmit and

receive information over the same frequency band at the same time, and thus, has the

potential to double spectrum efficiency [63]. Therefore, a lot of research has been conducted

considering the capability of FD communications, not only for spectral efficiency but also

for enhanced security [64, 65]. On the other hand, adversarial users may also deploy FD

technology to induce wireless security issues. To be specific, when operating in FD mode, an

active eavesdropper is capable of jamming while eavesdropping to degrade the achievable

transmission rate at the intended receiver [66]. To combat these issues, many existing

studies focus on maximizing the secrecy rate in the presence of a powerful eavesdropper. In

particular, Al-nahari [67] and Wu et al. [68] considered the effect of a massive multiple-input

and multiple-output transmission strategy on the network secrecy rate in the presence of a

multi-antenna FD eavesdropper. However, most of these works aimed to enhance network

security without considering the impact of the current decision on the future performance

of the network due to energy limitations.

Another important technology that has been increasingly used in WSNs is cog-

nitive radio, by which cognitive users (i.e. unlicensed users) can opportunistically access

licensed spectrum bands, solving the problems of spectrum scarcity and under-utilization.

Furthremore, sensor nodes equipped with a cognitive radio can benefit the networks by

increasing communications reliability and energy efficiency [11]. Thus, many studies in the

literature discuss the application of cognitive radio in wireless communications to overcome

the limitations of conventional WSNs [69,70].

Inspired by these works, we investigate an energy-efficient and secure data trans-

mission scheme against full-duplex active eavesdropper in a cognitive-aided wireless sen-

sor network with energy harvesting and full-duplex communication. In this network, the

eavesdropper opportunistically launches jamming attacks to further assist its eavesdropping

process. In addition, each sensor node is equipped with a finite-capacity battery that can be

recharged by both solar and RF energy harvesters. The legitimate destination with an FD

capability can simultaneously receive data from the source and send an interference signal

to the eavesdropper. The arrival of harvested energy at the sensor node and the jamming

activity of the eavesdropper are modeled as a Poisson point process and a Markov discrete-

time process, respectively. Moreover, one of the most energy-consuming components of a
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sensor node is the wireless radio. Thus, it is essential for the node to set the transmit power

to an appropriate level to effectively utilize its limited energy for communications. There-

fore, we propose an optimal power allocation scheme for energy-efficient data transmission

against FD active eavesdroppers to maximize the long-term secrecy capacity of networks

under energy constraints. With this scheme, the sensor nodes in the network need to carry

out cooperative spectrum sensing to decide whether the eavesdropper is conducting a jam-

ming attack or not; then, a sensor node assigned to data transmission can either stay idle

or transmit data to the destination using the appropriate transmit power. In particular,

the main contributions of this work can be summarized as follows.

• We investigate a new model for energy-efficient data transmissions in WSNs in the

presence of FD active eavesdroppers. In this model, the source node is powered by

solar and RF energy harvesters; the eavesdropper always listens to the legitimate

transmissions and opportunistically executes jamming attacks towards the legitimate

destination. Meanwhile, the destination can also employ its FD capability to degrade

the wiretap rate at the eavesdropper.

• We first formulate the problem of transmission security against FD eavesdropping as

the framework of a partially observable Markov decision process (POMDP), and then

use value iteration–based dynamic programming to find the optimal transmit power

decision policy for a sensor node in order to maximize its long-term secrecy rate within

the constraints of harvested energy.

• We further present another approach to solve the security problem by using a model-

free reinforcement learning framework, namely, an actor-critic algorithm. With this

approach, the sensor node directly interacts with the environment, and then, learns

the optimal transmit power decision policy from trial-and-error experience.

The remainder of this chapter is organized as follows. In Section 3.2, we provide

a literature review of related works. In Section 3.3, we present the system model and the

original security problem. In Section 3.4 and Section 3.5, we describe the optimal and sub-

optimal solutions to the security problem. In Section 3.6, we present the simulation results

to evaluate the performance of the proposed schemes. Finally, the conclusion is provided in

Section 3.7.
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3.2 Related Works

Conventionally, research work on physical layer security is usually with the as-

sumption of half-duplex transmission in which the security threats come from either eaves-

dropping or jamming at a time. One of the common approaches to combat eavesdropping

(or jamming) is to deploy multiple antennas in signal beamforming [71] (or in jamming-

aware decision fusion [23]). Besides multi-antenna techniques, other effective methods based

on artificial-noise injection are also widely applied. For example, Lin et al. [72] proposed a

generalized artificial noise scheme that allows injection of artificial noise into a legitimate

channel to improve the secrecy rate. Additionally, it is also possible to guarantee wire-

less security against eavesdropping by relying on external support from friendly nodes. An

example of this cooperative security is collaborative beamforming using multiple relays to

achieve confidentiality [73]. Zou et al. [74] also considered physical layer security in coop-

erative wireless networks and examined the best relay selection scheme to improve wireless

security against eavesdropping attacks.

On the other hand, many researchers have studied physical layer security regarding

FD transmission capability. In particular, Zheng et al. [75] studied the potential benefits of

an FD destination node simultaneously acting as a receiver and a jammer to enhance the

secrecy rate. The work in [76] investigated a cooperative mechanism in which the relays work

in FD mode to receive and forward data together with extra jamming signals. Mukherjee

and Swindlehurst examined potential countermeasures against an active eavesdropper that

intends to cause maximum disruption to the security of the main channel [77]. Tang et

al. [78] employed a hierarchical game framework to formulate the security problem when

facing a full-duplex active eavesdropper. More specifically, they investigated the optimal

strategies for both legitimate transmission and wiretap rate maximization.

Due to the stochastic property of wireless channels and energy harvesting, the

Markov decision process (MDP) and its variants have been used widely in solving stochastic

optimization problems in low-power wireless networks [79, 80]. However, most of existing

work assumes that the agent can obtain an accurate information about the environment’s

evolution, which is hardly true in practice. Therefore, the learning-based framework is a

better choice and has been widely employed in wireless networks recently, in which the

agent learns its optimal decision policy with no prior information about the environment’s

dynamics [81]. For example, Wei et al. [82] proposed an actor-critic learning algorithm for
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Figure 3.1: The considered system model. EH: energy harvesting.

efficient user scheduling and resource allocation in heterogeneous wireless networks powered

by hybrid energy.

Different from the existing work on physical layer security against FD eavesdropper

in wireless networks with energy harvesting, we propose two energy-efficient power allocation

schemes, with the purpose of maximizing the long-term network performance for both

deterministic and non-deterministic environment.

3.3 System Model

Wireless sensor networks are usually divided into clusters to increase energy ef-

ficiency and improve the scalability of the network [83]. Each cluster has a coordinator

(or cluster head) that is responsible for gathering the aggregated data from other sensor

nodes and sending it to the sink (or base station). An ideal cluster head is a node that has

higher energy and better capability than the other sensor nodes. We consider a cluster in a

WSN that consists of a cluster head, a hidden eavesdropper, and a number of sensor nodes.

In our scenario, the cluster head is powered by conventional power grid energy, while the

regular sensor nodes are powered by wireless energy sources, including solar power and RF

energy. Herein, we investigate energy-efficient and secure communications between one of

the regular sensor nodes and the cluster head in the presence of an active eavesdropper.

We denote a regular sensor node as S, the cluster head as D, and the eavesdropper as E,

as shown in Figure 3.1.

In this system, active eavesdropper E always tries to listen to the legitimate com-
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munications between sensor node S and cluster head D on a wiretap link that is assumed to

have channel gain hSE . In addition, E can also conduct jamming attacks opportunistically

to degrade the signal received at D. Regarding the jamming signal, we assume that the

jamming power is PE , and the jamming link gain is hED. However, the jamming process

also affects the eavesdropper due to self-interference, which is difficult to suppress entirely.

In this case, the self-interference link gain is denoted as hEE , and we use a linear coefficient,

η, as a self-interference attenuation factor.

For legitimate transmissions, we denote the gain of the signal link from sensor

node S to cluster head D as hSD, and the transmit power is PS . Moreover, the cluster

head is also assumed to have an FD capability to transmit and receive signal at the same

time. Therefore, it can send artificial noise to the eavesdropper to deteriorate its signal-to-

interference-plus-noise ratio (SINR) while receiving the desired data from the sensor nodes.

We denote the self-interference link gain and the jamming power at the cluster head as

hDD and PD, respectively. We also use the same linear coefficient η for the residual self-

interference at D. The channel coefficient takes into account both distance dependence and

shadow fading path loss. For simplicity, we will call the regular sensor node the source

and the cluster head the destination, when no ambiguity arises. We also assume that

the self-interference can be significantly suppressed, which means that the self-interference

coefficient is sufficiently small. Hence, the impact of the residual self-interference on the

received signal at the destination is controllable.

3.3.1 Cognitive-aided wireless sensor network

The eavesdropper is assumed to have a limited energy capacity, and thus, can-

not always execute jamming attacks while eavesdropping. Therefore, we use a two-state

Markov discrete-time process to model the full-duplex activity (i.e. a jamming attack) of

the eavesdropper, as depicted in Figure 3.2. We assume that the eavesdropper operates in

a time-slotted fashion, in which a time slot duration is denoted as T , and switches between

jamming and not jamming according to static probabilities. The state transition probabil-

ities are denoted as Pij : i, j ∈ {J, J̄}, where J and J̄ represent jamming and not jamming,

respectively. Moreover, from the security point of view, the legitimate nodes need to adapt

to the jamming attack’s dynamics by exploiting a cognitive capability and automatically

modifying their parameters.
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Figure 3.2: Eavesdropper’s jamming attack model.
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Figure 3.3: A time-frame structure for the cognitive operation of the system.

The cognitive operation proceeds as shown in Figure 3.3. At the beginning of each

time slot, the cluster head directs all sensor nodes in the cluster to perform local spectrum

sensing separately to detect a jamming signal on a selected channel. In response, each

sensor node senses the presence of a jamming signal on the considered channel by using

an energy detection technique [84], and then sends the outcome to the cluster head. This

process consumes τs seconds, 0 < τs < T . We assume that the node always has enough

energy for the sensing process, which includes local spectrum sensing and reporting the

outcome to the cluster head, and that S always has data that it needs to send to D. The

energy consumption for the sensing process in each time slot is assumed to be fixed at Es

packets of energy. At cluster head D, which is equipped with a fusion center, the local

sensing data are combined using a certain fusion rule (e.g., soft combination scheme [85])

to decide the jamming state of the eavesdropper. The final decision on jamming activity is

then broadcast to all nodes in the cluster; this process costs τcss seconds. The performance



Chapter 3: Optimal Power Allocation for Energy-efficient Data Transmission Against
Full-duplex Active Eavesdroppers in Wireless Sensor Networks 47

of the cooperative sensing scheme can be evaluated by the probability of detection (Pd) and

the probability of false alarm (Pf ). The former metric refers to the probability that the

presence of a jamming signal is detected correctly, which is given by

Pd = Pr
(
H

(t)
J = J |J

)
(3.1)

where H
(t)
J denotes the state of the jamming signal as informed by spectrum sensing at time

instant t. The latter metric is the probability that the sensing result indicates the presence

of a jamming signal when it is actually not there, which is given by

Pf = Pr
(
H

(t)
J = J |J̄

)
(3.2)

In addition, every sensing method is developed with the purpose of keeping as low a number

of false alarms as possible while guaranteeing a high detection rate [86]. Moreover, we

assume that these metrics are available at the cluster head.

Based on the sensing result, if there is no jamming attack, the channel is assigned

to a sensor node for data transmission. Therefore, we are going to investigate an optimal

transmit power decision policy for secure data transmissions between one sensor node (i.e.

the source) and the cluster head (i.e. the destination) against a hidden active eavesdropper.

To be more specific, based on the sensing results and prior information about the arrival

of harvested energy, as well as about the jamming attack model, the source can either stay

idle to save energy or transmit data to the destination using an appropriate transmit power

during the transmission time of the time slot, Ttr. In the meantime, the destination will

also try to jam the eavesdropper with artificial noise.

3.3.2 Energy arrival models

Solar energy harvesting

The legitimate source node, S, is assumed to have a limited-capacity battery, Ebat,

which is constantly recharged by a solar energy harvester; thus, the source can harvest solar

energy and perform other operations simultaneously. Although the amount of harvested

energy may vary for many reasons, we can always estimate the average number of energy

packets that the nodes can harvest in a time slot. We consider a practical case, where

the arriving harvested energy packets, eh, during a short time interval follow a Poisson

distribution with mean Eh,avg, as investigated in [35]. In particular, the number of energy
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packets that the source can harvest during the tth time slot is given as

e
(t)
h ∈ {e1, e2, · · · , eξ} (3.3)

where 0 < ei < Ebat, i ∈ {1, 2, · · · , ξ}; and the cumulative distribution function (CDF) is

given as

F
(
e

(t)
h ;Eh,avg

)
=

e
(t)
h∑
n=0

e−Eh,avg
(Eh,avg)

n

n!
(3.4)

We assume that the source node always has enough energy to carry out basic operations

(i.e., sending and receiving control signals, or activating the energy harvesting devices).

Therefore, we further define an energy threshold, Eth, which could be used to determine the

operation mode of the sensor node. To be specific, if the current energy level in the battery

of the node is lower than the threshold, it stays idle and waits for more harvested energy.

Otherwise, it can send data to the destination using a suitable number of energy packets.

For simulation purposes, the maximum value of harvested energy can be approximately

determined if its CDF is close enough to 1.

RF energy harvesting

Source node S is also equipped with an RF energy harvesting module (as a single

system on chip) that consumes little power but supplies extra energy to the system by

extracting DC power from received electromagnetic waves [87]. To reduce software com-

plexity, S is assumed to have a single radio for a WSN scenario, which means that S can

only use one radio for both RF energy harvesting and communicating. One major lim-

itation of harvesting energy from RF resources is that RF power rapidly decreases over

distance, which results in low available power for harvesting. Many measurements have

shown that the power densities of a typical RF energy harvester range from 0.1µW/cm2 to

1mW/cm2 [55,56]. We assume that the source can harvest RF energy mostly from adjacent

sensor nodes and the eavesdropper, as illustrated in [18]. Furthermore, the global informa-

tion of the cluster (e.g. channel gain, node positions, and transmit power) are available at

the cluster head, and thus, can be available to any node in the cluster. By carrying out RF

energy harvesting, source S can obtain additional energy and increase the probability of

detecting the jamming signal produced by the eavesdropper, particularly when S harvests

RF energy during the whole slot duration (after carrying out spectrum sensing).
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The RF-harvested energy packets in a time slot, denoted as e
(t)
rf , are assumed to

be independent across time slots. We define an energy harvesting threshold, ε, to determine

the number of RF energy packets that can be harvested in a particular time slot. At the

tth time slot, if the received power is too small to activate the energy harvesting circuit,

the harvested energy is assumed to be negligible. Hence, the probability of harvesting e
(t)
rf

energy packets from RF sources is defined as

Pr(e
(t)
rf ) =

1, e
(t)
rf ≥ ε

0, otherwise
(3.5)

Regarding the jamming activity of E, if the transmit power of the eavesdropper is PE , the

total number of RF energy packets that can be harvested from the jamming signal during

duration Ttr is given as follows [18]:

e
(t)
rf = ρTtrPE |hSE |2 (3.6)

where ρ is harvesting efficiency. It is worth noting that the jamming power of the eavesdrop-

per is assumed to be high enough for deteriorating the legitimate signal at the destination.

Furthermore, the distance between the eavesdropper and the sensor as well as among the

sensors in the cluster are not too far, and thus, the signal attenuation is acceptable and

controllable. Typically, RF energy harvesting efficiency is between 50% and 75% over a

100-meter range of input power [57]. And we assume that the RF energy harvested from

the jamming signal of the eavesdropper is more dominant than that of the sensor nodes. In

this work, solar energy is the main power supply of the source node, and for this reason,

it is important to note that we use the word harvested energy instead of solar-harvested

energy throughout this chapter for simplicity.

