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Abstract

The lattice thermal conductivity is an intrinsic and essential transport property that plays an
important role in thermoelectric devices and thermal management of electronics. We use
density functional theory (DFT) combined phonon Boltzmann transport equation (PBTE) to
predict the lattice thermal conductivity of two-dimensional materials. The second and third
order derivatives of the energy with respect to the atomic position are the most important
ingredients in the calculation of lattice thermal conductivity, and we obtain these derivatives
from DFT through finite differences method. The approach is applied to compute phononic
thermal transport in the variety of two-dimensional material.

We studied the electronic structures, Seebeck coefficients, electrical conductivities, lattice
thermal conductivities, and figures of merit of two-dimensional IV–VI compounds, which
showed that the thermoelectric performance of these two-dimensional compounds is improved
in comparison to their bulk phases. High figures of merit (ZT ) are predicted for SnSe (ZT =
2.63, 2.46), SnS (ZT = 1.75, 1.88), GeSe (ZT = 1.99, 1.73), and GeS (ZT = 1.85, 1.29) at 700
K along armchair and zigzag directions, respectively. We also calculate the lattice thermal
conductivity of the monolayer SnX2 and monolayer InX and It is found that the lattice thermal
conductivity of these monolayers at room temperature is very low, which is attributed to the
heavy atomic masses of Sn, In, S, Se, and Te and its strong phonon anharmonicity.

The strain is a handy and useful tool to enhance the performance of the semiconducting
devices. We find that the lattice thermal conductivity is reduced approximately 2.5 times at 8%
tensile strain for the two-dimensional 2H-MoTe2 contrary to graphene, germanene, silicene,
germanene, and Penta-SiC2. The reduction in lattice thermal conductivity attributes to the
reduction in the phonon group velocity, the phonon heat capacity, and the phonon scattering
time.

Heat removal has become a significant challenge in the miniaturization of electronic de-
vices, especially in power electronics, so semiconducting materials with suitable bandgap and
high lattice thermal conductivity are highly desired. Here, we theoretical predict an ultra-high
and anisotropic lattice thermal conductivity in the monolayer BC2N. The predicted values of
lattice thermal conductivity at room-temperature are 893.90 W/mK and 1275.79 W/mK along
armchair and zigzag directions, respectively. These values are probably the highest that have



x

ever been reported for the two-dimensional semiconducting materials.
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Chapter 1

Introduction

1.1 Motivation and objective

In the light of recent developments, a considerable amount of fundamental research and en-
gineering applications is focused on the energy efficiency. One broad area of such scientific
researches is based on the fundamental understanding of thermal transport processes of heat
and how to employ it in our environment and materials[1–4]. Thermal transport research
has promoted a diverse spectrum of the applications include high-performance thermoelec-
tric materials to convert waste heat into useful electrical energy, thermal management in the
nanoscale electronics, thermal barrier, and the proposed use of nanoparticles in thermal med-
ical therapies. Therefore, understanding the thermal transport is very important for our basic
knowledge of solid state physics and science.

In semiconductors and insulators, the lattice vibrations called phonons are the respon-
sible for the thermal conduction, while the electrons are contributed very little. However,
calculating lattice thermal conductivity (κl) is a very challenging job, and no universal or
comprehensive theory suits at all temperatures or includes all possible effects. The scien-
tific community has developed several theoretical approaches and practical implementations.
Each method is developed at its level of refinement and limitations. The equilibrium molec-
ular dynamics (EMD)[5] and non-equilibrium molecular dynamics (NEMD)[6] simulations
have been adopted in the past to study temperature-dependent lattice thermal conductivity
and other phonon thermal transport properties of the two-dimensional and conventional three-
dimensional materials. The accuracy of the molecular dynamics depends on the interatomic
force fields, and the force fields can be either calculated from the empirical potential or the
first principles calculations. The empirical potentials are restricted in their scope because of
their low accuracy and relatively straightforward design. Although, first-principles molecular
dynamics are accurate but computationally expensive.



2 Introduction

The primary goal of this thesis is to study and understand the phonon thermal transport and
electronic properties in a vast range of two-dimensional materials and their potential applica-
tions in thermoelectric and thermal management. We will obtain the lattice thermal conduc-
tivity by solving the phonon Boltzmann transport equation based on density functional theory.
We will study strain-dependent lattice thermal conductivity and other phonon properties such
as phonon group velocity, phonon anharmonicity, phonon lifetime. We will also calculate the
electronic properties such as electronic band structure, electronic thermal and electrical con-
ductivities and electrons/holes mobilities. Our calculations will give the underlying physics to
understand thermal transport properties and will guide to the experimentalist.

1.2 A brief history of the phonon thermal transport in the
two-dimensional materials

Two-dimensional materials have been widely investigated in past decade due to their extraor-
dinary electrical, thermal, chemical and optical properties, and diverse spectrum of applica-
tions such as energy conversion, energy storage, nanoelectronics, and thermal management.
The thermal transport of two-dimensional materials is often essential in these applications,
for example, low lattice thermal conductivity is required to convert waste energy into useful
electricity and high lattice thermal conductivity is required for the thermal interface material.
In this section, we review the available theoretical calculations on the phonon thermal trans-
port of the various two-dimensional materials including graphene, phosphorene, silicene and
monolayer MoS2.

1.2.1 Graphene

Phonon thermal transport properties in graphene have been intensively studied in the past few
years. The reported values of the lattice thermal conductivity for graphene at room temperature
is ranging from 2000 to 5500 W/mK, and most of the experimental results and theoretical
results are shown in Fig.1.1 (b). Balandin et al.[7] measured the lattice thermal conductivity
of the graphene using the optothermal Raman technique for the first time and they found lattice
thermal conductivity to be 5300 W/mK at 300K. Later, Faugeras et al.[8], Cai et al.[9], Chen
et al.[10] and Li et al.[11] employed the more refined experimental method and they obtained
a much lower lattice thermal conductivity than previously reported values.

In order to explain the high lattice thermal conductivity in graphene, many theoretical
calculations were performed. Nika et al.[12] calculated the lattice thermal conductivity using
the relaxation time approximation and the flexural acoustic phonons are neglected due to their
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Figure 1.1: (a) Top and side views of the graphene crystal structure. (b) Comparison of the
lattice thermal conductivity collected from experiments and theoretical published results. The
values of the lattice thermal conductivity are taken from ref.[5, 7–11, 13–20].

limited group velocity. However, Lindsay et al.[13] adopted the phonon Boltzmann transport
equation (PBTE) to obtained the lattice thermal conductivity of graphene using the modified
Tersoff potential, and they showed that the flexural acoustic (ZA) mode is responsible for
the 70-80% of heat conduction which is confirmed by Singh et al.[14] and the various first-
principles studies[15–17]. The significant contribution of the ZA mode is due to the reflection
symmetry in graphene which prevents the three-phonon scattering with phonon modes and
hence the ZA mode phonons lifetimes are increased. Many classical molecular dynamics
simulations have also been performed to predict the lattice thermal conductivity of graphene
but the results are scattered and not reliable due to parameterized potentials[5, 10, 18, 19].

1.2.2 Silicene

Silicene possesses a low-buckled two-dimensional honeycomb crystal structure as shown in
Fig. 1.2 (a) and has fascinating chemical and physical properties. Silicene can be more com-
patible with silicon-based devices and technologies as compared to graphene. Silicene and
graphene have shared similar electronic properties because of their similar band structures.
For example, the charge carriers in both structures are massless fermion due to the presence of
Dirac cone in their band structures and high electrical conductivity similar to graphene. How-
ever, silicene has buckled structure, unlike graphene which breaks the reflection symmetry and
results in lattice thermal conductivity.

