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Abstract 

 

In this dissertation, two algorithms for efficient Cartesian mesh-based flow simulations over 

arbitrarily complex objects are presented. As a first category of this dissertation, a geometric 

multigrid (MG) algorithm using the Heaviside function restriction is presented. This algorithm 

is simple to implement, readily parallelizable, and can be applied to any irregular domain 

problem. The validity of the presented algorithm is demonstrated by solving an analytically 

defined Poisson problem on an irregular domain. Furthermore, the optimal performance of the 

MG method is also demonstrated herein. As a second category of this dissertation, a novel 

efficient and reliable determination procedure of the signed distance function (SDF) based on 

an adaptive mesh refinement (AMR) strategy is described. Our motivation is that the SDF near 

the solid boundary is accurately required in the fluid simulation, whereas the SDF of the rest 

region can be considered as arbitrarily large values if the sign is correct. We employ the AMR 

procedure in order to efficiently define interface cells containing the solid boundary. By 

focusing on interface cells in hierarchical grids, the number of operations for computing the 

SDF can be reduced significantly. The efficiency and accuracy of the proposed method is 

demonstrated by volume convergence tests.  

By combining above two algorithms with an existing solution algorithm for the fluid, an in-

house Cartesian mesh-based incompressible flow solver is developed. The hybrid 

MPI/OpenMP parallelization is applied to this solver, and parallel computation is conducted 

on the KISTI`s Nurion supercomputer. To demonstrate applicability of the current approach, 

various well-known benchmark problems in both 2D and 3D are simulated, and all results are 

validated with previous experimental and numerical data. Furthermore, as the most challenging 

test case, simulations for flow over an underwater walking robot, namely Crabster, are 

presented. Finally, golf ball wake simulations with and without back-spin are presented as a 

very large-scale problem, which consists of ten-billions order cells.      
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Chapter 1 

 

Introduction 

 

1.1. Background, motivation, and objective 

Flow simulation over a complex geometry could be classified into two major categories depending 

on techniques of the body representation, namely the method based on body-fitted meshes, either 

structured [9, 41] or unstructured meshes [1, 2, 53, 66], and the one based on Cartesian meshes with a 

special method for representing the existence of the body within the domain, such as 

immersed/embedded boundary method [76, 67, 29, 68, 28, 97, 52, 98, 14, 17, 21, 33, 72, 36, 37, 22, 34, 

35, 43, 58, 62, 63, 78, 106, 107]. Compared to the immersed/embedded boundary approach on Cartesian 

meshes, the body-fitted mesh approach is a more intuitive in terms of body representation, boundary 

condition imposition, and resolving boundary layer. The Cartesian mesh-based approach with 

immersed/ embedded boundary method has been regaining popularity with introduction of massively 

parallel computing architecture.  

There are two main advantages of the Cartesian mesh-based method with immersed/embedded body 

compared to the body-fitted ones. First, the Cartesian mesh-based method does not require a 

complicated mesh generation process prior to the actual computation. Instead, because generally 

Cartesian grids are not fitted to a geometry interface, it rather requires determination of a simple marker 

function, which is usually a signed distance function (SDF) [75, 38, 21, 25, 84, 36] or Heaviside function 

[33, 36] with respect to a given geometry. Second, the method is efficient in the linear solver stage, 

which is the most time consuming part of the fluid simulation, as it can employ an optimally fast 

iterative linear solver such as geometric multigrid (MG) [13, 16, 26, 101, 89, 48, 59, 36], which is 

readily applicable by utilizing the structured nature of the mesh connectivity of the Cartesian mesh 

system.  

Both of previously mentioned processes, namely a-priori SDF computation and a fast-iterative linear 

solver, ironically become potential obstacles against the wide application of the Cartesian mesh-based 

method for more challenging flow simulations involving complex geometries. This dissertation focuses 

on these two contents. 
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1.1.1. Multigrid method on an irregular domain 

The current solution algorithm for incompressible Navier-Stokes equations is based on the projection 

method, originally introduced by Chorin [18]. The projection method involves the procedure to solve 

the pressure Poisson equation, where most of the CPU time associated with the flow simulation is spent. 

The success of the projection method heavily depends on the efficiency of the Poisson solver. Due to 

the regular connectivity of the Cartesian mesh, various fast iterative solvers can be applied to the 

Poisson solver stage, including Krylov subspace methods [51] with pre-conditioning techniques and/or 

MG method [13, 16, 26, 101, 89, 48, 59, 36]. 

It is well known that the Poisson-type equations on a regular domain (for example a rectangular 

domain without any obstacles) can be most efficiently solved by a geometric MG with the fixed number 

of cycles regardless of mesh size or resolution [13, 16, 26, 101]. This property is the unique feature of 

the MG method. When the MG algorithm is optimally constructed, the total computational cost of the 

MG solver is 𝒪(𝑁), where 𝑁 is the number of unknowns or 𝑁𝑐𝑒𝑙𝑙𝑠 for cell-based schemes in the 

discrete Poisson problem. It is natural that the total computation cost of the optimal MG solver grows 

linearly with respect to 𝑁 because the cost of the single MG cycle increases linearly with respect to 

𝑁.  

However, if irregular domain problems are considered, the application of the MG method becomes 

rather unclear. To achieve the optimal performance of the MG method for irregular domain problems, 

the irregularity of the domain shape has to be effectively transferred down to successively coarsened 

grids, and the restriction and prolongation algorithms have to be consistently constructed. Although 

there have been a few successful previous studies applying the MG method to irregular domain 

problems [98,110,113,116], the actual implementation is rather complicated [98, 110, 113] and the 

optimal performance of the 𝒪(𝑁) complexity has not been demonstrated clearly [116]. 

The first objective of this paper is to present an easy-to-implement geometric MG algorithm for 

solving the Poisson equation on irregular domains. The key idea of the current MG algorithm is to use 

the efficient edge/face-wise Heaviside function restriction in order to effectively represent the domain 

irregularities on successively coarsened grids. It should be noted that a similar idea of the edge/face-

wise restriction concept was also presented by Weber et al. [116]. However, we employ the Heaviside 

function [33], which is the well-designed edge/face-wise function that can efficiently represent domain 

irregularities, and their actual implementation is different from ours.  
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In the current study, the MG algorithm is more simply implemented by using the recursive function, 

not iteratively. Furthermore, we clearly demonstrate the optimal performance of the MG method in the 

irregular domain problem. By using the Heaviside function restriction, the detailed geometric 

information on the finest grid is effectively transferred down to the coarsest grid without any additional 

effort, and this makes the actual implementation of the MG method become trivially simple. By using 

the multilevel algorithm, the presented MG algorithm is applied to parallel computation. The scalability 

of the current MG method is demonstrated on the many-core CPU architecture using the grid resolution 

of 𝒪(109) cells.  

 

1.1.2. Signed distance function computation 

A special indicator function has to be pre-computed prior to the actual flow simulation to represent a 

complex shaped body within a Cartesian domain. Unless the body shape is represented by a simple 

analytical formula, such as a circle, ellipse, polygon, or any combination of those in higher spatial 

dimensions, the marker function computation involves distance computation and complicated in/out 

tests to determine the sign with respect to given geometric information. For most engineering design 

processes, the final body shape is represented by an explicit surface definition from a computer-aided-

design (CAD) model. Perhaps the most popular definition of the body surface would be a 

stereolithography (STL) file format, which is a directed triangular surface mesh. After considering all 

these processes, Cartesian mesh-based flow simulation around complex engineering objects involves 

SDF computations with respect to an arbitrary body shape, and this process perhaps corresponds to the 

stages of the volume mesh generation in body-fitted mesh methods.  

The second objective of this dissertation is to introduce a novel efficient, accurate, and robust 

computation method for the SDF in the Cartesian domain by using the adaptive mesh refinement (AMR) 

[54, 56, 7, 36] strategy. The AMR technique is utilized to optimize the number of operations for the 

SDF. The ray-casting algorithm [85, 43, 36], which is known to be the most accurate and reliable 

algorithm of the in/out test, is employed to determine the sign of the distance function. 

The reasons that most of the Cartesian mesh-based methods have been applied to simple geometries 

could be due to the lack of efficient and reliable algorithms for the SDF computation. Thus, the method 

is limited to simple shaped-body simulations in which complex SDF computation can be avoided. 

Nevertheless, there are a few recent algorithms that aim to extend SDF computations for complex body 

shapes. The representative example is the one based on the pseudo-normal vector estimation [15, 21].  
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The pseudo-normal approach can be successfully applied to a relatively complex moving body [21]. 

However, to the best of the authors’ knowledge, the algorithm is not guaranteed to deliver the correct 

results for arbitrarily complex geometries. In fact, it is mentioned that, in the representative reference 

of the pseudo-normal applications [21], the algorithm could fail to resolve small features such as gaps 

and holes. To guarantee the applicability of the Cartesian mesh-based immersed/embedded body 

method, the SDF computation process should be improved to apply to an any arbitrary complex 

geometry.  

Here, a novel AMR-based SDF computation method with the ray-casting algorithm is presented to 

overcome the limitations of the previous algorithms. This new AMR-based approach presented in this 

paper can guarantee the exact SDF computation regardless of the complexity of the geometry by using 

the intelligent refinement criterion, which ensures that any small and sharp feature of the object is 

accurately resolved. Furthermore, current algorithm is an order of magnitude faster than a naive SDF 

computation on the uniform mesh, thus the number of operations in an AMR-based method is 𝒪(𝑛𝑑−1) 

where 𝑛 is the number of cells along a spatial direction, and 𝑑  is the number of spatial dimensions.  

As an extension research of the AMR-based SDF computation algorithm toward flow simulation over 

a moving body, an efficient and accurate SDF transformation strategy is presented. Compared to the 

body-fitted mesh approach, the Cartesian mesh method also has an advantage for flow simulation over 

a moving body in terms of a greater efficiency of handling a moving body without any mesh 

deformation. However, to take this advantage, it is essential that the time-varying SDF of a moving 

body must be update as efficiently as possible. 

There are several trials in which rigid body motion is successfully simulated by the Cartesian mesh-

based immersed boundary method [14, 17, 21, 22, 31, 58, 62, 63, 98, 106, 107]. In most of these cases, 

the geometry of the moving body is simple enough such that the time-varying SDF can be updated 

instantly by an analytical expression, such as those involving a cylinder or a sphere. For more complex 

geometries, the SDFs are re-evaluated based on the location of the body at each time step [21]. There 

is a nice trial for avoiding the redundant computation of the SDF for a rigid body and slender deformable 

body although their SDF representations are explained by bilinear interpolation based on a regular 

Cartesian mesh [63].       
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In this dissertation, an efficient and accurate moving body representation technique which is essential 

for flow simulations over a rigid moving-body is presented. The motivation of the idea is that an 

accurate computation of the initial SDF would suffice for representation of the body, and any additional 

SDF computation should be avoided regardless of the body motion. This objective can be accomplished 

by an efficient transformation of the SDF onto the arbitrarily moving frame attached to the body. Based 

on the accurate determination of the SDF around a moving body, the new SDF can be simply 

transformed from the initial SDF field according to the mechanics of rigid body motion. In other words, 

the timely update of the SDF field is nothing but a combined rotational and translational motion of the 

originally “frozen” SDF field. 

 

1.1.3. Fluid/rigid-body coupling method 

The existence of a body inside of the flow field has to be properly represented in a manner consistent 

with the solution algorithm for the governing equations, namely the momentum and continuity 

equations. The presence of the body should be appropriately reflected to the Navier-Stokes equations 

to be imposed with correct boundary condition, i.e. the no-slip velocity condition for the momentum 

equations and the Neumann pressure condition for the Poisson equation which is the result of the 

continuity equation. These two boundary conditions must be properly implemented to correctly 

represent the body with the Cartesian meshes.  

There are several classes of techniques that can implement those boundary conditions. The immersed 

boundary method originally proposed by Peskin [76] is perhaps the most popular approach to represent 

an irregular body shape on a Cartesian mesh. The key idea of the immersed boundary method is 

enforcing the desired boundary condition for the velocity indirectly using forcing functions. Depending 

on types of forcing functions, various immersed boundary methods [29, 68, 28, 52, 97, 78] have been 

reported. However, among these studies, there are no straightforward ways to satisfy the Neumann 

boundary condition of a pressure Poisson equation in the projection stage.  

Ng et al. [72] introduced a novel discretization of the projection method on an irregular domain to 

enforce the Neumann condition in the pressure Poisson equation. Then, Gibou and Min [33] proposed 

a more generalized form by introducing the Heaviside function, which can be directly computed from 

the SDF with respect to a given body shape. In their study, the pressure Poisson equation on the irregular 

domain is represented by this Heaviside function, which is 0 in the body region and 1 in the fluid region.  
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Heaviside functions can be readily sampled at cell edges/faces and approximated by the length 

fraction in 2D and area fraction in 3D using SDF. The pressure Poisson equation on the irregular domain 

with Neumann boundary condition can be straightforwardly derived by multiplying the original 

equation of the projection step by the Heaviside function. The algorithm presented in Gibou and Min 

[33] is employed in this study to impose the two types of boundary conditions, i.e. the Dirichlet 

condition for the velocity and Neumann condition for the pressure, in a manner consistent with equation 

discretization. 

 

1.2. Major contributions 

As the main contributions of the current research, two algorithms for efficient Cartesian mesh-based 

incompressible flow simulations over complex geometries are introduced towards solving actual 

engineering problems and described as follows. 

 

1.2.1. An easy-to-implement multigrid method for an irregular 

domain 

In the current study, the MG method is directly applied to an irregular domain problem, and the 

original contributions can be summarized as follows:  

 

1. Application of the MG method to an irregular domain problem using Heaviside function restriction 

 

2. Verification of the optimal performance for the MG method on an irregular domain problem 

 

It is well known that the Poisson-type equations on a regular domain can be most efficiently solved 

by the MG method with the fixed number of cycles, namely the optimal performance, regardless of 

mesh size or resolution. For an irregular domain problem, however, it is rather unclear what is the 

optimal iterative linear solver for the Poisson problem. In the current research, a direct application of 

the MG solver for the arbitrarily irregular domain using Heaviside function restriction is introduced, 

and its optimal performance is demonstrated by solving the analytically defined projection problem. 
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1.2.2. An efficient and accurate SDF computation 

In the part of signed distance function (SDF) computation, the original contributions of the current 

research can be listed as follows:  

 

1. First application of a ray-casting algorithm on an adaptively refined mesh system 

 

2. First introduction of a mesh refinement criterion based on geometric information  

 

3. An efficient and accurate SDF transformation for representing moving bodies 

 

The first category of the contributions in the part of SDF computation is to develop a novel efficient 

and robust computation method for the SDF in the Cartesian domain by combining a ray-casting 

algorithm and the AMR strategy. The AMR technique is utilized to optimize the number of operations 

for the SDF computation by tracing interface cells. The ray-casting algorithm, which is known to be the 

most accurate and reliable algorithm of the in/out test, is employed to determine the sign of the distance 

function on an adaptively refined mesh system. 

As the second category, a mesh refined criterion based on geometric information, namely edge/face-

based criterion, is introduced in this dissertation. The AMR technique is utilized to efficiently define 

the finest interface cells, where accurate sign determination is required, by continuously refining the 

coarser interface cells. Therefore, a robust refinement criterion which can be detect arbitrarily complex 

geometries is highly desired. In the edge/face-based method, a cell is refined if an intersection between 

a cell edge/face and body interface is detected. This criterion guarantees the detection of arbitrarily 

complex geometries. 

An efficient and accurate SDF transformation is the last category of the contributions in the part of 

SDF computation. The objective is that any additional SDF computation, such as re-initialization of the 

SDF, should be avoided regardless of the body motion. This objective can be accomplished by a 

transformation of the SDF using two different frames: one is global frames for the fluid simulation, and 

the other is local frames attached to bodies for the original SDF. The new SDF field of the next time 

step can be simply transformed from the original SDF field by coordinate transformation from global 

to local frame and interpolation.  
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1.3. Outline of the dissertation 

The rest of this dissertation is organized as follows. 

In Chapter 2, the efficient and stable projection method for the present incompressible flow 

simulation on an irregular domain, originally proposed by Gibou and Min [33], is presented. First, semi-

Lagrangian approach dealing with non-linear convection terms of incompressible Navier-Stokes 

equations is described. Next, a standard projection method introduced by Chorin [18] is explained. Then, 

how to treat an irregular domain in projection method, i.e. velocity Helmholtz equation for the 

intermediate state and pressure Poisson equation for the projection step, is presented.  

In Chapter 3, a detailed description about how the MG method can be applied to the irregular domain 

is presented together with basic concepts of the MG method. To demonstrate the accuracy and efficiency 

of the proposed MG algorithm for an irregular domain problem, an analytically defined projection 

problem is solved using the current MG method. The convergence speed of the current MG solver is 

compared with a standard CG method at different grid levels, and the optimal performance of the MG 

method is demonstrated for an irregular domain problem.  

In Chapter 4, an efficient and accurate way to compute SDF utilizing AMR and the ray-casting 

algorithm is presented. First, the mesh refinement algorithm, including the refinement decision making 

criterion, namely edge/face-based criterion, is introduced. Then, the entire process for the global SDF 

computation is explained. Verification studies for a circle and sphere are presented to demonstrate the 

efficiency and validity of the current algorithm. Furthermore, several examples are presented for both 

2D and 3D geometries to show applicability of the current algorithm towards engineering problem. 

Finally, SDF transformation strategy based on high-order interpolation for representing moving bodies 

on Cartesian meshes is described. 

In Chapter 5, strategies for the parallel computation using hybrid MPI/OpenMP programming are 

presented. First, basics of MPI and OpenMP are described, and the concept of hybrid programming is 

introduced. Then, the parallel MG method using the multi-level 𝑉-cycle algorithm [74] is described, 

and specification of Nurion supercomputer, where current parallel computation is conducted, is 

presented. Furthermore, strong and weak scalabilities of the current incompressible flow solver are 

presented. 

In Chapters 6 and 7, in order to show the accuracy, efficiency, and robustness of the current method, 

various simulation results for both in 2D and 3D domains are presented and discussed. Finally, 

concluding remarks of the current research and recommended future works are presented in Chapter 8. 
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Chapter 2 

 

Numerical Methods for the Fluid 

 

2.1. Governing Equation 

The governing equations, composed of momentum and continuity equations, for unsteady 

incompressible flow without body forces can be written as  

 

𝜌
𝐷𝑼

𝐷𝑡
= −𝛻𝑝 + 𝜇𝛻2𝑼,                                                                                                                                      (2.1) 

 

𝛻 ∙ 𝑼 = 0,                                                                                                                                                             (2.2) 

 

where 𝑼 = (𝑢, 𝑣, 𝑤) and 𝑝 respectively refer to the fluid velocity vector and pressure (the unknowns 

of the equations) and given data 𝜌 and 𝜇 are the fluid density and the fluid viscosity, respectively. The 

left-hand-side of the momentum equation refers to the acceleration of the fluid, which is expressed with 

the total derivative 𝐷/𝐷𝑡 of the fluid velocity with respect to time.  

The total derivative term can be expanded as the nonlinear advection form if the flow field is 

described in a purely Eulerian frame of reference. One of the major difficulties of the momentum 

equation comes from the non-linearity of the advection term. Several elegant algorithms have been 

proposed and successfully applied to solve this nonlinear convection term, for example a flux-difference 

splitting [80] scheme, a weighted essentially non-oscillatory (WENO) [45] scheme, and a constrained 

interpolation profile/conservative semi-Lagrangian (CIP-CSL) [103] method. The common aspect of 

these schemes is about how to efficiently reflect the upstream information of the advection phenomenon.  
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In this study, the semi-Lagrangian time discretization method [77, 104, 33, 71, 72, 88, 36, 37] is 

implemented based on a Cartesian grid system. To discretize the acceleration term, the departure points 

𝒙𝑑
𝑛 of fluid particles arriving at grid points 𝒙𝑛+1 should track backward along the characteristic lines 

𝒙  where 𝐷𝒙/𝐷𝑡 = 𝑼(𝒙, 𝑡)  within a time step. The second-order backward differentiation formula 

(BDF2) is utilized to discretize the total derivative term of Eq. (2.1). Therefore, momentum equation 

can be implicitly discretized as follows: 

 

𝜌

3
2
𝑼𝑛+1 − 2𝑼𝑑

𝑛 +
1
2
𝑼𝑑
𝑛−1

∆𝑡
= (−𝛻𝑝 + 𝜇𝛻2𝑼)𝑛+1,                                                                                     (2.3) 

 

where variables which have the superscript 𝑛 + 1 are defined at grid points, and 𝑼𝑑
𝑛 and 𝑼𝑑

𝑛−1 are 

fluid velocities of departure points defined at time 𝑡𝑛 and 𝑡𝑛−1, respectively. Using a second-order 

Runge-Kutta method, a departure point of time 𝑡𝑛 can be computed as 

 

𝒙𝑑
𝑛+
1
2 = 𝒙𝑛+1 −

∆𝑡

2
𝑼𝑛(𝒙𝑛+1),                                                                                                                         (2.4) 

 

𝒙𝑑
𝑛 = 𝒙𝑛+1 − ∆𝑡𝑼𝑛+

1
2 (𝒙𝑑

𝑛+
1
2).                                                                                                                       (2.5) 

 

Here, 𝑼𝑛+1/2 is estimated by linear extrapolation using the two previous time steps, i.e. 𝑼𝑛+1 2⁄ =

3 2⁄ 𝑼𝑛 − 1 2⁄ 𝑼𝑛−1. A departure point of time 𝑛 − 1 can be similarly computed as 

 

𝒙𝑑
𝑛 = 𝒙𝑛+1 − ∆𝑡𝑼𝑛(𝒙𝑛+1),                                                                                                                              (2.6) 

 

𝒙𝑑
𝑛−1 = 𝒙𝑛+1 − 2∆𝑡𝑼𝑛(𝒙𝑑

𝑛).                                                                                                                            (2.7) 

 

Notice that the nonlinearity of the left-hand-side acceleration term is still included and incorporated 

into the backtracking process.  
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Generally, the departure point does not coincide with a grid point. In this case, bilinear interpolation 

(2D) or trilinear interpolation (3D) is employed to determine the values of a departure point. For a 2D 

unit cell [0,1]2, bilinear interpolation with variable ξ can be defined as  

 

𝜉(𝑥, 𝑦) = 𝜉(0,0)(1 − 𝑥)(1 − 𝑦) + 𝜉(0,1)(1 − 𝑥)𝑦 + 𝜉(1,0)𝑥(1 − 𝑦) + 𝜉(1,1)𝑥𝑦.                      (2.8) 

 

The beauty of the semi-Lagrangian algorithm is in its superior stability with respect to the time step. 