3.3.3 Full-duplex secrecy capacity

We assume that the destination can only decode the legitimate signal from the

source when there is no jamming attack from the eavesdropper. Besides, the global channel

state information is available to all nodes in the system at the beginning of each coherence

interval (i.e. a time slot). We also assume that the source and destination are fully co-

operative, and any data transmission from eavesdropper E to source S and destination D

could allow them to estimate the required channel amplitude responses from S and D to
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E via reciprocal characteristics. Furthermore, as the destination is provided with electrical

energy by the traditional power grid, it always has enough energy to transmit and receive

data. As a result, the SINR of the received signals at destination D and eavesdropper E

are given as

γD =
PS |hSD|2

ηPD|hDD|2 + σ2
w

(3.7)

and

γE =
PS |hSE |2

PD|hDE |2 + σ2
w

(3.8)

where η is the coefficient of self-interference, and σ2
w is white Gaussian noise power, which is

assumed to be the same at D and E. Taking into account the path-loss component, we have

|hXY |2 = gXY d
−ζ
XY , X ∈ {S,D}, Y ∈ {D,E}, where ζ is the path-loss exponent, dXY is the

distance between the nodes, and gXY is an exponentially distributed random variable [64].

By letting ΓXY = PX |hXY |2
σ2
w

, the SINR at D and E, respectively, can be rewritten as

γD =
ΓSD

ηΓDD + 1
(3.9)

and

γE =
ΓSE

ΓDE + 1
(3.10)

By applying the Shannon capacity formula [88], we can obtain the transmission

rates (bits/sec/Hz ) at destination D and eavesdropper E, respectively, as

RD = log2(1 + γD) (3.11)

and

RE = log2(1 + γE) (3.12)

The secrecy rate can be defined as the difference between the rates of D and E:

RS = [RD −RE ]+

= max

(
log2

(
1 + γD
1 + γE

)
, 0

) (3.13)

Above all, the primary purpose of this work is to find an optimal transmit power

decision policy for source S to maximize the secrecy rate, as follows:

max
PS

RS

subject to 0 ≤ PS ≤ PmaxS

(3.14)

where PmaxS is the upper bound of the transmit power that the source can use to transmit

data to the destination without causing it to be inactive due to lack of energy.
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3.4 Optimal Power Allocation Scheme for Energy-Efficient

Data Transmission Against FD Eavesdropper

In this section, we introduce an optimal transmit power decision policy for the

source in order to maximize the secrecy rate based on prior information about the arrival

of harvested energy and about the jamming activity. In particular, at the beginning of each

time slot, after performing spectrum sensing, the source will send the local sensing result

to the destination as well as information about its current energy level. The destination

(i.e. the cluster head), with its better computation capability, will make the decision on

transmit power based on the information, and feeds the decision back to the source via

the control channel. To be more specific, if the source does not have enough energy for

data transmission, or the sensing result indicates the existence of a jamming attack on the

channel of interest, the source operates in RF mode to harvest energy from RF signals and

waits for more energy from the solar harvester. Otherwise, it changes to data transmission

mode and uses a suitable transmit power to maximize the expected secrecy rate in the

long run. The transmit power decision policy problem is first formulated as the framework

of a partially observable Markov decision process [89] in which the effect of the current

time slot’s decision on future time slots is considered, and it is then solved by using value

iteration–based dynamic programming.

3.4.1 Markov decision process

The Markov decision process is usually defined as a tuple 〈S,A,P, ϕ〉, where S is

the state space, and A is the action space; P : S× A 7→ S is the state transition function,

and ϕ : S× A 7→ R is the reward function. We define the system state in the tth time slot

as s(t) =
(
e

(t)
r,S , µ

(t)
E

)
∈ S, where e

(t)
r,S is the remaining energy of the source, and µ

(t)
E is the

probability (also called the belief ) that E is not conducting a jamming attack against D

in that time slot, µ
(t)
E = Pr(J̄). Furthermore, e

(t)
r,S and µ

(t)
E are updated at the end of the

time slot based on the selected action and the observations. We define the set of actions as

A = {0, etr1, etr2, · · · , etrψ}, where 0 < etr1 < · · · < etrψ < Ebat. At time instant t, source

S uses finite packets of energy, e
(t)
tr,S ∈ A, to transmit data to the destination based on the

sensing result and the current system state. It is worth noting that the action e
(t)
tr,S = 0

indicates that the source is operating in RF mode.
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We denote as R(s(t), e
(t)
tr,S) the reward achieved at the end of the tth time slot when

the source is in state s(t) taking action e
(t)
tr,S , which can be calculated as

R
(
s(t), e

(t)
tr,S

)
= max

(
log2

(
1 + γ

(t)
D

1 + γ
(t)
E

)
, 0

)
(3.15)

where γ
(t)
D and γ

(t)
E are the temporal SINR at the destination and the eavesdropper, respec-

tively, in the tth time slot, respectively. SINR can be calculated by using Equation (3.9) and

Equation (3.10) with a little modification in transmit power. More specifically, the transmit

power of a node is computed using transmit energy e
(t)
tr,X and transmission duration Ttr, as

follows:

P
(t)
X =

e
(t)
tr,X

Ttr
(3.16)

where X ∈ {S,D}.

The main objective of this work is to find the optimal transmit power policy for

the source in the tth time slot to maximize the accumulated reward from this time slot,

which is described as follows:

e
∗(t)
tr,S = arg max

e
(t)
tr,S∈A

{ ∞∑
k=t

βk−tR
(
s(k), e

(k)
tr,S

)
|s(t)

}
(3.17)

where 0 ≤ β ≤ 1 is the discount factor, which signifies the effect of the future rewards on

the current time slot.

3.4.2 Value iteration–based problem solution

In this section, we present the decision policy for the tth time slot with the obser-

vations and transition probabilities to draw the immediate reward that is received at the

end of the time slot, R(s(t), e
(t)
tr,S), and to update the system state for the next time slot,

s(t+1), as follows.

Case 1

The sensing result indicates the presence of a jamming signal on the channel with

probability

Pr
(
H

(t)
J = J |µ(t)

E

)
= µ

(t)
E Pf + (1− µ(t)

E )Pd (3.18)
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The source trusts this result, and does not transmit data to the destination. Instead, it

performs RF energy harvesting during the remainder of the time slot (i.e. e
(t)
tr,S = 0). In

this case, there is no reward: R(s(t), e
(t)
tr,S = 0) = 0. The remaining energy of the battery

that can be used for the next time slot is updated as follows:

e
(t+1)
r,S = min

(
e

(t)
r,S + e

(t)
h,S + e

(t)
rf , Ebat

)
(3.19)

with the transition probability given as

Pr
(
e

(t+1)
r,S |e(t)

r,S , e
(t)
tr,S = 0

)
= Pr

(
e

(t)
h,S

)
(3.20)

where Pr(e
(t)
h,S) is the probability that the source can harvest e

(t)
h,S packets of solar energy in

the tth time slot. The system state is updated based on the following observations.

Observation φ1 The RF energy harvested in the time slot is less than a pre-defined

threshold, e
(t)
rf < ε, which means there is a false alarm about the jamming attack, with

probability

Pr(φ1) = µ
(t)
E Pf (3.21)

On this occasion, because the harvested energy from the RF signal is too little, we assume

it is equivalent to zero packets of energy. The belief that the eavesdropper does not execute

a jamming attack in the next time slot is given as

µ
(t+1)
E = PJ̄ J̄ (3.22)

Observation φ2 The RF harvested energy is greater than the energy threshold, e
(t)
rf ≥ ε,

which shows that the sensing result is correct, with probability

Pr(φ2) = (1− µ(t)
E )Pd (3.23)

The belief that there will be no jamming attack in the next time slot is given as

µ
(t+1)
E = PJJ̄ (3.24)

Case 2

The sensing result shows that the eavesdropper is listening to the legitimate trans-

missions passively, with probability

Pr
(
H

(t)
J = J̄ |µ(t)

E

)
= µ

(t)
E (1− Pf ) + (1− µ(t)

E )(1− Pd) (3.25)
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There are two possible situations:

(i) the source node does not have enough energy for data transmission, so it carries

out RF energy harvesting and waits for more energy from the solar harvester (i.e.

e
(t)
tr,S = 0);

(ii) the minimum required energy for data transmission is satisfied (e.g. e
(t)
r,S > etr1), and

thus, the source uses a suitable number of energy packets to transmit data to the

destination (e
(t)
tr,S > 0).

In the first situation, the source does not transmit data to the destination. There-

fore, no reward is achieved: R(s(t), e
(t)
tr,S = 0) = 0. The remaining energy for the next

time slot, e
(t+1)
r,S , is updated using Equation (3.19) with the transition probability given by

Equation (3.20).

Observation φ3 RF energy is less than the threshold, indicating that the sensing result

is correct, with probability

Pr(φ3) = µ
(t)
E (1− Pf ) (3.26)

The probability that the channel will be free of a jamming signal in the next time slot is

updated by using Equation (3.22).

Observation φ4 RF energy is greater than the threshold, which means that the jamming

attack was wrongly determined, with probability

Pr(φ4) = (1− µ(t)
E )(1− Pd) (3.27)

The probability that there will be no jamming attack in the next time slot is updated based

on Equation (3.24).

Regarding the second situation, the source uses a finite number of energy packets

to transmit data to the destination. The destination also transmits an interference signal

against the eavesdropper. The remaining energy of the source for the next time slot is

e
(t+1)
r,S = min

(
e

(t)
r,S + e

(t)
h,S − e

(t)
tr,S , Ebat

)
(3.28)

with transition probability

Pr
(
e

(t+1)
r,S |e(t)

r,S , e
(t)
tr,S > 0

)
= Pr

(
e

(t)
h,S

)
(3.29)
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The reward and the belief at the source are updated according to the acknowledgement

(ACK) signal fed back from the destination after finishing the transmission, as described

below.

Observation φ5 The destination receives the information from the source, and then sends

an ACK to the source confirming the transmission was successful. The probability that state

J̄ of the eavesdropper in the current time slot was identified correctly from the sensing result

is given by

Pr(φ5) = µ
(t)
E (1− Pf ) (3.30)

The belief for the next time slot is also given in Equation (3.22). Then, the reward for this

case is the secrecy rate, which is

R
(
s(t), e

(t)
tr,S |ACK

)
= log2

(
1 + γ

(t)
D

1 + γ
(t)
E

)
(3.31)

Observation φ6 The destination cannot decode the information from the source, so it will

send a negative ACK, which means misdetection about the presence of a jamming signal,

with probability

Pr(φ6) = (1− µ(t)
E )(1− Pd) (3.32)

Thus, no reward is achieved: R(s(t), e
(t)
tr,S |ACK) = 0. The belief that the channel will be

free of a jamming attack in the next time slot is calculated with Equation (3.24).

Based on those observations, the problem over the optimal transmit power in

Equation (3.17) can be rewritten as follows:

e
∗(t)
tr,S = arg max

e
(t)
tr,S∈A



∞∑
k=t

βk−t ×
∑

φi∈e
(k)
tr,S

Pr(φi)

×
∑
e
(k+1)
r,S

Pr
(
e

(k+1)
r,S |e(k)

r,S , φi

)
× R

(
s(k), e

(k)
tr,S |φi

)
|s(t)


(3.33)

The final decision to maximize the secrecy rate can be found by solving Equation (3.33)

using value iteration–based dynamic programming [42]. The flowchart of the proposed

POMDP-based power decision scheme is given in Figure 3.4.
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Figure 3.4: The flowchart of the proposed POMDP-based power decision scheme.

3.5 Actor–Critic Learning Framework for Energy-Efficient

Data Transmission Against FD Eavesdropper

In the previous section, we presented a POMDP-based solution to the problem of

power allocation on the assumption that the system has prior information about both the

arrival of harvested energy and the jamming attack probabilities. However, it is not easy

to know the environment’s dynamics in advance, and more than that, the value iteration

method requires complex and time-consuming computations. For this reason, in this section,

we propose a model-free reinforcement learning framework, namely, an actor-critic approach,

to solve the MDP problem. One of the advantages of this learning algorithm over the

POMDP approach is that it does not require prior information about the environment’s

dynamics. This learning process also benefits from less formulation and computational

effort. Using this method, the system learns the dynamics of the harvested energy by directly

interacting with the environment. Therefore, we are going to present the implementation

of a classical actor-critic learning framework to solve the MDP problem formulated in the

previous section with the same state space S and action space A.
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Figure 3.5: An actor-critic learning framework. TD: temporal difference.

Conventionally, an actor-critic architecture consists of three main elements [90]:

an actor, which is a reference to a learning policy; a critic, which refers to a learning state-

value function; and an environment, as illustrated in Figure 3.5. In the tth time slot, the

source deploys an action, e
(t)
tr,S ∈ A, that is decided by the cluster head (i.e. the agent) based

on the current state, s(t) ∈ S, and policy π, which is defined by using a softmax function as

follows [1]:

π(s(t), e
(t)
tr,S) =

eq(s
(t),e

(t)
tr,S)∑

a∈A
eq(s

(t),a)
(3.34)

where q(s(t), e
(t)
tr,S) is the value at time step t of the modifiable policy parameters of the

actor, indicating the preference for selecting action e
(t)
tr,S when in state s(t). This action

causes the system to transit to a new state, s(t+1), with transition probability

Pr(s′ ∈ S|s(t), e
(t)
tr,S) =

1 if s′ = s(t+1)

0 otherwise
(3.35)

and to return an immediate reward, R(s(t), e
(t)
tr,S), which can be calculated by using Equation

(3.15).

The state-value function of the critic component is the total discounted reward
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from the current time slot when the current state is s, which is given by [1]:

V (s) = R(s, π(s)) + β
∑
s′∈S

Pr(s′|s, π(s))V (s′) (3.36)

where β is the discount factor. The main goal of the actor-critic learning algorithm is to

find the optimal policy, π∗, for the source to maximize this state-value function, and the

problem in Equation (3.17) can be rewritten as

π∗(s) = argmax
etr,S∈A

{
R(s, etr,S) + β

∑
s′∈S

Pr(s′|s, etr,S)V (s′)

}
(3.37)

where Pr(s′|s, etr,S) is the transition probability from state s to state s′ after taking action

etr,S , which is the transmit power of the source.

At the end of the time slot, the critic criticizes the action executed by the source

based on a temporal difference (TD) error, which refers to the difference between the left

side and the right side of the Bellman equation [1], as follows:

δ(t) = R(s(t), e
(t)
tr,S) + βV (s(t+1))− V (s(t)) (3.38)

It then uses this TD error to learn the state-value function associated with the system’s

current state, which is

V (s(t))← V (s(t)) + αc · δ(t) (3.39)

where αc is a critic-positive step size. The actor also updates the policy by using the TD

error as follows:

q(s(t), e
(t)
tr,S)← q(s(t), e

(t)
tr,S) + αa · δ(t) (3.40)

where αa is an actor-positive step size. The convergence rate of the algorithm is depen-

dent on both αc and αa, which are differently designed based on various applications and

empirical research.

The learning procedure of the actor-critic algorithm for the source to choose the

optimal power for data transmission is detailed as follows. At the beginning of the tth

time slot, the source employs action e
(t)
tr,S based on the sensing result, remaining energy

e
(t)
r,S , and the stochastic policy, π(s(t)). As described in the previous section, the source

can operate in RF mode to harvest RF energy from radio signals and then waits for more

harvested energy from the solar harvester (i.e. the transmit power is e
(t)
tr,S = 0), or it can use

an appropriate number of energy packets (e
(t)
tr,S > 0) to transmit data to the destination.
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The instant reward, R(s(t), e
(t)
tr,S), and the next state of the system, s(t+1), corresponding

to each action are obtained based on the observations that are presented in the POMDP-

based scheme. Since the actor-critic algorithm finds the decision policy from a practical

learning process, it could converge to the locally optimal policy [91]. However, by using the

actor-critic solution, we do not need to compute the state transition probabilities based on

the probabilities of harvested energy to find the optimal action offline, as in the POMDP

approach. It is worth noting that if we set the value of the discount factor to zero (β = 0) in

both the POMDP-based approach and the actor-critic algorithm, the problem is equivalent

to the myopic scenario, by which the agent only needs to maximize the secrecy rate in the

current time slot without considering the effect of the present action on future rewards.

The learning process of the proposed actor-critic algorithm for the power decision policy is

summarized in Algorithm 1.

3.6 Simulation Results

3.6.1 Simulation setups

In this section, we present numerical simulation results to demonstrate the effi-

ciency of the proposed POMDP and actor-critic schemes for energy-efficient data trans-

mission against active eavesdroppers in WSNs. For the transmission links, all the wireless

channels are modeled based on Rayleigh flat fading, and path-loss exponent ζ is set to 3.5.