The lattice thermal conductivity of the silicene has been widely studied based on the solu-
tion of PBTE coupled with first-principles and classical molecular dynamics and the predicted
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Figure 1.2: (a) Crystal structure of the silicene (top view and side), silicene has buckled struc-
ture. (b) Comparison of lattice thermal conductivity obtained from first-principles and molec-
ular dynamics. The values of the lattice thermal conductivity are taken from ref.[17, 21–28].

values range from 9.4 to 55 W/mK as shown in Fig. 1.2 (b). Although there is no experimental
value of lattice thermal conductivity available for silicene because it is harsh to synthesized
freestanding silicene. Gu and Yang et al.[17] calculated the lattice thermal conductivity of sil-
icene using the iterative solution PBTE based on the first principle and they found the lattice
thermal conductivity of silicene is surprisingly an order of magnitude lower from the lattice
thermal conductivity value for bulk silicon. Peng et al.[21] and Xie et al.[22] also calculated
the lattice thermal conductivity using the same method and found similar results. Kaung et
al.[23] obtained the lattice thermal conductivity using the single mode relaxation time approx-
imation (SMRTA) solution of PBTE based on first-principles they got a much smaller value.
The lattice thermal conductivity of silicene has also been predicted using the classical molec-
ular dynamics by Hu et al.[24], Pei et al.[25], Li et al.[26] and Wang et al.[27], and they found
very scattered result similar to graphene.

1.2.3 Monolayer MoS2

Monolayer MoS2 has a three-layer structure as shown in Fig.1.3 (a) in which one layer of
Mo atoms is sandwiched between two layers of S atoms. Monolayer MoS2 has received con-
siderable attention during the past decade because of the broad range of applications includ-
ing nanoelectronics, catalysts, optoelectronics, and thermoelectrics. For example, the on/off
switching ratio of the MoS2 field-effect transistor can reach up to 108 at room temperature,
which is hard to accomplish in a graphene transistor. According to Slack’s theory[29], the
lattice thermal conductivity of monolayer MoS2 is considered to be low because of the heavy
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Figure 1.3: (a) Top and side view of the monolayer MoS2 crystal structure, and (b) the pre-
dicted values of lattice thermal conductivity for mono and few layers MoS2 using different
experimental and theoretical approaches. The values of the lattice thermal conductivity are
taken from ref.[30–40].

mass of the Mo atom and low Debye temperature. Therefore, monolayer MoS2 has been
extensively investigated as a promising thermoelectric material.

Many experimental and theoretical studies have been performed to explore the lattice ther-
mal conductivity of monolayer MoS2 and the predicted value of the lattice thermal conduc-
tivity is ranging from 1.35 to 131 W/mK as shown in Fig.1.3 (b). Sahoo and coworkers have
measured the lattice thermal conductivity for the eleven layers of MoS2 is 52 W/mK at room
temperature using the temperature-dependent Raman spectroscopy[30]. Later, Yan et al.[31]
has predicted the lattice thermal conductivity for monolayer MoS2 using the similar technique
and found the lattice thermal conductivity to be 34.5 W/mK. Jo et al.[32] also measured the
lattice thermal conductivity for four layers of MoS2 using the microbridge device. Taube et
al.[33] used monolayer MoS2 on SiO 2 substrate to measure the lattice thermal conductivity
and it is found that the lattice thermal conductivity for the supported monolayer is higher than
the suspended monolayer. Gandi et al.[34] , Peng et al.[35] and Gu et al.[36] have obtained the
lattice thermal conductivity using the iterative solution of PBTE based on the first-principles
and the calculated values are higher from the experimentally measured value by Yan. Li.
Molecular dynamics simulations have been carried out by Jiang et al.[37], Liu et al.[38] and
Muratore et al.[39] using different empirical potential. The calculated values of lattice ther-
mal conductivity from the molecular dynamics range widely from 1.35 to 44 W/mK which are
much lower from first-principles.
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1.3 Thermoelectrics

After the second industrial revolution, the world has been maintained the increasing demand
for energy by burning more fossil fuels. The world’s critical dependence on fossil fuels and the
carbon emissions during combustion of fossil fuels are bringing both natural and human sys-
tems at stake[41–44]. On the other hand, the energy we waste as heat is more than 60% of the
world’s energy and heat can be considered a renewable energy source[42]. Thermoelectrics is
a straightforward technology which converts the waste heat into the useful electricity via See-
beck effect. A thermoelectric device is a solid-state device without moving parts, no noises,
and environmentally friendly. The efficiency of a thermoelectric material, η , is defined as[41]:

η = ηc




p
1+ZTavg −1

p
1+ZTavg +

�
TC
TH

�


 , (1.1)

where ηc is the Carnot efficiency, ZTavg is an average value of the figure of merit between cold
and hot temperatures, TC is the temperature of cold end, and TH is the temperature of hot end.
The efficiency of thermoelectric converters is still only a fraction (10–20%) of the theoretical
possible Carnot efficiency because of the poor thermoelectric properties of the materials.

1.3.1 Thermoelectric effects

Thermoelectric devices have relied on two important thermoelectric effects, i.e. the Seebeck
effect and the Peltier effect. When two dissimilar semiconducting materials are joined, and
temperature difference (∆T ) is applied to the junctions, then a potential difference (∆V ) is
developed as shown in Fig.1.4. This phenomenon is called Seebeck or thermopower effect,
and Seebeck discovered it in 1821. The Seebeck effect generates a potential difference that is
proportional to applied temperature difference, and the proportionality constant is called the
Seebeck coefficient (S). It is defined as:

S ≡ ∆V
∆T

. (1.2)

The Seebeck effect originates from the diffusion of electrons and holes from the hot end to
the cold end of the material as shown in Fig.1.4, and therefore, when a material is placed in a
temperature gradient, the charge carriers are accumulated on the cold end creating a potential
difference. The value of the Seebeck coefficient predicts the average entropy transported by a
charge carrier (electrons/holes) divided by its charge at thermal equilibrium.

The Peltier effect is the reverse processes of the Seebeck effect: When the electrical current
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Figure 1.4: Schematic representation of the thermoelectric modules used for power generation
(a) and refrigeration applications.

(I )flows through a circuit material containing two dissimilar semiconductors materials, then a
temperature gradient is created between the junctions as shown in Fig.1.4. The heat absorption
and generation (Q) at the junctions are dependent on the direction of the current. The Peltier
coefficient (Π) is defined as:

Π ≡ Q
I
. (1.3)

The relationship between the Seebeck and Peltier coefficients, also called Kelvin relation-
ship, can be derived using irreversible thermodynamics which can be written as:

S =
Π
T

(1.4)

The Peltier effect has been used in many applications, such as temperature controlled
automobile seats, picnic cooler and solid-state cooler for scientific instruments.

1.3.2 Figure of merit

The performance of a thermoelectric material is described by the dimensionless quantity called
the figure of merit (ZT ). It can be defined as[44]:

ZT =
S2σT
κe +κl

,
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where σ denotes the electrical conductivity, κe is the electronic thermal conductivity and T is
the temperature. Many schemes have been developed for maximizing the power factor (S2σ )
and minimizing the thermal conductivity (κe +κl) to obtain enhanced ZT . The electrical con-
ductivity and electronic thermal are directly proportional to the charge carrier concentration.
However, the Seebeck coefficient is decreased with increasing the carrier concentration. Semi-
conducting materials have the highest ZT values because of the excellent combination of S,
σ , and κe. The interdependence of S, σ , and κe prevails a challenging barrier toward further
developments.