Eq. (2.3) is unconditionally stable. This means that the size of time step can be chosen only by the 

accuracy requirement, not by the stability. In other words, the limitation of CFL number can be ignored, 

thus a large time step can be utilized as long as it is allowed by the temporal accuracy requirement.  

 

 

Fig. 2.1. Staggered grid system. In two-spatial dimensions, the horizontal and vertical velocity are 

respectively sampled at the vertical and horizontal surface, and the pressure is defined at the center of 

the cell. 

 

A standard projection method introduced by Chorin [18] is employed together with a staggered grid 

system [39] (see Fig. 2.1) to solve the rest of the implicitly discretized momentum equation. In this grid 

system, the horizontal velocity (𝑢𝑖±1 2⁄ ,𝑗) is positioned at the center of the vertical plane (𝒙𝑖±1 2⁄ ,𝑗), 

while the vertical velocity (𝑣𝑖,𝑗±1 2⁄ ) is located at the center of the horizontal plane (𝒙𝑖,𝑗±1 2⁄ ), and 

pressure (𝑝𝑖,𝑗) is defined at the center of the grid (𝒙𝑖,𝑗). This grid system has an advantage in terms of 

effectively satisfying the incompressibility.  
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2.2. Projection Method 

In the projection method utilized in this study, a single physical time evolution is decomposed into 

two sub-stages (see Fig. 2.2): prediction of the intermediate non-solenoidal velocity field and its 

subsequent projection step down to the divergence-free velocity field. First, the momentum equation at 

the intermediate state (*) are given by  

 

𝜌

3
2
𝑼∗ − 2𝑼𝑑

𝑛 +
1
2
𝑼𝑑
𝑛−1

∆𝑡
= 𝜇𝛻2𝑼∗.                                                                                                                (2.9) 

 

The fluid velocity at intermediate state 𝑼∗ is sought by solving this implicit Helmholtz equation with 

a constant source term defined by the velocities at previous time steps. The predicted intermediate 

velocity 𝑼∗ does not satisfy the incompressibility (∇ ∙ 𝑼 = 0), thus it has to be corrected by removing 

the non-solenoidal contribution by the following projection. The equations for identifying the non-

solenoidal contribution can be defined by the pressure Poisson equation as follows: 

 

𝛻 ∙ (
𝑼𝑛+1 −𝑼∗

∆𝑡
= −

1

𝜌
𝛻𝑞𝑛+1) ⇒ −

1

∆𝑡
𝛻 ∙ 𝑼∗ = −𝛻 ∙ (

1

𝜌
𝛻𝑞𝑛+1),                                                    (2.10) 

 

where 𝑞 is the scalar quantity so called pseudo pressure to enforce the incompressibility of the fluid, 

and the pressure is also updated to the next time step by using 𝑞. The actual velocity projection step 

can be defined as  

 

𝑼𝑛+1 = 𝑼∗ −
∆𝑡

𝜌
𝛻𝑞𝑛+1.                                                                                                                                 (2.11) 
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Fig. 2.2. The concept of the projection method for the incompressible flow 

 

Using this projection process, the intermediate non-solenoidal velocity 𝑼∗  can be filtered to the 

divergence-free velocity 𝑼𝑛+1. If Eq. (2.11) is arranged for 𝑼∗ and then substituted into Eq. (2.9), it 

should recover the original momentum equation shown Eq. (2.3). Based on this relation, the pressure, 

which is in accordance with the divergence-free velocity, can be updated to the time step 𝑛 + 1:  

  

𝑝𝑛+1 =
3

2
𝑞𝑛+1 − 𝜇𝛻 ∙ 𝑼∗.                                                                                                                              (2.12) 

 

The previously mentioned procedure for the projection method can only be applied for regular 

domain problems. If a body domain is submerged in the computational domain, the solution algorithm 

should be modified to represent an irregular fluid domain excluded by the body. The treatment of the 

irregular domain problem in the projection method is presented in the following chapters including: 1) 

velocity Helmholtz equation on an irregular domain; 2) pressure Poisson equation on an irregular 

domain. 
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2.3. Velocity Helmholtz equation on an irregular domain 

In the intermediate state of an irregular fluid domain problem, 𝑼∗ should satisfy the no-slip boundary 

condition provided that the Neumann condition holds for 𝑞  on the body surface. Therefore, the 

equation of the intermediate state can be considered as a Helmholtz equation on an irregular domain 

with a Dirichlet boundary condition. From Eq. (2.9), the Helmholtz equation for the intermediate 

velocity can be written by 

 

 𝛻2𝑼∗ = 𝑓(𝑼∗),                                                                                                                                                (2.13) 

 

where 𝑼∗ = (𝑢∗, 𝑣∗, 𝑤∗) is the intermediate velocity vector and 𝑓(𝑼∗) is defined as the left-hand-side 

of Eq. (2.9) multiplied by 1 𝜇⁄ . 

A symmetric discretization method for the Poisson equation on an irregular domain proposed by 

Gibou et al. [30] is employed to solve Eq. (2.13) along with the additional diagonal contribution from 

the unsteady source, i.e. the leading term of the left-hand-side of Eq. (2.9). This discretization is 

performed in a dimension by dimension fashion. Thus, only a one-dimensional case is described in this 

paper without loss of generality. The discretization of other spatial directions is straightforward and can 

be expressed simply by changing the index in accordance with the direction of interest.  

Using the central difference approximation, the one-dimensional Helmholtz equation  𝛻2𝑢∗ = 𝑓(𝑢∗) 

can be discretized as 

 

(
𝑢𝑖+3 2⁄
∗ − 𝑢𝑖+1 2⁄

∗

∆𝑥 ) − (
𝑢𝑖+1 2⁄
∗ − 𝑢𝑖−1 2⁄

∗

∆𝑥 )

∆𝑥
= 𝑓𝑖+1 2⁄ (𝑢

∗),                                                                        (2.14) 

 

where 𝑢∗ is the 𝑥-directional intermediate velocity. If the interface is located between cell boundary 

𝑖 + 1 2⁄  and 𝑖 + 3 2⁄  (see Fig. 2.3), the special treatment to satisfy the Dirichlet boundary condition at 

the interface should be applied. The ghost cell approach is used to deal with the irregular domain, and 

this approach utilizes the linearly extrapolated values as the solution of the ghost cell in order to enforce 

the Dirichlet boundary condition. As depicted in Fig. 2.3, the extrapolated value can be computed as 

 

𝑢𝑖+3 2⁄
𝐺 =

∆𝑥

∆𝑥̃
(𝑢𝑏 − 𝑢𝑖+1 2⁄

∗ ) + 𝑢𝑖+1 2⁄
∗ .                                                                                                         (2.15) 
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Based on Gibou et al. [30], the one-dimensional Helmholtz equation for the intermediate velocity can 

be discretized with the Dirichlet boundary condition on the irregular domain: 

 

(
𝑢𝑖+3 2⁄
𝐺 − 𝑢𝑖+1 2⁄

∗

∆𝑥 ) − (
𝑢𝑖+1 2⁄
∗ − 𝑢𝑖−1 2⁄

∗

∆𝑥 )

∆𝑥
 

=

(
𝑢𝑏 − 𝑢𝑖+1 2⁄

∗

∆𝑥̃ ) − (
𝑢𝑖+1 2⁄
∗ − 𝑢𝑖−1 2⁄

∗

∆𝑥 )

∆𝑥
= 𝑓𝑖+1 2⁄ (𝑢

∗).                                                                           (2.16) 

 

This discretization still has second-order accuracy and symmetricity. Since the computational 

overhead for the intermediate velocity prediction is relatively insignificant compared to the following 

pressure Poisson equation, any iterative method could be utilized. Here, a conjugate gradient method is 

used to solve this linear system.  

 

 

Fig. 2.3. The idea for imposing the Dirichlet boundary condition by assuming the linearly varying 

velocity across the body interface. 𝑢𝑖+3 2⁄
𝐺  is the velocity at the interior ghost cell 𝑥𝑖+3 2⁄  that 

produced the intended linear velocity profile. 𝑢𝑏 indicates a boundary value, and 𝑢̃(𝑥) refers to a 

linear equation derived by 𝑢𝑖+1 2⁄
∗  and 𝑢𝑏, and ∆𝑥̃ is the distance between the interface and the real 

cell point 𝑥𝑖+1 2⁄ . 
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As illustrated in Fig. 2.3, ∆𝑥̃ is the distance between the grid point involved in fluid region and the 

actual solid interface. The location of the solid interface is numerically computed by detecting 𝑥∗ that 

satisfies 𝜙(𝑥∗) = 0 . Here, 𝜙  is quadratically reconstructed using the pre-computed SDF near the 

interface [72]: 

 

𝜙(𝑥) = 𝜙(𝑥𝑖+1 2⁄ ) + 𝜙𝑥(𝑥𝑖+1 2⁄ )𝑥 +
1

2
𝜙𝑥𝑥(𝑥𝑖+1 2⁄ )𝑥

2,                                                                        (2.17) 

 

where 𝜙𝑥 and 𝜙𝑥𝑥 are determined by the central difference approximation at 𝑥𝑖+1 2⁄ . Note that the 

location of solid interface is approximated quadratically, and the velocity near the solid surface is 

approximated linearly. Any order elevation for the velocity approximation can be sought, but the current 

linear approximation of the velocity boundary condition turns out to be consistent with our global 

solution accuracy, which is indeed second-order. 

As illustrated in Fig. 2.3, ∆𝑥̃ is the distance between the grid point involved in fluid region and the 

actual solid interface. The location of the solid interface is numerically computed by detecting 𝑥∗ that 

satisfies 𝜙(𝑥∗) = 0 . Here, 𝜙  is quadratically reconstructed using the pre-computed SDF near the 

interface [72]: 

 

 

Fig. 2.4. Imposition of the Dirichlet boundary condition by assuming the linearly varying velocity 

across the body interface in the two-spatial dimension. 
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By using this relation, based on Fig. 2.4., the Helmholtz equation of the 𝑥-directional velocity in 

two-spatial dimension can be discretized as 

 

𝜌

𝜇
(

3
2𝑢𝑖+1/2,𝑗

∗ − 2𝑢𝑑
𝑛 +

1
2𝑢𝑑

𝑛−1

𝛥𝑡
) 

=

(
𝑢𝑖+3/2,𝑗
∗ − 𝑢𝑖+1/2,𝑗

∗

∆𝑥 ) − (
𝑢𝑖+1/2,𝑗
∗ − 𝑢𝑏

𝑥

∆𝑥̃ )

∆𝑥
+

(
𝑢𝑖+1/2,𝑗+1
∗ − 𝑢𝑖+1/2,𝑗

∗

∆𝑦 ) − (
𝑢𝑖+1/2,𝑗
∗ − 𝑢𝑏

𝑦

∆𝑦̃ )

∆𝑦
         (2.18) 

 

2.4. Pressure Poisson equation on an irregular domain 

The pressure Poisson equation, actually the equation for 𝑞, on an irregular domain is difficult to 

solve because there are no obvious ways to satisfy the Neumann boundary condition at the interface. A 

straightforward method of effective enforcement of the Neumann boundary condition was first 

proposed by Ng et al. [72] and was further generalized by Gibou and Min [33]. The main idea of the 

Gibou and Min approach is to use the Heaviside function directly for the discretization of the pressure 

Poisson equation. The Heaviside function is numerically approximated as the length fraction of the cell 

edge in 2D and the area fraction of the cell face in 3D. 

In the case of two-spatial dimensions, see Fig. 2.5, the edge-averaged Heaviside function scaled by 

the length fraction at a cell interface 𝑥𝑖+1 2⁄ × [𝑦𝑖−1 2⁄ , 𝑦𝑖+1 2⁄ ] is computed as  

 

𝐻
𝑖+
1
2
,𝑗
=

𝜙
𝑖+
1
2
,𝑗+
1
2

+ − 𝜙
𝑖+
1
2
,𝑗−
1
2

+

𝜙
𝑖+
1
2
,𝑗+
1
2
− 𝜙

𝑖+
1
2
,𝑗−
1
2
 
,                                                                                                                     (2.19) 

 

where 𝜙+ = max(𝜙, 0). If both 𝜙𝑖+1/2,𝑗+1/2 and 𝜙𝑖+1/2,𝑗−1/2 are positive, the Heaviside function is 

1. In contrast, if both are negative, then the Heaviside function is 0. If the solid interface intersects the 

cell edge, then the edge-averaged Heaviside function will be between 0 and 1, i.e. 𝐻𝑖+1 2⁄ ,𝑗 ∈ (0,1). 

The Heaviside function at horizontal surface can be similarly computed. 
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Fig. 2.5. The layout of the 2D grid cell with the signed distance function and the Heaviside function   

 

 

 

Fig. 2.6. The layout of the 3D grid cell with the signed distance function and the Heaviside function 
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In the case of three-spatial dimensions, the Heaviside function scaled by the area fraction is defined 

as the sum of the area fractions of two sub-triangles composing the original cell face. If 𝜙0, 𝜙1, 𝜙2, 𝜙3 

are considered as the SDF of vertices of the cell face, see Fig. 2.6, the area fraction of triangle Δ𝑃0𝑃1𝑃2 

is computed as  

 

𝐻(𝜙0, 𝜙1, 𝜙2) =

{
 
 

 
 𝜙0

+ − 𝜙1
+

𝜙0 − 𝜙1
∙
𝜙0
+ − 𝜙2

+

𝜙0 − 𝜙2
if 𝜙0  > 0, 𝜙1 < 0 ,and 𝜙2 < 0,

1 −
𝜙0
− − 𝜙1

−

𝜙0 − 𝜙1
∙
𝜙0
− − 𝜙2

−

𝜙0 − 𝜙2
if 𝜙0  < 0, 𝜙1 > 0 ,and 𝜙2 > 0,

                              (2.20) 

 

where 𝜙− = min(𝜙, 0). Note that there were typographical errors in the original formula [33] for the 

3D Heaviside function, and those are corrected in Eq. (2.20). Likewise, the Heaviside functions for the 

rest of the sub-triangle can be calculated by symmetry. Finally, the Heaviside function of the cell surface 

is defined simply by averaging as follows:  

 

𝐻(𝜙0, 𝜙1, 𝜙2, 𝜙3) =
1

2
(𝐻(𝜙0, 𝜙1, 𝜙2) + 𝐻(𝜙0, 𝜙3, 𝜙2)).                                                                     (2.21) 

 

As described in Gibou and Min [33], the previously mentioned approximation of the Heaviside 

function in two-spatial dimensions produces about sub-second-order (≅ 1.5) accuracy. However, 

discretization in three-spatial dimension has second-order accuracy. 

Using the Heaviside function, the pressure Poisson equation on the irregular domain with the 

Neumann boundary condition can be derived by 

 

𝛻 ∙ {𝐻 (
𝑼𝑛+1 −𝑼∗

∆𝑡
= −

1

𝜌
𝛻𝑞𝑛+1)} ⇒ −

1

∆𝑡
𝛻 ∙ (𝐻𝑼∗) = −𝛻 ∙ (

𝐻

𝜌
𝛻𝑞𝑛+1).                                   (2.22) 
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Note that 𝛻𝐻 = 𝒏𝛿𝛤, where 𝒏 is the outward-positive normal vector with respect to the solid body, 

and 𝛿𝛤 is the Dirac delta function on the interface. Based on this relation, the above equation can 

enforce the Neumann boundary condition automatically. In two-spatial dimensions, this equation can 

be discretized with the central difference approximation as follows: 

 

−

𝐻
𝑖+
1
2
,𝑗
(𝑞𝑖+1,𝑗
𝑛+1 − 𝑞𝑖,𝑗

𝑛+1)

∆𝑥
−

𝐻
𝑖−
1
2
,𝑗
(𝑞𝑖,𝑗
𝑛+1 − 𝑞𝑖−1,𝑗

𝑛+1 )

∆𝑥
𝜌∆𝑥

−

𝐻
𝑖,𝑗+

1
2
(𝑞𝑖,𝑗+1
𝑛+1 − 𝑞𝑖,𝑗

𝑛+1)

∆𝑦 −

𝐻
𝑖,𝑗−

1
2
(𝑞𝑖,𝑗
𝑛+1 − 𝑞𝑖,𝑗−1

𝑛+1 )

∆𝑦

𝜌∆𝑦
 

= −

(𝐻
𝑖+
1
2
,𝑗
𝑢
𝑖+
1
2
,𝑗

∗ −𝐻
𝑖−
1
2
,𝑗
𝑢
𝑖−
1
2
,𝑗

∗ )

∆𝑡∆𝑥
−

(𝐻
𝑖,𝑗+

1
2
𝑣
𝑖,𝑗+

1
2

∗ −𝐻
𝑖,𝑗−

1
2
𝑣
𝑖,𝑗−

1
2

∗ )

∆𝑡∆𝑦
.                                                (2.23) 

 

The above discretization produces the symmetric-positive-definite system, and iterative methods in 

conjunction with convergence acceleration methods are strongly encouraged. In the following chapter, 

the multigrid method, known as the fastest linear solver for Poisson-type equations, is described and 

extended to the irregular domain problem.  

Based on Gibou and Min algorithm, the pressure Poisson equation for a forced moving body can be 

written as  

 

𝛻 ∙ {𝐻 (
𝑼𝑛+1 −𝑼∗

∆𝑡
= −

1

𝜌
𝛻𝑞𝑛+1)} ⇒

1

∆𝑡
(𝛻 ∙ (𝐻𝑼∗) − 𝑼𝑏∇𝐻) = 𝛻 ∙ (

𝐻

𝜌
𝛻𝑞𝑛+1),                      (2.24) 

 

since  

 

∇ ∙ (𝐻𝑼𝑛+1) = 𝐻∇ ∙ 𝑼𝑛+1 +𝑼𝑛+1∇𝐻 = 𝑼𝑏∇𝐻,                                                                                     (2.25) 

 

where  𝑞 is the scalar quantity, known as the pseudo pressure, 𝐻 is the Heaviside function of the next 

time step, and 𝑼𝑏 is the prescribed body velocity of the next time step. This approach works because 

𝛻𝐻 = 𝛿𝛤𝒏, where 𝛿𝛤 is the Dirac delta function on the interface and 𝒏 is the outward-positive normal 

vector with respect to the body, and because 𝑼𝑛+1, which is multiplied to ∇𝐻, can be substituted by 

𝑼𝑏. The pressure Poisson equation on a moving irregular domain can be also solved by the multigrid 

method described in following chapter, which can be directly applied to an irregular domain problem.   
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Chapter 3 

 

Multigrid Method for an Irregular Domain 

 

In this chapter, a geometric multigrid (MG) algorithm using the edge/face-wise Heaviside function 

restriction is presented. This geometric MG algorithm is simple to implement, readily parallelizable, 

and can be applied to any irregular domain problem. The presented method shares many features with 

Weber et al. [116]. However, we employ the Heaviside function [33], which is a well-designed 

edge/face-wise function that can effectively represent domain irregularities, and the MG algorithm is 

implemented not iteratively but recursively. The optimal performance is demonstrated by solving the 

model Poisson problem exhibiting an analytical solution. 

 

3.1. Standard multigrid method 

It is known that iterative linear solvers such as Jacobi and Gauss-Seidel method can produce the 

smooth residual. High-frequency components of residuals are rapidly reduced in a few iterations using 

these iterative solvers, whereas low-frequency residuals converge very slowly. Low-frequency parts act 

like high-frequency components in a coarse grid. MG is based on this property. In other words, the high-

frequency residual is eliminated on a fine grid in a few iterations, and then the remaining low-frequency 

components are projected to a coarse grid as source terms.  

Since the low-frequency residual can be considered as a high-frequency part on a coarse grid, it can 

be successfully eliminated by iterative solvers with a small number of iterations. This procedure is 

consecutively performed until the coarsest grid level is reached. This process is known as coarse grid 

correction or restriction. In contrast, solutions computed at the coarse grid are successively interpolated 

to the fine grid until they reach the finest (original) grid, and this process is called as prolongation. 