Regarding RF energy harvesting, we set the harvesting efficiency at ρ = 0.5. For the self-

interference links at D and E, we assume the expectations of the link gains are normalized,

and hence, the received signals depend mostly on the coefficient of self-interference. The

legitimate transmit power at the source node ranges from 10mW to 50mW . In our simula-

tion, we fixed the locations of the source and the destination at coordinates (0, 0) and (50, 0),

respectively (distances in meters). We verified the performance of the proposed schemes

over 30,000 time slots, and the final results were obtained by averaging 10 independent runs.

Unless otherwise presented, the main simulation parameters for the problem in this work

are shown in Table 3.1. For analytical convenience, the jamming power of the destination

(or of the eavesdropper) is fixed at 50mW . Furthermore, when using actor-critic algorithm,

we need to approximate the continuous-valued states and actions of the studied problem in

this work with a finite number of discrete values. Therefore, the remaining energy and the
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Algorithm 1 Actor-critic learning procedure for the transmit power decision policy at the

source
Input: S, A, β, αa, αc, PJJ̄ , PJ̄ J̄ , HJ , Pd, Pf , PD, PE , Es, Ebat, Eh,avg, Eth, Ttr, η.

Output: transmit power decision policy π∗(s)

1: Define a set of finite states, S = {(er,S , µE) : 0 < er,S ≤ Ebat, 0 < µE < 1}, in which each

state represents the remaining energy of the source and the belief that the eavesdropper

does not conduct jamming attack.

2: Define a set of finite actions, A = {etr,S : 0 ≤ etr,S ≤ Etr,max}, in which each action

represents the energy consumption for data transmission, and Etr,max is the maximum

transmit power of the source.

3: Determine the number of time slots for training, N .

4: Define a set of finite solar energy values and calculate the corresponding probabilities,

with Equation (3.3) and Equation (3.4); then, generate an array of harvested energy

values with size N .

5: Initialize state-value function V (s) and policy π(s, etr,S), ∀s ∈ S, ∀etr,S ∈ A.

6: repeat

7: At time step t, specify the current system state, s(t) = (e
(t)
r,S , µ

(t)
E ).

8: Choose an action, e
(t)
tr,S ∈ A, according to the initial policy when considering the

sensing result and the remaining energy.

9: if e
(t)
tr,S = 0 then

10: perform RF harvesting

11: else

12: transmit data to the destination

13: end if

14: Calculate immediate reward R(s(t), e
(t)
tr,S) and update system state s(t+1) based on the

observations.

15: Compute TD error δ(t) with Equation (3.38).

16: Update state-value function V (s(t)) with Equation (3.39).

17: Update the tendency to select an action, q(s(t), e
(t)
tr,S), and policy π(s(t), e

(t)
tr,S) with

Equations (3.40) and (3.34).

18: until convergence or t = N .

19: Return final policy π∗(s) = arg max
etr,S∈A

{π(s, etr,S)}.
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Table 3.1: Simulation parameters

Notation Description Value

Ebat Battery capacity of the source (packets) 100

Es Energy consumption for local spectrum sensing and sending
the outcome to the cluster head (packet)

1

Etr,max Maximum transmit power of the source (packets) 50

Eh,avg Average harvested energy (packets) 10

Eth Energy threshold (packets) 3

PJJ̄ , PJ̄J Transition probabilities between states J and J̄ of the jam-
ming model

0.2

Ttr Transmission duration (seconds) 0.2

η Coefficient of residual self-interference 10−9

σ2
0 Background noise power (dBm) −80

β Discount factor 0.9

αa, αc Actor and critic step-size parameters (0.1, 0.1)(
e

(0)
r,S , µ

(0)
E

)
Initial state of the system (1, 0.1)

transmit power at the source are quantized into L1 = 100 and L2 = 10 levels, respectively,

in the simulation. We set the value of the desired global probability of detection at Pd = 0.9,

and probability of false alarm at Pf = 0.1. It is worth noting that one energy packet is

equivalent to 0.2mJ . In the following simulation results, the performance of the proposed

schemes is compared with the myopic scheme, under which the decision is only made for

the current time slot to maximize the secrecy rate, as studied in [92] and in [93].

3.6.2 Performance evaluation

We first inspected the convergence rate of the actor-critic algorithm during the

learning process with different step-size parameters, αa and αc, based on the reward (i.e.

secrecy rate) computed every 1000 time slots. In this simulation, the position of the eaves-

dropper is fixed at coordinate (0,−75). It is worth noting that the convergence condition of

the proposed actor-critic algorithm is the convergence of the reward. During the training

process, we regularly computed the average reward after every batch of a thousand training

slots and then calculated the difference between two adjacent values, ∆R. In this work, the

convergence condition is defined as |∆R| < 0.005.
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Figure 3.6: Convergence of the proposed actor-critic algorithm with different values of
step-size parameters.

As can be observed from Figure 3.6, the average reward after each iteration of 1000

time slots increases significantly in the first 10,000 time slots of the learning process, and

then, the algorithm converges to the optimal policy, depending on the values of the actor

and critic learning rates. To be specific, with step-size values smaller than 0.1, the larger

step-size parameters provide the agent with better rewards and faster convergence speed.

Furthermore, the actor-critic algorithm tends to converge to the optimal policy after 30,000

time slots, which almost reaches the optimal value given by the POMDP-based solution.

From the figure, we can see that to keep increasing the step-size parameters does not provide

the system with better rewards. Instead, the algorithm may converge to a locally optimal

policy due to over fitting. Therefore, we choose the actor and critic step sizes as αa = 0.1

and αc = 0.1 for the actor-critic algorithm in other simulations.

In order to examine the system behavior for different locations of the active eaves-

dropper, we present the legitimate user’s secrecy rate and the wiretap rate of the eaves-

dropper when the eavesdropper moves along a straight line from (0,−75) to (50,−75), as

depicted in Figure 3.7. It is clearly shown that when the eavesdropper moves farther from

the source node, the wiretap rate drops significantly while the secrecy rate increases. The

reason is that when the eavesdropper moves from left to right, the source–eavesdropper dis-

tance increases while the eavesdropper–destination decreases. Consequently, the SINR at

the eavesdropper drops significantly. The figure shows that the secrecy performance of the



Chapter 3: Optimal Power Allocation for Energy-efficient Data Transmission Against
Full-duplex Active Eavesdroppers in Wireless Sensor Networks 63

0 10 20 30 40 50
Position of the eavesdropper

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

S
e
cr

e
cy

 r
a
te

 R
S

(b
it
s/

se
c/

H
z)

POMDP solution
Actor-critic solution
Myopic scheme

0.10

0.15

0.20

0.25

0.30

W
ir
e
ta

p
 r

a
te

 R
E

(b
it
s/

se
c/

H
z)

RE

RS

Figure 3.7: The legitimate user’s secrecy rate and the eavesdropper’s wiretap rate with an
active eavesdropper locating itself at different positions.

proposed schemes is better than the myopic scheme. Meanwhile, the difference among the

wiretap rates of the power allocation schemes is insignificant. This is because, when using

the proposed schemes, the source efficiently allocates the transmit power in each time slot

based on the information about the arrival of harvested energy and the jamming activity.

In the following simulations, only the numerical results for one location of the eavesdropper,

at coordinate (0,−75), are shown for the sake of simplicity.

In Figure 3.8 and Figure 3.9, we illustrate the effect of the source’s battery capacity

on the performance of the proposed solutions, compared with the myopic scheme, when the

average harvested energy is Eh,avg = 10. As can be seen from the figures, when the battery

capacity, Ebat, increases, source S can store more harvested energy in its battery, and thus,

it can transmit data with higher power, which results in a higher legitimate transmission

rate, RD. In addition, the transmission rates of the proposed algorithm dominate that of

the myopic scheme. The reason is that, in the myopic scheme, if there is no jamming signal

(based on the sensing result), S will use most of its energy for the transmission process in

the current time slot to maximize the transmission rate, without considering the effect of

this action on future rewards. However, due to the limitation of the available harvested

energy, using too much energy in a time slot can cause the source to become inactive in

many future time slots, which leads to lower transmission rates. On the other hand, the

two proposed solutions can guarantee the long-term performance of the system relying on

effective energy allocation for data transmission in each time slot.
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Figure 3.8: The legitimate user’s average transmission rate according to battery capacity
of the source.
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Figure 3.9: The legitimate user’s average transmit power according to battery capacity of
the source.

Similarly, in Figure 3.10 and Figure 3.11, we compare the performance of the power

allocation schemes under the effect of the harvested energy. As seen in the figures, a larger

amount of harvested energy provides the source with higher secrecy rates. Obviously, if S

can harvest more solar energy, it has more chances to operate in transmission mode, and it

can also transmit more data to the destination using higher transmit power. Furthermore,

the results of the POMDP and the actor-critic approaches are better than the remaining

scheme. To explain this, in the two proposed schemes, the source allocates power for
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Figure 3.10: Secrecy rate according to harvested energy.
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Figure 3.11: Total successful transmissions according to harvested energy. The result is
obtained from 1000 time slots.

the transmission process with awareness of the arrival of harvested energy during each

time slot and the status of the jamming activity. More specifically, in the POMDP-based

algorithm, the information about the arrival of harvested energy and about the model of the

jamming attack are assumed to be available; hence, the cluster head can compute all possible

situations and their corresponding probabilities to find the optimal policy beforehand. As

a result, the next state of the system is predictable, so the source can efficiently distribute

the energy over future time slots. Meanwhile, when using the actor-critic algorithm, the

source needs to regularly interact with the environment so it can learn the dynamics of
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Figure 3.12: The legitimate user’s transmission rate and the wiretap rate according to the
jamming power of the destination.
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Figure 3.13: The secrecy rate according to the jamming power of the destination.

the harvested energy, which can result in a locally optimal policy. Therefore, the legitimate

rate and the number of successful transmissions under the actor-critic scheme are lower than

those of the POMDP algorithm. One transmission in a time slot is considered successful if

there is no jamming attack in that time slot.

Figures 3.12 and 3.13 show the effect on the legitimate transmission rate, the

wiretap rate, and the secrecy rate of the transmit power that the destination uses to jam the

eavesdropper. As we can see from Figure 3.12, both the legitimate transmission rate and the
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wiretap rate decrease as the jamming power of the destination increases. Specifically, if the

destination does not send an interference signal against the eavesdropper (i.e. PD = 0), the

wiretap rate is remarkably high. In addition, when the jamming power of the destination

rises from 0mW to 20mW , the wiretap rate declines significantly while the secrecy rate

grows notably. This is because the wiretap rate decreases much faster than the legitimate

transmission rate. When the destination’s transmit power goes above 20mW , the effect

of the self-interference on the legitimate transmission becomes more apparent, and thus,

the secrecy rate starts to reduce gradually. More importantly, the secrecy rates in our

proposed solutions, which optimize the energy allocation for use in future time slots, are

better than under the myopic scheme. This is because the myopic scheme tries to maximize

the transmission rate by using more transmit power, which drains the source of energy to

be used in the future; hence, it has to stay inactive in the next few time slots.

We further investigate the joint impact of the jamming power of both the desti-

nation and the eavesdropper on the system reward. Figure 3.14 shows the estimate of the

system reward when the values of PD and PE are changed. In general, the average cumula-

tive rewards of the system decrease with the increase of PD or PE . Furthermore, when we

increase the destination’s jamming power from PD = 10mW to PD = 100mW , the system

rewards increase at first but decrease if PD keeps increasing. The reason is that higher PD

causes significantly low SINR at the eavesdropper, and subsequently, increases the secrecy

rate. However, when PD is too high, the effect of the self-interference on the received signal

at the destination cannot be neglected, which leads to a significantly low transmission rate

at the destination. The system rewards also fall if the eavesdropper arises its jamming

power to interfere with the destination. The reason is that the source might need to use

more power for data transmission to increase the secrecy rate, which might cause it to stay

inactive in many time steps due to the low energy level in its battery. From the figure, we

can see that there exists an optimum value for the destination’s jamming power, which is

located around the line PD = 20mW . At this point, the two proposed algorithms provide

the best rewards.

Figures 3.15, 3.16, and 3.17 demonstrate the security performance of the proposed

schemes with different coefficients of self-interference. In Figure 3.15, we show the transmit

power allocation at the source for different power allocation approaches. We can see that

the transmit power allocation under the myopic scheme does not change as the coefficient of

self-interference varies. Obviously, this scheme makes decisions on power allocation without
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Figure 3.14: The secrecy rate under different values of PD and PE .
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Figure 3.15: The legitimate user’s transmit power according to the coefficient of self-
interference.

considering the effect of self-interference. Therefore, when using the myopic scheme, the

source allocates the maximum transmit power to the transmission process. As a conse-

quence, the secrecy rate obtained with this scheme is lower than the proposed solutions, as

depicted in Figure 3.16.

On the other hand, with the POMDP-based and the actor-critic solutions, the

transmit power does not change much when the self-interference coefficient is sufficiently

small, because the impact of self-interference in these cases is negligible. However, when

the coefficient is large enough, for which the influence of self-interference on the destination,
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Figure 3.16: The secrecy rate according to the coefficient of self-interference.
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Figure 3.17: The wiretap rate according to the coefficient of self-interference.

as well as the eavesdropper, becomes a dominant factor, the transmit power of the source

under the two proposed solutions starts to increase remarkably. The aim of the increment

in the transmit power is to improve the secrecy rate, which is reduced sharply as the self-

interference coefficient increases. A similar situation can be observed for the wiretap rate

at the eavesdropper. The reason is that, when the coefficient of self-interference is small,

the wiretap rates at different coefficients are almost the same. Nevertheless, the growth

of the attenuation factor (beyond the value 10−8) makes the wiretap rate much smaller.
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Consequently, we can verify that the proposed POMDP-based solution and the actor-critic

algorithm can ensure energy-efficient data transmissions between the source (i.e. the sensor

node) and the destination (i.e. the cluster head) against a full-duplex active eavesdropper

in wireless sensor networks.

3.7 Conclusion

In this chapter, we present two energy-efficient power allocation schemes for data

transmission against a full-duplex active eavesdropper in a cognitive-aided wireless sensor

network. In this network, the sensor nodes can harvest energy from both non-RF and RF

resources, and the cluster head has the ability to use FD communications, which allows it

to transmit and receive signals at the same time. The eavesdropper can opportunistically

send a jamming signal to the destination while eavesdropping, and the cluster head can

interfere with this process by sending artificial noise against the eavesdropper. To secure

data in the presence of an active eavesdropper, the source first performs spectrum sensing to

determine whether the eavesdropper is acting passively or not, and a global decision about

the jamming activity is made by the cluster head. Along with the jamming state decision,

in each time slot, the cluster head also sends the power allocation policy to the source on

the control channel. Based on this policy, the source effectively allocates power for data

transmissions to maximize the long-term secrecy rate of the system under the constraint of

harvested energy. The simulation results show that our proposed solutions can effectively

enhance data secrecy and energy utilization when self-interference is sufficiently suppressed.
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4.1 Introduction

The tremendous growth in mobile devices and the rapidly increasing demands for

multimedia services have led to an issue of efficient resource allocation in wireless networks

due to the scarce availability of radio spectrum. At present, mobile networks are expected

to be deployed with extensively low-cost and low-power small-cell base stations (SBSs) to

enhance the overall performance of the system [94]. In wireless communications, different

real-time applications might use different encoding schemes according to their desired qual-

ity, and they thus generate different bandwidth requirements [95]. In small-cell wireless net-

works where the spectrum band is a scarce resource, spectrum efficiency become extremely

challenging due to the intensive characteristics of dense deployment and the stochastic prop-

erty of mobile users [96]. As a consequence, many solutions have been proposed to optimize

bandwidth allocation based on the different criteria of the network [97,98].

71
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Along with the challenges in spectrum management, energy-efficiency in green

communications has become one of the major concerns for network management, especially

in small-cell networks that are powered by ambient energy sources [99]. One of the prospec-

tive ways to enhance the self-sustainability of such a network is to equip the SBSs with

rechargeable batteries integrated with energy harvesting devices. This method can ensure

energy autonomy in the network by utilizing renewable energy to regularly recharge the

limited-capacity batteries of the SBSs [100]. Among various types of renewable energy,

solar power, harvested directly from sunlight, is considered the most common and effective

energy resource [101]. However, the capacity to generate solar power is highly dependent on

the environmental conditions, and may vary with time. Therefore, it is essential to attain

an efficient energy management policy to improve long-term network performance.