Several classical approaches have been developed to enhance the ZT either by improving
the power factor or reducing the lattice thermal conductivity. The approaches used to im-
prove ZT include the use of the materials contained heavy elements, band structure engineer-
ing, alloy-point defect scattering and materials with the complicated crystal structure[44–47].
Hicks et al. and Dresselhaus et al.[48] discovered an efficient method to increase ZT by re-
ducing the dimensionality of the material, which increases the Seebeck coefficient due to the
increased density of states near the Fermi level. They found that the ZT of bulk Bi2Te3 is
improved 13 times by converting into the quantum well.

1.4 Strain effect

The strain is a handy and effective tool to enhance the performance of the semiconducting
devices. It can tune electronic, optical, and thermoelectric properties. When two or more
different kinds of two-dimensional crystals are laterally connected or vertically stacked to-
gether (heterostructure), strain always presents because of the lattice mismatch. Strain changes
the phonon spectra and the phonon scattering rate. It could also produce structure insta-
bility and defects. However, the effect of tensile strain on the phonon thermal transport of
two-dimensional materials is unpredictable because the flexural acoustic (ZA) mode becomes
harder and transverse acoustic (TA) and longitudinal acoustic (LA) modes become softened.
The lattice thermal conductivities of graphene[49], h-BN[50], silicene[22], antimonene[51],
germanene[23], stanene[23], monolayer penta-SiC2[52], and multilayer graphene[53] are in-
creased under tensile strain and the enhancement in the lattice thermal conductivities are at-
tributed to the anomalous behavior of the ZA mode and the increase in lifetime of the ZA
mode phonons under tensile strain. While the lattice thermal conductivities for monolayer
MoS2[54] and penta-Gr[52] are decreased.
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1.5 Thermal management

Over the past decades, modern electronic technologies have sustained significant miniaturiza-
tion which increases the power density, and the tendency is continuing. Effective heat ejection
in the electronic devices has become a critical issue in the development of information, en-
ergy storage, and communication technologies because of the rapid increase in the power
density[55, 56]. The extra heat produced during the device operation can reduce the reliability
and performance of the device[57]. For example, high-frequency devices generate a tremen-
dous amount of heat in small confined areas, and therefore produce hotspots which result in
the weak performance of the devices[58].

Thermal management is the attempt to regulate the operating temperature of the devices. A
thermal management system is composed of a cooling setup, thermal interface materials, tem-
perature controller, and heat sink[7, 56, 59]. Thermal management techniques for the removal
of hotspot contain a selection of high thermal conductivity materials and heat sink design-
ing. The exploration of two-dimensional materials brings new exciting opportunities for the
thermal management. Among the two-dimensional materials, the thermal transport properties
of the graphene and hexagonal boron nitride ( h-BN) have been intensively investigated. It
has been determined that the thermal conductivities are significantly higher from their bulk
counterpart. Graphene, with predicted thermal conductivities ranging 3000-5300 W/mK at
room temperature (see Fig.1.1 ), has received considerable attention but it is not suitable for
the practical application because of the zero bandgap. On the other hand, h-BN also has very
high thermal conductivity, but the problem with h-BN is large bandgap[50]. Two-dimensional
materials with high thermal conductivity and suitable bandgap are promising for both thermal
management applications and fundamental understanding of heat transfer.

1.6 Thesis overview

After this introductory chapter, the overview of the remaining thesis is arranged as follows.
In Chapter 2, the phonon thermal transport and the density functional theories are introduced.
The phonon-scattering mechanisms are discussed in detail. Method to solve the PBTE is also
studied.

In Chapter 3, the structural, electronic, thermoelectric, and phonon-transport properties of
the two-dimensional mono-chalcogenide compounds SnSe, SnS, GeSe, and GeS are studied
using density functional theory combined with Boltzmann transport theory. The predicted
values of ZT these monolayers are very high due to their high S and low lattice thermal con-
ductivity as compared to other two-dimensional materials.
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In Chapter 4, the lattice thermal conductivity and electronic mobility of monolayers SnS2

and SnSe2 are investigated. The calculated values of lattice thermal conductivity are very
as compare to other two-dimensional materials such as phosphorene, silicene, stanene, and
monolayer MoS2. In order to understand the ultra-low lattice thermal conductivity, the phonon
dispersion, phonon group velocity, Gruneisen parameter, and Debye temperature are studied
in detail. The lattice thermal conductivity as a function of phonon mean free path is also
explored.

In Chapter 5, the phonon transport properties and the lattice thermal conductivity of the
monolayers InX are explored. The lattice thermal conductivity trend (κInS>κInSe>κInTe) is
explained with help of the phonon spectra, phonon group velocities, Grüneisen parameters,
Debye temperatures and phonon-phonon scattering processes. Furthermore, the contribution
of each mode toward total lattice thermal conductivity is extracted, and temperature and size
dependence are also discussed. Monolayer InX can be used as a thermoelectric material be-
cause of the low lattice thermal conductivity.

In Chapter 6, the effect of tensile strain on the phonon thermal transport properties of
the monolayer 2H-MoTe2 is studied. By applying the biaxial tensile strain, the LA and TA
modes are softened, which decreases phonon group velocity. The phonon lifetime reduces
under the tensile strain due to the increase in the phonon-phonon scattering rate. The role
of strain on Grüneisen parameter and heat capacity is also discussed. The lattice thermal
conductivity is reduced approximately 2.5 times under 8% tensile strain for the monolayer
2H-MoTe2 contrary to graphene, germanene, silicene, germanene, and Penta-SiC2.

In Chapter 7, the thermal transport properties of the monolayer BC2N are systematically
investigated by solving the Boltzmann transport equation iteratively based on first-principles
calculations. The lattice thermal conductivity along the zigzag direction is very high as com-
pared to armchair direction due to the strong C-C bonding along the zigzag direction. To ex-
plain ultra-high lattice thermal conductivity of the monolayer BC2N, the phonon dispersion,
phonon lifetimes and phonon group velocities are studied. The electronic thermal transport
properties are also very high value at room temperature. Due to the high thermal conductiv-
ity, monolayer BC2N can be used as a promising material for thermal management and heat
dissipation in the nano-electronic devices.

In Chapter 8, the summaries of the current research work are provided, and directions for
the future research are also discussed.



Chapter 2

Theoretical background

2.1 Theory of the phonon thermal transport

2.1.1 Thermal flux

When a material is placed in a temperature gradient (∇T ), thermal energy is transported
through a material by both the phonons (crystal lattice vibration) and the electrons. In semi-
conducting materials, the large part of the heat is transported by the phonons, while electrons
carry a small amount of heat. The temperature gradient induces heat flux (Q) (because of the
phonons flow ) through a material which is given by[60]:

Q⃗ =
1
Ω ∑

αq
h̄ωα q⃗vαqnαq, (2.1)

where α is phonon mode, q is the phonon wavevector, Ω is the crystal volume. ωαq , v⃗αq,
and nαq are the phonon frequency, phonon group velocity and phonon distribution function
(phonon obeys Bose-Einstein distribution function) in α mode respectively. Heat flux can
also be calculated from the Fourier’s law for the small temperature gradient. The heat flux is
directly related to the temperature gradient, and the proportionality constant is defined as the
lattice thermal conductivity κl . For the temperature gradient along the y-direction, the heat
flux along the x-direction is given by:

Q⃗ =−∑
y

κxy
l

∂T
∂y

. (2.2)

The minus indicates that the thermal conductivity tensor is a positive quantity. Comparing
the thermal fluxes given by Equ.2.1 and Equ.2.2 obtains the following equation which contains
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the lattice thermal conductivity:

Q⃗ =−κxx
l

∂T
∂x

=
1
V ∑

αq
h̄ωα q⃗vx

αq(⃗q)nαq. (2.3)

The κxx
l is the symmetric rank-two tensor, and non-diagonal elements are zero. In this

work κxx
l , κyy

l , and κzz
l denote the lattice thermal conductivity along the x, y, and z directions,

respectively. For cubic materials, the x , y , and z directions are identical and therefore κxx
l ,

κyy
l , and κzz

l should be same.