Therefore, the MG solves the linear system using a single restriction-prolongation loop, called as the 

𝑉-cycle, as depicted in Fig. 3.1. The remarkable property of MG is that once the MG algorithm is 

optimally constructed, the total number of MG cycles required for the convergence is nearly constant 

regardless of the grid resolution.  
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A Gauss-Seidel iterative solver is employed as a smoother in this study. The smoother is applied to 

both the restriction and prolongation procedures. The smoothers applied at restriction and prolongation 

are called to pre- and post-smoothers, respectively. In this study, the number of pre-smoothing is 10, 

and the number of post-smoothing is 2. The bottom-most, coarsest grid for the restriction is set to 2 × 2 

in a 2D domain and 2 × 2 × 2 in a 3D domain regardless of the top-most, initial, finest mesh resolution. 

 

 

Fig. 3.1. Illustration of the 𝑉 -cycle with three levels, where 𝑹  and 𝑷  refer to restriction and 

prolongation operators, respectively. 

 

The cell-centered scheme is employed in the current pressure Poisson equation, where the unknowns 

are sampled at the center of each grid cell. The one-dimensional restriction and prolongation procedures 

for a cell-centered scheme are simply performed as shown in Fig. 3.2.  

 

 

Fig. 3.2. One-dimensional (a) restriction and (b) prolongation procedure for the cell-centered scheme 
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In the restriction process, the source term in the coarse grid 𝒃2ℎ  is computed by averaging the 

residuals of the fine grid 𝒓ℎ whose centers are involved in the corresponding coarse grid. In the case 

of prolongation, the coarse solution 𝒙2ℎ  is equally injected to the fine solutions 𝒙ℎ  which are 

contained in the corresponding coarse grid. Based on Fig. 3.2, the restriction and prolongation 

procedures can be written by 

   

{
𝑏1
2ℎ

𝑏2
2ℎ}

⏟  
𝒃2ℎ

=
1

2
[
1 1 0 0
0 0 1 1

]
⏟          

𝑹
{
 
 

 
 𝑟1

ℎ

𝑟2
ℎ

𝑟3
ℎ

𝑟4
ℎ
}
 
 

 
 

⏟  
𝒓ℎ

 ⇒  𝒃2ℎ = 𝑹𝒓ℎ ,                                                                                       (3.1) 

 

{
 
 

 
 𝑥1

ℎ

𝑥2
ℎ

𝑥3
ℎ

𝑥4
ℎ
}
 
 

 
 

⏟  
𝒙ℎ

=

{
 
 

 
 𝑥1

ℎ

𝑥2
ℎ

𝑥3
ℎ

𝑥4
ℎ
}
 
 

 
 

⏟  
𝒙ℎ

+ [

1 0
1 0
0 1
0 1

]

⏟    
𝑷

{
𝑥1
2ℎ

𝑥2
2ℎ}

⏟  
𝒙2ℎ

  ⇒  𝒙ℎ = 𝒙ℎ + 𝑷𝒙2ℎ,                                                                           (3.2) 

 

where 𝑹 and 𝑷 refer to the restriction and prolongation operators, respectively. Note that these two 

operators satisfy the variational property [13], i.e. 𝑃 = 𝑐𝑅𝑇 where 𝑐 is a constant real value. It means 

that the prolongation operator and the restriction operator are transposes of each other up to a constant.  

This restriction and prolongation procedures can be easily extended to the 2D case as shown in Fig. 3.3. 

 

Fig. 3.3. Two-dimensional (a) restriction and (b) prolongation procedures for the cell-centered scheme, 

where 𝑖 = 2𝐼 − 1 and 𝑗 = 2𝐽 − 1. 
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The entire procedure of a single 𝑉-cycle for MG can be summarized as follows: 

 

1. Relax the linear system on a fine grid as the pre-smoothing operation. 

2. Compute the residual : 𝒓ℎ = 𝒃ℎ − 𝑨ℎ𝒙ℎ. 

3. Restrict the residual 𝒓ℎ to the source term 𝒃2ℎ on a coarse grid. 

4. Repeat 1-3 until reaching the coarsest grid. 

5. Relax the linear system on a coarse grid as a post-smoothing process. 

6. Prolongate the coarse solution to fine solutions. 

7. Repeat 5, 6 until reaching the finest (original) grid. 

 

3.2. Multigrid method on an irregular domain 

The current pressure Poisson equation for the irregular domain can be solved as in the case of the 

regular domain since the domain irregularity is automatically represented by the Heaviside function 

contained in the Poisson equation. Based on this fact, if the Heaviside function is consistently defined 

at a successively coarsened grid, the standard MG algorithm can be similarly applied to the current 

Poisson equation.   

Considering the spatial discretization of the pressure Poisson equation as written in Eq. (2.23), the 

system matrix (𝑨) of the Poisson equation involves the Heaviside function. Therefore, in the restriction 

process, 𝑨 should be re-constructed at a successively coarsened grid. Here, we employ the edge/face-

wise restriction algorithm. Based on this algorithm, the Heaviside function on the edge/face of the 

coarse grid can be defined by averaging the Heaviside functions on its fine grid edges/faces. This 

procedure for two-spatial dimensions is depicted in Fig. 3.4. 

The Heaviside function restriction algorithm can be extended to 3D cases in a similar manner. Instead 

of edge-wise averaging of the Heaviside function in 2D, face-wise averaging is applied to the Heaviside 

function restriction in 3D. More specifically, the Heaviside function on the cell face of the coarse grid 

can be defined simply by averaging the Heaviside functions at the corresponding four faces of its fine 

grids. 
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Fig. 3.4. The edge/face-wise Heaviside function restriction procedure in 2D, where 𝑖 = 2𝐼 − 1 and 

𝑗 = 2𝐽 − 1. 

 

The current edge/face-wise restriction algorithm for the Heaviside function is strongly recommended 

because of the following reasons:  

 

⚫ By using the pre-computed Heaviside function, any redundant computation of the Heaviside function        

can be eliminated, thus saving computational time and memory. 

 

⚫ If the Heaviside function is re-computed at each coarse grid, the geometric information could be  

easily lost during the restriction procedure. 

 

Using the algorithm of the Heaviside function restriction, the MG algorithm is implemented 

recursively as shown in Algorithm 1. In this algorithm, the recursive function “multigrid_v_cycle” is 

defined. The sub-functions stated as "pre_smooth" and "post_smooth” are implemented by the red-

black Gauss-Seidel algorithm. The sub-function "system_matrix"  follows the discretization of the 

pressure Poisson equation as written in Eq. (2.23). The rest sub-functions, i.e., "restrict_cell_center", 

"prolongate" , and "restrict_cell_edgeface" , correspond to Fig. 3.3-(a), Fig. 3.3-(b), and Fig. 3.4, 

respectively. The current MG algorithm using the Heaviside function restriction can be extended to 3D 

cases in a similar manner. 
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Algorithm 1. Recursive function of multigrid 𝑉-cycle using the Heaviside function restriction 

𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 multigrid_v_cycle(𝒙, 𝒃,𝑯,𝒏) 

    𝑨:= system_matrix(𝑯) 

    𝒙:= pre_smooth(𝑨, 𝒙, 𝒃)  

    if ( min(𝒏)  >  2 )  

        𝒓:= 𝒃 − 𝑨𝒙 

        𝒃2ℎ:= restrict_cell_center(𝒓) 

        𝑯2ℎ: = restrict_cell_edgeface(𝑯) 

        multigrid_v_cycle(𝒙2ℎ, 𝒃2ℎ, 𝑯2ℎ, 𝒏/2) 

        𝒙: = prolongate(𝒙, 𝒙2ℎ) 

    end 

    𝒙:= post_smooth(𝑨, 𝒙, 𝒃)  

end 

 

3.3. Verification study  

To demonstrate the validity and performance of the current MG algorithm using the Heaviside 

function restriction, an analytically defined projection problem on the irregular domain [72] is 

considered. In this problem, the intermediate vector field 𝓤∗ = (𝓊∗, 𝓋∗)  that does not satisfy 

incompressibility is given to solve the following Poisson equation with irregular boundary:  

 

𝛻 ∙ (𝐻𝛻𝓆) = 𝛻 ∙ (𝐻𝓤∗), 

 

where 𝓆 is the unknown of the Poisson equation. Next, 𝓤∗ is projected to a divergence-free vector 

field 𝓤 = (𝓊,𝓋) by 

 

𝓤 = 𝓤∗ − 𝛻𝓆. 
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Fig. 3.5. Configuration of the irregular domain problem with the Neumann boundary condition. 

 

The irregular domain (see Fig. 3.5) is defined as {(𝑥, 𝑦)| sin 𝑥 sin 𝑦 ≥ 0.2 and 0 ≤ 𝑥, 𝑦 ≤ 𝜋} . 

Taking non-penetration condition 𝓤 ∙ 𝒏 on the irregular boundary, the Neumann boundary condition, 

i.e., 𝑑𝓆 𝑑𝒏⁄ = 𝓤∗ ∙ 𝒏, for the Poisson equation is imposed at the irregular boundary.  

The intermediate vector field is given by  

 

𝓤∗ = (sin(𝑥) cos(𝑦) + (𝑥2 − 𝑥)(
𝑦3

3
−
𝑦2

2
) ,− cos(𝑥) sin(𝑦) + (𝑦2 − 𝑦)(

𝑥3

3
−
𝑥2

2
)),            (3.3) 

 

and it is projected to 

 

𝓤 = (sin(𝑥) cos(𝑦) , − cos(𝑥) sin(𝑦)).                                                                                                      (3.4) 

 

Here, the analytical solution of the Poisson equation is given by  

 

𝓆 = (
𝑥3

3
−
𝑥2

2
)(
𝑦3

3
−
𝑦2

2
).                                                                                                                            (3.5) 
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The results of the current MG method using the Heaviside function restriction are presented together 

with those of the standard conjugate gradient (CG) method. First, the residual history is considered. Fig. 

3.6 shows the 𝐿2-norm of the residual versus the number of cycles (MG) or iterations (CG). In the 

current MG method, the solutions at each grid system are converged within the nearly fixed number of 

cycles. In contrast, the number of iterations of the CG method for the convergence increases as the 

problem size grows. This result implies that the current MG method optimally performs on the irregular 

domain, and this behavior is the distinctive feature of the MG method. Next, actual computation time 

is presented using linear and logarithmic scales as shown in Fig. 3.7. Here, the computation time at each 

grid system is normalized by dividing the computation time of the MG method at the coarsest system 

(64 × 64 ). In this figure, the superiority of the MG method is clearly confirmed, and the optimal 

performance, whose complexity is 𝒪(𝑁) , is definitely demonstrated. Finally, Fig. 3.8 shows the 

convergence history of the error using the logarithmic scale. The numerical errors of the Poisson 

equation completely depends on the discretization scheme. Therefore, the results of both methods are 

identical and converge to the analytical solution with the desired second-order rate. Through the 

rigorous verification study, it is confirmed that the algorithm for the Heaviside function restriction 

allows the MG method to optimally and correctly perform for the Poisson equation on the irregular 

domain. 

 

 

Fig. 3.6. The 𝐿2-norm of residual versus the number of cycles (MG) or iterations (CG) using the 

logarithmic scale. 
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Fig. 3.7. Normalized computation time versus the total number of cells (𝑁): (a) linear scale; (b) 

logarithmic scale. Computation time is normalized by dividing the computation time of the MG method 

at the 642 grid system. The complexity of the current MG method on the irregular domain is 𝒪(𝑁), 

which is optimal. 

 

 

Fig. 3.8. Convergence history of the numerical error using the logarithmic scale. Numerical errors of 

the MG and CG methods are identical and converge to the analytical solution with the desired rate, 

which is second order.  
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Chapter 4 

 

Adaptive Mesh Refinement based 

Signed Distance Function Computation 

 

A special indicator function must be pre-computed prior to the actual flow simulation based on the 

immersed/embedded boundary methods [76, 67, 29, 68, 28, 97, 52, 98, 14, 17, 21, 33, 72, 36, 37, 22, 

34, 35, 43, 58, 62, 63, 78, 106, 107] to represent a body with complex shape. The most frequently used 

indicator is the signed distance function (SDF) [75, 38, 21, 25, 84, 36]. As a kind of the level-set function, 

the SDF can be defined as  

 

𝜙(𝒙, 𝑡) = {

𝜙(𝒙, 𝑡) = 0 if 𝒙 is on the interface,                                                            

𝜙(𝒙, 𝑡) < 0 if 𝒙 is inside the body,                                                            

𝜙(𝒙, 𝑡) > 0 if 𝒙 is outside the body, i.e. the fluid region,                         

                   (4.1) 

 

where the magnitude |𝜙| is the shortest distance to the interface. The SDF is defined by the product of 

the sign (+/-) and distance, thus we need to determine the sign and shortest distance to the interface for 

any mesh point. To determine the sign, the in/out test of a given point should be performed, and this is 

more critical than the distance computation. 
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4.1. Basic concept 

In many engineering simulations, an adaptive mesh refinement (AMR) has been utilized to improve 

accuracy by refining cells in the region of interest [54, 56, 7]. In the current study, however, the AMR 

strategy is employed to compute a signed distance function (SDF) in the most efficient way.  

 

Fig. 4.1. Distinction of the computational grids for fluid simulation: blue and blue-green regions 

respectively indicate pure outside and inside cells, and red region indicates interface cells. 

 

In the actual fluid simulation around the body on Cartesian meshes, the SDF for cells containing the 

body boundary is accurately required (red region of Fig. 4.1), whereas the SDF for the rest of the cells 

can be treated as arbitrarily large values if its sign is correct (blue and blue-green region of Fig. 4.1). 

The current SDF computation is inspired by this fact. The conceptual structure of the current algorithm 

is shown in Fig. 4.2.  

 

 

Fig. 4.2. Conceptual structure of the SDF computation using AMR. The interface cells can be 

effectively defined by the AMR procedure, and the accurate SDF computation is only applied to 

interface cells.  
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The AMR procedure is performed only for interface cells, which contain the body boundary, 

recursively using quadtree (2D) or octree (3D) grid structures. Through this refinement procedure, pure 

cells (without a body boundary) are not refined further, and only the interface cells are refined until they 

reach the finest grid level. Here, the finest grid level is pre-defined, and it is the one used for the actual 

fluid simulation. After completing the AMR procedure, all cells are hierarchically divided into pure 

cells and interface cells. In the case of interface cells, the sign and distance are accurately computed at 

every cell vertex. In contrast, for the pure cells, a one-step procedure for determining the sign is needed 

at a cell interior point (the cell center is considered here), and the distance is considered as an arbitrarily 

large value. In the current study, however, we interpolate the distance value of pure cell regions in order 

to obtain better graphical results. 

In this way, we can compute the SDF, which is essential for the fluid simulation, in the most efficient 

way. In summary, the entire procedure of SDF computation driven by the AMR can be described as 

follows: 

 

1. Interface cells at each mesh level are refined until the size of the cells is the same with the grid used 

in actual flow simulation. 

 

2. After the AMR procedure, the leaf cells are classified into either interface cells or pure cells. 

 

3. For the interface cells, both the sign and the distance are accurately computed at every vertex. 

 

4. For the pure cells, the sign determination procedure is only performed to the cell center, and the 

distance is treated as an arbitrarily large value (Here, the distance is interpolated to obtain better 

graphical results).  
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Fig. 4.3 Two types of mesh refinement criteria can be considered, the first is a node-based criterion and 

the second is an edge/face-based criterion. (a) If the body shape is bluff and convex, both of refinement 

criteria can successfully detect the existence of the body. (b,c) if the body shape is sharp or non-convex, 

then only the edge/face-based criterion can detect the existence and the sub-cell features of the body. 

Hence, the edge/face-based criterion should be employed for refinement decision making.  
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4.2. Refinement criterion 

An intelligent refinement criterion that can accurately detect the interface should be employed to 

execute the current AMR. There are two natural candidates that can be applied to the AMR criterion. 

One is a node-based criterion, and the other is an edge/face-based criterion.  

The node-based method checks the sign (in/out) at each node. If negative (interior) and positive 

(exterior) signs coexist at the nodes of the given cell, then the cell is flagged as the interface cell. In 

contrast, in the edge/face-based method, the cell is flagged to be the interface cell if the intersection 

between the cell edge/face and body boundary is detected. Once a cell is flagged as the interface cell, it 

is then refined to quadtree or octree (3D) grids.  

As depicted in Fig. 4.3, both refinement criteria can be successfully applied to a convex bluff 

geometry. However, the node-based criterion can easily fail for sharp or non-convex geometries. In 

contrast, the edge/face-based criterion can effectively detect sharp corners and non-convex geometries. 

For this reason, the edge/face-based method is utilized as the current AMR criterion. One can imagine 

that the edge/face-based criterion can still fail for the geometry, which is perfectly contained inside the 

cell. This problem can be simply resolved by setting the level-0 AMR mesh, which has at least one 

intersection point.  

 

 

Fig. 4.4. Illustration of triangular element and grid cell face being tested for intersection. The blue 

triangle inscribed in the bounding box represents a part of tessellated immersed boundary, and the red 

rectangle indicates the grid cell face being tested for the intersection. 
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To implement the edge/face-based criterion, various geometric intersection algorithms, which are 

frequently employed to the interface reconstruction [3, 5], are required. In 2D, boundaries of geometries 

and grid cells are represented by line-segments. To check whether two line-segments intersect each 

other, the algorithm presented by [94] is employed. In 3D, boundaries of geometries and grid cells are 

represented by triangles and square planes, respectively. To check the triangle-plane intersection, the 

algorithm for the line-triangle intersection [69] is utilized iteratively. Here, the square plane is again 

divided into two sub-triangles, such as lower and upper triangles (see Fig. 4.4). The intersection between 

the triangle (∆𝑇0𝑇1𝑇2) and the square plane (□𝑃0𝑃1𝑃2𝑃3) can be checked as follows: 

 

Step 1. Check whether ∆𝑃0𝑃1𝑃2 is intersected by 𝑇0𝑇1̅̅ ̅̅ ̅̅  or 𝑇1𝑇2̅̅ ̅̅ ̅̅  or 𝑇2𝑇0̅̅ ̅̅ ̅̅ .  

 

Step 2. Check whether ∆𝑃0𝑃2𝑃3 is intersected by 𝑇0𝑇1̅̅ ̅̅ ̅̅  or 𝑇1𝑇2̅̅ ̅̅ ̅̅  or 𝑇2𝑇0̅̅ ̅̅ ̅̅ .  

 

Step 3. Check whether ∆𝑇0𝑇1𝑇2 is intersected by 𝑃0𝑃1̅̅ ̅̅ ̅̅  or 𝑃1𝑃2̅̅ ̅̅ ̅̅  or 𝑃2𝑃3̅̅ ̅̅ ̅̅  or 𝑃3𝑃0̅̅ ̅̅ ̅̅ .  

 

For each step, if an intersection is detected, the process is finished. If there is no intersection, another 

cell face of the given grid is selected. Then, the process is repeated. This process should be applied to 

all triangle elements. To minimize the operation, the bounding box approach is employed for 

shortlisting candidate triangles. Note that if there are intersections between the bounding box of the 

triangular element and the grid cell, this triangle is considered as the candidate.  
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4.3. Determination of the sign and distance 

The best way to determine the sign is to count the number of intersections between an infinite ray 

starting from a given point and a target geometry. Here, if the ray intersects the body boundary an odd 

number of times, then the point is inside the body. Alternatively, if the ray intersects the body interface 

an even number of times (including zero times), then the point is outside the body. This approach is 

known as the ray-casting algorithm [85, 43, 36] (see Fig. 4.5).  

To implement the ray-casting algorithm, geometric algorithms for the ray-line intersection and the 

ray-triangle intersection are needed in 2D and 3D, respectively. For the 2D case, the ray-line intersection 

algorithm is implemented by using [94]. A very fast ray-triangle intersection algorithm introduced by 

[69] is utilized for the 3D case. To determine the sign of the given point in 3D, all triangle elements 

need to be checked for the intersection. To accelerate this process, the intersection is checked only for 

the shortlisted candidate triangles by conducting the following process: if the ray is crossing the plane 

containing the triangle, this triangle is considered as the candidate. 

In this study, the distance, i.e., the shortest distance between the geometry and the given point, is 

computed by using the following algorithms: the shortest distance between a point and a line-segment 

[92] in 2D and the shortest distance between a point and a triangle [27] in 3D.  

 

 

 

Fig. 4.5. Examples for the application of the ray-casting algorithm 
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4.4. Verification study 

In this sub-chapter, efficiency and accuracy of the current AMR-based algorithm for computing the 

SDF are demonstrated. Simple smooth geometries (circle and sphere) are utilized as reference 

geometries for this verification study.  

The radii of both the circle and sphere are set to 1. The computational domains of the circle and 

sphere are set to [−2,2]2 and [−2,2]3, respectively. The top and bottom row of Fig. 4.6 show the 

AMR procedures for the circle, composed of 128 line-segments, and the sphere, consisting of 1,280 

triangles, respectively. As shown in this figure, only cells containing the boundary of the geometry are 

refined until the specified level. Note that the current AMR procedure is independent of the refinement 

level of neighbor cells, so the resulting grid is non-graded [7, 71].  