Many studies have addressed the problem of energy-efficient resource allocation

in small-cell networks. Conventionally, research on energy-efficient resource allocation in

mobile networks usually aims to balance the traffic load among the base stations in order to

enhance spectrum efficiency and energy conservation [102–104]. Xie et al. [105] studied the

energy-efficiency aspect of spectrum sharing and power allocation in heterogeneous cognitive

radio networks with femtocells. They proposed a gradient-based iteration algorithm to

obtain the solution to the energy-efficient resource allocation problem. In [106], the authors

investigated a joint service-pricing and bandwidth-allocation problem at the operator level

for energy efficiency in heterogeneous network deployment (e.g., composed of macrocells,

microcells, and femtocells). However, most of the existing work on resource allocation in

wireless networks assumes that the variations in traffic load are predictable, which is often

not true in wireless networks due to user mobility.

Since accurate information about traffic load and the arrival of harvested energy

is sometimes unavailable, researchers usually formulate stochastic optimization problems in

mobile networks as the framework of a Markov decision process (MDP) [80]. Afterwards,

the solution to the formulated MDP can be attained by making use of reinforcement learn-

ing (RL) approaches [107]. In reinforcement learning, the agent does not need to know

the environment’s dynamics in advance, and learns the optimal decision policy through

interactions with the environment [1]. For example, Wei et al. [82] proposed an actor-critic

algorithm to find an optimal policy for user scheduling and resource allocation in Het-

Nets powered by hybrid energy for the purpose of maximizing the energy efficiency of the

network. However, for conventional RL methods, it is a big challenge to solve problems
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with large state and action spaces. For this reason, deep reinforcement learning (DRL)

techniques have recently become more popular in solving optimization problems in wireless

communications. In DRL, deep neural networks (DNNs) serve as function approximators

(e.g., of the value function), and are used to learn the policy [108]. Yu et al. [109] proposed

a DRL algorithm to improve the total throughput of multiple networks by sharing time

slots among co-existing wireless networks.

To the best of our knowledge, there is little research using DRL methods for

resource allocation in wireless networks with energy-harvesting base stations. Therefore,

we propose an actor-critic deep learning framework for efficient resource allocation in dense

mobile networks, in which solar-power harvesters supply energy to the base stations. This

work aims to find the optimal user-association and bandwidth-allocation policy for downlink

data services in order to maximize long-term network performance. In particular, the

contributions of this work are as follows.

• A joint user-association and bandwidth-allocation problem for downlink data trans-

mission is proposed, considering the stochastic arrival of data requests and harvested

energy in the network. The base stations share the total system bandwidth, and utilize

the harvested energy for data transmission. The system reward is the overall satisfac-

tion ratio of the users in the network, and the goal is to maximize the accumulated

reward in the long run.

• The optimization problem is then reformulated as the framework of an MDP. We

attain the solution to the formulated MDP by employing an actor-critic learning

framework, which is a trial-and-error learning algorithm. Furthermore, we use DNNs

to approximate the policy function and the value function in the actor and the critic,

respectively. Specifically, the agent in our proposed algorithm evaluates the dynamics

of harvested energy and data requests in the network through interactions with the

environment to find the optimal decision-making policy, and thus, to maximize the

system reward.

The remainder of this chapter is structured as follows. Section 4.2 introduces

the system model and the problem formulation. Section 4.3 presents the actor-critic deep

learning algorithm to find the optimal user-association and bandwidth-allocation policy.

Section 4.4 presents a performance analysis of our proposed scheme through numerical

simulation results. Section 4.5 concludes the chapter.
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Figure 4.1: A mobile wireless network with energy-harvesting base stations.

4.2 System Model and Problem Formulation

4.2.1 System model

We consider a mobile wireless network consisting of K green base stations (GBSs)

integrated with energy-harvesting components (i.e., solar panels) and U mobile users that

are requesting data services from the network, as shown in Figure 4.1. In this network, the

GBSs are densely deployed within a macro cell and share the same spectrum band. We

assume that the GBSs communicate with a control center via backhaul connections with

perfect information exchange and that the controller can make intelligent resource allocation

decisions for the whole network in a centralized way. We focus on user association and

bandwidth allocation on network downlink. We denote the set of base stations and the set

of users as K and U , respectively. The system is assumed to operate over a time-slotted

basis, in which a time slot is denoted by t. For the sake of notation simplicity, the control

center is called the controller, and we use the words base station (BS) to represent the green

base stations. We also use the terms time slot and time step interchangeably.

The operation of the system proceeds as follows. At a given time step, each user

might issue data requests to the base stations with probability pr. Based on the available
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system bandwidth and the remaining energy of each BS, the controller first decides whether

to associate a user with a base station or not, then allocates bandwidth to the user for the

data service. The purpose of user association is to offload the traffic from the macrocell to

the small cells, and thus, enhance network performance in terms of high data rates and low

power consumption. We assume that each user can receive data service from only one base

station in a time slot. Let xk,j(t) ∈ {0, 1} denote the association variable between BS k ∈ K
and user j ∈ U in time slot t (i.e., xk,j(t) = 1 if user j is associated with BS k; otherwise,

xk,j(t) = 0). Hence, the number of users associated with BS k is given by

uk(t) =
U∑
j=1

xk,j(t) (4.1)

Regarding bandwidth allocation decisions, we define the total system bandwidth

as the number of channels that are available for data transmission in the context of this

work, as discussed in [110]. The purpose of bandwidth allocation is to determine the

optimal bandwidth that should be allocated to each base station to maximize the number

of users that can receive service from the network. For the sake of mathematical simplicity,

we assume that the BSs need one channel with a fixed transmission rate to establish a

connection and provide service to each user. Therefore, the total bandwidth required at

base station k in time slot t is also denoted by uk(t). Due to the limitation in frequency

resources, we further assume that the base stations schedule the allocated bandwidth for

the associated users by using a simple first-come-first-served mechanism. Let yj(t) ∈ {0, 1}
denote the bandwidth allocation variable for user j in time slot t (i.e., if user j is allocated

bandwidth for data service, yj(t) = 1; otherwise, yj(t) = 0). Hence the amount of bandwidth

allocated to the users at BS k is given by

bk(t) =
U∑
j=1

xk,j(t)× yj(t) (4.2)

where 0 ≤ bk(t) ≤ Bmax, and Bmax denotes the total system bandwidth. We define the

service time of each request as the number of time slots required to complete a transmission

using one channel, and this service time is assumed to follow an exponential distribution

with mean µs. We further consider the cell-sojourn time (the number of time slots a user

stays in a cell) as the deadline for each request, and we also approximate this deadline using

an exponential distribution with mean µd. It is important to note that the deadline for each
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request will be reduced by 1 (slot) after every time step, and that the base station will not

retransmmit if the request’s deadline reaches zero.

4.2.2 Problem formulation

Our target is to maximize the long-term performance of the system in terms of

customer satisfaction while ensuring energy conservation. We focus on evaluating the impact

of the amount of allocated bandwidth on the satisfaction degree. Furthermore, we assume

that the controller can perform perfect resource timing and scheduling, hence the problem

is formulated without considering the effects of time delays (e.g., channel access delay and

queuing delay) and packet losses in each time slot. For this purpose, we first define the

satisfaction of the users at base station k in time slot t as the ratio of the total allocated

bandwidth to the total required bandwidth, as follows:

SRk(t) =


bk(t)

uk(t)
if uk(t) > 0

0 if uk(t) = 0

(4.3)

where the condition (uk(t) = 0) indicates that no user is associated with base station k,

and thus, no user is served by the base station. The system reward at time t is the average

satisfaction ratio in the network, which can be computed as

R(t) =
1

K

K∑
k=1

SRk(t) (4.4)

where K is the number of base stations in the network. Eventually, the controller needs to

find an effective policy for user association and bandwidth allocation to maximize the ex-

pected long-term reward within the constraints of harvested energy and system bandwidth.

In our problem, the BSs are powered solely by solar energy-harvesting devices.

Each BS is equipped with a rechargeable battery with finite capacity Emax to store the

harvested energy. We denote the number of energy packets that BS k can harvest during

time slot t as

ehk(t) ∈
{
eh1 , e

h
2 , ..., e

h
ζ

}
(4.5)

In this work, ehk(t) is assumed to follow a Poisson point process with mean λe. Therefore,

the probability mass function of ehk(t) can be given as

ph(i) = Pr
[
ehk(t) = ehi

]
=
e−λe(λe)

i

i!
, i = 1, 2, . . . , ζ (4.6)
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It is worth noting that the information about the current energy level in each BS is reported

to the controller at the beginning of each time slot via the control channel. In this work,

the BSs use finite energy packets, denoted by e, to transmit data to the users using one

channel. We further denote the current energy level in the battery of BS k as ek(t), which

shows the temporal capability of transmitting data.

Due to the limitation in system bandwidth and the battery capacity of the base

stations, the controller should make intelligent decisions under the following constraints.

Unless otherwise denoted, the summations over base station index k and user index j

extend over all of K and all of U , respectively.

1. User-association constraint: one user can be associated with only one BS at a time.

Thus, we have ∑
k

xk,j(t) = 1 (4.7)

2. Bandwidth constraint: given a temporary system bandwidth, B(t) ∈ [0, Bmax], the

bandwidth allocated to the base stations should satisfy

∑
j

yj(t) ≤ B(t) (4.8)

3. Energy constraint: the total energy consumption at BS k for data transmission using

the allocated bandwidth should not exceed the current energy level of the BS, as

follows:

e×
∑
j

xk,j(t)× yj(t) ≤ ek(t) (4.9)

As a consequence, the satisfaction maximization problem in this work can be

written as:

max
X,Y

∞∑
t=0

ηtR(t)

s.t.
∑

k
xk,j(t) = 1∑

j
yj(t) ≤ B(t)∑

j
xk,j(t)× yj(t) ≤

ek(t)

e
xk,j(t) ∈ {0, 1}, ∀k ∈ K and ∀j ∈ U
yj(t) ∈ {0, 1}, ∀j ∈ U

(4.10)
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Figure 4.2: The agent-environment interaction in a decision-making process. Source:
Adapted from [1].

where X , [xk,j(t)]K×U is the user association matrix, Y , [yj(t)]1×U is the bandwidth

allocation vector, η ∈ [0, 1] is a discount factor that maps the future rewards to the current

time step, and
∞∑
t=0

ηtR(t) is the cumulative discounted rewards of the system. Since the

arrival of traffic requests and harvested energy packets is random, and while the system has

limited bandwidth resources, and each BS has a finite-capacity battery, the controller needs

to deploy an actor-critic deep learning algorithm to estimate the variations in the network

environment. As a consequence, the controller can find the optimal user-association and

bandwidth-allocation scheme to maximize the network performance in the long run.

4.3 Actor-Critic Deep Learning Framework

We reformulated the stochastic optimization problem of joint user association and

bandwidth allocation in mobile networks as the framework of a Markov decision process.

Since the arrivals of harvested energy and data requests are unknown, we employ a model-

free RL framework to find the solution to the formulated problem, in which the RL agent

learns the optimal decision-making policy via trial-and-error interactions with the environ-

ment.

4.3.1 Markov decision process

A standard RL model consists of an agent periodically interacting with an en-

vironment over time, as depicted in Figure 4.2. In an RL system, the agent learns how

to map environment states to a suitable action model, formally called a policy, through a
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trial-and-error learning process to maximize the accumulated sum of rewards. First, we

define the state space, the action space, and the reward function of the system. The state

space of BS k is denoted by

Sk = {(ek); ek ∈ {0, 1, . . . , Emax}} (4.11)

where ek represents the number of energy packets in the battery of the base station. The

state space of the system bandwidth is denoted by

SB = {(B);B ∈ {0, 1, . . . , Bmax}} (4.12)

where B is the available system bandwidth. Hence, the state space of the environment is

determined by the Cartesian product of SB and all Sk, as follows:

S = SB ×
K∏
k=1

Sk (4.13)

The decision-making process proceeds as follows. At the beginning of time slot t, the agent

observes state s(t) in state space S about the environment, and then chooses action a(t) in

action space A following a stochastic policy.

In our work, the network agent (i.e., the controller) decides whether to associate

a user with a base station and whether to allocate a radio channel to the user in each time

slot. Therefore, the action a(t) is set as

a(t) = {xk,j(t), yj(t)}∀k∈K,∀j∈U (4.14)

where xk,j(t) and yj(t) are the user-association variable and the bandwidth-allocation vari-

able, respectively. In particular, if no user is associated with BS k in time slot t (i.e.,∑
j xk,j(t) = 0), the base station has to stay inactive, and it waits for more harvested en-

ergy in the current time slot. Otherwise, the base station will transmit data to the users

using the allocated channels. At the end of the time slot, the base station reports the

information about the number of satisfied users and the current energy level in its battery

to the controller for network management.

Thereafter, the environment feeds back the immediate reward, R(t), which is de-

fined in Equation (4.4), to the agent, and transforms to a new state, s(t+ 1). The environ-

ment state in the next time slot, s(t+ 1) = {B(t+ 1), ek(t+ 1)}∀k∈K, is updated as follows.

The available system bandwidth that could be used in the next time slot is given by

B(t+ 1) = B(t)−
∑
j

yj(t) +Bre(t) (4.15)
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where Bre(t) denotes the bandwidth that is released at the end of the tth time slot. Mean-

while, the remaining energy in each BS is updated based on the following observations.

Observation 1

BS k serves no user in time step t (i.e., SRk(t) = 0), and thus, the base station

stays idle and waits for harvested energy from solar panels. The reason for this might be

due to the limitation in either the battery’s energy or the system bandwidth. The energy

level in the battery of BS k for the next time slot is updated as

ek(t+ 1) = min
(
ek(t) + ehk(t), Emax

)
(4.16)

Observation 2

If BS k receives a positive amount of bandwidth for data transmission (i.e., bk(t) >

0), the remaining energy in this base station for the next time slot will be

ek(t+ 1) = min
(
ek(t) + ehk(t)− e× bk(t), Emax

)
(4.17)

where e× bk(t) is the total energy consumption at BS k for transmitting data to the users.

Consequently, we aim to find the optimal action at the current time step to max-

imize the expected value of accumulated rewards, which is usually called the state-value

function, following a given policy. In our work, the state-value function is denoted as [1]

V π(s) = E

[ ∞∑
t=0

ηtR(t)|s(0) = s, π

]
(4.18)

where E[.] denotes the expectation, and π is the stochastic policy that maps the environment

state s to the probability of taking action a, π(a|s) = Pr(a(t) = a|s(t) = s). The final

purpose is to find the optimal policy, π∗, to maximize the discounted value function starting

from state s ∈ S, which satisfies the Bellman equation as follows [111]:

π∗(s) = arg max
π

{V π(s)} (4.19)

Conventionally, we can use value iteration–based dynamic programming [1] to find the

optimal decision policy for the MDP problem. However, this method heavily depends on

prior information about the environment’s variations, which is usually unknown in practice.

Furthermore, it is challenging to directly compute state values using the Bellman equation
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Figure 4.3: The structure of the actor-critic learning framework. TD error: temporal-
difference error.

in high-dimensional state space and action space. Therefore, we employ an actor-critic

algorithm to solve the MDP problem without requiring information about the environment’s

dynamics in advance. We additionally use deep neural networks to model the policy function

and the value function of the actor-critic agent so that the algorithm can work effectively

with large state and action spaces. Therefore, the proposed method is called the actor-critic

deep learning (ACDL) algorithm.

4.3.2 The actor-critic deep learning framework for user association and

bandwidth allocation in dense mobile networks

The actor-critic algorithm proposed in [112] aims to combine the strength of policy-

based methods [113] and value-based methods [114]. A typical actor-critic architecture is

composed of three elements: an actor, a critic, and the environment [111], as shown in

Figure 4.3. The actor frequently observes the environment state and generates actions

following a parameterized policy. The critic criticizes the actions selected by the actor

based on a parameterized value function and the rewards fed back by the environment.

The output of the critic is the estimated value of the environment state, which is then

used to compute the temporal-difference (TD) error. Consequently, both the actor and the

critic will update their functions (i.e., the policy function and the value function) using the

TD error. The algorithm repeats this procedure until eiher convergence or completing the

training iterations.
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Figure 4.4: The structure of the value DNN with one hidden layer, which contains HV

neurons.