2.1.2 Boltzmann transport equation

Boltzmann transport equation (BTE) calculates the change in the phonon distribution function
(nαq) through phase space at any time (t), when a material is placed in a temperature gradient
∇T . The general form of BTE can be written as[60–62]:

∂nαq

∂ t
= −⃗vαq.∇⃗rnαq − F⃗ext .∇⃗pnαq +(

∂nαq

∂ t
)scatt.. (2.4)

According to this general form of BTE, three terms on the right side of Eqn.2.4 are re-
sponsible for changing the phonon distribution function with time. The first term is the rate
of change of the distribution function due to phonon motion, the second term represents the
change in distribution function by the external force Fext , and the third term is due to the
collisions of phonons with each other, impurities, crystal boundary, and defects. Several as-
sumptions are made to predict the κl . In phonon thermal transport, the driving force is the
temperature gradient. Therefore, we need to write temperature-dependent phonon distribution
function. If no external forces are acting on the phonons and the system is under a steady state
condition (∂nαq

∂ t = 0)[62, 63]. The reformulated BTE is given by:

v⃗αq .⃗∇T
∂nαq

∂T
= (

∂nαq

∂ t
)scatt.. (2.5)

This equation (2.5) is called the phonon Boltzmann transport equation (PBTE). Under the
relaxation time approximation (RTA), the PBTE can be written as:

v⃗αq .⃗∇T
∂nαq

∂T
=

nαq −n0
αq

ταq
, (2.6)

where ταq is the phonon relaxation time, and n0
αq is phonon distribution function at the equi-
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librium which obeys the Bose-distribution function:

n0
αq =

1
exp[h̄ωαq/kBT ]−1

. (2.7)

We define the change in the phonon population as:

δαq = nαq −n0
αq, (2.8)

where δαq represents the change in phonon population, and it is minimal compared to n0
αq.

Using the Eqn.2.8 , the Eqn.2.7 can be written as:

v⃗αq .⃗∇T
∂n0

αq

∂T
+ v⃗αq .⃗∇T

∂δαq

∂T
=

nαq −n0
αq

ταq
. (2.9)

The second term on the left-hand side is dropped because it is very small. The above
equation can be written as:

nαq = n0
αq − ταq(⃗vαq .⃗∇T

∂n0
αq

∂T
). (2.10)

The Eqn.2.3 and Eqn.2.10 can be solved simultaneously to get an equation for the lattice
thermal conductivity along the x-direction:

κxx
l =

1
V ∑

αq
Cαqv2

αqταq, (2.11)

where Cαq is the phonon heat capacity of the α mode, which is defined as:

Cαq =
(h̄ωαq)

2

kBT 2 n0
αq(n

0
αq +1). (2.12)

2.1.3 Lattice dynamics

The phonon frequency, phonon group velocity, and phonon lifetime are required to obtain the
κl from the Eqn. 2.11. Here, we focus on the calculation of these phonon quantities from the
harmonic (2nd order) and anharmonic (3rd order) interatomic force constants (IFCs) calcula-
tions. The lattice dynamic is well discussed in many excellent books[63–68] and articles[69–
72]. The crystal potential V can be expanded in terms atomic displacements using Taylor
series as:
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V =V0 +∑
lb

∑
x

Πxux(lb)+
1
2! ∑

lbl′b′
∑
xy

Φxy(lb, l′b′)ux(lb)uy(l′b′)

+
1
3! ∑

lbl′b′l”b”
∑
xyz

Ψxyz(lb, l′b′, l′′b′′)ux(lb)uy(l′b′)uz(l′′b′′)+ ..., (2.13)

where ux(lb), uy(l′b′), and uz(l′′b′′) are instantaneous atomic displacements and x, y, and z
are the Cartesian axes. The unit cell is located by the vectors l, l′, and l′′ and the atoms in
the unit cell are represented by the b, b′, and b′′ position vectors. The first term V0 on the
right side of Eqn.2.13 is reference energy which is constant energy and the second term is the
first derivative of the potential energy, Πx =

∂V
∂ux(lb)

, which is zero at equilibrium. The Φ and
Ψ are represented the second (second order IFCs matrix contains nine elements ) and third
(third order IFCs matrix contains twenty-seven elements) derivatives of the potential energy,
respectively. The second and third order force constants can be expressed as:

Φxy(lb, l′b′) =
∂ 2V

∂ux(lb)∂uy(l′b′)
, (2.14)

and

Ψxyz(lb, l′b′, l′′b′′) =
∂ 3V

∂ux(lb)∂uy(l′b′)∂uz(l′′b′′)
. (2.15)

Harmonic lattice dynamics

The vibrational phonon frequency and phonon group velocity of the crystal are obtained from
the harmonic IFCs. For the harmonic lattice dynamics, we only consider the potential up to
second order term in Eqn.2.13, the harmonic potential can be written as[64]:

V =V0 +
1
2! ∑

lbl′b′
∑
xy

Φxy(lb, l′b′)ux(lb)uy(l′b′). (2.16)

We have introduced a new variable h = l − l′ (relative position between unit cells) by as-
suming that the crystal has translation symmetry. The matrix for the harmonic force constants
can be written as:

Φxy(lb, l′b′) = Φxy(0b,(l′ − l)b′) = Φxy(0b,hb′).

The force Fx(0b) experienced by the atom b in x-direction due to the displacement (with
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magnitude u) of another atom b′ in the y-direction in a crystal can be expressed as:

Fx(0b) =− ∑
hb′y

Φxy(0b,hb′)uy(hb′). (2.17)

Using the Eqn.2.17, the equation of motion for each atom under harmonic approximation
can be written as:

mbüx(0b, t) =− ∑
hb′y

Φxy(0b,hb′)uy(hb′, t), (2.18)

where mb is the mass of the atom at the b position in the unit cell. The atomic-vibrations in
the unbound crystal are treated as a plane wave which covers the whole crystal. Therefore, the
atomic-displacement, the solution of the Eqn.2.18, can be expressed as:

ux(hb, t) =
1√
mb

∑
q

ex(b|q)ei(qh−ωt), (2.19)

where ex(b/q) represents the amplitude and direction of motion of the atom b in unit cell l pro-
duced by a plane wave with vector q and frequency ω . Substituting the atomic-displacement
in Eqn.2.19 into Eqn.2.18 leads to the eigenvalue equation:

ω2(q)ex(b|q) = ∑
b′y

Dxy(bb′|q)ey(b′|q). (2.20)

The non-trivial solution to the Eqn.2.20 can be found from the secular equation:

|Dxy(bb′|q)−ω2δxyδbb′ |= 0, (2.21)

where Dxy(bb′/q) is the dynamical matrix, which can be written as:

Dxy(bb′|q) = 1√
mbmb′

∑
h

Φxy(0b,hb′)eiqh. (2.22)

The phonon frequencies, ω(αq), and polarization vectors, e(b/αq), are calculated by
diagonalizing the Eqn.2.22 for each value of the q. The term αq represents the particular
phonon mode with α th phonon branch and q wavevector. The dynamical matrix can be shown
that it is a Hermitian matrix for any value of q:

Dxy(bb′|q) = ((Dxy(b′b|q)∗)T . (2.23)

This Eqn.2.23 indicates that the phonon dispersion squared are real. Therefore, the phonon
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frequency for any value of q is either real or purely imaginary and from the Eqn.2.19, the
atomic-displacement rises exponentially to infinity or drops exponentially to zero for the
purely imaginary phonon frequency. Imaginary value of the phonon frequency indicates that
the crystal structure is not stable.