It is known that the interface is the one-dimensional lower entity of the computational domain. Based 

on this property, the complexity of the current SDF computation focusing on interface cells can be 

expected as 𝒪(𝑛𝑑−1), where 𝑛 is the number of cells along the spatial direction and 𝑑 is the number 

of spatial dimensions. This means that our AMR-based algorithm can accelerate the computation 𝑛 

times faster than the naive algorithm, whose complexity is 𝒪(𝑛𝑑) , using the uniform mesh. This 

analysis is confirmed by the results of the actual numerical test presented in Fig. 4.7. 

 

 

Fig. 4.6. The AMR procedure for the (a) circle with 128 line-segments and (b) sphere with 1,280 

triangular surface meshes from the initial level-0 up to the finest level-7 grids. Note that the hierarchical 

structure of the resulting mesh reveals that the absolutely necessary cells involving the interface are 

selectively refined.  
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Fig. 4.7. Comparison of the total number of sign computation processes on a uniform mesh and AMR 

mesh: (a) 2D circle with 128 line-segments, (b) 3D sphere with 1,280 triangular surface meshes. 
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The volume of the reconstructed body (𝑉𝑆𝐷𝐹 ) is computed to demonstrate the accuracy of the current 

approach. 𝑉𝑆𝐷𝐹  is estimated by using the Heaviside function [33]. Since 𝛻𝐻 = 𝛿𝛤𝒏 , 𝑉𝑆𝐷𝐹  can be 

simply computed by using the divergence theorem: 

 

𝑉𝑆𝐷𝐹 = ∫ 1 𝑑𝛺𝑏 = ∫ 𝛻 ∙ 𝒔 𝑑𝛺𝑏 = ∫ 𝒔 ∙ 𝒏 𝑑𝛤𝑏 = ∫ 𝒔 ∙ 𝛻𝐻 𝑑𝛺,                                                    (4.2) 

 

where 𝒔 is the scaled position vector to be defined as (𝑥, 𝑦)/2 in 2D and (𝑥, 𝑦, 𝑧)/3 in 3D, and 

𝛺𝑏 and 𝛤𝑏 refer to the region inside the body and the body interface, respectively. 

Here, two kinds of errors are considered to analyze the volume convergence: reference volume error 

|𝑉𝑒𝑥𝑎𝑐𝑡 − 𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒| and reconstruction volume error |𝑉𝑒𝑥𝑎𝑐𝑡 − 𝑉𝑆𝐷𝐹|. Fig. 4.8 shows the results of 

the volume convergence test of the circle and sphere. Based on the definition of reconstruction volume 

error, it converges to the corresponding reference volume error, but not further. At a low resolution, the 

reconstruction volume error is quickly bounded by the reference volume error since the circle and sphere 

can be considered as simple polygonal geometries. However, as the resolution of reference geometries 

increases, convergence occurs at a particular rate. 

As shown in Fig. 4.8, the convergence rates are 1.5 in 2D and 2 in 3D, and these values are exactly 

consistent with the order-of-accuracy for the approximation of the Heaviside function utilized as a 

boundary integral [33]. This means that the computed SDF using the current method is valid. 
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Fig. 4.8. Volume convergence test of (a) circle and (b) sphere by refining the computational grid. The 

resolution of the circle and sphere increases by increasing the number of interface elements. The 

reconstruction volume is computed by using the Heaviside function 𝐻 defined by the computed SDF. 

Note that the current Heaviside function produces a 1.5 order-of-accuracy in 2D and a second order-of-

accuracy in 3D. The reconstruction volume error converges to the reference volume error with the 

desired rates.  
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4.5. 2D examples 

4.5.1. Multi-element airfoil 

The multi-element airfoil (see Fig. 4.9) is considered as a first complex geometry. The multi-element 

airfoil is a high lift device and improves aerodynamic characteristics for several applications such as 

wings and turbines. This geometry consists of three separated elements, which have smooth surfaces as 

well as sharp corners. Since the typical features of engineering geometry, e.g. non-convexity, non-

smoothness, corner singularity, multiple disjoint regions, and also smooth regions, are contained in this 

multi-element airfoil, it is a very appropriate example to demonstrate the robustness and effectiveness 

of the current approach. In this case, the boundary of the multi-element airfoil is composed of a set of 

818 line-segments. The AMR procedure from level-0 to level-7 for the multi-element airfoil is depicted 

in Fig. 4.10. The level-0 is set to 4 × 1 uniform Cartesian meshes. 

 

 

Fig. 4.9. Configuration of the multi-element airfoil [7]. This geometry includes various features of 

engineering design, for example non-convexity, a non-smooth sharp corner, a smooth bluff surface, and 

multiple combinations of these.  
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Fig. 4.10. The AMR procedure for the multi-element airfoil. Note that only the cells involving the 

interface of the geometry are refined regardless of the refinement level of its neighbors. Hence, the 

resulting AMR mesh is non-graded and optimal in the sense of requiring the least SDF computation. 

 

 

Fig. 4.11. The iso-line of zero SDF with (a) computed global SDF and (b) original geometry. The thick 

solid line, indicated by the zero SDF, defines the reconstructed geometry of the original multi-element 

airfoil. The cell-wise SDF distribution is determined by bilinear interpolation, whose accuracy is 

maximized on the finest level mesh containing the body interface. The shaded region of (b) represents 

the original geometry.  
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Fig. 4.10 shows that the current edge-based AMR method is well performed at sharp edges and non-

convex interfaces that are included in each separated element. The main benefit of the AMR in this 

study is to detect the cells over the interface automatically, and the refinement is being carried out 

independently from the level of neighbor cells. Hence, the final AMR mesh is non-graded, and the 

number of interface cells is minimized, resulting in optimal performance in the SDF computation.  

Fig. 4.11 illustrates the iso-line of zero SDF overlapped with the global SDF distribution and the 

original geometry of the multi-element airfoil. The cell interior distance value is approximated by 

bilinear interpolation, whose accuracy is maximum on the finest level mesh containing the interface 

cells. The SDF of the pure cells of the intermediate mesh level does not need to be accurate as long as 

its sign is correct. The boundary of the original geometry of the multi-element airfoil is exactly fitted 

by the iso-line of zero SDF. 

 

4.5.2. 𝑺-shape 

 

The 𝑆-shape (see Fig. 4.12) that is introduced in [7] is employed as a second 2D example. The 𝑆-

shape can be produced by applying a divergence-free nonlinear velocity field to the initial circle region. 

The details are described in [7]. Since the 𝑆-shape is composed of a thin filament region, which has 

sub-cell thickness as well as sharp tips, it can be considered to be a suitable test case for demonstrating 

the sub-cell feature resolving capability of the current AMR procedure.  

The computational domain is [0,1] × [0,1], and the boundary of the geometry consists of a set of 

104 line-segments. The AMR procedure from level-0 to level-7 for the 𝑆-shape is presented in Fig. 

4.13. As depicted in Fig. 4.13, the current AMR method is suitable for both sharp edges and thin 

filament structures with sub-cell scale features. 

The global SDF distribution and original geometry overlapped with the iso-line of zero SDF, which 

represents the reconstructed body boundary of the original geometry, are shown in Fig. 4.14. Likewise, 

in the case of the multi-element airfoil, the iso-line of zero SDF clearly recovers the boundary of the 

original 𝑆-shape. 
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Fig. 4.12. Configuration of the 𝑆-shape [7]. This geometry is distinctive for its thin filament structure, 

which is initially sub-cell thickness that could be difficult to detect by the naive node-based refinement 

criterion. 

 

 

Fig. 4.13. The AMR procedure for the 𝑆-shape. The sub-cell thickness filament structure is well 

resolved by the current refinement criterion. 
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Fig. 4.14. The iso-line of zero SDF with (a) computed global SDF and (b) original 𝑆-shape. The thick 

solid line, marked by the zero SDF, indicates the geometry reconstructed from the original 𝑆-shape. 

 

4.6. 3D examples 

4.6.1. Propeller 

A propeller is a type of fan that transmits power by converting rotational motion into thrust. Therefore, 

in order to generate the thrust, current propeller consists of 7-sharpe blade whose cross section is foil 

shape (see Fig. 4.15). Since this kind of propeller is regarded as one of the most complex shape in 

engineering field, the propeller is a very proper case in order to validate robustness of current 

methodology. The current propeller geometry is downloaded in online design community GrabCAD 

(https://grabcad.com /library/propeller-airplane-1). 

The refinement procedure for the 3D propeller is presented in Fig. 4.16. The refinement is conducted 

from level-0 to 7. The current AMR algorithm based on detection of intersection between cell`s 

boundaries and geometry`s interfaces can be straightforwardly expanded to 3D case. As depicted in Fig. 

4.16, the AMR is well performed to the 3D propeller. 
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The iso-surface of the zero SDF is shown in Fig. 4.17. The results are presented with four different 

background grid levels: grid level-0(643), 1(1283), 2(2563), 3(5123). Furthermore, the iso-volume 

(𝜙 ≤ 0) of grid level-3 is overlapped by exact surface meshes of propeller. Because blades of the 

propeller are too sharp, blades are not well represented at grid level-0. As grid level increases, the shape 

of propeller is well resolved. The overlapped image shows that the negative region of the SDF at grid 

level-3 accurately recovers the original geometry. 

 

 

Fig. 4.15. The rendered surface of 3D propeller that consists of 7-blade and cone shaped hub. This 3D 

geometry is composed of 14,480 triangular suface meshes, and it is downloaded in online design 

community GrabCAD (https://grabcad.com/library/propeller-airplane-1).  
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Fig. 4.16. The AMR procedure for the 3D propeller 

 

 

 

Fig. 4.17. The iso-surface of zero SDF for the propeller at different background grid levels: grid level-

0, level-1, level-2, level-3. The iso-surface of zero SDF at grid level-3 is overlapped by original 

triangular surface meshes. 
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4.6.2. Underwater robot 

Finally, the most challenging test case is presented in 3D. A Korean underwater walking robot called 

“Crabster” (see Fig. 4.18) [108] is employed as the 3D example for demonstrating the effectiveness of 

the current approach. The 3D stereolithography (STL) file that consists of triangular surface meshes of 

Crabster is produced from the computer-aided-design (CAD) file of Crabster provided by the marine 

robotics department of Korea Research Institute of Ships and Ocean Engineering (KRISO).  

Crabster is composed of a main body and six legs, which are used for exploring the deep-sea 

environment by walking on the sea-bed. Due to the complexity of its shape, it is very hard to simulate 

flow around Crabster without a robust and efficient method of computing the SDF on the Cartesian grid 

system.  

The entire AMR procedure for the SDF computation of Crabster is depicted in Fig. 4.19. As shown 

in this figure, the AMR is properly applied around the boundary of Crabster. The iso-surface of the zero 

SDF is shown in Fig. 4.20. The results are presented with four different computational grids: grid level-

0 (642 × 32), 1 (1282 × 64), 2 (2562 × 128), and 3 (5122 × 256). The original shape of Crabster is 

recovered as the grid level increases. In addition, the iso-surface (𝜙 = 0) of grid level-3 exactly fits the 

original surface triangular meshes and is visually indistinguishable. The SDF of the mid-cross section 

of Crabster at grid level-3 is presented in Fig. 4.21, where the crab-like shape is easily observable. Based 

on these results, we confirm that once the 3D geometry (surface meshes) of any complex shapes is 

provided, the SDF can be instantly and accurately computed through the current adaptive SDF 

computation algorithm.  

 

Fig. 4.18. The rendered surface of the underwater walking robot “Crabster”. Crabster is a bio-inspired 

underwater robot which consists of a main body and six legs. This 3D geometry is composed of 49,400 

triangular surface meshes, and its original geometric information is provided by the Korea Research 

Institute of Ships and Ocean Engineering (KRISO) [108]. 
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Fig. 4.19. The AMR procedure for Crabster from level-0 to 7. This result shows that the robustness and 

effectiveness of current AMR algorithm towards a very complex shape geometry. 
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Fig. 4.20. The iso-surface of zero SDF for Crabster at different computational grid levels: grid level-0, 

level-1, level-2, level-3. The iso-surface of zero SDF at grid level-3 is overlapped by the original 

triangular surface meshes, and the two surfaces are visually indistinguishable. 

 

 

Fig. 4.21. The SDF distribution of the mid-cross section of Crabster, where the crab-like shape is 

observed. The thick solid line, marked by the zero SDF, indicates the geometry reconstructed from the 

original geometry in the mid-cross section. 
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4.7. SDF transformation for a moving body representation 

A procedure for an accurate SDF transformation is described that avoids re-computation of the SDF. 

The key idea is that the new SDF of the moving body can be accurately and efficiently updated by 

transforming it from the initial SDF using a high-order interpolation. An example of the current 

approach for a moving NACA0012 airfoil is presented in Fig. 4.22. The procedure of the current SDF 

transformation is divided into two parts: one is the coordinate transformation, and the other is the 

interpolation. The details of each part are described as follows. 

Two different coordinate systems, namely the global system and local (body-fixed) system, are 

utilized. The global coordinate system, indicated by (𝑥, 𝑦) in Fig. 4.22, is for the fluid simulation, and 

the local system, represented by (𝑥𝑏 , 𝑦𝑏) in Fig. 4.22, is for the initial SDF computation. The center 

of the body-fixed coordinate system, indicated by (𝑥𝑐 , 𝑦𝑐) in Fig. 4.22, coincides with the point where 

the body motion is defined. The position defined in the global coordinate system can be transformed to 

that of the body-fixed coordinate system as follows: 

 

{
𝑥𝑏
𝑦𝑏
} = [

𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
] {
𝑥 − 𝑥𝑐
𝑦 − 𝑦𝑐

},                                                                                                          (4.3) 

 

where 𝜃 is the rotation angle of the body, whose positive direction is counter-clockwise.  

 

Fig. 4.22. An example for the SDF transformation of an NACA0012 airfoil. The left is an overlapped 

illustration of the global fluid domain and the body-fixed SDF domain, and the right is a zoomed-in 

view for the body-fixed domain. To apply biquadratic interpolation, the 𝑝-refined grid system (●) is 

employed to the body-fixed domain. The position of the grid point (■) for the fluid simulation, originally 

defined at the global coordinate, is transformed to the values for the local coordinate, and the 

corresponding SDF is determined by interpolating the SDFs defined at grid points (●).  
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Fig. 4.23. The layout of a 𝑝-refined grid cell for biquadratic interpolation 

 

Generally, the global grids do not coincide with the local girds (see Fig. 4.22). In this case, the SDF 

at the global grid point can be transformed from the SDF information of the local cell involving that 

grid point by using the interpolation technique. Here, biquadratic interpolation is used. The local cell 

involving the given global grid point can be easily traced by using the transformed position information, 

Eq. (4.3), of the given point from global to the local coordinate system. If the transformed position is 

not included in the body-fixed domain, the corresponding SDF can be considered as an arbitrary positive 

value. Through this process, the new SDF of the moving body in the fluid simulation can be efficiently 

updated by using the initial SDF.  

By applying the 𝑝-refinement technique, the SDF can be accurately interpolated by an arbitrary high-

order scheme. In this study, biquadratic interpolation is used, which has third-order accuracy. Because 

the fluid solver, which is described in Chapter 2, is based on the second-order accurate algorithm, an 

interpolation scheme that is one order higher can be considered sufficient for accurately representing 

the body information. The layout of a 𝑝-refined grid for the biquadratic interpolation is shown in Fig. 

4.23, and this configuration corresponds to the square shaded region represented by the symbol (●) in 

Fig. 4.22. To apply the biquadratic interpolation, the additional operations for SDFs 

(𝜙10, 𝜙01, 𝜙11, 𝜙21, 𝜙12) are required when determining the initial SDF computation where the SDF 

computation is performed only to vertices. The biquadratic interpolation can be conducted at an 

arbitrary interior point of the cell as follows: 

 

𝜙(𝑥, 𝑦) =∑∑{( ∏
𝑥 − 𝑥𝑙
𝑥𝑖 − 𝑥𝑙

2

𝑙=0,𝑙≠𝑖

)( ∏
𝑦 − 𝑦𝑚
𝑦𝑗 − 𝑦𝑚

2

𝑚=0,𝑚≠𝑗

)𝜙𝑖𝑗}

2

𝑗=0

2

𝑖=0

 .                                                            (4.4)
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Chapter 5 

 

Parallelization 

 

5.1. Hybrid MPI/OpenMP parallelization 

Parallelization is a type of computation in which many processors execute a job simultaneously, and 

it is desired for flow simulations due to following two reasons. First is to reduce the wall-clock 

computation time. Naturally, when flow simulations are carried out, multiprocessor-based computations 

are faster than single process-based operation. Second is to overcome memory limitations of machines.  

In order to solve a large-scale problem, such as turbulent flows with high Reynold number and flow 

past complex shaped bodies, much more memory is required excessing the memory capacity of single 

machine. By dividing the computational domain to each processor, the computation for a large-scale 

problem can be possible without any memory limitations. 

In CPU-based computation, Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) 

are standardized programming approaches for parallel computing. MPI is based on distributed memory 

system for each processor, and interactions between processors are conducted by communications. On 

the other hand, OpenMP utilizes shared memory systems, thus the additional overhead for 

parallelization such as communications can be avoided. Based on the author`s experience, the 

programming of MPI is more complicated in terms of writing a code due to communications, and 

OpenMP should be more carefully applied because of shared memory system which can result in false 

data sharing. 

Each method, i.e. MPI and OpenMP, has advantages compared to the other, and vice versa. Therefore, 

in order to complement each method and maximize the efficiency, the hybrid MPI/OpenMP 

parallelization [82] is gaining a popularity for high performance computing. In this approach, the 

computational domain is divided into several MPI processors, and threads for OpenMP are allocated to 

each MPI processor. Fig. 5.1 shows the schematic figure of the hybrid MPI/Open-MP parallelization. 
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Fig. 5.1. The schematic figure of the hybrid MPI/OpenMP parallelization where 𝑁𝑝 and 𝑁𝑡 refer to 

the number of processors (MPI) and threads (OpenMP), respectively. 

 

 

Fig. 5.2. The application of the hybrid MPI/OpenMP parallelization for flow past a circular cylinder 

problem at 𝑅𝑒 = 100. The computational domain is divided into 8 processors for MPI, and 4 threads 

for OpenMP are assigned to each processor. 
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In the current research, the computational domain is divided into uniform Cartesian blocks for MPI 

parallelization, i.e. squares in 2D and cubes in 3D. For example, Fig. 5.2 illustrates the application of 

the hybrid MPI/OpenMP parallelization for flow past a circular cylinder problem where 8 MPI 

processors are applied, and 4 threads for OpenMP are allocated to each processor. 

As mentioned before, communications, which consist of send and receive process, between 

processors are required to MPI parallelization. In the current study, non-blocking communications based 

on MPI_Isend and MPI_Irecv functions are employed. To reduce the overhead resulted from 

communications, directionally sweeping communications are applied. For example, if communications 

are carried out from left to right, the data receiving from a left processor and the data sending to a right 

processor are needed to a given processor. 

For the flow solver based on the fully Eulerian approach using Cartesian meshes, generally, only 

communications with face neighbor processors are needed because the spatial discretization at a given 

point is performed utilizing face neighbor cells. For the current solution algorithm based on the semi-

Lagrangian method, however, communications with all neighbor processors wrapping a given processor 

are required due to backtracking procedure which is for finding departure points of previous time step. 

For this reason, communications with vertex neighbors are additionally required in 2D case (see Fig. 

5.3), and communications with vertex and edge neighbors are needed for 3D case (see Fig. 5.4). As a 

result, total 8 and 26 communication routines are required to 2D and 3D domains, respectively. For the 

velocity Helmholtz equation and pressure Poisson equation, only communications with face neighbors 

are applied. 

 

Fig. 5.3. Scenarios of MPI communications for the 2D domain. Total 8 sweeping communications are 

required: (a) 4 communications for face neighbors; (b) 4 communications for vertex neighbors.  
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Fig. 5.4. Scenarios of MPI communications for the 3D domain. Total 26 sweeping communications are 

required: (a) 6 communications for face neighbors; (b) 12 communications for edge neighbors; (c) 8 

communications for vertex neighbors. 
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5.2. Parallel multigrid method 

In the actual computation, the most time-consuming part of the projection method is to solve the 

pressure Poisson equation. For this reason, the parallel scalability of the flow simulation highly depends 

on the performance of the MG method in the parallel computation. In this sub-chapter, the 

parallelization strategy for the current MG algorithm using the Heaviside function restriction is 

presented. 

In the current MG algorithm, the convergence speed can be enhanced as the final grid of the 

restriction procedure is as coarse as possible. For this reason, the coarsest grid for the restriction is set 

to 2 × 2 in the 2D square domain and 2 × 2 × 2 in the 3D cube domain regardless of the finest mesh 

resolution in the current study. Let us consider the case where the MPI parallelization is applied. If the 

computational domain is divided into 𝑛𝑝 × 𝑛𝑝 MPI processes in 2D, the coarsest grids of the entire 

computational domain would be 2𝑛𝑝 × 2𝑛𝑝 since the restriction procedure is carried out until there 

are 2 × 2  grids at each MPI process. For this reason, the convergence speed can decrease as the 

number of MPI processes increases in the parallel computation. 