In particular, we adopt two sequential models of a DNN to approximate the policy

and the value function in the actor and the critic, respectively. More specifically, policy

π and value function V π(s) can be represented by πθ(s, a) and Vω(s) using DNNs with

two different sets of parameters: θ and ω, respectively. These parameters are initialized

randomly and then updated sequentially through the training process. The input of each

network is the environment state. The policy DNN produces the probability distribution of

all actions. On the other hand, the value-function DNN provides the estimated value of the

environment state. In the following sections, we are going to use the phrases system state

and environment state interchangeably.

The value-function DNN in the critic

This network consists of one input layer, one hidden layer, and one output layer,

as shown in Figure 4.4. These layers are stacked into a sequential model. The input layer

stores the system state in the form of a 1 × (K + 1) vector. The hidden layer is a regular

densely-connected layer that contains HV neurons and utilizes a rectified linear unit (ReLU)

function for activation [115], as follows:

f(y) = max(0, y) (4.20)

where y is the estimated output of the layer before activation. Since the value-function

network outputs the state value, the output layer contains only one neuron and uses a linear
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Figure 4.5: The structure of the policy DNN with two hidden layers, each of which contains
HP neurons. N = |A| and p(an) = Pr(a(t) = an|s(t)), n ∈ {1, 2, . . . , N}.

activation function to estimate the value of the system state. Network parameters ω are

optimized by stochastic gradient descent with the back-propagation algorithm to minimize

the loss function. With this purpose, the loss function in the critic is the mean-squared

error between the target value and the estimated value, calculated as

L(ω) = E[R(t) + ηVω(s(t+ 1))− Vω(s(t))]2 (4.21)

where ω denotes the value-function network’s parameters. To minimize the loss function,

parameters ω can be updated in the direction of the gradient as

∆ω = αcδ(t)∇ωVω(s(t)) (4.22)

where αc > 0 is the critic’s learning rate; δ(t) denotes the TD error, which is given by

δ(t) = R(t) + ηVω(s(t+ 1))− Vω(s(t)) (4.23)

The critic uses this TD error to guide the actor in generating actions to improve the network

performance. For example, if an action produces a positive TD error, δ(t) > 0, it will be

preferred in the future when the system is in the same state, and vice versa.

The policy DNN in the actor

This network consists of one input layer, two hidden layers, and one output layer,

as shown in Figure 4.5. The input layer has the same structure as the value-function
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network. There are two hidden layers, each of which contains HP neurons. Since the policy

network outputs the probabilities of selecting actions for a given state, the output layer

has the size of the action space. Moreover, the output layer uses a softmax activation

function to produce the probability of each action in the action space, which can be defined

as follows [1]:

g(ya) =
eya∑

a′∈A
eya′

, ∀a ∈ A (4.24)

where ya is the estimated value of action a. Similar to the value-function network, the

objective function in the actor is defined as

J(θ) = E [V π(s)]

=
∑
s∈S

dπ(s)V π(s)

=
∑
s∈S

dπ(s)
∑
a∈A

πθ(s, a)Qπ(s, a)

(4.25)

where dπ(s) denotes the state distribution for policy πθ, and Qπ(s, a) is the state-action

value function, which is denoted as

Qπ(s, a) = E

[ ∞∑
t=0

ηtR(t)|s(0) = s, a(0) = a, π

]
(4.26)

Policy parameters θ are optimized by gradient ascent with the back-propagation

algorithm to maximize the objective function, as follows:

∆θ = αaδ(t)∇θ lnπθ(s, a) (4.27)

where αa > 0 is the actor’s learning rate. The learning rate of the actor is usually small in

order to avoid oscillation in generating actions. It is worth noting that the TD error, δ(t), is

provided by the value network in the critic process. Furthermore, the actor process uses an

ε-greedy policy for selecting actions. Specifically, a random action, a ∈ A, can be selected

with probability ε ∈ [0, 1], or an action is chosen based on the distribution output of the

policy network with probability 1− ε. With this strategy, the value of ε decays after every

training iteration at decay rate dε. In both DNNs, the network parameters are randomly

initialized using uniform Xavier initialization [116].

The training procedure of the proposed actor-critic deep learning approach is sum-

marized in Algorithm 2.
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Algorithm 2 The training procedure for the ACDL algorithm

Input: S, A, η, αa, αc, K, Bmax, Emax, e, λe, λr, µs, µd, εmin, εmax, dε.

Output: π∗(s) = arg max
a∈A

{πθ(s, a)}, ∀s ∈ S.

1: Initialize the two network parameters: θ, ω.

2: Initialize ε = εmax.

3: for episode ep = 1, 2, . . . ,M do

4: Initialize the system state, s(0).

5: for step t = 0, 1, . . . , T − 1 do

6: Set ε = max(ε · dε, εmin)

7: Observe the current system state, s(t), and estimate state value Vω(s(t)).

8: Choose action a(t) according to ε-greedy policy πθ(s(t), a(t)).

9: Sample immediate reward R(t).

10: Observe the next system state, s(t+ 1), and estimate state value Vω(s(t+ 1)).

11: if episode is terminated at t+ 1 then

12: Set δ(t) = R(t)− Vω(s(t))

13: else

14: Set δ(t) = R(t) + ηVω(s(t+ 1))− Vω(s(t))

15: end if

16: Update the policy parameters: θ ← θ + ∆θ.

17: Update the critic parameters: ω ← ω + ∆ω.

18: Update system state: s(t)← s(t+ 1).

19: end for

20: end for
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4.4 Numerical Results

In this section, we present the numerical simulations to validate the efficiency of

the proposed ACDL scheme for joint user association and bandwidth allocation in dense

networks with energy-harvesting base stations. We also compare the performance of our

proposed method with that of other baseline schemes, e.g., an actor-only scheme [113],

a critic-only scheme [114], a myopic policy [117], and a random policy. When using the

myopic policy, the controller aims to maximize the instant reward received in the current

time slot. With the random policy, the controller randomly selects an action in the action

space based on the system state.

4.4.1 Simulation settings

The proposed ACDL algorithm was implemented using Python 3.6 with a Ten-

sorFlow deep learning library (Anaconda distribution, The Anaconda Inc., Austin, Texas,

USA, 2018). We validated the performance of the proposed scheme under various simula-

tion settings. We consider a mobile network with K = 3 green base stations powered by

solar energy. The total system bandwidth, Bmax, is composed of 10 channels, and each

user can use one channel for its data service. Users are distributed randomly inside the

network’s service range, and the number of users is set at U = 10. We set the probability

that a user issues a new data request to the network as pr = 0.8. For DNN configuration,

we use two sequential DNNs to model the policy function and the value function in the

proposed algorithm. The architecture of each DNN is as described in Section 4.3. The

number of neurons in the hidden layer of the value-function DNN is set at HV = 50. We

set the number of neurons in each hidden layer of the policy DNN at HP = 20. For the

training process, we use the Adam optimizer, an algorithm for first-order gradient-based

optimization of a stochastic objective function [118], to iteratively update network weights

after every training episode. Furthermore, the system state is initialized randomly, and the

exploration rate, ε, is linearly reduced from 1 to 0.01. We use constant learning rates for

the actor and the critic in our proposed method. We run the simulations several times to

find the most appropriate learning rates, which can provide the best performance of the

proposed algorithm. For comparison purpose, the neural-network structures of the DNNs

in the actor-only and the critic-only methods, as well as the simulation parameters, are kept

the same as those in our proposed scheme. We summarize basic simulation parameters for
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Table 4.1: System model and algorithm parameters

Parameter Description Value

Emax Battery capacity of a BS (packets) 20

λe Mean harvested energy (packets/slot) 5

e Required energy for transmitting data (packets) 3

µs Mean channel holding time (slots) 2

µd Mean cell sojourn time (slots) 1

αa Actor learning rate 0.0001

αc Critic learning rate 0.0005

γ Discount factor 0.99

ε Exploration rate 1→ 0.01

dε Decay rate 0.9999

M Number of training episodes 200

T Number of iterations per episode 2000

the system model and the proposed algorithm in Table 4.1.

4.4.2 Performance analysis

First, we investigated the convergence property of our proposed ACDL algorithm

according to the number of training episodes when changing the number of steps per episode.

Figure 4.6 illustrates the average rewards of the proposed scheme under different training

iterations, T , while the number of episodes, M , increases gradually from 1 to 300. We

obtained the final results by calculating the average rewards from 100 separate runs. As

shown in the figure, fewer training steps provides the algorithm with a lower convergence

speed, and thus, smaller rewards. Specifically, the RL agent needs more than 300 episodes to

learn the optimal policy at T = 1000 steps per episode. When we increase T , the algorithm

starts to converge faster, and the agent can learn the optimal policy in less than 200 episodes

(e.g., with T = 2000). However, if each episode uses too many steps for training, the training

process might take place over a very long time, and the algorithm might even converge to a

locally optimum policy. Therefore, the maximum number of training episodes and the total

number of training steps for each episode should not be too large or too small.

Then, we verified the robustness of our proposed scheme by comparing the per-
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Figure 4.6: Convergence rate of the algorithm with different training steps in each episode.

formance of different learning and non-learning schemes. In this context, the total training

episodes and the number of training steps per episode were fixed at M = 200 and T = 2000,

respectively. We also performed 100 independent simulations for each learning scheme to

get average rewards. Figure 4.7 shows the average estimates of the system rewards achieved

by our proposed algorithm, compared with other deep learning algorithms, and the meth-

ods without a learning process. From the figure, we can see that the average reward from

all the learning schemes rises quickly with an increase in the number of training episodes,

and slows down gradually afterwards. The RL agents can learn the optimal policy after

being trained with nearly 200 episodes. Among the three learning schemes, although the

convergence speed of the actor-only method is the highest, needing fewer than 100 episodes

until convergence, this scheme seems to converge to a locally optimum policy that leads to

lower rewards. With the critic-only method, the agent selects an action based mostly on

the Q-value of the system state, which might have a high variance [114], and thus, it might

take more time to converge to the optimal solution. With the proposed ACDL algorithm,

the agent can learn the optimal policy effectively by using the output of the critic network

to guide the policy network in selecting actions, and thus, provides the best performance.

Meanwhile, the rewards given by the two non-learning schemes remained unchanged be-

cause there is no learning process, and these schemes choose actions based mostly on the

current state of the environment.

We further examined the effect of the total system bandwidth, Bmax, on the per-
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Figure 4.7: Convergence behavior of the different methods.

formance of the ACDL scheme, compared with other schemes, as depicted in Figure 4.8.

In this scenario, the maximum number of channels that can be used for data services was

set at Bmax ∈ {2, 4, . . . , 14}. As is shown in the figure, with more bandwidth, the network

can provide data service to more users, and thus, receives better cumulative rewards. The

system rewards increase quickly with an increase in the total system bandwidth when the

number of channels is low (e.g., Bmax ≤ 8). When Bmax is greater than 10, the increment in

system bandwidth does not provide much better rewards. The reason might be the lack of

energy at the base stations for data transmission using the allocated bandwidth. Further-

more, the proposed scheme outperforms other schemes in terms of average system rewards,

since the ACDL algorithm can make efficient decisions on user association and bandwidth

allocation while reserving system bandwidth for future use.

Similarly, Figure 4.9 demonstrates the effect of the harvested energy on the per-

formance of the proposed scheme. The mean energy packets that a base station can harvest

in each time step, λe, ranges from 1 to 5. As expected, with an increase in the number of

energy packets that base stations can harvest in a time slot, the system rewards increase

significantly. The reason is that if a base station can harvest more energy from solar power,

it can preserve more renewable energy in the battery, which is then used to serve more

users and get more rewards. In comparison to the non-learning schemes, the RL agents

can learn the dynamic arrivals of harvested energy and data requests through interactions

with the environment, and hence, can make efficient resource allocation decisions in the
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Figure 4.8: Average rewards according to total system bandwidth for the different methods.

current time slot. Consequently, more renewable energy can be saved for future use, which

brings about greater system rewards. When using the myopic scheme, the controller tries to

maximize the instant reward received in the current time step, which requires high energy

consumption. This short-sighted action might cause the base stations to stay inactive in

future time slots (from running out of stored energy). When using the random scheme, the

controller randomly selects an action in the action space based solely on the system state.

However, this kind of action selection might be inefficient due to variations in the arrival of

renewable energy and data requests. For example, the controller might allocate too much

bandwidth for data transmission in the current time slot, which causes the system to run

out of bandwidth for use in future time slots.

Figure 4.10 shows the average system rewards according to the number of users.

We set the number of users in the service range of the system at U ∈ {9, 10, . . . , 17}. When

the number of users in the system increases, the network will receive more data requests

in every time slot, and thus, consumes more bandwidth and energy for data transmission.

However, since the system bandwidth is restricted, and the battery capacity of each BS is

finite, an increase in the number of users reduces the system rewards significantly. Hence,

the controller needs to employ an actor-critic deep learning framework to obtain an efficient

user-association and bandwidth-allocation policy based on the number of users. By using

our proposed algorithm, the controller can follow the fluctuations in the request arrivals

and in harvested energy, and thus, achieves greater cumulative rewards.
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Figure 4.9: Average rewards according to the mean harvested energy for the different
methods.
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Figure 4.10: Average rewards according to the number of users for the different methods.

4.5 Conclusion

In this chapter, we investigated a deep learning framework for joint user associa-

tion and bandwidth allocation in dense mobile networks with energy-harvesting base sta-

tions. More specifically, we formulated the optimization problem (adhering to constraints

on harvested energy and bandwidth) as a Markov decision process. We then employed an

actor-critic algorithm to find the optimal solution for maximizing the system rewards. We



92
Chapter 4: Actor-Critic Deep Learning for Efficient User Association and Bandwidth

Allocation in Dense Mobile Networks with Green Base Stations

further exploited deep neural networks to approximate the policy function and the value

function, which allowed the algorithm to work with large state and action spaces. The

agent of the ACDL algorithm can find the optimal policy through interactions with the

environment. Consequently, the controller can effectively associate users with the base sta-

tions, and can then allocate bandwidth for their data transmissions based on the current

state of the network. The simulation results show the advantage of the proposed solution

in improving network performance in the long run. The bandwidth allocation problem in

this work can be further extended to include the effects of the latency and packet losses

in the returned rewards of the system, which might affect the overall performance of the

network. However, it is essential to modify the DNN structures, the learning parameters,

and the original state and action spaces to solve the more complicated problem.
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Base Stations

5.1 Introduction

The tremendous growth in data services for mobile communications (e.g., music,

video, and games) has led to increasing demands for wireless resources in recent years.

However, traditional network architectures might not satisfy these bandwidth- and time-

intensive services owing to constrained wireless resources and increasing power consumption.

As a consequence, both the academic and the industrial communities are focusing on devel-

oping efficient resource management schemes to improve spectrum utilization and energy

conservation in the emerging mobile Internet [119]. In particular, network virtualization [9]

and software-defined networking (SDN) [8] are considered the key technologies that are

expected to enhance the network utility in terms of higher data rates, lower operational

costs, and better resource utilization. Furthermore, energy-harvesting technology, which

allows the harvesting device to obtain energy from ambient sources in the environment, is

93
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considered a promising solution to energy conservation in dense cellular networks [120].

Wireless network virtualization (WNV) is a process of abstracting, slicing, iso-

lating, and sharing radio resources in a virtualized way [121], which can promote better

wireless-resource utilization and can reduce operational costs [122]. In mobile cellular net-

works, WNV allows virtual mobile operators (VMOs) to share the same network infrastruc-

ture (e.g., licensed spectrum, base stations) owned by a mobile network owner (MNO). On

one hand, the VMOs can exploit the available infrastructure from the MNOs to provide cus-

tomized services at competitive prices to their subscribers (i.e., mobile users). On the other

hand, the MNOs can earn more revenue and attract more users by leasing their network

resources to the VMOs. Consequently, the overall expenses of network deployment and

operation can significantly decrease [9]. However, deploying WNV, in reality, is much more

complicated due to the stochastic characteristics of wireless networks (e.g., time-varying

wireless channels, signal attenuation, and user mobility).

One feasible solution is to separate the network control plane from the data plane

by applying SDN to WNV, which can help to simplify the network management process,

and thus, can improve the overall performance of the whole network [10, 123]. Zhang et

al. [124] proposed a flexible architecture to establish a data delivery path for wireless network

virtualization in an SDN-based environment, which can maximize the capacity of wireless

virtualized networks with a QoS guarantee for data transmission. Meanwhile, the research

on resource allocation in energy harvesting–based small-cell networks has also attracted

increasing interest [125]. However, only a few studies consider the problem of resource

leasing in wireless virtualized networks with energy harvesting.