The polarization vector (ex(b|αq)) describes the collective motion of the atom b in the x-,
y- or z-direction for the phonon in α-branch with a wavevector q. It is a 3n×1 column matrix,
and can be written as:

ex(b|αq) =





e1(1|αq)
e2(1|αq)
e3(1|αq)
e1(2|αq)

...
e3(n|αq)





.

The polarization vector is a phonon eigenvector contains n independent vectors, and it
obeys the closure and orthogonality conditions, given as:

∑
α

e∗x(b/αq)ey(b|α ′q) = δxyδαα ′ (2.24)

∑
bx

e∗x(b/αq)ex(b|α ′q) = δαα ′ , (2.25)

which means that the eigenstates of the phonon do not interact with each other and decoupled.
The harmonic approximation is very useful to simplify the equations of motion allowing an
analytical solution of the system dynamics. Using the phonon frequencies calculated from
Eqn.2.21, the harmonic Hamiltonian for an atom with mass mb and momentum operator p(lb)
at position b in the unit cell l can be written as:

Hharm = ∑
lb

p(lb).p(lb)
2mb

+
1
2! ∑

lbl′b′
∑
xy

Φxy(lb, l′b′)ux(lb)uy(l′b′). (2.26)

The Fourier transform of u and p can be written as:

u(lb) =
1√
N0Ω ∑

q
U(qb)eiql (2.27)

p(lb) =
1√
N0Ω ∑

q
P(qb)e−iql, (2.28)



2.1 Theory of the phonon thermal transport 17

where N0Ω represents the crystal volume having N0 unit cells. The Fourier representations of
U(qb) and P(qb) satisfy the following commutation relation:

[U(qb),P(q′b′)] =
1

N0Ω ∑
ll′

e−i(ql−q′l′)Îih̄δll′δbb′

= Îih̄δqq′δbb′ , (2.29)

where I is the identity matrix. Now, we plugin the Eqn.2.27 and Eqn.2.28 into Eqn.2.26,
the harmonic Hamiltonian can be rewritten as:

Hharm =
1

N0Ω ∑
qq′lb

P(qb).P(q′b)
2mb

e−i(q+q′)l

+
1
2!

1
N0Ω ∑

qq′lbl′b′
∑
xy

Φxy(lb, l′b′)Ux(qb)Uy(q′b′)ei(ql+q′l′). (2.30)

We can simplify the right-hand side of the Eqn.2.30 by operating the summation over l.
The first term can be written as:

K̂ = ∑
qq′b

P(qb).P(q′b)
2mb

1
N0Ω ∑

l
e−i(q+q′)l.

Using the relation ∑l e−i(q+q′).l = N0Ωδq+q′,0

K̂ = ∑
qb

P(qb).P † (qb)
2mb

. (2.31)

Similarly, we can simplify the second term on the right side of Eqn. 2.30 using h = l′ − l:

V̂2 =
1
2 ∑

qbhb′
∑
xy

Φxy(0b,hb)Ux(qb)U†
y (qb′)e−iqh, (2.32)

where U(qb) and P(qb) are the Hermitian matrices. To further simplify we introduce Φxy(bb′|q):

Φxy(bb′|q) = ∑
h

Φxy(0b,hb′)e−iqh

=
√

mbmb′Dxy(bb′|−q), (2.33)
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where Dxy represents the dynamical matrix. Therefore, Eqn.2.32 can be rewritten as:

V̂2 =
1
2 ∑

qbb′
∑
xy

Φxy(bb′|q)Ux(qb)U†
y (qb′). (2.34)

Putting Eqn.2.31 and Eqn.2.34 into Eqn.2.30, the harmonic Hamiltonian can be written as:

Hharm = ∑
qb

P(qb).P † (qb)
2mb

+
1
2 ∑

qbb′
∑
xy

Φxy(bb′|q)Ux(qb)U†
y (qb′). (2.35)

We can further transform the normal coordinates U(qb) and P(qb) to use the phonon
eigenvectors e(b|αq) which depends on the phonon vibrational modes (α) instead of atomic-
position vectors (b). The transformation of U(qb) and P(qb) are given below:

U(αq) = ∑
b

√
mbe∗(b|αq)U(qb), (2.36)

P(αq) = ∑
b

1√
mb

e(b|αq)P(qb). (2.37)

To make our life easy, we introduce the phonon annihilation (aαq) and creation (a†
αq)

operators:

aαq =
1p

2h̄ω(αq)
P(αq)− i

r
ω(αq)

2h̄
U†(αq), (2.38)

a†
αq =

1p
2h̄ω(αq)

P†(αq)+ i

r
ω(αq)

2h̄
U(αq). (2.39)

The phonon annihilation and creation operators follow the commutation relation:

[aαq,a
†
α ′q′ ] = Îδqq′δαα ′ . (2.40)

The U(αq) and P(αq) can be written in terms of phonon annihilation and creation opera-
tors using U†(αq) =U(−αq), P†(αq) = P(−αq) and ω†(αq) = ω(−αq):

U(αq) =−i

s
h̄

2ω(αq)
(a†

αq −a−αq) (2.41)

P(αq) =

r
h̄ω(αq)

2
(aαq +a†

−αq), (2.42)
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so from Eqn.2.36, Eqn.2.37, Eqn.2.41, and Eqn.2.42, we have obtained the following equa-
tions for U(qb) and P(qb):

U(qb) =
1√
mb

∑
α

e(b|αq)U(αq)

=−i∑
α

s
h̄

2mbω(αq)
e(b|αq)(a†

αq −a−αq), (2.43)

P(qb) =
√

mb ∑
α

e∗(b|αq)P(αq)

= ∑
α

r
mbh̄ω(αq)

2
e∗(b|αq)(aαq +a†

−αq). (2.44)

We have substituted the Eqn.2.43 and Eqn.2.44 into Eqn.2.30 , the harmonic Hamiltonian
can be written as:

Hharm =
1
4 ∑

αqb
h̄ω(αq)e(b|αq)e∗(b|αq)(aαq +a†

−αq)(a
†
αq +a−αq)

+
1
2 ∑

qbb′
∑
αxy

Φxy(bb′|q) h̄
2ω(αq)

1√
mbmb′

ex(b|αq)e∗y(b
′|αq)(a†

αq −a−αq)(aαq −a†
−αq).

Substituting the Φxy as given in Eqn.2.33 and using the relation Dxy(bb′|−q) =D∗
xy(bb′|q),

we get the harmonic Hamiltonian as:

Hharm =
1
4 ∑

αqb
h̄ω(αq)e(b|αq)e∗(b|αq)(aαq +a†

−αq)(a
†
αq +a−αq)

+
1
2 ∑

qb
∑
αx

h̄
2ω(αq)

"
∑
b′y

D∗
xy(bb′|q)e∗y(b′|αq)

#
ex(b|αq)(a†

αq −a−αq)(aαq −a†
−αq).