To overcome this disadvantage in the parallel computation, the multilevel algorithm [74] should be 

applied. An example of the multilevel algorithm is shown in Fig. 5.5. In this example, the computational 

domain, composed of a 4𝑛 × 4𝑛 grid, is divided into 4 × 4 MPI processes. Based on Fig. 5.5, the 

multilevel algorithm for a single 𝑉-cycle can be summarized as follows: 

 

1.  The restriction procedure (𝑛 × 𝑛 → 2 × 2) is carried out at each MPI process. 

2.  The information of the coarsest grid at each MPI process is gathered into a single process. 

3.  The serial 𝑉-cycle procedure (8 × 8 → 2 × 2 → 8 × 8) is conducted on a single process. 

4.  The results of the serial 𝑉-cycle are scattered to corresponding MPI processes. 

5.  The prolongation procedure (2 × 2 → 𝑛 × 𝑛) is performed at each MPI process. 

 

Through this procedure, the MG method can be applied to the parallel computation without any 

disadvantages due to parallelization. This algorithm can be similarly applied to the 3D problem. The 

multilevel algorithm can be readily applied to the current multigrid algorithm. Comparing to the 

application of the multilevel algorithm towards the standard MG method on the regular domain, the 

only difference is to gather the Heaviside function in the aggregation process.  
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Fig. 5.5. The multi-level 𝑉-cycle method for parallel multigrid method in 2D domain 
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5.3. KISTI`s Nurion supercomputer 

In order to conduct parallel computation, Nurion supercomputer operated by Korea Institute of Science 

and Technology Information (KISTI) is utilized in the current study. KISTI`s Nurion supercomputer 

consists of two different nodes. One is the computation node, and the other is the CPU-only node. The 

computation node system is composed of 8,305 Intel Xeon Phi processors (codename : Knight Landing), 

and the CPU-only node system consists of 132 Intel Xeon processors (codename : Skylake). The 

maximum performance of Nurion supercomputer is 25.7 petaflops, which ranks 11th in the world by 

June 2018 (http://www.top500.org). The specification of the KISTI`s Nurion supercomputer is 

summarized in Table 5.1.  

 

Table 5.1 

Summary of specification of KISTI`s Nurion supercomputer 

 Computation node CPU-only node 

Model Cray CS500 

System structure Xeon Phi cluster CPU cluster 

CPU type Intel Xeon Phi 7250 1.4GHz Intel Xeon 6148 2.4GHz 

Total nodes 8,305 132 

CPU per node 1 2 

Cores per CPU 68 20 

Total cores 564,740 5,280 

Memory per node 96GB 192GB 

Maximum performance 25.3PetaFlops 0.4PetaFlops 
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5.4. Scalability 

Scalability is how the performance of a parallel computation changes as the number of processors 

increases and can be categorized by two types. One is strong scalability, and the other is weak scalability. 

Strong scalability means the parallel performance when total problem size stays as the number of 

processors increases, showing how much computation time for a given problem can be reduced by 

parallel computation. Weak scalability indicates the parallelization efficiency when the problem size 

increases at the same rate as the number of processors by keeping the same amount of work per 

processor, thus appropriateness of parallel computation for a large-scale problem can be evaluated by 

weak scalability. 

Scalability can be assessed by two parameters, namely speed-up and efficiency. Speed-up for the 

parallel computation can be defined by  

 

Speed-up = 
Parallel rate

Sequential rate
, 

 

where the sequential rate refers to computation rate of the sequential program on a single core, and the 

parallel rate means the computation rate of the parallel program on 𝐾 cores. Here, the computation 

rate is the number of cells divided by computation time. Therefore, ideal speed-up is the number of 

cores (𝐾) applied to parallel computation. Next, efficiency can be given by  

 

Efficiency = 
Speed-up

The number of cores (𝐾)
, 

 

thus ideal efficiency is 1 because ideal speed-up is the number of cores. 

In order to evaluate strong and weak scalability of the current incompressible flow solver, a well-

known 3D benchmark problem, namely flow past a sphere, is solved. The entire computational domain 

is set to [−8𝐷, 8𝐷]3  where 𝐷  means the diameter of the sphere, and the center of the sphere is 

positioned at the origin. The Reynolds number is set to 100, so the flow is laminar. The details of the 

boundary condition are described in Chapter 7.1. 
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For each scaling, computational set-up is summarized in Table 5.2. In the case of strong scaling, the 

number of grids is fixed to 512 × 512 × 512 (≅ 134.2 × 106) , and the number of cores for 

computation increases from 32 to 2,048. In the case of weak scaling, the number of grids increases from 

256 × 256 × 256 (≅ 16.8 × 106)  to 2048 × 2048 × 2048 (≅ 8.56 × 109) , and the number of 

cores increases 32 to 16,384, keeping the same number of grids per the core.  

As depicted in Figs. 5.6 and 5.7, efficiencies of strong and weak scalability are 0.67 and 0.75, 

respectively. For the case of weak scalability, especially, efficiency is more than 0.7 even if the number 

of grids is multi-billions order. Based on these results, we confirm that the current parallelized 

incompressible flow solver is proper to parallel computation.  

 

Table 5.2 

Computational set-up of flow past a sphere problem for evaluating scalability 

 

(a) Strong scalability 

 Case0 Case1 Case2 

Grids 512 × 512 × 512 (≅ 134.2 × 106) 

Cores 32 256 2,048 

 

(b) Weak scalability 

 Case0 Case1 Case2 Case3 

Grids 
256 × 256 × 256 

(≅ 16.8 × 106) 
512 × 512 × 512 

(≅ 134.2 × 106) 
1024 × 1024 × 1024 

(≅ 1.07 × 109) 
2048 × 2048 × 2048 

(≅ 8.56 × 109) 

Cores 32 256 2,048 16,384 
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Fig. 5.6. Strong scalability of the parallel computation for flow past a sphere problem using log-log 

scale: (a) speed-up; (b) efficiency. Efficiency of strong scaling is 0.67. 

 

 

Fig. 5.7. Weak scalability of the parallel computation for flow past a sphere problem using log-log scale: 

(a) speed-up; (b) efficiency. Efficiency of weak scaling is 0.75. 
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Chapter 6 

 

2D Simulation Results and Discussion 

 

6.1. Verification study 

The order-of-accuracy study for the 2D Taylor-Green vortex decay problem [95] is carried out to 

verify the current solution algorithm for the fluid. The Taylor-Green vortex is an unsteady flow of a 

decaying vortex in an incompressible flow regime. Since analytical solutions exist, the error can be 

measured to the pointwise value at any time moment. Hence, this problem is considered as a 

representative example to verify an unsteady flow solver. For this problem, the governing equations are 

nondimensionalized by a reference length 𝐿 and velocity 𝑉0 , thus all physical variables presented in 

this sub-chapter is considered as nondimensionalized quantities. The information of these reference 

variables is incorporated into the Reynolds number (𝑅𝑒 ) defined as 𝑅𝑒 = 𝑉0𝐿/𝜈  where 𝜈  is the 

kinematic viscosity. The nondimensionalized analytical solutions of Taylor-Green vortex problem are 

given by 

 

𝑢 = 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) 𝑒−2𝑡 𝑅𝑒⁄ ,                                                                                                                             (6.1) 

 

𝑣 = −𝑐𝑜𝑠(𝑥) 𝑠𝑖𝑛(𝑦) 𝑒−2𝑡 𝑅𝑒⁄ ,                                                                                                                         (6.2) 

 

𝑝 =
1

4
(𝑐𝑜𝑠(2𝑥) + 𝑐𝑜𝑠(2𝑦))𝑒−4𝑡 𝑅𝑒⁄ .                                                                                                             (6.3) 

 

Here, 𝑅𝑒 is set to 100. The computational domain of [0,2𝜋]2 is used, and a periodic boundary 

condition is imposed at all boundaries. The initial conditions are set to 𝑢 = 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) and 𝑣 =

−𝑐𝑜𝑠(𝑥) 𝑠𝑖𝑛(𝑦) based on the analytical solutions.  
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Fig. 6.1. Instantaneous results of 2D Taylor-Green Vortex problem at 𝑡=2.0: (a) vorticity contour, (b) 

pressure contour. Contour levels for vorticity and pressure are [-2:0.2:2] and [-0.5:0.05:0.5], 

respectively. 

 

Three different accuracies are considered in this verification study: spatial accuracy; temporal 

accuracy; combined accuracy. Since the error computed from an unsteady problem contains the both 

spatial and temporal components, the spatial accuracy should be evaluated by decreasing the ∆𝑥 with 

the constant ∆𝑡. In contrast, the temporal accuracy should be analyzed by decreasing the ∆𝑡 with the 

fixed ∆𝑥 . The combined accuracy is measured by fixing the value of ∆𝑡/∆𝑥  such that ∆𝑡  should 

decrease as the number of computational grids increases. Because current solution algorithm is 

unconditionally stable, this kind of thorough analysis for various accuracies can be possible. 

The 𝐿2- and 𝐿∞-errors [65] are employed to evaluate the order-of-accuracy. The 𝐿2-error can be 

defined as 

 

𝐿2-error = (∫ (𝜓 − 𝜓analytical)
2
𝑑𝛺

𝛺

)

1 2⁄

= ( ∑ ∫ (𝜓 − 𝜓analytical)
2
𝑑𝛺

𝛺𝑖,𝑗

𝑁𝑐𝑒𝑙𝑙𝑠

𝑖,𝑗

)

1 2⁄

,                          (6.4) 

 

 

where ψ is the primitive variable of the governing equations, i.e. velocity or pressure. The definition of 

𝐿∞-error norm follows Eq. (6.4) excepting that the maximum error in an absolute sense is counted. 

Errors are measured at time moment 𝑡 = 2.0. At this moment, the instantaneous vorticity and pressure 

contours on 256 × 256 grid system are presented in Fig. 6.1. 
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Table 6.1 shows the order-of-accuracy for Taylor-Green vortex problem with respect to the three 

types of accuracy: (a) pure spatial accuracy; (b) pure temporal accuracy; (c) spatial/temporal combined 

accuracy. The spatial accuracy is measured by conducting simulations on four different Cartesian grid 

systems ( 322, 642, 1282, 2562 ) with constant ∆𝑡 = 0.1.  The temporal accuracy is analyzed by 

simulating Taylor-Green vortex problem on very fine mesh (1024 × 1024) with four different time 

steps, which are ∆𝑡  = 0.5, 0.25, 0.125, and 0.0625. In order to assess the combined accuracy, 

simulations are conducted on four different uniform Cartesian grid systems (322, 642, 1282, 2562) with 

constant ∆𝑡/∆𝑥 = 5.09. Corresponding time steps are 1, 0.5, 0.25, and 0.125.  

As shown in Table 6.1, the spatial and combined errors are well converged to analytical solution with 

the second-order rate. The pure temporal order-of-accuracy, however, is slightly inferior to the second-

order rate. As described in [104], decreasing ∆𝑡 with fixed mesh-size could incur a slightly sub-optimal 

accuracy. Nevertheless, for the spatial/temporal combined order-of-accuracy, which is the typical 

strategy of unsteady flow simulation, second order-of-accuracy is clearly observed for all flow variables. 

Fig. 6.2 depicts the results of accuracy analysis using a log-log graph. The velocity is represented by 

only one symbol since the convergence rate of 𝑢 and 𝑣 are measured to be exactly same.  
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Fig. 6.2. Verification study for the 2D Taylor-Green vortex problem: (a) pure spatial error with fixed 

∆𝑡; (b) pure temporal error with fixed ∆𝑥; (c) spatial/temporal combined error with fixed ∆𝑡/∆𝑥. 
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Table 6.1 

The results of verification study for the Taylor-Green vortex problem  

 

(a) Pure spatial accuracy : The number of grids increases with fixed ∆𝑡 

Grid 
∆𝑡

∆𝑥
 

Velocity (𝑢, 𝑣)  Pressure 

𝐿2 Rate 𝐿∞ Rate 𝐿2 Rate 𝐿∞ Rate 

322 0.51 6.75E-02  1.36E-01  6.18E-02  1.19E-01  

642 1.02 1.77E-02 1.93 3.42E-02 1.99 1.76E-02 1.81 4.00E-02 1.57 

1282 2.04 4.60E-03 1.94 9.12E-03 1.91 4.06E-03 2.12 9.13E-03 2.13 

2562 4.08 7.87E-04 2.55 1.75E-03 2.38 6.08E-04 2.74 1.62E-03 2.49 

 

 

(b) Pure temporal accuracy : The size of time step decreases with fixed ∆𝑥 

∆𝑡 
∆𝑡

∆𝑥
 

Velocity (𝑢, 𝑣)  Pressure 

𝐿2 Rate 𝐿∞ Rate 𝐿2 Rate 𝐿∞ Rate 

0.5 81.5 6.26E-03  2.13E-02  1.91E-02  3.19E-02  

0.25 40.7 1.31E-03 2.26 3.44E-03 2.63 6.30E-03 1.60 1.09E-02 1.55 

0.125 20.4 6.49E-04 1.01 1.35E-03 1.35 1.92E-03 1.71 3.70E-03 1.56 

0.0625 10.2 2.11E-04 1.62 4.02E-04 1.75 5.07E-04 1.92 9.74E-04 1.93 

 

 

(c) Spatial/temporal Combined accuracy : The number of grids increases with fixed ∆𝑡/∆𝑥 

Grid 
∆𝑡

∆𝑥
 

Velocity (𝑢, 𝑣)  Pressure 

𝐿2 Rate 𝐿∞ Rate 𝐿2 Rate 𝐿∞ Rate 

322 5.09 3.94E-02  1.15E-01  4.26E-02  9.58E-02  

642 5.09 8.47E-03 2.22 2.72E-02 2.08 1.62E-02 1.39 3.18E-02 1.59 

1282 5.09 1.49E-03 2.51 4.94E-03 2.46 4.69E-03 1.79 9.18E-03 1.79 

2562 5.09 4.09E-04 1.86 1.16E-03 2.09 1.14E-03 2.04 2.44E-03 1.91 
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6.2. Flow past a circular cylinder 

The computational domain of the flow past a circular cylinder problem is set as shown in Fig. 6.3. 

The total domain size is [−8𝐷, 24𝐷]  × [−8𝐷, 8𝐷], where 𝐷 is the diameter of the circular cylinder, 

and the center of the cylinder is located at the origin. We impose the Dirichlet boundary condition of 

𝑼 = (𝑢∞, 0) at the left, the slip boundary condition at the top and bottom, the convective boundary 

condition (a convection velocity is the average value of the right boundary) at the right, and the no-slip 

wall boundary condition at the cylinder surface. For the pressure, the Dirichlet boundary condition is 

imposed on the outlet as 𝑝∞ = 0, and other boundaries are set to the Neumann condition. Since an 

equally spaced 1024 × 512  Cartesian mesh system is used in the entire computational domain, 

32 × 32 cells cover the 𝐷 × 𝐷 domain. For all simulations presented in this sub-chapter, the Reynolds 

number (𝑅𝑒 ) is based on the cylinder diameter 𝐷  and the free-stream velocity 𝑢∞ , and the CFL 

number based on the free-stream velocity 𝑢∞ is set to 4. 

 

 

Fig. 6.3. Layout of the computational domain for flow past a circular cylinder problem. 
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6.2.1. Steady flow around a circular cylinder: The effect of the 

Heaviside function for the pressure boundary condition 

The effect of the Heaviside function for the pressure Neumann boundary condition is investigated by 

solving the pressure Poisson equation in two different ways. One is the current solution algorithm with 

the Heaviside function, and the other is a conventional algorithm without the Heaviside function, where 

the pressure Neumann boundary condition is not guaranteed. To simply distinguish these two 

approaches, the former algorithm is defined as “𝐴1”, and the latter one is considered as “𝐴2”. For this 

particular purpose, Reynolds numbers of 20 and 40 are considered because of the simulation results 

in the representative steady solution. As shown in Table 6.2, 𝐴1  predicts the drag coefficient well 

compared to previous numerical results, while 𝐴2 produces a relative overestimation. 

The effect of the Heaviside function becomes more evident by the comparison of the local pressure 

coefficient distribution near the cylinder surface. Fig. 6.4 illustrates the pressure coefficient contours 

around the circular cylinder at 𝑅𝑒 = 40. In the contours of 𝐴1 shown in Fig. 6.4-(a), the normality of 

the pressure contours is achieved well everywhere on the cylinder surface. In contrast, the 𝐴2 scheme 

generates abnormal contours near the leading stagnation point as well as on the top and bottom lateral 

sides. Fig. 6.5 shows the distribution of wall pressure coefficients along the cylinder surface. For both 

algorithms, the overall trend follows the reference result [90] well. In the case of A2 , however, 

discrepancies are observed around the region of 30° ≤ 𝜃 ≤ 90°. 

Through the comparative study presented in this sub-chapter, it is numerically confirmed that the 

pressure Neumann boundary condition can be accurately imposed at the cylinder surface by the 

Heaviside function. In addition, the importance of the pressure boundary condition in the flow 

simulation is demonstrated. 

 

Table 6.2 

Drag coefficients of flow past a circular cylinder at 𝑅𝑒 = 20 and 40 

 𝑅𝑒 = 20 𝑅𝑒 = 40 

Calhoun [19] 2.19 1.62 

Russel and Wang [81] 2.13 1.60 

Present 𝐴1 2.17 1.60 

Present 𝐴2 2.30 1.66 
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Fig. 6.4. Contours of the pressure coefficient: (a) current algorithm with the Heaviside function 

considered as 𝐴1 in this paper; (b) current algorithm without the Heaviside function defined as 𝐴2 in 

this paepr. Contour levels for the pressure coefficient are [−0.8: 0.2: 1.2].  
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Fig. 6.5. Wall pressure coefficients along the cylinder surface at 𝑅𝑒 = 40. Sen et al. [90] is the 

numerical results based on the body-fitted mesh system. 

 

6.2.2. Unsteady flow around a circular cylinder 

In this sub-chapter, the simulations results at 100 ≤ 𝑅𝑒 ≤ 200 are presented. Fig. 6.6 depicts the 

vorticity contours at 𝑅𝑒 = 100  and 200 . The size of the zoomed-in view shown in Fig. 6.6 is 

[−𝐷, 18𝐷] × [−3𝐷 × 3𝐷]. The time histories of the drag and lift coefficients at 𝑅𝑒 = 100 and 200 

are shown in Fig. 6.7. Here, the drag coefficient (𝐶𝐷) and lift coefficient (𝐶𝐿) are computed as  

 

𝐶𝐷 =
𝐹𝐷

1
2𝜌𝑢∞

2 𝐷
  and  𝐶𝐿 =

𝐹𝐿
1
2𝜌𝑢∞

2 𝐷
 ,                                                                                                              (6.5) 

 

where 𝐹𝐷 is the drag force and 𝐹𝐿 is the lift force. Recall that since 𝛻𝐻 = 𝒏𝛿𝛤, the force vector 𝑭 =

(𝐹𝐷 , 𝐹𝐿) acting on the circular cylinder can be simply computed as  

 

𝑭 = ∫ (−𝑝𝑰 + 2𝜇𝑫) ∙ 𝛻𝐻 𝑑𝛺,
𝛺

                                                                                                                     (6.6) 
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Here, 𝑰 is the identity tensor and 𝑫 is the strain rate tensor of the fluid velocity. In the Cartesian 

mesh-based method, this kind of force calculation is difficult because the body boundary does not 

coincide with the grid line. However, once the Heaviside function is defined, the hydrodynamic forces 

can be easily computed with second-order accuracy using the current approach. 

 

Table 6.3  

Drag and lift coefficients of current and previous results 

 
𝑅𝑒 = 100 𝑅𝑒 = 200 

𝐶𝐷 𝐶𝐿 𝐶𝐷 𝐶𝐿 

Choi et al. [21] 1.34 ± 0.011 ±0.315 1.36 ± 0.048 ±0.64 

Ng et al. [72] 1.37 ± 0.016 ±0.36 1.37 ± 0.050 ±0.72 

Liu et al. [60] 1.35 ± 0.012 ±0.339 1.31 ± 0.049 ±0.69 

Braza et al. [10] 1.36 ± 0.015 ±0.25 1.40 ± 0.050 ±0.75 

Present 1.34 ± 0.012 ±0.37 1.40 ± 0.050 ±0.73 

 

 

Fig. 6.6. Instantaneous vorticity contours: (a) 𝑅𝑒 = 100; (b) 𝑅𝑒 = 200. The size of the captured 

domain is [−𝐷, 18𝐷] × [−3𝐷 × 3𝐷]. Contours are presented from -4𝑢∞ 𝐷⁄  to 4𝑢∞ 𝐷⁄  with 41 

intervals.  
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Fig. 6.7. Time history of drag and lift coefficient: (a) 𝑅𝑒 = 100; (b) 𝑅𝑒 = 200. The solid line refers 

to the drag coefficient, and the dotted line indicates lift coefficient. 
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To demonstrate the validity of the simulation results, a quantitative comparison of unsteady 𝐶𝐷 and 

𝐶𝐿 with previous results is presented in Table 6.3. Since 𝐶𝐷 and 𝐶𝐿 oscillate due to vortex shedding, 

both are described by using the mean value and amplitude. Table 6.3 shows that the current numerical 

results are in good agreement with other studies. 

Next, the Strouhal number 𝑆𝑡 is compared at low Reynolds numbers (< 200). The Strouhal number 

is an important parameter in many engineering fields, especially for designing slender circular structures, 

such as deep-sea risers, because Strouhal number is directly related to the excitation frequency of the 

vortex-induced-vibration (VIV). The Strouhal number is defined as  

 

𝑆𝑡 =
𝑓𝐷

𝑢∞
 ,                                                                                                                                                             (6.7) 

 

where 𝑓 is the shedding frequency, which is same as the frequency of the lift oscillation or half of the 

drag oscillation. Results are compared with experimental and validated numerical data. Fig. 6.8 shows 

that the present results are well matched to the results of other studies.  