In this paper, we study the resource leasing problem from the perspective of a

VMO in an SDN-based virtualized mobile network that is powered by renewable energy.

In this network, several VMOs lease radio resources from an MNO based on the service

requests generated by their subscribers. Specifically, the MNO slices the spectrum resources

into multiple sub-channels based on prior information about historical data usage of all

VMOs, offering them for sale at different quality–price contract bundles. The VMOs, on

the other hand, want to minimize their leasing costs while ensuring the best performance

for their subscribers. Although there has been some excellent work on radio spectrum

virtualization so far, there is little research considering reinforcement learning (RL)-based

methods for WNV, especially for spectrum leasing and scheduling in energy harvesting–

based small-cell networks. In particular, Chen et al. [126] considered the problem of resource
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allocation in virtualized small-cell networks with full-duplex self-backhauls, which aim to

maximize the total utility of all virtual network operators in terms of earned revenue and

paid cost. Wu et al. [127] investigated a profit maximization problem for a cognitive-aided

virtual network operator, in which the operator might choose to lease spectrum resources

from the MNO, and access idle licensed bands at the same time. Fu and Kozat [128]

proposed a stochastic game for WNV, in which the service providers (SPs) bid for the

wireless resources via announcing their value functions. The resource-allocation game was

decomposed into independent Markov decision processes, and the SPs update their value

functions based on an online learning algorithm. Therefore, this paper aims to develop an

autonomous resource-leasing scheme based on reinforcement learning, which is applicable

in virtual mobile networks with energy-harvesting base stations. We model the problem as

the framework of a Markov decision process, during which the VMOs compete for the radio

resources needed to serve their users.

Among various RL methods, Q-learning has attracted a lot of attention in recent

years thanks to its ability to solve many types of complicated decision-making problems

with small-scale models [129–131]. However, it is necessary to integrate deep learning with

Q-learning, referred to as deep Q-learning, or a deep Q-network [132], to deal with large

state and action spaces. The agent in the deep Q-learning algorithm uses a deep neural

network as a function approximator to estimate the Q-values of state–action pairs, which

are then updated regularly from trial-and-error interactions with the environment [133]. In

this paper, we implement a deep Q-learning algorithm that can find an optimal resource-

leasing strategy for a VMO to maximize utility without prior information about system

dynamics. To the best of our knowledge, using deep reinforcement learning in the design

of a resource competition scheme in virtual mobile networks is a new research direction,

and very little has been done in this direction so far. For example, Mijumbi et al. [134]

proposed an autonomous resource allocation system based on artificial neural networks for

virtual networks. In [135], the authors proposed an adaptive neuro-fuzzy system that uses

both supervised and unsupervised learning for resource allocation in virtual networks. G.

Sun et al. [121] formulated a resource slicing problem in virtualized radio access networks

as a Markov decision process and solved this problem under a deep Q-learning framework.

However, it could take time for classic, deep Q-learning algorithms to converge to the

optimal solution, especially with large state and action spaces. We could deal with such

an issue by combining deep Q-learning with transfer learning, in which historical data from
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relevant problems might be used to speed up the learning process for a new problem [136].

Therefore, we propose a transfer deep–Q-learning (TDQL) framework for resource leasing

in virtual networks, which utilizes a transferred deep Q-network to speed up the learning

process.

In a nutshell, we propose a dynamic resource leasing scheme that can be applied

to VMOs in virtual mobile networks so they can compete with each other for the radio

resources to maximize utility. Our work focuses on maximizing the long-term utility of a

VMO by employing the TDQL algorithm to train an agent to learn the optimal resource-

leasing decisions from frequent interactions with the environment. The contributions of this

paper are summarized as follows.

• We propose a novel, resource leasing and scheduling scheme that considers the dynam-

ics of harvested energy, user demand, and resource pricing in a green virtual mobile

network. In this network, the VMOs compete for radio resources, and try to guarantee

long-term services to their subscribers within the constraints of harvested energy and

resource sharing.

• We formulate the resource competition problem in this paper as the framework of

a Markov decision process, during which the VMO determines the optimal leasing

resources through interactions with the environment. More specifically, the VMO

autonomously adjusts the resource requirements it announces to the MNO, which are

based on the leasing price, the energy level at the base station, and the traffic demand

from its subscribers. The goal is to maximize utility in the long run.

• We present a deep Q-learning algorithm, which is a combination of Q-learning and

a deep neural network, to solve the formulated problem. Neural networks are used

as function approximators to estimate the Q-value of each state–action pair. In the

proposed scheme, we employ two well-known techniques (experience replay and fixed

target network) to improve its stability.

• We further integrate the idea of transfer learning into the deep Q-learning–based

resource-leasing strategy, which exploits learned knowledge from the past to enhance

the convergence speed of the algorithm.

The rest of this paper is organized as follows. We first introduce the network

model and the problem formulation in Section 5.2. In Section 5.3, we present the transfer
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Figure 5.1: The considered wireless virtualized networks with energy-harvesting base sta-
tions in which the VMOs lease radio channels from the MNO to serve their subscribers.
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deep Q-learning algorithm to solve the resource competition problem. Numerical simulation

results are discussed in Section 5.4. Finally, Section 5.5 concludes this chapter.

5.2 The Network Model and Resource Competition Problem

in Virtual Mobile Networks

5.2.1 The SDN–based Virtual Network Model

We consider a virtual mobile network (VMN) where several virtual mobile opera-

tors lease the infrastructure and spectrum resources from a single mobile network operator

and offer customized services to their subscribers. In this paper, we focus on a radio

resource–leasing scheme at the VMOs. We denote as J a set of VMOs that share N or-

thogonal channels (i.e., sub-channels [SCs]) owned by the MNO. We assume that each VMO

is assigned a green base station (BS), which is powered solely by an energy harvester (e.g.,

by converting radio frequency energy and solar power into electrical energy). Each BS is

equipped with a local controller that is connected to a global controller (GC) located at

the MNO for network management, as shown in Figure 5.1. It is important to note that

each local controller is supervised by a corresponding VMO. Furthermore, the aggregated
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Figure 5.2: A two-state Markov model for user activity.

capacity of a BS (e.g., backhaul capacity, harvesting capability) is known in advance by

both the MNO and the corresponding VMO that is assigned this BS. Since each VMO is

assigned only one base station, the words BS and VMO can be used alternately in this

paper.

We consider the downlink transmissions of such a network, where the VMOs use

leased sub-channels to provide their customized data services (e.g., music streaming, video

streaming, and gaming) to their users. The MNO first slices its radio resources into multiple

virtual slices, and then dynamically assigns them to the VMOs based on an agreement

between the MNO and each VMO. Moreover, the VMOs compete with each other for the

wireless channels to maximize their utility. The network is assumed to operate on a time-

slotted basis, in which each slot is denoted by t and is assumed to be of equal time duration

(in seconds). During each slot, the environment statistics (e.g., harvested energy, service

request arrivals, and spectrum prices) are assumed to remain unchanged. We assume that

the action of base station assignment occurs only one time at the beginning of each contract

period, which might contain a large number of time slots. We also assume in this paper that

using more channels can provide the users with better quality for data services, yet would

increase operational costs. We denote as Mj the set of mobile subscribers of VMO j ∈ J ,

and mj denotes a single user. In each time slot, a user might be in one of two possible

states: active and idle. When a user is active, it randomly requests data services from the

VMOs with different bandwidth requirements based on the type of subscribed service. We

use a two-state discrete-time Markov chain to describe the state-switching process of each

user, and the switching probabilities are ρai and ρia, where a and i denote active and idle,

respectively, as shown in Figure 5.2.

The operation of the network is as follows. At the beginning of each time slot, the
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MNO via the global controller initially reserves a minimum number of available channels

for VMO j, n
[t]
j ∈ (0, N), with a base price, p0, for a radio channel based on a contract

agreement between them. To guarantee isolation among the virtual resource slices that are

allocated to the VMOs, the following constraint must hold:

0 <
∑
j∈J

n
[t]
j ≤ N (5.1)

The MNO also publishes the unit price for radio resources, p
[t]
j ∈ [p0, pmax], which might

vary due to the demands of the VMO. The VMOs then announce to the MNO their required

number of channels, and they need to consider the trade-off between user satisfaction and

the price paid to the MNO. A VMO can benefit from an advance reservation base on a

cheap price, which means that if the VMO requests fewer than n
[t]
j channels at time t, the

price is fixed at p0; otherwise, the price will increase in proportional to the increased number

of required channels. In reality, the initially reserved channels might not be sufficient for

the requirements of the VMO due to high traffic. Another reason is that the MNO also

wants to increase revenue by not assigning too many cheaply-priced channels to the VMOs.

Therefore, each VMO might need to request extra channels according to its traffic density.

Since the radio resources are limited, VMO j then competes for wireless channels

with other VMOs by announcing its resource requirements, W
[t]
j

(
x

[t]
j

)
, to the MNO based

on users’ requirements and the channel price announced by the MNO, where x
[t]
j denotes

the actual traffic demand at VMO j at time t. Afterward, based on the total amount of

resources demanded by all the VMOs in the network, the GC allocates a finite number of

radio channels to VMO j using a proportional fairness sharing scheme, as follows:

y
[t]
j = min

(
W

[t]
j ,

N∑
j∈J W

[t]
j

W
[t]
j

)
(5.2)

where y
[t]
j is the number of SCs assigned to VMO j. This resource assignment scheme

aims to achieve fairness among the VMOs. The VMOs in the network might have different

strategies for competing with each other, and none has the information about the leasing

schemes of the others.

5.2.2 Problem formulation

The entire process of resource leasing and scheduling in this paper takes place as

follows.
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(i) The MNO reserves a finite number of channels with a base price for each VMO based

on the agreements between the MNO and the VMOs. The MNO also announces the

unit resource price for the current time slot.

(ii) The VMOs announce their resource requirements to the MNO based on user demands,

the leasing price, and the remaining energy of the base stations.

(iii) The MNO assigns radio channels to the VMOs using a fairness allocation mechanism.

(iv) The VMOs dynamically allocate the leased resources to their subscribers on a first-

come-first-served basis. The base stations then use the allocated channels to transmit

data to the end users.

The objective of the VMO is to maximize its user utility while minimizing the cost paid to

the MNO.

In this paper, the users are divided into K groups of service classes that can

be provided by any VMO in the network. The requirements of users may vary based

on their subscribed services (e.g., gaming, video, or music). For each subscriber mj of

VMO j, let x
[t]
mj denote the number of sub-channels requested by the user in time slot t;

hence,
∑

mj∈Mj
x

[t]
mj = x

[t]
j . Let cmink and cmaxk , respectively, denote the minimum and the

maximum channel requirements of a user in class k ∈ {1, 2, . . . ,K}, so we have cmink ≤
x

[t]
mj ≤ cmaxk . The role of VMO j is to compete for radio resources with other VMOs in

order to provide its subscribers with the best performance. The channels assigned by the

MNO are then allocated to the users according to the fairness allocation mechanism. Let

y
[t]
mj ∈

[
0, y

[t]
j

]
denote the number of sub-channels allocated to user mj of VMO j, so we have∑

mj∈Mj
y

[t]
mj = y

[t]
j . To ensure fairness among users, the VMOs first schedule the minimum

channel requirements for each user, and then, they allocate the redundant channels (if

available) to users as their requests arrive in order to improve service quality.

In this paper, we aim to develop an effective resource-leasing scheme at a VMO

based on the information about the resource price, the request arrivals at the base station,

and the energy level in the battery of the base station. Therefore, we define user and cost

utilities to verify the effectiveness of the leasing strategy in terms of user satisfaction ratio

and VMO surplus gain.
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User Utility

We denote as U
[t]
j the user utility for VMO j at time t. In this paper, the utility

of subscriber mj is represented by its level of satisfaction, which can be defined as the ratio

of the number of allocated channels, y
[t]
mj , to the number of requested channels, x

[t]
mj , as

follows:

U [t]
mj

=
y

[t]
mj

x
[t]
mj

(5.3)

where U
[t]
mj ∈ [0, 1]. Therefore, the user utility for VMO j is the average utility of |Mj |

subscribers, which is given by

U
[t]
j =

1

|Mj |
∑

mj∈Mj

U [t]
mj

(5.4)

where U
[t]
j ∈ [0, 1]. Ideally, U

[t]
j = 1 indicates that the satisfaction ratio of the users at VMO

j in time slot t is 100 percent.

Cost Utility

We denote as C
[t]
j the cost utility for VMO j at time t. Given the unit price of

sub-channels charged by the MNO, p
[t]
j , the normalized cost of purchasing resources from

the MNO is given by

C
[t]
j =

p
[t]
j y

[t]
j

pmaxN
(5.5)

Consequently, the reward that VMO j can receive in a time slot is defined as the weighted

sum of the average user utility and the cost utility, as follows:

R
[t]
j = θuU

[t]
j − θcC

[t]
j (5.6)

where θu and θc are adjustable parameters that reflect the importance of user satisfaction

and revenue, respectively, and θu + θc = 1. The VMO wants to minimize its leasing costs

while providing users with the best performance. Hence, it needs to optimize the announcing

of resources needed based on user demand, base station energy, and the price offered by the

MNO.

In the scenario for this paper, each base station is equipped with an energy-

harvesting device that can harvest renewable energy from ambient sources. We assume

that the base station stores its harvested energy in a battery with a finite capacity, Eb, for
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data transmissions. Furthermore, the energy packets collected by BS j during time slot t

is denoted by e
[t]
h,j , which takes its value from a finite number of energy units, as follows:

e
[t]
h,j ∈ {1, 2, . . . , ϑ} (5.7)

where 0 < ϑ ≤ Eb. We assume that e
[t]
h,j is a Poisson random variable with mean µe. The

information about harvesting capability at a base station is available to the MNO and the

VMOs in the network.

Due to the random characteristics of user requests, harvested energy, and leas-

ing prices, the VMO needs to find the optimal resource announcement policy within the

following constraints.

• Energy constraint: Let e
[t]
r,j ∈ [0, Eb] denote the current energy level in the battery of

BS j. The total energy consumption for data transmission must satisfy

etrW
[t]
j ≤ e

[t]
r,j (5.8)

where etr denotes the energy consumption for providing services to the users when

using one channel.

• Resource constraint: The amount of announced resource requirements should not

exceed the requirements from the subscribers of the VMO:

W
[t]
j ≤ x

[t]
j (5.9)

to ensure that the allocated resources can be fully utilized.

The problem of finding the optimal resource announcement policy of VMO j is

given as follows:

max
W

[t]
j

T∑
t=1

γt−1R
[t]
j

s.t. W
[t]
j ≤ min

(
e

[t]
r,j

etr
, x

[t]
j

) (5.10)

where γ ∈ [0, 1] is a discount factor that reflects the present value of future rewards, and
T∑
t=1

γt−1R
[t]
j is the accumulated sum of rewards on the time-horizon of length T ∈ [1,∞).

The formulated problem can be solved by using value iteration-based dynamic programming

methods if we have the information about the environment (i.e., the variations in harvested
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Table 5.1: Notations

Symbol Description

N Number of shared channels

J The set of VMOs

Mj The set of subscribers for VMO j ∈ J
K Number of service classes

[t] Index of a time slot (superscripted)

p0 Base price of a radio channel

p
[t]
j Unit price of a radio channel at VMO j at time t

x
[t]
j Resource requirements for users of VMO j

W
[t]
j Announcing resource as determined by VMO j

y
[t]
j Number of channels allocated to VMO j

Eb Battery capacity of each base station

e
[t]
r,j Energy level in the battery of base station j

e
[t]
h,j The amount of harvested energy at base station j

µe Average harvested energy

etr Energy consumption for transmitting data from a base station to
a user using one channel

R
[t]
j Immediate reward that VMO j receives at time t

γ Discount factor

energy, resource prices, and request arrival rate), which is difficult to obtain in practice.

Instead, we develop a learning-based algorithm that adopts an artificial neural network as

a function approximator to solve the problem. With this algorithm, the agent can learn the

optimal policy through interactions with the environment, as described in the next section.

We provide the most used notations in Table 5.1 to make the paper more readable.

5.3 Deep Q-Learning for Resource Competition

Q-learning is a popular reinforcement learning algorithm where an agent tries to

maximize its cumulative reward by regularly interacting with the environment through a

decision-making process. The agent influences the environment by taking an action that

causes the environment to transit from one state to another. The agent then receives a

scalar signal as a reward for a good action (or a penalty for a bad action). Q-learning can
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work effectively for problems with discrete state and action spaces. However, it is better

to use deep Q-learning when dealing with high-dimensional state and action spaces. More

specifically, a deep neural network, which is usually represented by a weight vector, w,

might be used as a function approximator to estimate the Q-value of any state–action pair.