Using the eigenequation ω2(αq)ex(b|αq)=∑b′y D(bb′|q)ey(b′|αq) and the equality ω2(αq)=
ω2(−αq), we obtain:
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Hharm =
1
4 ∑

αqb
h̄ω(αq)e(b|αq)e∗(b|αq)(aαq +a†

−αq)(a
†
αq +a−αq)

+
1
4 ∑

qb
∑
αx

h̄ω(αq)e∗x(b|αq)ex(b|αq)(a†
αq −a−αq)(aαq −a†

−αq).

We have realized that the summation over q is similar to summation over −q and Eqn.2.24
and Eqn.2.25 are used to simplify the Hharm as:

Hharm =
1
4 ∑

αq
h̄ω(αq)

h
(aαq +a†

−αq)(a
†
αq +a−αq)+(a†

αq −a−αq)(aαq −a†
−αq)

i

=
1
4 ∑

αq
h̄ω(αq)(aαqa†

αq +a†
αqaαq +a−αqa†

−αq +a†
−αqa−αq)

=
1
2 ∑

αq
h̄ω(αq)(aαqa†

αq +a†
αqaαq). (2.45)

Commutation relation of the phonon annihilation and creation operators given in Eqn.2.40
is used to get final form of the Hharm as:

Hharm = ∑
αq

h̄ω(αq)
�

aαqa†
αq +

1
2

�
(2.46)

The method, we have used to obtained Eqn.2.46 is called second quantization because it
contains a two-step transformation. In the first step, the atomic coordinates (lb) are replaced
with wave vectors (αq). The annihilation (aαq) and creation (a†

αq) operators are introduced in
the second step. When we apply the harmonic Hamiltonian on a state

��nαq
�

having n number
of phonons in mode αq gives the total energy of phonons in that mode.

Anharmonic lattice dynamics

The harmonic approximation is precisely fulfilled in a classical system at zero Kalvin tem-
perature, but it does not satisfy in the quantum systems. The atomic motion is increased with
increasing the temperature, and the average spacing between atoms in a crystal is also in-
creased due to the thermal expansion. This problem is solved by using quasi-harmonic lattice
dynamics. The second problem is the infinite lifetime of the phonons because phonons do not
interact with each other in harmonic approximation for a crystal[64, 67, 73]. This problem
can be solved by including the higher-order terms in Hamiltonian which produced interaction
between phonons and hence phonons have the finite lifetime. The anharmonic Hamiltonian
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can be expressed as:

H = Hharm +
1
3! ∑

lbl′b′l′′b′′
∑
xyz

Ψxyz(lb, l′b′, l′′b′′)ux(lb)uy(l′b′)uz(l′′b′′). (2.47)

We have taken the contributions up to third order term in Eqn.2.47. The higher order
terms are not taken because their contributions are not significant at low temperature. Using
Eqn.2.27 and Eqn.2.28, the Hamiltonian can be written as:

H =Hharm +
1
3!

1
(N0Ω)3/2 ∑

qq′q′′
∑

lbl′b′l′′b′′
∑
xyz

Ψxyz(lb, l′b′, l′′,b′′)

Ux(qb)Uy(q′b′)Uz(l′′b′′)ei(ql+q′l′+q′′l′′) (2.48)

=Hharm +V̂3

New variables h′′ = l − l′′ and h′ = l − l′ are introduced, the second term (V̂3) on the right
side of Eqn.2.48 can be written as:

V̂3 =
1
3!

1
(N0Ω)3/2 ∑

qq′q′′
∑

hbh′b′h′′b′′
∑
xyz

∑
l

ei(q+q′+q′′).lΨxyz(0b,h′b′,h′′b′′)ei(q′h′+q′′h′′)

×Ux(qb)Uy(q′b′)Uz(q′′b′′)

=
1
3!

1
(N0Ω)3/2 ∑

qq′q′′
∑

bb′b′′
∑
xyz

∑
l

ei(q+q′+q′′).lΨxyz(qb,q′b′,q′′b′′)

×Ux(qb)Uy(q′b′)Uz(q′′b′′). (2.49)

Now, we solve the summation over l, Eqn.2.49 can be rewritten as:

V̂3 =
1
3!

1√
N0Ω ∑

qbq′b′q′′b′′
δG,q+q′+q′′ ∑

xyz
Ψxyz(qb,q′b′,q′′b′′)

×Ux(qb)Uy(q′b′)Uz(q′′b′′), (2.50)

where ∑l ei(q+q′+q′′).l = N0ΩδG,q+q′+q′′ and here G represents the reciprocal lattice vector. The
U(qb) (in terms of phonon annihilation and creation operator) given in Eqn.2.41 is substituted
in Eqn.2.50, the term V̂3 can be written as:
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V̂3 =
1
3!

i√
N0Ω ∑

αqα ′q′α ′′q′′
∑

bb′b′′
∑
xyz

s
h̄3

8mbmb′mb′′ω(αq)ω(α ′q′)ω(α ′′q′′)

×δG,q+q′+q′′Ψxyz(qb,q′b′,q′′b′′)ex(b|αq)ey(b′|α ′q′)ez(b′′|α ′′q′′)

× (a†
αq −a−αq)(a

†
α ′q′ −a−α ′q′)(a

†
α ′′q′′ −a−α ′′q′′). (2.51)

To simplify the Eqn.2.51 , we introduce Ψ̃ and it is defined as:

Ψ̃(αq,α ′q,α ′′q′′) =
i√

N0Ω

s
h̄3

8ω(αq)ω(α ′q′)ω(α ′′q′′) ∑
bb′b′′

∑
xyz

Ψxyz(qb,q′b′,q′′b′′)

× ex(b|αq)√
mb

ey(b′|α ′q′)√
mb′

ez(b′′|α ′′q′′)√
mb′′

(2.52)

Plugin Eqn.2.52 into Eqn.2.51 , we get:

V̂3 =
1
3! ∑

αqα ′q′α ′′q′′
δG,q+q′+q′′Ψ̃(αq,α ′q,α ′′q′′)

× (a†
αq −a−αq)(a

†
α ′q′ −a−α ′q′)(a

†
α ′′q′′ −a−α ′′q′′). (2.53)

The eigenstates of a†
αqaαq are not anymore the eigenstates of the anharmonic Hamiltonian,

and thus, the solution to the anharmonic Hamiltonian is more difficult to find. To simplify the
solution, we add anharmonic term as a perturbation to the harmonic Hamiltonian. This anhar-
monic term produces couplings between the phonons; therefore it is possible that a phonon
can be excited from one mode to another by scattering with other phonons in the crystal. The
detailed scattering mechanisms are explained in the following section 2.1.4.

2.1.4 Phonon scattering mechanisms

Inside a semiconducting/insulating crystal, phonons can be scattered by the other phonons,
isotopes, and boundaries. At room temperature and above, three-phonon scattering rates are
the dominant and boundary scattering rates are minimal. However, boundary scattering rates
are dominated at low temperature. According to Matthiessen’s rule, the total scattering rate is
obtained from the sum of the individual scattering rates[64]. It can be written as:

1
τt

=
1

τthree−phonon
+

1
τiso

+
1
τb
, (2.54)
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where 1/τt is the total scattering rate, 1/τthree−phonon is the three-phonon scattering rate, 1/τiso

is the isotope scattering rate, and 1/τb is the boundary scattering rate.