 

Fig. 6.8. Comparison results of the Strouhal number versus the Reynolds number. Liu and Hu [63] is 

result of numerical simulation. Norberg [73] and Williamson [99] are experimental results. 
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6.3. Flow past a NACA0012 airfoil 

In this sub-chapter, simulation results of NACA0012 airfoil with various angles of attack are 

presented. Since there is no analytic form of the SDF for NACA0012, AMR-based determination 

methods of the SDF are applied. Fig. 6.9 shows the layout of the computational domain together with 

AMR results for the airfoil at the zero angle of attack. The size of the domain is [−2𝑐, 6𝑐] × [−2𝑐, 2𝑐] 

where 𝑐  is the chord length of NACA0012, and the nose of the airfoil is located at (0,0) . A 

1024 × 512  uniform Cartesian mesh system is used, thus the rectangular region covering the foil 

consists of 128 × 12 uniform Cartesian cells. As depicted in Fig. 6.9, boundary conditions are set 

equal to the previous cylinder problem.  

All simulations are conducted at the fixed value of 𝑅𝑒 = 1000 based on the chord length 𝑐 and 

the free stream velocity 𝑢∞, and the CFL number based on the free-stream velocity 𝑢∞ is set to 4. The 

angle of attack α is varied about the specific point that is half of chord the length. Simulations are 

performed for a range of α from 0° to 20°. For each case, the SDF is independently computed with 

the AMR as depicted in Fig. 6.10. 

 

 

Fig. 6.9. Computational domain for flow past NACA0012. The angle of attack for this case is zero. The 

adaptive mesh structure refined from the coarsest background mesh indicates the successful automatic 

detection of the foil shape and the optimal refinement utilized for the SDF computation. Note that there 

is no refinement needed for the cells adjacent to the leading and trailing edge of the foil.  
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Fig. 6.10. Close-up view of adaptive mesh refinement near NACA0012 for computing SDF: (a) α =

0°; (b) α = 4°; (c) α = 8°; (d) α = 12°; (e) α = 16°; (f) α = 20°. The size of captured domain is 

[0, 𝑐] × [−0.25𝑐, 0.25𝑐]. 

 

Fig. 6.11 illustrates the instantaneous vorticity fields and contours for six different angles of attack: 

α = 0°, 4°, 8°, 12°, 16°, and 20°. Since the narrow wake region is symmetric, stable, and steady at 

α = 0°, vortex shedding is not observed. However, for α ≥ 8°, the flow in the wake region becomes 

asymmetric and unstable, and unsteady vortex shedding is produced. As α increases, the separation 

region becomes larger, and stronger and wide vortex shedding is observed. This behavior is in good 

agreement with previously reported results [42, 57].  

The airfoil has the typical features of an engineering object used for fluid machinery, namely a smooth 

streamlined low curvature part and also sharp corners. It is important to be able to accurately represent 

the geometric complexity of the body to predict the flow phenomena over such an engineering object. 

Therefore, based on the presented simulation results, the current AMR-based computation method for 

SDF is a promising approach that can be applied to various engineering objects on a Cartesian mesh. 
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Fig. 6.12 shows the drag and lift coefficients versus the angle of attack. For the case of an airfoil, the 

reference length is considered as the chord length when computing force coefficients. Current 

simulation results are compared with the results from the body-fitted mesh based simulations [42, 57, 

61]. Although a minor discrepancy for drag and lift coefficient is observed at α = 16°, the overall 

tendency is similar to previous results.  

 

 

Fig. 6.11. Instantaneous vorticity fields and contours(a) α = 0°; (b) α = 4°; (c) α = 8°; (d) α = 12°; 

(e) α = 16°; (f) α = 20°. Contours are presented from -10𝑢∞ 𝑐⁄  to 10𝑢∞ 𝑐⁄  with 21 intervals. The 

captured domain is [−c, 6c] × [−1.5c, 1.5c]. 

 



 

78 

 

 

Fig. 6.12. (a) Mean drag and (b) lift coefficients versus the angle of attack. Present results (●) are 

compared with the Ilio et al. (2018) [42] (◇), Kurtulus (2015) [57] (⋯), and Liu et al. (2012) [61] (△). 

All reference data is obtained from the body-fitted mesh based simulation. 
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The mean pressure coefficient along the airfoil surface is compared at specific α: α = 8° and 19°. 

The higher pressure is acting on the bottom surface of the airfoil as α increases, so the lower and upper 

lines depicted in Fig. 6.13 indicate a pressure distribution acting on the top and bottom surface of the 

airfoil, respectively. Unlike the body-fitted mesh simulation, the airfoil surface does not coincide with 

grid points. This could result in additional difficulties in computing the local pressure distribution on 

the body surface. However, this local pressure can be simply traced by finding cells whose |∇𝐻| ≠ 0 

in the current approach where |𝛻𝐻| is non-zero at the interface cells. This can be considered as an 

additional benefit of employing the Heaviside function for the body representation.  

As shown in Fig. 6.13, the current results are well matched to validated data at 𝛼 = 8°, although 

slight discrepancies are observed at 𝛼 = 19°. The overall pressure distribution on the bottom surface 

(upper line) is slightly overestimated, but the magnitude compared to the absolute pressure value is 

small and consistent throughout the surface. For the top surface of the airfoil (lower line), minor 

discrepancies observed at the nose and tailing edge could be attributed to the violent flow separation. 

Both discrepancies can be improved by the better mesh resolution, wider flow domain, or more 

sophisticated boundary condition imposition, which are not on the main focus of this paper.  
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Fig. 6.13. Distribution of mean pressure coefficients along NACA0012 surface including both the top 

and bottom region: (a) α = 8° ; (b) α = 19° . Reference data indicated by a dotted-line (⋯ ) are 

computed by Kurtulus [57] using a body-fitted mesh system.  
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6.4. Flow over an oscillating cylinder 

The oscillating cylinder problem at the low Reynolds number (𝑅𝑒) and Keulegan-Carpenter number 

(𝐾𝐶) introduced by Dütsch et al. [24] is a very famous test case for validating moving body simulations 

because comparable and reliable experimental data exist. In this problem, the motion of the cylinder is 

described by a sinusoidal harmonic motion as follows: 

 

𝑥(𝑡) = −𝐴 𝑠𝑖𝑛(2𝜋𝑓𝑡),                                                                                                                                      (6.8) 

 

where 𝑥(𝑡) is the 𝑥-directional position of the cylinder`s center with respect to time, and 𝐴 and 𝑓 are 

the amplitude and the frequency of oscillation motion, respectively. The corresponding 𝑥-directional 

velocity of the cylinder is given by  

 

𝑉(𝑡) = −2𝜋𝑓𝐴 𝑐𝑜𝑠(2𝜋𝑓𝑡) = −𝑉0 𝑐𝑜𝑠(2𝜋𝑓𝑡),                                                                                          (6.9) 

 

where 𝑉0 is the maximum 𝑥-directional velocity of the cylinder. 

The Reynolds number (𝑅𝑒 ) and Keulegan-Carpenter number (𝐾𝐶 ), which are key parameters to 

determine the flow characteristics induced by the oscillatory motion of the cylinder, are defined as 

 

𝑅𝑒 =
𝑉0𝐷

𝜈
 and 𝐾𝐶 =  

𝑉0
𝐷𝑓
,                                                                                                                             (6.10) 

 

where 𝜈 is the kinematic viscosity of the fluid, and 𝐷 is the diameter of the cylinder. Here, the 𝑅𝑒 

and 𝐾𝐶 numbers are set to 100 and 5, respectively. 
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The entire computational domain of the oscillating cylinder problem is shown in Fig. 6.14. The total 

domain size is [−8𝐷, 8𝐷] × [−8𝐷, 8𝐷], and the cylinder is located at the center of the domain. We 

impose the no-slip wall boundary condition, i.e. 𝑼 = 𝑼𝑏 and 𝜕𝑝 𝜕𝒏⁄ = 0, at the cylinder surface, and 

the outflow boundary condition, i.e., 𝜕𝑼 𝜕𝒏⁄ = 0 and 𝑝 = 𝑝∞, at the rest of the boundary. Based on 

the author`s experience, at least 32 grids along the diameter are required to represent the cylinder shape 

in the uniform Cartesian grid system. To satisfy this requirement, the 512 × 512 uniform Cartesian 

grids are used. The CFL number, based on the maximum 𝑥-directional velocity of the cylinder 𝑉0, is 

set to 0.67. Note that this CFL condition is determined only by the accuracy requirement, not by the 

stability because the current solution algorithm is unconditional stable for moving body simulation.  

 

 

Fig. 6.14. The layout of the entire computational domain for the oscillating cylinder problem 

 

The exact form of the SDF for the cylinder exists, thus the information of the cylinder shape at every 

time step can be exactly expressed in the fluid solver without additional computational cost. However, 

to compare simulation results of the exact SDF with transformed SDF, we numerically compute the 

SDF of the cylinder at the initial position by using the AMR-based SDF computation presented in 

Chapter 4.1, and the SDF at each time step is determined by transforming the initial SDF (see Chapter 

4.7) without any re-computation for the in/out test and the shortest distance. The cylinder`s boundary is 

represented by 128 line-segments, and 𝑝-refinement (𝑝 = 2) is applied for biquadratic interpolation. 
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The time history of the drag coefficient (𝐶𝑑), which is defined as 𝐹𝑑/(0.5𝜌𝑉0
2𝐷) where 𝐹𝑑 is the 

drag force, is presented in Fig. 6.15. As shown in this figure, the drag coefficients computed from the 

exact SDF and the transformed SDF are almost the same and are visually indistinguishable, and these 

results are in good agreement with the experimental results [24]. Based on these results, we confirm 

that the current simulation using the transformed SDF can be applied to the moving body simulation. 

The instantaneous contours of the vorticity and pressure coefficient at four different phases (2𝜋𝑓𝑡 =

0°, 96°, 192°, 288°) of the oscillation are presented in Fig. 6.16. These results are obtained by utilizing 

the transformed SDF. The patterns of both contours are very similar to the previous numerical results 

[21, 22, 58, 63, 106, 107]. 

 

Fig. 6.15. The time history of the drag coefficient within a single oscillation period. The reference data 

of Dütsch et al. [24] is based on a water tank experiment.  

 

Fig. 6.17 shows the velocity profiles of the 𝑥-directional velocity 𝑢 and the 𝑦-directional velocity 

𝑣 along the vertical direction at four different locations (𝑥 = −0.6𝐷, 0,0.6𝐷, 1.2𝐷) for three different 

phases (2𝜋𝑓𝑡 = 180°, 210°, 330°) of the oscillation. The present simulation results are based on the 

transformed SDF and show good agreement with the experimental results [24]. Although there are slight 

discrepancies, we believe that these differences are due to the limitation of the simplified 2D simulation 

because similar patterns are observable in all previous 2D numerical results [21, 22, 58, 63, 106, 107].  
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Fig. 6.16. Snapshots of vorticity contours (left column) and pressure coefficient contours (right column) 

at different phases (2𝜋𝑓𝑡) of the oscillation: (a) 0°; (b) 96°; (c) 192°; (d) 288°. The size of the 

captured domain is [−2𝐷, 2𝐷] × [−2𝐷, 2𝐷]. The vorticity contours are presented from −3.2𝑉0/𝐷 to 

3.2𝑉0/𝐷  with 16 intervals. The contours of the pressure coefficient are presented from −1.0 to 1.0 

with 20 intervals.  
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Fig. 6.17. Velocity profiles of the 𝑥-direction velocity 𝑢 (right column) and the 𝑦-directional velocity 

𝑣 (left column) along the 𝑦-position at four different vertical sections (𝑥 = −0.6𝐷, 0,0.6𝐷, 1.2𝐷) for 

three different phases (2𝜋𝑓𝑡) : (a) 180°; (b) 210°; (c) 330° . The experimental results [24] are 

indicated by ■ at 𝑥 = −0.6𝐷 , ▲ at 𝑥 = 0 , ◆  at 𝑥 = 0.6𝐷 , and ● at 𝑥 = 1.2𝐷 . The current 

numerical results based on the transformed SDF are presented by ― at 𝑥 = −0.6𝐷, −− at 𝑥 = 0, 

− ∙ − at 𝑥 = 0.6𝐷, and ⋯ at 𝑥 = 1.2𝐷. 



 

86 

 

6.5. Flow around a flapping wing 

The example for the flow induced by a flapping wing is introduced by Wang [100], with the aim of 

investigating the 2D mechanism for an insect hovering employing a simple ellipse as a wing. This 

problem can be considered to be a very appropriate test case for the moving body simulation because a 

moving object has not only translational but also rotational motions. For this reason, this example is a 

very famous test case for moving body simulations, like the previous oscillating cylinder problem. 

The configuration of the flapping wing is presented in Fig. 6.18. The wing is a simple 2D ellipse 

defined by 𝑐 and 𝑏 which are lengths along major and minor axes, respectively. The aspect ratio of the 

wing is defined as 𝐴𝑅 = 𝑐/𝑏 = 4. The wing translationally oscillates along a stroke plane inclined at 

an angle 𝛽 with a prescribed rotational motion. The prescribed translational and rotational motions of 

the wing are given by  

 

𝐴(𝑡) =
𝐴0
2
{𝑐𝑜𝑠 (

2𝜋𝑡

𝑇
) + 1},                                                                                                                         (6.11) 

 

𝜃(𝑡) = −𝜃0 {1 − 𝑠𝑖𝑛 (
2𝜋𝑡

𝑇
)},                                                                                                                       (6.12) 

 

where 𝐴(𝑡) and 𝜃(𝑡) refer to translational and rotational motions, respectively. 𝐴0 provides the total 

length of the flapping path, 𝜃0 is the initial angle of attack, which is positive for the counterclockwise 

direction, an 𝑇 is the flapping period. Since the stroke plane is inclined at 𝛽, the motions about the 

global (inertial) coordinate can be defined as  

 

𝑥(𝑡) =
𝐴0
2
{𝑐𝑜𝑠 (

2𝜋𝑡

𝑇
) + 1} 𝑐𝑜𝑠(𝛽),                                                                                                            (6.13) 

 

𝑦(𝑡) =
𝐴0
2
{𝑐𝑜𝑠 (

2𝜋𝑡

𝑇
) + 1} 𝑠𝑖𝑛(𝛽).                                                                                                             (6.14) 
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Fig. 6.18. The layout of the entire computational domain and the configuration for the flapping wing. 

Here, (𝑥, 𝑦) means the global (inertial) coordinate and (𝑥𝑏 , 𝑥𝑏) refers to the body-fitted coordinate. 

 

The parameters utilized to define the hovering motion are chosen to be the same as those used in 

previous studies [100, 22, 62, 63, 107]: 𝐴0 = 2.5𝑐 , 𝜃0 = 𝜋/4 , 𝑇 = 𝜋𝐴0/𝑐 , and 𝛽 = 𝜋/3 . The 

maximum speed 𝑉0 is 𝜋𝐴0 𝑇⁄ . The Reynolds number is defined as 𝑅𝑒 = 𝑉0𝑐 𝜈⁄  and set to 157. 

As shown in Fig. 6.18, the size of the computational domain is chosen to be [−8𝑐, 8𝑐] × [−8𝑐, 8𝑐], 

and the uniform 512 × 512 Cartesian grids are employed to cover the entire computational domain. 

Based on this condition, 32 uniform grids are located along the major axis of the wing (ellipse). The 

boundary condition is equally set to that of the previous oscillating cylinder problem. The center of the 

wing is initially located at a point (𝐴0𝑐𝑜𝑠𝛽, 𝐴0𝑠𝑖𝑛𝛽) and oscillates towards a point (0,0). The CFL 

number based on the maximum speed 𝑉0 is set to 1.28. 

Here, the simulations for the flow around the flapping wing are conducted by using two different 

methods in terms of representing a moving body. One is based on the exact SDF, and the other is based 

on the transformation of the numerically computed SDF (see Chapter 4.7) using the AMR-based 

algorithm (see Chapter 4.1). In the latter case, the boundary of the ellipse is represented by a set of 256 

line-segments.  

Fig. 6.19 shows that the results of these two methods overlap exactly and are in good agreement with 

the previous numerical results [100] obtained by the body-fitted mesh-based simulation. For both the 

drag and lift coefficients, there are discrepancies at the peak points. We believe that this error comes 

from the difference between mesh systems because current trends are similarly observable at numerical 

results based on the immersed/embedded boundary methods [22, 62, 63, 107].  
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The instantaneous vorticity fields at four different times ( 𝑡 = 0.25𝑇, 0.44𝑇, 0.74𝑇, 0.99𝑇 ) are 

presented in Fig. 6.20. These results are obtained by the numerical simulation using the current SDF 

transformation algorithm. As shown in this figure, the vortex dipole, which is produced by a pair of 

positive and negative vortices near the wing, is generated moving in the downward direction. This 

phenomenon results in generating the lift of the hovering wing. The current results are very similar to 

the results of the previous numerical simulations [100, 22, 62, 63, 107]. Based on this result, we re-

confirm that the current SDF transformation algorithm for the moving body simulation, which can avoid 

the re-computation of the SDF involving the in/out test and the computation for the shortest distance, 

and can also be safely applied to engineering problems containing a moving object.      

 

Fig. 6.19. Time history of the (a) drag and (b) lift coefficients for the flow around a flapping wing at 

𝑅𝑒 = 157. The results of Wang [100] are obtained by the numerical simulation based on the body-fitted 

grid system. 
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Fig. 6.20. Snapshot of the vorticity fields induced by the flapping wing during one flapping period at 

four different time moments: (a) 𝑡 = 0.25𝑇; (b) 𝑡 = 0.44𝑇; (c) 𝑡 = 0.74𝑇; (d) 𝑡 =  0.99𝑇. The size 

of the zoomed-in domain is [−2𝑐, 4𝑐] × [−8𝑐, 4𝑐]. 
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6.6. Flow past a heaving and pitching NACA0012 airfoil 

In this sub-chapter, the simulation results for the flow past a heaving and pitching NACA0012 airfoil 

are presented. This example is introduced as one of the advanced test cases in the fifth international 

workshops on high-order CFD methods (HiOCFD5) [79]. This problem is originally aimed at 

investigating the accuracy and performance of high-order compressible flow solvers. In this example, 

since the airfoil, which is the most famous object for the engineering simulation, has both translation 

and rotational motions, we adopt it as the advanced test case of the moving body simulation in the 

current study. Although the simulation results of [79] are obtained by compressible flow solvers, the 

comparison with the current incompressible flow solver can be possible due to the Mach number of 0.2, 

where the compressible effect is very small.  

This example consists of three different cases: (1) pure heaving; (2) smooth heaving and pitching; (3) 

violent heaving and pitching. For each respective case, the heaving (ℎ) and pitching (𝜃) motions are 

defined as     

 

ℎ1(𝑡) =
𝑡2

4
(3 − 𝑡)   and   𝜃1(𝑡) = 0,                                                                                                           (6.15) 

 

ℎ2(𝑡) =
𝑡2

4
(3 − 𝑡)   and   𝜃2(𝑡) = −

𝜋

3
𝑡2(𝑡2 − 4𝑡 + 4),                                                                       (6.16) 

 

ℎ3(𝑡) =
𝑡3

16
(−8𝑡3 + 51𝑡2 − 111𝑡 + 84)   and   𝜃3(𝑡) = −

4𝜋

9
𝑡2(𝑡2 − 4𝑡 + 4),                            (6.17) 

 

where the subscript refers to the case numbers. The motions are defined about a point located at the 

airfoil c/3 location from the leading edge, where  𝑐 is the chord length of the airfoil. The positive 

heaving motion is an upward movement, and the positive pitching motion is counterclockwise rotation.  
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Fig. 6.21. The layout of the computational domain for the flow past the heaving and pitching 

NACA0012 airfoil 

 

The entire computational domain for the flow past the heaving and pitch NACA0012 airfoil is shown 

in Fig. 6.21. The computational domain is chosen to be [−2.5𝑐, 5.5𝑐] × [−4𝑐, 4𝑐], and a point located 

at the 𝑐/3 location from the leading edge is positioned at (0,0). We impose the Dirichlet boundary 

condition of 𝑼 = (𝑢∞, 0)  at the left, the slip boundary condition at top and bottom, the outflow 

condition, and the no-slip wall boundary condition at the airfoil`s boundary. For the pressure, the 

Dirichlet boundary condition is imposed on the outlet as 𝑝∞ = 0, and other boundaries are considered 

to follow the Neumann condition, i.e., 𝑑𝑝 𝑑𝒏⁄ = 0. A 1024 × 1024 uniform Cartesian mesh system 

is used, thus the rectangular region covering the foil consists of 128 × 12 uniform Cartesian cells. The 

Reynolds number, based on the free-stream velocity 𝑢∞ and the chord length 𝑐, is set to 1000, and the 

CFL number, based on the free-stream velocity, is 4. Here, the geometry of the NACA0012 airfoil is 

defined by a set of 69 line-segments, and the SDF is numerically computed by the AMR-based 

algorithm. 

After converging to the steady-state, the prescribed heaving and pitching motions, defined as Eqs. 