Therefore, in this section, we present a deep Q-learning algorithm for effective resource

competition in wireless network virtualization.

5.3.1 Markov decision process

We reformulate the resource-competition problem in this paper as the framework of

a Markov decision process (MDP), which is a generalized framework for modeling decision-

making problems [137]. During this process, the agent can learn the optimal policy for

resource announcement through a trial-and-error experience to maximize the accumulated

sum of rewards. First, we define the state and action spaces of the MDP. The state of VMO

j at time slot t is a combination of the remaining energy of the assigned BS, the unit price

of the radio channels, and the current resource demands from subscribers, as follows:

s
[t]
j =

(
e

[t]
r,j , p

[t]
j , x

[t]
j

)
(5.11)

where e
[t]
r,j is the number of energy packets that are currently available at BS j for data

transmissions, p
[t]
j is the leasing price announced by the MNO, and x

[t]
j is the total channel

requirement at the beginning of the time slot. Based on the system state, the learning agent

tries to select an action that can maximize its long-term reward. In our problem, the agent

(i.e., the local controller) of VMO j has to decide on the number of channels it is going to

request from the MNO in each time slot. Therefore, the action space of a VMO is denoted

by

A = {a0, a1, . . . , aζ} (5.12)

where 0 ≤ a0 < a1 < . . . < aζ ≤ 1. At the beginning of time step t, the agent observes the

network state and takes action a
[t]
j ∈ A, and then announces the total resource requirements,

W
[t]
j = a

[t]
j x

[t]
j , to the MNO. Thereafter, the agent receives an instant reward, R

[t]
j , as defined

by Equation (5.6). In particular, if a[t] = 0, the VMO does not require resources from the

MNO, and thus, no reward is achieved (i.e., R
[t]
j = 0). Otherwise, the MNO allocates a

finite number of radio channels to the VMO, which are then used for data transmissions

from the VMO to the end users. The action taken will also change the state of VMO j
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from s
[t]
j to s

[t+1]
j , which can be updated as follows. The energy level at base station j in

the next time slot is given by

e
[t+1]
r,j = min

(
e

[t]
r,j + e

[t]
h,j − etry

[t]
j , Eb

)
(5.13)

In this work, the MNO sets the resource price according to the demand of the VMOs. We

assume that the leasing price of each SC in the next time slot is determined by a pricing

function, which is defined by the MNO as follows:

p
[t+1]
j = p0 +

β
[t]
j

N

∑
j∈J

y
[t]
j

τ

(5.14)

where p0 is the base price of a radio channel, τ ≥ 1 is a constant, and β
[t]
j is a non-negative

coefficient to implement elastic pricing (e.g., the MNO tends to set a higher price for higher

demand and lower network capacity). In this paper, the price coefficient, β
[t]
j , is defined as

β
[t]
j = β

[
y

[t]
j − n

[t]
j

]+
(5.15)

where β is a positive constant, and [·]+ = max(0, ·). Meanwhile, the channel requirements

in the next time slot are dependent on the distribution of user activities. According to the

VMO’s state and the received reward, the agent can choose better actions in future slots,

which might provide the agent with better rewards.

This paper aims to find the optimal resource announcement policy to maximize

the total discounted reward from the current step. To estimate the long-term reward of the

VMO, we employ a state–action value function (i.e., the Q-value function), Q (s, a), which

is defined as the expected sum of rewards when it is in state s and takes action a, as follows:

Q(s, a) = E

[
T∑
t=1

γt−1R
[t]
j |s

[1]
j = s, a

[1]
j = a

]
(5.16)

where E[·] denotes the expectation operator. Consequently, our objective is to find the

optimal action, a∗, in the current time slot to maximize the Q-value function, as follows:

a∗ = arg max
a∈A

{Q(s, a)} (5.17)

The optimal action can be found by using the Q-learning algorithm, through which the

state–action value function can be updated in each time slot with learning rate α ∈ (0, 1),

as follows:

Q(s, a)← Q(s, a) + α

[
R+ γmax

a′∈A
Q(s′, a′)−Q(s, a)

]
(5.18)
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Input layer Hidden layers Output layer

s Q(s,a)

Figure 5.3: The architecture of the proposed Q-network in this paper.

where s′ and a′ are the next state and action, respectively. R is the instant reward that

the VMO receives by serving the users in a time slot. With proper configuration, the

Q-value function can converge to the optimal Q-value, from which the agent can select

the optimal action to influence the environment in each slot. However, the original Q-

learning algorithm might have wide variances in function approximation, which can cause

the algorithm to converge to the locally optimal policy, especially when the size of the

problem increases [138]. Therefore, we go further and use a neural network with weight w

to approximate the Q-value function, denoted by Q(s, a;w), so the proposed solution can

work efficiently with large state and action spaces.

5.3.2 Deep Q-network Training

In this section, we describe the architecture of the deep neural network in the

proposed deep Q-learning algorithm. We employ a feed-forward neural network (FNN) to

approximate the Q-value function, which is thus named a Q-network. This neural network

contains one input layer, several hidden layers, and one output layer. The FNN uses the

VMO’s state as the input to produce the Q-value of any state–action pair at its output.

The sequential model of the proposed network is illustrated in Figure 5.3. Since the input

layer is used to store the state of a VMO, it consists of three neuron units that represent

the three elements in each state. The hidden layers are fully connected layers that contain

finite neurons, which use a rectified linear unit (ReLU) function as a non-linear activation
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function. Hence, the output vector of the hidden layers is given by

z = max(w.s+ b, 0) (5.19)

where w is the weight vector of the FNN, and b is a bias. The output layer of the FNN

matches the output values of the hidden layers to the estimated Q-value of each state–action

pair (given the state) by using the linear activation function, and hence, the size of this

layer is the size of the action space, which is ζ + 1.

By training the FNN, the network parameters are iteratively optimized to minimize

the loss function, which is defined as the mean square error between the target value and

the current Q-value, as follows:

L(w) = E

[(
R+ γmax

a′
Q(s′, a′;w)−Q(s, a;w)

)2
]

(5.20)

where R + γmax
a′
Q(s′, a′;w) is the target value. Furthermore, to alleviate the effect of

data correlations and non-stationary targets on the stability of the learning process [139],

we also apply two well-known techniques in our work, namely, experience replay [140] and

fixed target network [138]. With the fixed-target-network technique, we use another neural

network with network weight w− to compute the target value, and the network parameters

are kept unchanged during a finite number of training iterations. With the experience-replay

technique, the transitions (s, a,R, s′) are stored in a replay buffer, D, from which random

mini batches are selected to train the Q-network, instead of using consecutive samples, as

follows:

L(w) = ED

[(
R+ γmax

a′
Q
(
s′, a′;w−

)
−Q(s, a;w)

)2
]

(5.21)

The target network and the Q-network have the same structure, and the target network’s

parameters are frequently replaced by those of the Q-network during the training process,

w− ← w. The weight vector w is updated by using stochastic gradient descent to minimize

the loss function in the direction of the gradient, as follows:

∆w = αδ∇wQ(s, a;w) (5.22)

where δ denotes the temporal different (TD) error between the target value and the current

Q-value, which is given by

δ = R+ γmax
a′
Q
(
s′, a′;w−

)
−Q(s, a;w) (5.23)
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The agent uses the TD error to adjust the network parameters in the direction that improves

system performance. Moreover, the agent selects actions according to an ε-greedy policy,

where ε ∈ [0, 1] is the exploration rate [141]. With this policy, exploration rate ε decays in

each iteration of the training process at rate dε. The algorithm repeats the Markov decision

process until convergence.

Furthermore, we exploit the idea of transfer learning to increase the learning speed

of the agent in our problem by making use of historical learning data. Instead of learning

from scratch, the local controller might directly choose proper actions at the very beginning,

based on the learned strategy. In deep Q-learning, the transferred knowledge could be the

weights of a well-trained Q-network or the Q-values of state–action pairs. In this paper, we

utilize a Q-network that is well trained in historical moments or in a relevant environment

to help the agent choose better actions at the initial stage of the learning process. For

example, the learning agent can use a Q-network that has been trained in a system with

the same state space, action space, and reward function as in the target system. It is also

possible to use the existing Q-network of the current system, which has been learned in

historical periods, to train the current network. By transferring the learned knowledge, the

deep Q-learning algorithm could exploit the relevancy in the harvested energy model and

service request model to speed up the continuous learning process of the agent in the new

environment. Specifically, the overall Q-value of each state-action pair at step t, given state

s[t] = s, is computed as

Qo(s, a) = ξQtf (s, a) + (1− ξ)Q(s, a) ∀a ∈ A (5.24)

where Qtf and Q are the transferred Q-network and the new Q-network, respectively, and

ξ ∈ (0, 1) is a transfer rate that determines the contribution of the transferred Q-network

to the overall Q-value. The impact of the transferred Q-network on the performance of the

new Q-network decreases over time with decay factor dξ. According to the ε-greedy policy,

the agent might select a random action with probability ε. Otherwise, the action is selected

based on the overall Q-values of all state–action pairs, given the state, as follows:

a[t] = arg max
a∈A

{
Qo

(
s[t], a

)}
(5.25)

The new Q-network, Q(s, a;w), still frequently updates weights based on the deep Q-

learning algorithm.
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The training procedure in the proposed transfer deep Q-learning algorithm for

resource competition in virtual mobile networks is described in Algorithm 3.

5.4 Performance Analysis

5.4.1 Simulation Settings

In this section, we present numerical simulations to assess the performance of

our proposed resource-leasing approach under various configurations. We performed the

simulations by using Python-integrated software with TensorFlow deep-learning libraries

(Python 3.7, Anaconda 2019 distribution, The Anaconda Inc., Austin, Texas, USA, 2019).

Here, we simulated a virtual mobile network consisting of J VMOs that lease N = 15

orthogonal channels from an MNO, where J ∈ {2, 3}. Each VMO provided K = 3 types

of data services (i.e., music, videos, gaming) to |Mj | = 5 subscribed users. We assume

that a subscriber requests data for only one type of service at each time step, and that

an active user randomly requests data for any of the three service classes with the same

probability. The minimum channel requirement for all services was 1, and the maximum

channel requirement was from the set {1, 2, 3} corresponding to the three service types. It

is worth noting that the users always want to receive the best service quality, and thus,

they would request the maximum number of resources for their services. The state of each

user in a time slot followed a discrete-time Markov process with transition probabilities

ρai = ρia = 0.2.

Furthermore, we assumed that the MNO decides the minimum resources reserved

for VMO j at the beginning of each time slot based on historical user distributions from its

subscribers, as follows:

n
[t]
j =

⌈
ρia

ρia + ρai
× C|Mj |

⌉
(5.26)

where d·e denotes the ceiling function, ρia
ρia+ρai

is the probability that a user is active in a

time slot, and C|Mj | denotes the minimum channel requirements at the VMO when all the

users are active. For the pricing function, we assumed that the base price of each channel

is 1 pricing unit, and we set the pricing parameters to β = 0.3 and τ = 1.5. The unit price

of radio channels ranged from 1 to 5 pricing units. Regarding energy harvesting, we set the

average harvested energy in each time slot at a base station at µe = 5 energy packets, and

the energy storage at a base station has a capacity of Eb = 20 energy packets. We set the
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Algorithm 3 TDQL — Training procedure

Input: M, K, Eb, etr, µe, θu, θc, S, A, N , γ, α, T , εinit, εmin, dε, Qtf , ξinit, dξ

Output: Q-network parameter w

1: Initialize w randomly and set w− = w

2: Initialize exploration rate ε = εinit

3: Initialize transfer rate ξ = ξinit

4: Initialize replay memory D
5: repeat

6: Select initial state s ∈ S
7: for each step t ∈ [1, 2, . . . , T ] do

8: Set ε = max(ε× dε, εmin)

9: Observe current state s

10: Compute overall Q-value Qo(s, b) ∀b ∈ A
11: Execute action a based on the ε-greedy policy

12: Obtain immediate reward R

13: Observe next state s′

14: Store the transition 〈s, a,R, s′〉 in memory D
15: Take random mini batches 〈si, ai, Ri, si+1〉 from D
16: for i in length of mini batches do

17: Estimate current value Q(si, ai;w)

18: Calculate Ri + γmax
a′
Q (si+1, a

′;w−)

19: end for

20: Update Q-network parameter w

21: if t ≤ T − 1 then update s← s′

22: end for

23: Update target network parameter w− ← w

24: Update ξ ← ξ × dξ
25: until convergence
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number of energy packets required for transmitting data using one channel at etr = 2.

As for the proposed TDQL algorithm, action space A was quantized into 11 levels

between 0 and 1 in the simulation. For the state space, each element of a state is an integer

located between its minimum and maximum values: e
[t]
r,j ∈ [0, Eb], p

[t]
j ∈ [p0, pmax], and

x
[t]
j ∈ [0, N ]. We used constant learning rate α = 0.01, and the discount factor was set

to γ = 0.99. The weighting parameters of the reward function introduced in (5.6) were

set to θu = 0.8 and θc = 0.2, which indicate that the VMOs set a higher priority on the

service satisfaction of their subscribed users. The Q-network or the target network contains

one hidden layer of 100 neurons. For training deep neural networks, we used an adaptive

optimization algorithm (i.e., the Adam optimizer [118]) to frequently update the weights of

the Q-network after each episode of the training process. We set the size of replay memory

D and the size of each mini batch to 2000 and 100, respectively. With the ε-greedy policy,

the initial exploration rate and its decay rate were set to εinit = 1 and dε = 0.9999, and the

minimum exploration rate was εmin = 0.01. Also, the transferred Q-values were computed

with the initial transfer rate, ξinit = 0.5, which decayed at rate dξ = 0.99. In our simulation,

we first trained a Q-network from scratch, and then used this network as a transferred model

to train another Q-network with different environment setups (e.g., changing the average

harvested energy, the total amount of spectrum resources, and the number of subscribers).

We trained the network over 200 episodes, each of which contained T = 2000 time slots. For

comparison purposes, we set the same initial states (i.e., the same energy level, the same

resource price, and the same channel requirements) for all the VMOs. Here, we obtained

the final results by averaging a large number of independent runs.

5.4.2 Results and Discussion

First, we examine the convergence property of the proposed TDQL algorithm

during the training process. We specify the convergence condition of the TDQL algorithm

based on the convergence of the average rewards. In each time slot, a VMO can receive an

immediate reward, R
[t]
j . We regularly computed the average value of the rewards that the

VMO received in T slots of every episode, denoted as Rep, as follows:

Rep = R
[t]
j =

1

T

T∑
t=1

R
[t]
j (5.27)
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Figure 5.4: Convergence behavior of the proposed scheme in a wireless virtualized network
consisting of two VMOs.

We further calculated the average episode reward at episode e, Rep(e), as follows:

Rep(e) =
1

e
[Rep(1) +Rep(2) + · · ·+Rep(e)] (5.28)

With this method, we aimed to make the results look flat (i.e., little or no fluctuation). In

this paper, the convergence condition is defined as |Rep(e)−Rep(e−1)| < 0.0001. Therefore,

the TDQL algorithm keeps training the Q-network until it meets the convergence condition

or reaches the maximum number of training episodes.

Figure 5.4 illustrates the convergence process of the proposed algorithm in terms

of average episode reward for each VMO in a network that has two VMOs. In this system,

the first VMO only uses the TDQL algorithm for resource leasing. Meanwhile, the second

VMO might use different resource-leasing strategies, such as learning and non-learning

methods. Different policies might have different effects on the average episode reward. For

example, the second VMO might use the proposed TDQL algorithm or a classic deep Q-

learning (DQL) algorithm for spectrum leasing, as is shown in Figures (5.4a) and (5.4b),

respectively. From the figures, we observe that the rewards of the learning methods increase

quickly in the first 50 episodes, and then gradually converge to the optimal value. If the

second VMO also uses the TDQL algorithm to train its agent, its learning process has
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Figure 5.5: Convergence behavior of the proposed algorithm in a wireless virtualized network
with three VMOs.

the same convergence speed as that of the first VMO, and the agent can find the optimal

resource-leasing policy after being trained for more than 100 episodes. The rewards for the

VMO that uses the classic DQL method are lower than those of the VMO using the TDQL

solution. The agent also needs more episodes to learn the optimal policy. The reason is that

the agent in the TDQL algorithm can learn faster by exploiting a well-trained network in

selecting actions to influence the environment. On the other hand, the classic DQL method

trains its agent from scratch, and hence, it needs to experience more trials as well as errors

to learn. VMO 2 can also use non-learning strategies, such as the myopic and random

schemes, as shown in Figures (5.4c) and (5.4d), respectively. With a myopic policy, the

VMO wants to maximize the immediate reward that it receives in the current time slot.