Three-phonon scattering processes

The phonon-phonon scattering is the principal mechanism defining heat transport by lattice
vibrations in crystals. In this thesis, we will study only the three-phonon scattering processes
that are sufficient to obtain the phonon lifetimes. The fourth-order terms have no imaginary
part and, therefore, do not add to the phonon lifetime[67, 74, 75]. Three-phonon scattering
rate can be obtained using the Fermi’s golden rule. The transition probability, P f

i , from initial
state |ni⟩ to final state

��n f
�

due to three phonons scattering is given as[62]:

P
n f
ni =

2π
h̄

��
n f
��V̂3 |ni⟩

��2 δ (En f −Eni), (2.55)

where


n f
��V̂3 |ni⟩ represents the anharmonic matrix element of the Hamiltonian between ini-

tial and final states. Eni is the energy of the initial state, En f is the energy of final state and
δ (Eni −En f ) represents the validation of the energy conservation. If we consider all possible
initial and final states, then the number of transitions is substantial. However, The Fermi’s
golden rule takes particular combinations of final and initials states which have non-zero tran-
sition probability. The initial and final states of the three-phonon scattering processes are given
as:

|ni⟩=
��nαq,nα ′q′ ,nα ′′,q′′

�
(2.56)

��n f
�
=
��nαq −1,nα ′q′ −1,nα ′′q′′ +1

�
(2.57)

��n f
�
=
��nαq −1,nα ′q′ +1,nα ′′q′′ +1

�
. (2.58)

In the coalescence processes, two phonons diffuse into one phonon, while one phonon
is split into two phonons in the decay processes as shown in Fig.2.1(a,b). The energy and
momentum conservation laws must be obeyed in both processes[62].

For coalescence processes:

q+q′ = q′′+G (2.59)

ω(αq)+ω(α ′q′) = ω(α ′′q′′), (2.60)

also, for decay processes:
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Figure 2.1: Three-phonon scattering (a) coalescence and (b) decay processes which obey the
energy conservation law. (c) Normal and (d) Umklapp processes for the phonon coalescence
scattering.
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q+G = q′+q′′ (2.61)

ω(αq) = ω(α ′q′)+ω(α ′′q′′). (2.62)

No transition is possible between the initial and final states if these laws are not obeyed.
Peierls brought in a further difference between three-phonon scattering processes. The scat-
tering process which strictly obeys the law of conservation of momentum (G = 0) is known
as a normal process, whereas if the law of conservation of momentum is not strictly followed
(G ̸= 0) then it is called Umklapp process, and these processes are shown in Fig.2.1(c,d).

The transition probability for the coalescence processes can be expressed as:

Pα ′′q′′
αq,α ′q′ =

2π
h̄

��
nαq −1,nα ′q′ −1,nα ′′q′′ +1
��V̂3

��nαq,nα ′q′ ,nα ′′q′′
���2 (2.63)

× h̄δ (ω(α ′′q′′)−ω(α ′q′)−ω(αq)).

The value of V̂3 in Eqn.2.53 is plugin into Eqn.2.63 , we get Pα ′′q′′
αq,α ′q′ as:

Pα ′′q′′
αq,α ′q′ =2π

�����
1
3! ∑

αqα ′q′α ′′q′′
δG,−q−q′+q′′Ψ̃(−αq,−α ′q′,α ′′q′′)



nαq −1,nα ′q′ −1,nα ′′q′′ +1

��

(a†
αq −a−αq)(a

†
α ′q′ −a−α ′q′)(a

†
α ′′q′′ −a−α ′′q′′)

��nαq,nα ′q′ ,nα ′′q′′
����

2
(2.64)

×δ (ω(αq)+ω(α ′q′)−ω(α ′′q′′)).

The term (a†
αq −a−αq)(a

†
α ′q′ −a−α ′q′)(a

†
α ′′q′′ −a−α ′′q′′) in Eqn.2.64 can be expanded as:

a†
αqa†

α ′q′a
†
α ′′q′′ −a†

αqa†
α ′q′a−α ′′q′′ −a†

αqa−α ′q′a
†
α ′′q′′ −a−αqa†

α ′q′a
†
α ′′q′′

+a†
αqa−α ′q′aα ′′q′′ +a−αqa†

α ′q′a−α ′′q′′ +a−αqa−α ′q′a
†
α ′′q′′ −a−αqa−α ′q′a−α ′′q′′ . (2.65)

The only fifth term in Eqn.2.65 remains and all other terms become zero. The summation
over qq′q′′ in Eqn.2.64 gives 3! which cancel out by the 1/3!, the Pα ′′q′′

αq,α ′q′ can be written as:

Pα ′′q′′
αq,α ′q′ =2π

��Ψ̃(−αq,−α ′q′,α ′′q′′)
��2 nαqnα ′q′(nα ′′q′′ +1)

×δ (ω(αq)+ω(α ′q′)−ω(α ′′q′′)). (2.66)
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Similarly, we can express the transition probability for the decay processes as:

Pα ′q′,α ′′q′′
αq =2π

��Ψ̃(−αq,α ′q′,α ′′q′′)
��2 nαq(nα ′q′ +1)(nα ′′q′′ +1)

×δ (ω(αq)−ω(α ′q′)−ω(α ′′q′′)). (2.67)

The net scattering rate is obtained from the difference between forward and backward
scattering for coalescence and decay processes as:

Pα ′′q′′
αq,α ′q′ −Pαq,α ′q′

α ′′q′′ =2πδ (ω(αq)+ω(α ′q′)−ω(α ′′q′′))
��Ψ̃(−αq,−α ′q′,α ′′q′′)

��2
�
nαqnα ′q′(nα ′′q′′ +1)− (nαq +1)(nα ′q′ +1)nα ′′q′′

�
, (2.68)

Pα ′q′,α ′′q′′
αq −Pαq

α ′q′,α ′′q′′ =2πδ (ω(αq)−ω(α ′q′)−ω(α ′′q′′))
��Ψ̃(−αq,α ′q′,α ′′q′′)

��2
�
nαq(nα ′q′ +1)(nα ′′q′′ +1)− (nαq +1)nα ′q′nα ′′q′′

�
. (2.69)

The net scattering rate for the coalescence processes is zero at equilibrium, so the Eqn.2.68
can be written as:

n0
αqn0

α ′q′(n
0
α ′′q′′ +1) = (n0

αq +1)(n0
α ′q′ +1)n0

α ′′q′′ , (2.70)

which can also be expressed as:

n0
α ′q′ −n0

α ′′q′′ =
n0

α ′q′(n
0
α ′′q′′ +1)

(n0
αq +1)

. (2.71)

Similarly, the net scattering rate for the decay processes is also zero at equilibrium, so the
Eqn.2.69 can be expressed as:

n0
αq(n

0
α ′q′ +1)(n0

α ′′q′′ +1) = (n0
αq +1)n0

α ′q′n
0
α ′′q′′ , (2.72)

the Eqn.2.72 can be rewritten as:

1+n0
α ′q′ +n0

α ′′q′′ =
n0

α ′q′n
0
α ′′q′′

n0
αq

. (2.73)

Perturbed phonon population nαq is expanded around equilibrium using first-order pertur-
bation ψαq:

nαq =
1

exp
�
h̄ω(αq)/kBT −ψαq

�
−1

≃ n0
αq −

∂n0
αq

∂ω(αq)
ψαq. (2.74)
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The Eqn.2.74 can be further simplified as:

nαq = n0
αq +n0

αq(n
0
αq +1)ψαq. (2.75)

Eqn.2.75 is substituted in Eqn.2.68 and it gives:

Pα ′′q′′
αq,α ′q′ −Pαq,α ′q′

α ′′q′′ = P̃α ′′q′′
αq,α ′q′(ψαq +ψα ′q′ −ψα ′′q′′), (2.76)

where

P̃α ′′q′′
αq,α ′q′ =2πn0

αqn0
α ′q′(n

0
α ′′q′′ +1)

��Ψ̃(−αq,−α ′q′,α ′′q′′)
��2

×δ (ω(αq)+ω(α ′q′)−ω(α ′′q′′)), (2.77)

and substituting Eqn.2.75 in Eqn.2.69:

Pα ′q′,α ′′q′′
αq −Pαq

α ′q′,α ′′q′′ = P̃α ′q′,α ′′q′′
αq (ψαq −ψα ′q′ −ψα ′′q′′),

where

P̃α ′q′,α ′′q′′
αq =2πn0

αq(n
0
αq′ +1)(n0

α ′′q′′ +1)
��Ψ̃(−αq,α ′q′,α ′′q′′)

��2

×δ (ω(αq)−ω(α ′q′)−ω(α ′′q′′)).