(6.15)-(6.17), are applied to the NACA0012 airfoil during a time interval of 2𝑐/𝑢∞. The converged 

drag coefficient of UC Berkeley`s simulation [79] is 0.12, and that of the current analysis is 0.11. The 

comparison is considered to be very satisfactory. For this problem, the drag coefficient is defined as 

𝐶𝑑 = 𝐹𝑑/(0.5𝜌𝑢∞
2 𝑐), where 𝐹𝑑 is the drag force. 
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The instantaneous vorticity fields at four different time moments (𝑡 = 0.5𝑐/𝑢∞, 1.0𝑐/𝑢∞, 1.5𝑐/

𝑢∞, 2.0𝑐/𝑢∞) are shown in Fig. 6.22 with respect to each case. The behaviors of the vortex for each 

case are in good agreement with physical plausibility. Fig. 6.23 shows the time history of the drag and 

lift coefficients, where the line components indicate the UC Berkeley`s results based on the body-fitted 

mesh system among [79] and the symbols refer to the current results. As shown in this figure, the current 

results for both the drag and lift coefficient are well matched to the reference data in cases 1 and 2, 

whereas there is a remarkable discrepancy at the second peak of the drag in case 3. This discrepancy 

can be induced by the differences between the two mesh systems. Since the heaving and pitching 

motions of case 3 are very rapid, it is hard to predict this situation using the uniform Cartesian mesh 

system. This kind of discrepancy at peak points is also observable in the previous flapping wing problem. 
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Fig. 6.22. Snapshots of the instantaneous vorticity field at four different time moments: (a) case 1; (b) 

case 2; (c) case 3. 
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Fig. 6.23. Time history of the drag and lift coefficient with different motions: (a) case 1 for pure heaving; 

(b) case 2 for smooth heaving and pitching; (c) case 3 for violent heaving and pitching. The numerical 

results, based on the UC Berkeley simulation using the body-fitted mesh system [79], are indicated by 

― and −− for the drag and lift coefficient, respectively. The current numerical results based on the 

transformed SDF are presented by ○ and △ for the drag and lift coefficient, respectively 
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Chapter 7 

 

3D Simulation Results and Discussion 

 

7.1. Flow past a sphere 

7.1.1. Laminar flow 

A well-known three-dimensional benchmark problem, namely flow past a sphere, is presented in this 

sub-chapter. As shown in Fig. 7.1, the computational domain is [−4𝐷, 12𝐷] × [−4𝐷, 4𝐷]2 where 𝐷 

refers to the diameter of the sphere, and the center of the sphere is located at (0,0,0). The Dirichlet 

boundary condition is imposed at the inlet (left) boundary with the uniform flow condition 𝑼 =

(𝑢∞, 0,0), and the outlet (right) boundary condition is set to the convective boundary conditions. The 

sphere surface is considered as the no-slip wall, and the slip boundary condition is applied to other 

boundaries (side walls). In the case of pressure, the Dirichlet boundary condition is applied at the outlet 

as 𝑝∞ = 0 , and the Neumann boundary condition, i.e. 𝑑𝑝 𝑑𝒏⁄ = 0 , is imposed for the rest of the 

boundaries. 

 

Table 7.1  

Drag coefficients of flow past a sphere compared with previous results 

 𝑅𝑒 = 100 𝑅𝑒 = 250 𝑅𝑒 = 300 

Kallinderis and Ahn [53] 1.084 - - 

Kim et al. [52] 1.087 0.701 0.657 

Choi et al. [21] 1.09 0.700 0.658 

Johnson & Patel [47] - 0.700 0.656 

Present 1.07 0.710 0.672 
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Fig. 7.1. Layout of the computational domain for laminar flow past a sphere problem. 

 

A 512 × 256 × 256 uniform Cartesian mesh system is utilized in the entire computational domain. 

The subdomain that covers the sphere is discretized by 32 × 32 × 32  uniform size cells. For all 

simulations presented in this sub-chapter, the Reynolds number (𝑅𝑒) is based on the sphere diameter 𝐷 

and the free-stream velocity 𝑢∞, and the CFL number based on the free-stream velocity 𝑢∞ is set to 

4. The simulation is conducted at three different Reynolds numbers: 𝑅𝑒 = 100, 250, and 300. This 

problem was computed on KISTI`s Nurion supercomputer. The computational domain is divided into 

8 × 4 × 4 uniform Cartesian blocks for MPI parallelization; thus, a total of 128 MPI processes are 

assigned and 16 OpenMP threads are utilized at each MPI process. Therefore, a total of 2,048 cores are 

used for the parallel computation. 

For the sphere, 𝐶𝐷 is defined as 𝐹𝐷/(0.5𝜌𝑢∞
2 𝐴), where 𝐴 is the projected area of the sphere, i.e., 

𝐴 = 𝜋𝐷2/4, and should not be confused with the surface area. Here, 𝐹𝐷 can be computed in the similar 

manner to the case of the cylinder problem. As shown in Table 7.1, current results for the drag coefficient 

are in good agreement with previous results. Fig. 7.2 depicts the variation of the wall pressure 

coefficient and the wall azimuthal vorticity along the sphere surface at 𝑅𝑒 = 100 and shows that the 

comparison between the current and previous results [46, 52] is very satisfactory. 

 

 



 

97 

 

 

 

Fig. 7.2. (a) Wall pressure coefficient and (b) wall azimuthal vorticity along the sphere surface at 𝑅𝑒 =

100 
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Fig. 7.3. Contours of 𝑧-directional vorticity in 𝑥𝑦-plane: (a) 𝑅𝑒 = 100; (b) 𝑅𝑒 = 250; (c) 𝑅𝑒 =

300. The size of the presented domain is [−2𝐷, 12𝐷] × [−2𝐷 × 2𝐷]. Contours are presented from -

5𝑢∞ 𝐷⁄  to 5𝑢∞ 𝐷⁄  with 21 intervals. 

 

It is well known that laminar flow can be divided into three different flow regimes [52]: steady 

axisymmetric flow (𝑅𝑒 ≤ 200) , steady non-axisymmetric flow (210 ≤ 𝑅𝑒 ≤ 270) , and unsteady 

flow (𝑅𝑒 ≥ 280) . To show that the current simulation can represent the variation of these flow 

characteristics well, the contour of the 𝑧 -directional vorticity (𝜔𝑧 ) is presented in Fig. 7.3. Since 

unsteady flow occurs at 𝑅𝑒 = 300, the instantaneous contour of the vorticity is captured at the half of 

the shedding period. Fig. 7.3 shows that flow characteristics corresponding to each 𝑅𝑒  are well 

represented. In addition, these contours are in good agreement with the results presented in Johnson and 

Patel [47].  
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The vortical structure based on the 𝜆2-definition [44] is presented in Fig. 7.4. At 𝑅𝑒 = 100, because 

the flow around the sphere is axisymmetric, the vortical structure is attached only near the sphere. In 

contrast, two slender vortical structures are produced behind the sphere at 𝑅𝑒 = 250 due to the non-

symmetricity. At 𝑅𝑒 = 300 , the elongated vortex is detached from the sphere, and eventually the 

shedding vortical structure is observed. The variation of vortical structures with respect to time at 𝑅𝑒 =

300 is visually presented at Fig. 7.5. These variations of the vortical structure with respect to 𝑅𝑒 are 

nearly identical to the results shown in Kim et al. [52] and Johnson and Patel [47]. 

 

Fig. 7.4. Perspective view of the vortical structure based on 𝜆2 definition: (a) 𝑅𝑒 = 100; (b) 𝑅𝑒 =

250; (c) 𝑅𝑒 = 300. For 𝑅𝑒 = 300, the instantaneous result at half of shedding period is shown due to 

unsteadiness. 
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Fig. 7.5. Visualization of vortical structures with respect to time evolution at 𝑅𝑒 = 300. Vortical 

structures are colored by velocity magnitude. 
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Finally, we also consider the flow past a rotating sphere. In this problem, all simulation condition is 

same with the previous case for the stationary sphere, except for the spin rate of the sphere. The spin 

rate (𝛤) of the sphere is defined as 𝛤 = 𝜔𝑅 𝑢∞⁄  where 𝜔 is the angular velocity, 𝑅 is the radius of 

the sphere, and 𝑢∞ means the free-stream speed. The Reynolds number is set to 250 and 300, and the 

spin rate is varied from 0.0 to 1.2 with 6 intervals. Fig. 7.6 shows the variation of force coefficients, i.e. 

drag and lift coefficients, with respect to the spin rate at different Reynolds numbers. The current 

simulation results are in good agreement with previous numerical results [55] based on the direct forcing 

immersed boundary method using the cylindrical coordinate system. 

 

Fig. 7.6. Variation of drag and lift coefficients with respect to the spin rate for the spinning sphere: (a) 

𝑅𝑒 = 250; (b) 𝑅𝑒 = 300. Kim (2009) [55] is based on the direct forcing immersed boundary method 

using the cylindrical coordinate system. 
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7.1.2. Subcritical flow 

Because the flow transition occurs in the wake region of the sphere at 𝑅𝑒 = 3700 , the larger 

computation domain and the greater number of grids are required than previous laminar flow cases. For 

this reason, in order to analyze the subcritical flow around a sphere where 𝑅𝑒 = 3700 , the 

computational domain (see Fig. 7.7) is set to [−4𝐷, 28𝐷] × [−8𝐷, 8𝐷]2  where 𝐷  means the 

diameter of the sphere, which is positioned at the origin, and the number of grids is set to 

2,048 × 1,024 × 1,024 (= 2.1 × 109)  where the 64 grids are positioned along the diameter of the 

sphere. As shown in Fig. 7.7, boundary conditions are equally imposed with previous laminar flow 

cases. The CFL number based on the free-stream velocity is set to 2.0. 

The computational domain is divided into 16 × 8 × 8  uniform blocks for conducting hybrid 

MPI/OpenMP parallel computation, thus 128 × 128 × 128 grids are assigned to each MPI process. 

For each MPI process, 8 threads are assigned to apply OpenMP parallel computation. Therefore, total 

8,192 cores (1,024 MPI process × 8 OpenMP threads) are employed to compute this problem. The 

computation is carried out on the Nurion supercomputer by using 128 nodes. For the single node, 8 MPI 

processes are allocated. 

In the current research, a subgrid-scale (SGS) is treated by numerical dissipation induced by 

numerical discretization scheme, and this approach is known as implicit large eddy simulation (LES) 

[11, 32, 96, 93]. This approach is especially convenient in flow regimes where the derivation or the 

computation of SGS is difficult. If an appropriate discretization scheme for implicit LES is applied, any 

additional procedure would not be required according to variation of the Reynolds number. For this 

reason, the potential of implicit LES approach has been gaining popularity in recent studies. 

 

Table 7.2 

Flow parameters of subcritical flow past a sphere 

 𝐶𝐷̅̅̅̅  𝐶𝑝𝑏̅̅ ̅̅̅ 𝑆𝑡 𝐿𝑟𝑒𝑐̅̅ ̅̅ ̅/𝐷 

Kim & Durbin [50] (Exp.) - -0.224 0.225 - 

Sakamoto & Haniu [87] (Exp.) - - 0.204 - 

Schlichting [86] (Exp.) 0.39 - - - 

Yun et al. [105] (LES) 0.355 -0.194 0.21 2.622 

Rodriguez et al. [83] (DNS) 0.394 -0.207 0.215 2.28 

Present 0.41 204 0.20 2.61 
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Fig. 7.7. Layout of the computational domain for subcritical flow past a sphere problem. 

 

Flow parameters of the current simulation are summarized in Table 7.2, where the time-averaged 

drag coefficients (𝐶𝐷̅̅̅̅ ), base pressure coefficient (𝐶𝑝𝑏̅̅ ̅̅̅), Strouhal number based on the vortex shedding 

frequency, and non-dimensional recirculation length (𝐿𝑟𝑒𝑐̅̅ ̅̅ ̅/𝐷 ) are presented together with previous 

experimental and numerical (DNS, LES) results [50, 83, 86, 87, 105]. All results are in good agreement 

with previous data. Fig. 7.8 shows the comparison results of the mean pressure coefficient on the sphere 

surface along the azimuthal angle (𝜃). Although there is minor discrepancy at minimum value, overall 

tendency is very similar with previous results. The base pressure coefficient (𝐶𝑝𝑏) presented in Table 

7.2 is the value at 𝜃 = 180°. 

 

Fig. 7.8. Comparison of the mean pressure coefficient on the sphere surface: ○, present results; □, 

experimental results by Kim and Durbin [50]; △, DNS results by Rodriguez et al. [83]; 



 

104 

 

 

Fig. 7.9. (a) Time history and (b) Energy spectrum of the radial velocity at 𝑥/𝐷 = 5.0 and 𝑟/𝐷 = 0.6.  

 

Fig. 7.9 shows the time history and energy spectrum of the radial velocity at 𝑥/𝐷 = 5.0 and 𝑟/𝐷 =

0.6. Energy spectrum is obtained by applying fast Fourier transform to time-history of the radial velocity 

and presented by the log-log scale. As shown in Fig. 7.9-(b), maximum peak energy is observed at 

frequency 𝑓𝐷/𝑢∞ = 0.20, and this value can be considered as vortex-shedding frequency.  

In the inertial subrange, the net energy delivered from the energy-containing eddies is in equilibrium 

with the net energy cascading to smaller scale eddies where it is dissipated, thus the slope of the energy 

spectrum in this range remains constant as -5/3, which is proved by Kolmogorov [49]. In Fig. 7.9-(b), 

however, the -5/3 Kolmogorov law is clearly confirmed in a particular range.  

The mean streamwise velocity profiles (Fig. 7.10) along the 𝑦 -direction are obtained at three 

different position: 𝑥/𝐷 = 0.2; 𝑥/𝐷 = 1.6; 𝑥/𝐷 = 3.0. The results of velocity profiles are compared 

with previous experimental and numerical results. Although, there are very minor discrepancies 

between 𝑦/𝐷 = 0.5 and 1.0, overall trend and the values of other region are in good agreement with 

previous data, especially explicit LES results of Yun et al. [105].  
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Fig. 7.10. Mean streamwise velocity profiles along the 𝑦-direction at different positions 

 

The current ten-billions order large-scale computation produces huge output data, thus there are some 

problems such as data transmission, storage, and visualization. For this reason, the relatively small-

scale problem using 67.1 × 106 grids is computed to visualize the simulation results. Based on low-

resolution simulation results, the instantaneous vortical structure based on 𝜆2-definition is illustrated 

in Fig. 7.11 with three different views. In this figure, flow transition is clearly observable. 
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Fig. 7.11. Instantaneous vortical structures based on 𝜆2-definition at 𝑅𝑒 = 3700: (a) perspective view; 

(b) top view (−𝑦 direction); (c) side view (−𝑧 direction). These are results of the low-resolution 

simulation using 67.1millions uniform Cartesian grids. 
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7.2. Flow past a circular cylinder 

 

 

Fig. 7.12. Layout of the computational domain for flow past a circular cylinder problem. 

 

The computational domain (see Fig. 7.12) is set to [−4𝐷, 28𝐷] × [−8𝐷, 8𝐷] × [−2𝐷, 2𝐷] where 

𝐷 means the diameter of the sphere, which is positioned at the origin, and the number of grids is set to 

2,048 × 1,024 × 256 (= 0.54 × 109)  where the 64 grids are positioned along the diameter of the 

sphere. As shown in Fig. 7.12, except the boundary of 𝑧 = −2𝐷 and 2𝐷 , boundary conditions are 

equally imposed with previous sphere problems. The periodic boundary condition is imposed along 𝑧-

direction. The Reynolds numbers (𝑅𝑒) based on the sphere diameter 𝐷 and the free-stream velocity 

𝑢∞ are set to 3900 and 10000. The CFL number based on the free-stream velocity is set to 2.0. 

The computational domain is divided into 32 × 16 × 4  uniform blocks for conducting hybrid 

MPI/OpenMP parallel computation, thus 64 × 64 × 64 grids are assigned to each MPI process. For 

each MPI process, 8 threads are assigned to apply OpenMP parallel computation. Therefore, total 

16,384 cores (2,048 MPI process × 8 OpenMP threads) are employed to compute this problem. The 

computation is carried out on the Nurion supercomputer by using 256 nodes. For the single node, 8 MPI 

processes are allocated. 
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Table 7.3 

Flow parameters of subcritical flow past a circular cylinder at 𝑅𝑒 = 3900 

  𝐶𝐷̅̅̅̅  𝐶𝑝𝑏̅̅ ̅̅̅ St 𝐿𝑟𝑒𝑐̅̅ ̅̅ ̅/𝐷 

Bcaudan & Moin [109] (LES) 1.00 -0.95 0.203 1.36 

Mittal & Moin [70] (LES) 1.00 -0.93 0.207 1.40 

Kravchenko & Moin [114] (LES) 1.04 -0.94 0.210 1.35 

Parnaudeau et al. [115] (Exp) - - - 1.51 

Parnaudeau et al. [115] (LES) - - 0.208 1.56 

Present 1.09 -0.92 0.216 1.56 

 

Flow parameters of the current simulation are summarized in Table 7.3, where the time-averaged 

drag coefficients (𝐶𝐷̅̅̅̅ ), base pressure coefficient (𝐶𝑝𝑏̅̅ ̅̅̅), Strouhal number based on the vortex shedding 

frequency, and non-dimensional recirculation length (𝐿𝑟𝑒𝑐̅̅ ̅̅ ̅/𝐷 ) are presented together with previous 

experimental and numerical (LES) results [70, 109, 114, 115]. All results are in good agreement with 

previous data.  

Fig. 7.13-(a) shows the comparison results of the mean pressure coefficient on the sphere surface 

along the azimuthal angle (𝜃). The current result is in good agreement with other result [114]. As shown 

in Fig. 7.13-(b), the mean streamwise velocity profiles along the 𝑦 -direction are obtained at three 

different position: 𝑥/𝐷 = 1.06 ; 𝑥/𝐷 = 1.54 ; 𝑥/𝐷 = 2.02 . The results of velocity profiles are 

compared with previous experimental and numerical results [115]. The comparison is considered to be 

very satisfactory. 

Fig. 7.14 shows the time history and energy spectrum of the vertical velocity at 𝑥/𝐷 = 10.0 and 

𝑦/𝐷 = 0.0 . Energy spectrum is obtained by applying fast Fourier transform to time-history of the 

vertical velocity and presented by the log-log scale. In the energy spectrum, −5/3 Kolmogorov law is 

clearly observable. Fig. 7.15 shows the instantaneous vortical structure of flow around a circular 

cylinder. 
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Fig. 7.13. (a) Wall pressure coefficient and (b) distribution of the streamwise velocity along vertical 

direction at 𝑅𝑒 = 3900. 
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Fig. 7.14. (a) Time history and (b) Energy spectrum of the vertical velocity at 𝑥/𝐷 = 10 and 𝑦/𝐷 =

0. Here, the Reynolds number is 3900. 

 

 

Fig. 7.15. Instantaneous 𝜆2-vortical structure of flow around a circular cylinder at 𝑅𝑒 = 3900  
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From now, flow over a circular cylinder at 𝑅𝑒 = 10000 is considered. Fig. 7.16 shows the wall 

pressure coefficient on the cylinder surface, and the current result is in good agreement with previous 

experimental [112] and numerical [111] results. Fig. 7.17 shows the time history and energy spectrum 

of the vertical velocity at 𝑥/𝐷 = 10.0 and 𝑦/𝐷 = 0.0. Energy spectrum is obtained by applying fast 

Fourier transform to time-history of the vertical velocity and presented by the log-log scale. In the 

energy spectrum, −5/3 Kolmogorov law is clearly confirmed.  

 

Fig. 7.16. Wall pressure coefficient on the cylinder surface at 𝑅𝑒 = 10000 

 

Fig. 7.17. (a) Time history and (b) Energy spectrum of the vertical velocity at 𝑥/𝐷 = 10 and 𝑦/𝐷 =

0. Here, the Reynolds number is 10000. 
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Fig. 7.18. Lift coefficient magnitudes versus non-dimensional frequency 

 

At 𝑅𝑒 = 10000, oscillating cylinder is also considered. The cylinder oscillation in the cross flow (𝑦) 

direction is given by 𝑦/𝐷 = 𝑌0 cos(2𝜋𝑓0𝑡), where 𝑦 is the cylinder displacement at time 𝑡, 𝑌0 is 

the amplitude, and 𝑓0 is the frequency of the cylinder oscillation. In this case, 𝑌0 is 3.0 and 𝑓0 is set 

to 0.14𝑢∞/𝐷, 0.21𝑢∞/𝐷, 0.25𝑢∞/𝐷. Fig. 7.18 shows the lift coefficient magnitudes as a function of 

non-dimensional frequency. At 𝑓0𝐷/𝑢∞ = 0.14, 0.25, the current results are in good agreement with 

experimental results. However, due to resonance at around 𝑓0𝐷/𝑢∞ = 0.21, the discrepancy occurs 

between all results (current, previous experimental [112] and numerical [111] results). 