This method is equivalent to the proposed scheme when the discount factor is set to zero

(γ = 0). When using the random policy, the VMO chooses an action randomly based on

its current state. Therefore, the results given with the two non-learning schemes remain

unchanged when the number of training episode increases.

Similarly, Figure 5.5 compares the performance of the proposed method with the

classic DQL in a virtualized network consisting of three VMOs. In this scenario, the second

and third VMOs rent resources from the MNO by using myopic and random schemes,

whereas the first VMO exploits the TDQL algorithm or the conventional DQL algorithm

in competing for resources against the other two. As depicted in the figure, the average
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Figure 5.6: Average rewards for the VMOs in the network based on average harvested
energy.

episode reward for the first VMO increases with the increase in the number of training

episodes. Furthermore, the TDQL algorithm uses the pre-trained Q-network from a similar

environment to guide its agent in choosing actions during the training process. Hence, it

converges much faster than the conventional DQL method. As a result, the TDQL agent can

learn the optimal policy efficiently and provides the VMO with the best performance. For

the sake of simplicity, in the following simulations, we mainly discuss the results obtained

in the scenario with three VMOs.

We further inspected the impact of harvested energy on the performance of the

resource leasing schemes by varying the average harvested energy at the base station from 1

to 9, as shown in Figure 5.6. For each value of µe, we first trained the Q-network with 150

episodes, and we then tested the performance of the system by averaging the rewards over

10, 000 time slots. As observed from the figure, the average reward achieved by the VMOs

increase significantly with an increase in the number of energy packets that the base stations

can harvest in a time slot. Obviously, with more energy to be preserved in the battery, the

base station (i.e., the corresponding VMO) can provide its customized services to more

users, which leads to better results. Furthermore, the agent of the learning approach can

predict the arrival of harvested energy as well as the resource demands and channel price

based on the state of the VMO. Therefore, it can select appropriate actions to influence

the environment effectively and receives more rewards. As a result, the proposed scheme
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Figure 5.7: Average rewards for the VMOs based on the number of radio channels for lease.

provides the VMO with the best performance compared with other solutions. Meanwhile,

the myopic-based VMO tries to serve its users with the best performance in the current

time slot by asking the MNO for as many channels as possible. As a result, it would use

a lot of energy for data transmission in the current step, and does not have enough energy

for future use. Hence, the rewards are lower than with the proposed approach.

Figure 5.7 presents the rewards from an increase in the number of total radio

channels that are available for lease, N . In this case, N ranged from 6 to 16 channels, and

the average harvested energy was set at µe = 5 packets. The returned rewards of the VMOs

are low when there are fewer channels for lease from the MNO. The reason is that if the

channel capacity of the system is low (i.e., N has small value), the VMOs are not allocated

enough resources to serve their subscribed users, and hence, obtain fewer rewards. When

N < 12, the rewards for all VMOs grow significantly with an increase in the number of

available channels for lease. When N > 12, they are still rising but at a much lower rate.

That could be because the base stations do not have enough energy, so the VMOs cannot

request more resources from the MNO. Besides, the proposed TDQL approach outperforms

the other methods, since the agent of the TDQL-based VMO selected better actions based

on its learning experience, which utilizes the limited resources more efficiently.

We further examined the impact of traffic demand on the performance of the pro-

posed TDQL approach when the number of subscribed users was set at M ∈ {3, 4, 5, 6, 7, 8},
as shown in Figure 5.8. From the figure, we can see that growth in the number of subscribers
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Figure 5.8: Average rewards for the VMOs based on the number of users and different
values of ρia, when ρai = 0.2.

to each VMO causes the rewards to reduce significantly. Similarly, in a time slot where the

probability that a user transits from the idle state to the active state rises from ρia = 0.2 to

ρia = 0.4, the VMOs might need more channels to satisfy user demand. However, since the

total number of radio channels in the system, and the energy storage of the base stations,

are restricted, the VMOs’ rewards also decrease. Again, the TDQL agent can learn the

dynamics in the arrivals of harvested energy and user activity, and thus, provides VMO 1

with the highest performance. Meanwhile, the VMO that uses the myopic strategy always

requests a large amount of resources to maximize the instant reward in the current time

slot, which might cause its assigned base station to stay inactive in the future due to a lack

of energy. Consequently, the results of the two non-learning VMOs are not as good as that

of VMO 1.

In Figure 5.9, we present the impact of pricing parameter τ on the rewards of the

VMOs when the weight of the user utility, θu, was set at θu = 0.8 or θu = 0.5. As observed

from the figure, the increment of τ in the pricing function causes the VMOs to pay more

to the MNO, and that reduces the average reward for the whole system. Furthermore, if

we reduce the weight of the user utility in the reward function (i.e., the value of θu changes

from 0.8 to 0.5), the impact of τ on the rewards also increases. While the rewards for all

the VMOs decrease, the performance of the TDQL algorithm is still better than the other

approaches, since the TDQL agent automatically adapts to the changes in the environment.

Figure 5.10 shows the convergence of the proposed algorithm in terms of leasing
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Figure 5.9: Average rewards for the VMOs based on pricing parameter τ with different
values of θu.
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Figure 5.10: Convergence of the algorithm in terms of leasing cost paid by the VMOs.

cost paid by the VMOs. In this simulation, we also consider a system consisting of three

VMOs, each of which uses a specific leasing strategy. The average leasing cost that a VMO

has to pay the MNO in episode e is denoted by CL(e) and is computed just like the average

episode reward in Eqs. (5.27) and (5.28), as follows:

CL(e) =
1

e
[CL(1) + CL(2) + · · ·+ CL(e)] (5.29)
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Figure 5.11: Average leasing cost of the VMOs based on average harvested energy.

where CL is an episodic cost that the VMOs pay in each episode:

CL =
1

T

T∑
t=1

p[t]y[t] (5.30)

For the sake of simplicity, we removed the index notation j in the above equations, since

they can be used to compute the cost for any VMO in the system. As can be seen from

the figure, the leasing costs for all VMOs grow quickly in the first 20 episodes. For VMO

1, its total leasing cost increases significantly in the first 10 episodes, and then gradually

reduces until convergence. The reason is that, at the beginning of the training process, the

VMO might want to increase the user utility, so it requests many channels. However, this

kind of action also makes the resource price increase at a faster rate. As a result, the VMO

needs to adjust its requirements so that the rewards still increase and the cost is not too

high. Finally, after about 150 episodes in the training process, the TDQL agent can learn

the variations of the environment, and the VMO can guarantee the satisfaction of the users

while not paying a high cost to the MNO.

In Figure 5.11, we show the average leasing cost of the VMOs from the effect of

harvested energy. In this simulation, the average harvested energy at a base station was

varied from 1 to 9 energy packets. From the figure, we can see that the leasing costs become

much higher when the base stations receive more energy packets from their harvesting

devices, which allows the BSs to transmit more data to the users. Therefore, the VMOs

might request more resources from the MNO to serve their subscribers, which increases the
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Figure 5.12: Convergence behavior of the proposed algorithm when the number of VMOs
in the network changes.

unit price of the radio channels. Furthermore, the TDQL-based VMO pays a lower cost than

the myopic-based VMO. This is because VMO 1 can predict the arrival of the harvested

energy as well as the variations in the resource prices, and thus, makes a better decision

in each time slot. To summarize, the proposed TDQL scheme can exploit the well-trained

Q-network to train the agent in a new but similar environment. Hence, the rewards and

the costs for the TDQL VMO are improved efficiently.

In the last experiment, we validated the performance of the proposed scheme when

the number of VMOs in the network, J , was varied from 3 to 8, as shown in Figure 5.12 and

Figure 5.13. In this experiment, the first three VMOs (i.e., VMOs 1, 2, and 3) use the same

strategies as in previous simulations, whereas the remaining VMOs use the myopic scheme

to compete for spectrum resources. We can observe from the figures that the increment in

the number of VMOs does not affect the convergence speed of the proposed scheme. The

TDQL agent can still learn the optimal resource-leasing policy after 100 training episodes.

However, when J is too large (e.g., J ≥ 7), the current amount of spectrum resources in

the system might not be enough for the demands of the whole network, and thus, results

in a dramatic decrease in the average reward of each VMO. In practical applications, it is

more reasonable if the number of radio channels that are available for lease is also increased

when the size of the whole network increases. As the amount of spectrum resources changes

from N = 15 (channels) to N = 20 (channels), the VMOs can provide better performance

to their subscribers, and thus, gain higher rewards. Once again, the proposed learning-
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Figure 5.13: Average rewards for the VMOs based on the number of VMOs in the network
with different values of N .

based approach outperforms the other methods for spectrum leasing in wireless virtualized

networks.

5.5 Conclusion

In this paper, we consider a virtual mobile network in which several virtual mobile

operators are leasing the radio channels from a mobile network operator. We propose

a dynamic resource-leasing scheme based on a transfer deep–Q-learning algorithm, which

allows the VMOs to compete for the radio resources for their users by learning the dynamics

of harvested energy, resource prices, and data requests. We model the resource-leasing

problem as the framework of a Markov decision process, during which the VMO tries to

find the optimal announced resources to maximize utility. From the simulation results, the

agent in the proposed approach can adapt its strategy to the variations in harvested energy,

resource prices and demand from subscribers, and thus, achieves a greater reward than the

others. Besides, we adopt the idea of transfer learning in our work to improve the learning

speed of the agent by making use of a trained Q-network from the historical period.



Chapter 6

Summary of Contributions and

Future Works

6.1 Introduction

Previous chapters have presented the research motivations, the problems, and so-

lutions regarding the applications of artificial intelligence in wireless networks (e.g., for

information security and resource management). This chapter summarizes the main con-

tributions of this dissertation and discusses future research directions.

6.2 Summary of Contributions

This dissertation discusses the applications of artificial intelligence (AI) techniques,

such as reinforcement learning and deep learning, in wireless communication networks,

which aim to enhance the overall network performance. The main contributions of this

dissertation are summarized as follows:

Firstly, we propose learning-based techniques for cooperative spectrum sensing

(CSS) and energy-efficient data protection in cognitive radio networks (CRNs). We design

a new convolutional neural network (CNN)-based CSS method that trains a CNN for spec-

trum sensing by using historical sensing data collected from secondary users (SUs) under

various environmental conditions. The proposed CSS can increase detection probability

and reduce sensing errors. We also propose two data protection schemes, based on which

the SU determines its operation mode considering its remaining energy and the sensing
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result to improve the security level of the transmitted data. The first scheme, namely the

POMDP method, can provide the SU with the best performance. However, this scheme

requires prior information about the environment dynamics, such as the energy harvesting

model and the activity model of the primary user (PU). The second scheme, namely the

transfer actor-critic learning algorithm, does not require information about the environment

in advance. Instead, the learning agent can learn about those dynamics by interacting with

the environment.

Secondly, we propose two energy-efficient power allocation schemes for data trans-

mission against a full-duplex eavesdropper in a cognitive-aided wireless sensor network. In

such a network, a sensor node (i.e., a source) want to protect the data sent to a cluster

head (i.e., a destination) in the presence of an active eavesdropper. The source frequently

performs spectrum sensing to detect the jamming activity of the eavesdropper in the net-

work, and it then sends the local sensing result to the cluster head for making a global

decision about the jamming state. Furthermore, the destination also interferes with the

eavesdropping process by sending artificial noise against the eavesdropper. Based on the

global sensing result, the source can effectively allocate power for data transmissions to

maximize the long-term secrecy rate of the system under the constraint of harvested en-

ergy. The problem is first formulated and solved based on a POMDP framework (i.e., the

first proposed scheme). We go further and propose an actor-critic learning framework to

find the solution from practical interactions with the environment. The simulation results

show that our proposed solutions can efficiently enhance data security and energy utilization

in the long run.

Thirdly, we investigate a deep learning framework for joint user association and

bandwidth allocation in dense mobile networks with energy-harvesting base stations. More

specifically, we formulated the optimization problem (adhering to constraints on harvested

energy and bandwidth) as a Markov decision process. We then employed an actor-critic

algorithm to find the optimal solution for maximizing the system rewards. We further

exploited deep neural networks to approximate the policy function and the value function,

which allowed the algorithm to work with large state and action spaces. The agent of the

ACDL algorithm can find the optimal policy through interactions with the environment.

Consequently, the controller can effectively associate users with the base stations, and can

then allocate bandwidth for their data transmissions based on the current state of the

network. The simulation results show the advantage of the proposed solution in improving
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network performance in the long run.

Finally, we consider a mobile network in which several virtual mobile operators

(VMOs) are leasing the radio channels from a mobile network operator. We propose a

dynamic resource-leasing scheme based on a transfer deep Q-learning algorithm, which

allows the VMOs to compete for the radio resources for their users by learning the dynamics

of harvested energy, resource prices, and data requests. We model the resource-leasing

problem as the framework of a Markov decision process, during which a VMO tries to

find the optimal announced resources to maximize utility. From the simulation results, the

agent in the proposed approach can adapt its strategy to the variations in harvested energy,

resource prices and demand from subscribers, and thus, achieves a greater reward than the

others. Besides, we adopt the idea of transfer learning in our work to improve the learning

speed of the agent by making use of a transferred Q-network that is well trained from the

historical periods.

6.3 Future Works

For future research direction regarding artificial intelligence-based techniques (i.e.,

deep reinforcement learning algorithms) for efficient resource management in wireless net-

works, we consider several aspects as follows:

DRL for network access and power control

Modern networks, such as the Internet of Things, have become more decentralized.

In such networks, entities need to make local decisions (e.g., user associations and base

station selections) to achieve their own goals. This is challenging due to the dynamic and

the uncertainty of the network status. Deep reinforcement learning algorithms allow network

entities to build knowledge about the networks to make intelligent decisions. Thus, DRL

can be used to solved the following issues: dynamic spectrum access, joint user association

and spectrum access, and power control. However, the entities might not have sufficient

observations about the system, e.g., channel states, base station capacity and energy, and

system bandwidth. Therefore, DRL can be adopted to effectively solve the problems instead

of using dynamic programming that requires high computational complexity and complete

network information.
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DRL for optimizing edge

Edge computing has become one of the key features in many information-centric

networks since it can significantly reduce service latency, energy consumption, and cloud

computing pressure. Joint content caching and offloading can address the gap between users’

large data demands and the limited capacities of the network entities in terms of data storage

and processing. However, deploying edge caching and edge computing (ECEC) in large-scale

networks requires complicated system analysis due to stochastic features in user mobility,

user demand, quality of service (QoS) provisioning, radio interfaces, and radio resources. For

this reason, DRL-based approaches become a promising solution to optimization problems

with large state and action spaces. More specifically, the DQL framework for caching can be

implemented at the network controller, e.g., the base station, service provider, and central

scheduler. Meanwhile, DRL for edge computing can be implemented at local devices, e.g.,

mobile users, IoT devices, and fog nodes.

DRL for cyber security

Internet-connected systems become more decentralized and ad-hoc in nature, and

thus, are vulnerable to cyber-physical attacks more than ever. Recently, DQL techniques

have been developed as an effective solution to avoid and prevent attacks. In cyber envi-

ronments, DRL can be used not only for enhancing the communications and networking

capabilities of IoT applications but also for defending against cyber attacks. Thus, DRL

framework can be used to solve the following issues: intrusion detecton, jamming attack,

cyber-physical attack, and connectivity preserving. Although DRL can help enhance the

network security, the applications of DQL for the cyber-physical security are relatively few

and need to be investigated. For example, the defender in cyber-physical systems can be

represented by an actor-critic DRL agent that can learn the optimal strategy to timely

and accurately defend the systems from unknown cyber-attacks. DRL algorithms can also

be facilitated for handling or mitigating jamming attacks in edge networks by providing

secure offloading to the edge nodes against jamming attacks. Furthermore, DRL can be an

effective solution to intrusion detection problems by feeding the system data into a Markov

process and predicting abnormal behaviors of the system.
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