Fig. 19 shows the 𝜆2 -vortical structures with respect to time evolution at 𝑅𝑒 = 10000 . Here, 

interestingly, three different wake patterns are observable. First, the vortex roller observed in laminar 

region is produced. Next, the flow transition occurs around the vortex roller. Finally, the vortex roller 

is collapsed, and then the fully developed turbulent flow is observed.  
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Fig. 7.19. Visualization of 𝜆2-vortical structures with respect to time evolution at 𝑅𝑒 = 10000. Three 

different wake patterns are observable: vortex roller, flow transition around vortex roller, and fully flow 

transition after collapsing vortex roller. 
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7.3. Flow past an underwater robot 

Finally, the simulation results about flow past Crabster [108] are presented. Crabster is considered to 

be a perfect example of a realistic engineering object for demonstrating the effectiveness and robustness 

of the current methodology. In other words, the two major contributions of this dissertation, i.e. AMR-

based SDF computation and the MG method for the irregular domain, can be effectively demonstrated 

through this demanding simulation. 

Crabster is originally designed to carry out its mission by walking on the sea floor. When Crabster 

encounters a strong head current, it has the ability to change its posture by putting its head down to 

maintain its position. In terms of maintaining position, an accurate prediction of hydrodynamics 

resulting from this process is very important for the safe control of the robot. For this reason, we try to 

conduct a flow simulation around Crabster, which has three representative postures. An open-source 3D 

graphics software Blender (http://www.blender.org) is utilized to transform the original neutral posture 

of the Crabster to different heading postures. Fig. 7.20 shows the three different postures of Crabster 

with perspective and side views: head-up 10°, neutral, and head-down 16°.  

The configuration of the computational domain is depicted in Fig. 7.21. In this figure, the background 

grid lines refer to the results of AMR for computing the SDF of a neutral position. Additionally, Fig. 

7.22 illustrates the close-up view of AMR results for three different postures of Crabster. The entire 

flow domain size is [−8𝐵, 24𝐵] × [−4𝐵, 4𝐵]2  where 𝐵  refers to the breadth of Crabster`s main 

body (see Fig. 7.21), and the 1024 × 256 × 256  uniform Cartesian mesh system is utilized in the 

entire computational domain. The center of gravity for Crabster is located at (0,0,0). As shown in Fig. 

7.21, boundary conditions are equally set to the previous sphere problem. For all simulations, Reynolds 

number (𝑅𝑒) is based on the breadth 𝐵 and the free-stream velocity 𝑢∞, and the CFL number based on 

the free-stream velocity 𝑢∞ is set to 4. 

This problem is computed on the KISTI`s Nurion supercomputer. The computational domain is 

divided into 16 × 4 × 4  uniform Cartesian blocks for MPI parallelization, thus total 256 MPI 

processes are assigned and 16 OpenMP threads are utilized at each MPI process. 64 KNL nodes of the 

Nurion supercomputer are used for computing this problem. 
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Fig. 7.20. Three different postures of Crabster: (a) head-up 10°, (b) neutral, (c) head-down 16°. Upper 

row shows perspective views, and lower row represents side views. 

 

 

 

Fig. 7.21. Computational domain for flow past Crabster. Mesh line indicates the resulting process of 

AMR for determining the SDF. 
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Fig. 7.22. Close-up view of the AMR mesh near Crabster for computing the SDF: (a) head-up 10°, (b) 

neutral, and (c) head-down 16°. 
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7.3.1. Steady flow case 

Since no available experimental data exists for Crabster, the simulation result is compared to the 

result of control volume analysis inspired by the wake-survey procedure [12] of experimental fluid 

mechanics. To validate the current simulation results, the hydrodynamic forces computed by the surface 

integral as shown in Eq. (6.6) are compared with the forces estimated by the wake-survey. Here, the 

entire computational domain is considered as the control volume employed for the wake-survey. Based 

on the Reynolds transport theorem [102], the total force acting on the fluid passing through the entire 

computational domain can be estimated as follows: 

 

𝑭 = ∫
𝜕(𝜌𝑼)

𝜕𝑡
𝑑𝛺𝑓 +∮ 𝜌𝑼(𝑼 ∙ 𝒏𝒇) 𝑑𝛤𝑓 ,                                                                                                 (7.1) 

 

where 𝑭 is the total force acting on the fluid, 𝑼 is the fluid velocity, and 𝒏𝒇 is the outward unit 

normal vector of the fluid region 𝛺𝑓, limited by its boundary 𝛤𝑓 composed of an exterior and interior 

(body) boundary.  

Here, 𝑭 can be divided into 

 

𝑭 = 𝑭𝑝
𝑒 + 𝑭𝑣

𝑒 + 𝑭𝑏 ,                                                                                                                                           (7.2) 

 

where 𝑭𝑝
𝑒   and 𝑭𝑣

𝑒  refer to the pressure and viscous forces on the exterior boundary, and 𝑭𝑏 

indicates the force exerted by the interior body. The viscous forces on the exterior boundary can be 

assumed to be zero by considering the current boundary condition.  

Here, the flow simulation over Crabster is conducted at 𝑅𝑒 = 40, where the flow field is steady. In 

this situation, the unsteady term of Eq. (7.1) can be safely ignored, and the wake-survey can be easily 

conducted. After all, the forces acting on the fluid exerted by Crabster at 𝑅𝑒 = 40 can be written as 

 

𝑭𝑏 = ∮ 𝜌𝑼(𝑼 ∙ 𝒏𝒇)𝑑𝛤𝑓 − 𝑭𝑝
𝑒 .                                                                                                                     (7.3) 
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Due to Newton`s third law, namely the law of action-reaction, the hydrodynamic forces acting on 

Crabster can be estimated simply by −𝑭𝑏. 

Fig. 7.23 depicts the vortical structures around Crabster at three different postures. Table 7.4 shows 

the force coefficients (drag and lift) predicted by the direct surface integral, i.e., Eq. (6.6), and the wake-

survey, i.e., −𝑭𝑏. The comparison between these two methods is considered to be very satisfactory. 

Through this comparative study, the current approach can be indirectly validated. 

 

Table 7.4 

Comparison of force coefficients computed from the direct surface integral and the wake-survey for the 

flow past Crabster at 𝑅𝑒 = 40. 

 
Drag Coefficient 𝐶𝐷  Lift Coefficient 𝐶𝐿 

Direct Wake-survey  Direct Wake-survey 

Head-up 4.726 4.793  0.453 0.400 

Neutral 4.626 4.666  0.148 0.122 

Head-down 4.630 4.735  -0.395 -0.359 
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Fig. 7.23. Iso-surfaces of the vortical structure for flow around Crabster at 𝑅𝑒 =  40: (a) perspective 

view; (b) side view. Iso-surfaces are colored by velocity magnitude, which is divided by the free-stream 

velocity 𝑢∞. 
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7.3.2. Unsteady flow case 

In order to analyze the unsteady flow around Crabster, simulations are performed with 𝑅𝑒 = 1000 

based on the breadth of Crabster`s main body. Fig. 7.24 shows the simulation results with iso-surfaces 

of the vortical structure introduced by Jeong and Hussain [44], namely 𝜆2-definition, and this coherent 

structure is colored by velocity magnitude. Based on these results, we clearly demonstrate that the 

current MG method for irregular domain works perfectly well on a very complex irregular domain. 

Crabster occupies just a small portion of the computational domain and has detailed geometric features, 

including six slender legs. Nevertheless, the current Heaviside function restriction algorithm allows our 

MG method to successfully tackle the flow simulation around the complex irregular shape.  

As shown in Fig. 7.24, the famous hairpin vortex [4] is observed at all cases. Note that the hairpin 

vortex consists of a head, neck, and leg, and the head of the hairpin vortex is the vortex core. As the 

profile of the Crabster changes, the directions of the hairpins also change. The head of the hairpin vortex 

is developed in the downward direction in both the head-up and neutral postures, whereas it is generated 

in the upward direction in the head-down case. This indicates the possibility of upward and downward 

lift depending on the heading angle of Crabster. After the rigorous validation study, this quantitative 

prediction data can certainly be utilized for design modifications and developing operational guidelines.  

We also conduct flow over Crabster on bottom plate. As shown in Fig. 7.25, the bottom boundary 

condition is changed from slip to no-slip wall in this case. Other simulation conditions are same with 

the previous case. Actually, Crabster is the underwater walking robot on the sea bed, so this simulation, 

i.e. flow past Crabster on bottom plate, is more desired case for delivering helpful information towards 

actual operation of Crabster. Fig. 7.26 shows the snapshots of instantaneous vortical structures around 

Crabster and the possibility of the application of the current research for Cranbster in actual operating 

condition. 
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(a) 

 

(b) 

Fig. 7.24. Instantaneous iso-surfaces of the vortical structure for flow around Crabster at 𝑅𝑒 = 1000. 

Iso-surfaces are colored by velocity magnitude, which is divided by the free-stream velocity 𝑢∞. 
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Fig. 7.25. Position variation of Crabster for analyzing flow around Crabster on the bottom no-slip wall. 

 

 

Fig. 7.26. Instantaneous iso-surface of the 𝜆2 vortical structure for flow past Crabster on the bottom 

boundary with respect to its attitudes. Iso-surfaces are colored by velocity magnitude, which is divided 

by the free-stream velocity 𝑢∞. 
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7.4. Golf ball wake simulation 

In this sub-chapter, numerical investigation of wake regions for flow past a stationary and a back-

spinning golf ball is presented. There in an interesting physical phenomenon of fluid flow around a golf 

ball, namely drag reduction. It is well-known that the drag force of a golf ball is reduced by dimples of 

a golf ball at the particular state, which is at around 𝑅𝑒 = 1.1 × 105, compared to a smooth sphere. 

The reason of this drag reduction is that flow separation at a golf ball occurs more behind than a smooth 

golf ball. Note that the drag is reduced as a region of flow separation decreases.   

There are some successful studies based on experimental [8, 20] and numerical [91, 64, 23] 

approaches, which can predict drag reduction of a golf ball. However, wake regions behind a golf ball 

have not been clearly investigated by both experimental and numerical methods. The current uniform 

Cartesian mesh -based simulation is the most appropriate to investigate wake regions, so qualitative 

results of golf ball wake simulation is considered as primary concerns in this sub-chapter. 

Fig. 7.27 depicts the layout of the computational domain for golf ball wake simulation. The 

computational domain is set to [−4𝐷, 28𝐷] × [−8𝐷, 8𝐷]2, where 𝐷 means the diameter of the golf 

ball and the center of the golf ball is located at the origin. Boundary conditions are equally set to 

previous sphere cases. The Reynolds number of 1.1 × 105  is considered, and the back-spinning 

motion is given by spin rate (𝛤) of 0.1. Here, spin rate is defined as 𝛤 = 𝜔𝑅/𝑢∞ where 𝜔 means 

the angular velocity and 𝑅 refers to the radius of the golf ball. The Reynolds number and spin rate 

chosen in this dissertation are based on the typical flying condition of the golf ball in real golf games.  

 

 

Fig. 7.27. Layout of the computational domain for golf ball wake simulation. 
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The number of grids is set to 4,096 × 2,0482 (≅ 17.2 × 109), resulting in 128 grids are located 

along the diameter of the golf ball. Based on the total number of grids, i.e. 17.2billions, this problem is 

the most large-scale simulation in this dissertation. By using hybrid MPI/OpenMP parallelization 

strategies, this very large-scale problem is computed on the KISTI`s Nurion supercomputer. Here, total 

8,192 MPI processes (the computational domain is divided into 32 × 16 × 16  uniform Cartesian 

blocks for MPI parallelization) are assigned at 512 Knight Landing (KNL) nodes, so 1283 grids are 

included in each MPI process and 16 MPI processes are employed at each KNL node. 4 OpenMP threads 

are assigned at each MPI process, thus total 32,768 cores are utilized to conduct golf ball wake 

simulation with and without back-spin. 

In the current research, the golf ball which has 392 dimples is considered. To represent the SDF of 

the golf ball with 392 dimples, the AMR-based SDF computation algorithm described in Chapter 4.1 is 

used. Fig. 7.28 shows the mesh refinement procedures for computing SDF of the golf ball. Refinement 

is carried out until the size of the coarsest grid is same with the size of grids for fluid simulation. SDF 

transformation strategies described in Chapter 4.7 is utilized to represent the motion of the back-

spinning golf ball during unsteady fluid simulation on fixed Cartesian meshes. 

 

 

Fig. 7.28. AMR procedure for computing SDF of a golf ball with 392 dimples. 
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Because the problem size is too large, a huge amount of output files (vtk file format) for visualization 

is produced. Therefore, parallel visualization is required for this 10billions order problem to overcome 

memory limitation (more critical reason) and reduce operation time. In the current research, parallel 

visualization works are supported by visualization team of KISTI. An open-source visualization 

software, namely Paraview, is utilized. Visualization is also conducted on the Nurion supercomputer 

using 256 KNL nodes. Here, 256 MPI processes are utilized, and 68 OpenMP threads are assigned at 

each MPI process. 

Figs. 7.29 and 7.30 respectively show the perspective and the side views of instantaneous vortical 

structures based on 𝜆2 -definition of the golf ball, which is with and without back-spin. Based on 

knowledge of the fluid mechanics, it is known that the upward (positive) lift force can be induced by 

back-spinning effect and the wake region of a back-spinning sphere-type object is bent in downward 

direction. The current results are in good agreement with this fact. Differences between wake formation 

of the stationary and the back-spinning golf ball can be rather unclear because the spin rate is relatively 

small compared to the Reynolds number. However, different wake patterns are observable in Fig. 7.30. 

Flow patterns are straight in the wake region of the stationary golf ball, whereas, in the case of the back-

spinning golf ball, flow is relatively bent in downward direction and more violent shedding is observed.   
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Fig. 7.29. Perspective views of instantaneous vortical structures based on 𝜆2-definition behind the golf 

ball: (a) stationary golf ball; (b) back-spinning golf ball. 
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Fig. 7.30. Side views of instantaneous vortical structures based on 𝜆2-definition behind the golf ball: 

(a) stationary golf ball; (b) back-spinning golf ball. 
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Chapter 8 

 

Conclusion and Future Work 

 

Throughout this dissertation, two algorithms for efficient Cartesian mesh-based incompressible flow 

simulations over complex geometries were presented. Furthermore, the validity of the current 

approaches was demonstrated by both rigorous verification and validation studies. In this chapter, 

conclusions of the current research are drawn, and recommended future works are presented. 

 

8.1. Conclusion 

As the first contribution of this dissertation, the geometric MG algorithm on an irregular domain was 

presented. Although the fastest iterative solver of Poisson-type equations on the regular domain has 

been known as geometric MG, it has been rather unclear that MG is indeed the optimal solver for an 

irregular domain problem. Using a special treatment presented in the current study, namely the 

Heaviside function restriction, the optimal performance of MG was also obtained for irregular domain 

problems. The validity of current algorithm was demonstrated by solving an analytically defined model 

test problem on an irregular domain. Based on these results, we confirmed that geometric MG may also 

be the fastest (optimal) iterative solver of Poisson-type equations in an irregular domain.  
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As the second contribution of this dissertation, a novel efficient, robust, and reliable AMR-based SDF 

computation procedure was presented. The current refinement criterion is based on whether the cell 

boundary is intersected by the reference geometry or not, namely the edge/face-based criterion. This 

criterion guarantees that complicated engineering objects characterized by non-convexity, sharp corners, 

and multiple disjointed pieces can be exactly detected. Through the AMR procedure, the target region, 

i.e. the cell over the interface, is automatically detected, and only these interface cells are refined further. 

Therefore, the SDF computation process for the unconcerned pure cell region can be minimized, and 

the entire operation is computationally optimized. The current AMR-based algorithm was proved to be 

an order of magnitude faster than a naive SDF computation on a uniform mesh system by comparing 

the number of the sign determination procedure. Based on the volume convergence test, we confirmed 

that the computed SDF results in accurate volume estimation, which is second-order in 3D.  

Furthermore, an efficient and accurate moving body representation technique, which is essential for 

the flow simulation over a rigid moving body, was presented. The significance of the current approach 

is that any redundant SDF computation, such as the re-initialization of the SDF, can be completely 

avoided regardless of body motion. The global SDF around a moving body is accurately and efficiently 

updated by a rigid body transformation using the initial SDF constructed by the AMR and a high-order 

representation within each Cartesian cell. 

In order to solve a large-scale problem using the current algorithm for incompressible flows, 

parallelization strategies were presented. The hybrid MPI/OpenMP approach, which has been known 

as the most effective parallelization, was described together with the multi-level 𝑉-cycle algorithm, 

which is essential for the parallel multigrid method. Based on scalability evaluated by parallel 

computation on KISTI`s Nurion supercomputer, it was proved that the current incompressible flow 

solver is appropriate for parallel computation. Here, efficiencies of strong and weak scaling are 0.67 

and 0.75, respectively.  

The two contributions of this dissertation, i.e. MG method for an irregular domain and the AMR-

based SDF computation and its extension for moving body representation, were applied to various flow 

simulations not only involving complex objects but also using the ten-billions order grid system. These 

simulation results were in good agreement with previous simulation results, experimental data, and 

physical intuition. Based on all these results, we concluded that if the geometry is given, regardless of 

its complexity and motion, the fluid simulation using Cartesian mesh system can be efficiently 

performed with the optimal iterative solver, namely the irregular domain MG method, and the parallel 

computation. 
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8.2. Future work 

Based on the current research, following future works are highly recommended. 

Through the current study, it was confirmed that incompressible single-phase flow simulation over 

arbitrarily complex geometry, which is stationary or has forced motion, can be efficiently and accurately 

carried out by using current algorithms. To apply the current incompressible solver for a wider range of 

engineering fields, extension to fluid-structure interaction (FSI) and multi-phase flow is highly required. 

The current solution algorithm for incompressible flows using Heaviside function were originally 

introduced for solving FSI problems, thus it is guaranteed to extension to FSI problems. However, how 

to efficiently treat SDF for a deformable body should be investigated in the future. There are many 

studies for analyzing multi-phase flow, such as volume-of-fluid (VOF) [40] and moment-of-fluid (MOF) 

[6, 7] methods. The current solution algorithm is unconditionally stable regardless of a size of a time 

step, so the stable algorithm for multi-phase flow is highly desired to keep the stability. For this reason, 

adaptive MOF method, which is stable and accurate, introduced by Ahn and Shashkov [7] can be 

considered as a potential candidate.  

The current incompressible flow solver can be applied to solve very large-scale problems through 

multidimensional MPI parallelization and its combination with OpenMP, namely hybrid MPI/OpenMP 

parallelization. Actually, a problem size is not obstacle of the current method in terms of computation. 

However, post-processing can be considered as a potential barrier for computing a very large-scale 

problem. Flow visualization is very important to enhance understanding of flow physics, so researches 

for the parallel post-processing is recommend in the future. Furthermore, as a size of problems grows, 

a size of output data proportionally increases. For this reason, efficient and effective data management 

also should be considered as future works.  
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Abstract in Korean 

 

본 논문에서는 직교격자 상에서 효율적인 복잡형상 주위 비압축성 유동해석을 위한 두 

가지 알고리즘이 제시된다. 첫번째로, 불규칙한 도메인상에서 정의된 포아송 방정식에 쉽

게 적용할 수 있는 다중격자법(Multigrid)이 제시된다. Projection 법을 이용한 유동해석에

서 계산시간이 가장 많이 소요되는 부분은 압력 값을 구하기 위해 포아송 방정식을 푸는 

과정이며, 이를 가장 빠르게 해석할 수 있는 방법은 다중격자법이다. 그러나 유체영역 내

부에 물체가 포함될 경우 유체 영역은 불규칙 도메인이 되며, 연속적으로 형성된 성긴 

격자시스템을 활용하는 다중격자법은 이러한 불규칙 도메인 문제에 적용되는데 많은 어

려움이 있다. 본 논문에서는 물체의 형상 정보를 포함하는 헤비사이드 함수를 성긴 격자

시스템으로 직접 Restriction하여 불규칙 도메인 문제에 적용될 수 있는 다중격자법이 제

시된다. 이 방법의 경우 실제 구현하기 쉽고, 병렬화 과정이 간단하며, 불규칙 도메인 문

제에서도 다중격자법의 최적 성능이 보장된다. 두번째로, Adaptive Mesh Refinement(AMR)를 

활용하여 물체 형상에 대한 Signed Distance Function (SDF)을 효율적으로 계산할 수 있는 

기법이 제시된다. 직교격자상에서 물체 형상정보는 SDF를 통해 표현되며, 해석적인 형태

의 SDF가 존재하지 않은 복잡한 형상의 경우 기하학적 연산을 통해 SDF를 직접 계산해

야 된다. 이 과정은 수없이 많은 반복 연산을 수반하기 때문에 많은 계산시간이 요구된

다. 본 논문에서는 AMR 기법을 통해 실제 정확한 SDF가 요구되는 영역만을 효과적으로 

선별하여 전체적인 SDF 계산과정을 최적화할 수 있는 방법이 제시된다.  

앞서 기술된 두가지 기법을 비압축성 유동해석 알고리즘과 결합하여, 복잡형상 주위 

유동을 효율적으로 해석할 수 있는 자체코드(in-house code)를 개발하였다. 개발된 코드는 

Hybrid MPI/OpenMP 기법으로 병렬화 되었으며, 병렬계산은 국가슈퍼컴퓨터 5호기 누리온

에서 수행되었다. 본 논문에 제시된 알고리즘들의 타당성을 검증하기 위하여 2차원 및 3

차원 공간상에서 정의된 다양한 벤치마크 문제를 해석하였으며, 그 결과를 이전 실험 및 

수치 시뮬레이션 결과와 비교 및 검증하였다. 또한, 수중로봇 Crabster 및 골프공 주위 유

동해석을 통해 현실적인 문제에 대한 적용 가능성을 검토해보았다.  
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