The sum of the phonon transition probabilities gives the final phonon scattering rate due
to the three-phonon interactions as:

∂nαq

∂ t

����
three−phonon

= ∑
α ′q′α ′′q′′

��
Pα ′′q′′

αq,α ′q′ −Pαq,α ′q′
α ′′q′′

�
+

1
2

�
Pα ′q′,α ′′q′′

αq −Pαq
α ′q′,α ′′q′′

��

= ∑
α ′q′α ′′q′′

h
P̃α ′′q′′

αq,α ′q′(ψαq +ψα ′q′ −ψα ′′q′′)+ P̃α ′q′,α ′′q′′
αq (ψαq −ψα ′q′ −ψα ′′q′′)

i
,

(2.78)

where we use the factor 1/2 to prevent double counting during the summation. The scattering
rate of a specific phonon mode does not depend on the other phonon mode perturbations under
the RTA. Therefore, the perturbations due to the α ′q′ and α ′′q′′ are set to zero (ψα ′q′ =ψα ′′q′′ =

0) for calculating scattering rate of αq mode within RTA. Using Eqn.2.71 and Eqn.2.73 , the
Eqn.2.78 can be written as:
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∂nαq

∂ t

����
three−phonon

=n0
αq(n

0
αq +1)ψαqπ ∑

α ′q′α ′′q′′

��Ψ̃(−αq,−α ′q′,α ′′q′′)
��2

× [2(n0
α ′q′ −n0

α ′′q′′)δ (ω(αq)+ω(α ′q′)−ω(α ′′q′′))+

(1+n0
α ′q′ +n0

α ′′q′′)δ (ω(αq)−ω(α ′q′)−ω(α ′′q′′))]. (2.79)

The Eqn.2.79 can be simplified using the Eqn.2.75 as:

−∂nαq

∂ t

����
three−phonon

=
n0

αq(n
0
αq +1)ψαq

ταq

=
nαq −n0

αq

ταq
,

which represents that the perturbed phonon population is decayed exponentially to equilib-
rium. The phonon relaxation time (τthree−phonon) can be written as:

1
τthree−phonon

=π ∑
α ′q′α ′′q′′

��Ψ̃(−αq,−α ′q′,α ′′q′′)
��2

× [2(n0
α ′q′ −n0

α ′′q′′)δ (ω(αq)+ω(α ′q′)−ω(α ′′q′′))+

(1+n0
α ′q′ +n0

α ′′q′′)δ (ω(αq)−ω(α ′q′)−ω(α ′′q′′))]. (2.80)

The terms δ (ω(αq)+ω(α ′q′)−ω(α ′′q′′)) and δ (ω(αq)−ω(α ′q′)−ω(α ′′q′′)) in Eqn.2.80
represent the phonon coalescence and decay processes, and the three-phonon scattering pro-
cesses are calculated from the anharmonic force constants. In RTA, both the normal and
Umklapp processes are completely resistive because G vector restricts the phonons within the
first Brillouin zone while calculating transitions rates to get Eqn.2.80. Therefore, lattice ther-
mal conductivity is underestimated in the RTA method as compared to an iterative solution of
BTE. The difference between the RTA and iterative solutions are very small for the materials
in which the Umklapp phonon scattering is dominated i-e κl materials.

Phonon-isotope scattering

All atoms of each atomic species have the same mass in the ideal crystal, but they are not the
same in the real crystal because stable isotopes (mass-disorder) exist. The existence of the
isotopes vanishes the translational symmetry of the crystal which induces phonon scattering.
The effect of isotopes is minimal, and isotope can be considered as a perturbation in which
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the real crystal is replaced with an ordered virtual crystal[60, 64, 70, 76, 77]. This method is
known as virtual crystal approximation (VCA), and the Hamiltonian for the virtual crystal can
be written as:

H =
1
2 ∑

lbx
m(lb)u̇2

x(lb)+V̂2

=H0 +Hiso, (2.81)

where H0 represents the Hamiltonian for the virtual crystal or unperturbed Hamiltonian, and
Hiso denotes the perturbation due to the isotopes in the crystal. The unperturbed Hamiltonian
is given as:

H0 =
1
2 ∑

lbx
m̄(b)u̇2

x(lb)+V̂2, (2.82)

where m̄(b) is the average mass of atom b. The m̄(b) is defined as:

m̄(b) = ∑
i

fi(b)mi(b), (2.83)

where fi denotes the concentration of species i. The perturbation term Hiso is defined as:

Hiso =
1
2 ∑

lbx
(m(lb)− m̄(b))u̇2

x(lb)

=
1
2 ∑

lbx
∆m(lb)u̇2

x(lb), (2.84)

where ∆m(lb) = m(lb)− m̄(b) represents the difference between real crystal mass and virtual
crystal mass. The first derivative of the displacement u̇x(lb) is calculated using the Eqn.2.19
for the atomic displacements. The Eqn.2.84 can be written as:

Hiso =− h̄
4 ∑

bαα ′
∑
qq′

∑
l

p
ω(αq)ω(α ′q′)

∆m(lb)
N0m̄(b)

× e(b|αq)e(b|α ′q′)[a−αqa†
α ′q′ +a†

αqaα ′q′ ]e
i(ql+q′l). (2.85)

The Fourier transform of the ∆M = ∆m(lb)/m̄(b) is introduced as:

∆M̃b(Q) =
1

N0
∑

l
∆M(lb)e−iQl. (2.86)
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Using the above transformation, we can write ∆M as:

∆M =
∆m(lb)
m̄(b)

= N0 ∑
Q

∆M̃b(Q)eiQl (2.87)

We have replaced ∆m(lb)/m̄(b) with the Eqn.2.87 in Eqn.2.85 to write Hiso as:

Hiso = ∑
bαα ′

∑
qq′Q

∑
l

p
ω(αq)ω(α ′q′)∆M̃b(Q)

× e(b|αq)e(b|α ′q′)[a−αqa†
α ′q′ +a†

αqaα ′q′ ]e
i(q+q′+Q)l. (2.88)

We have applied summation over l and get:

Hiso = ∑
bαα ′

∑
qq′Q

p
ω(αq)ω(α ′q′)∆M̃b(Q)δ (q+q′+Q)

× e(b|αq)e(b|α ′q′)[a−αqa†
α ′q′ +a†

αqaα ′q′ ]. (2.89)

The perturbed Hamiltonian in Eqn.2.89 is substituted into the Fermi’s golden rule as
given in Eqn.2.55 and carrying out the algebra (as we did in three-phonon scattering case
in Sec.2.1.4), the phonon-isotope scattering can be obtained as:

1
τiso

=
π
2

ω2(αq) ∑
α ′q′

�����∑bQ
∆M̃b(Q)e(b|αq)e∗ (b|α ′q′)δ (q−q′+Q)

�����

2

δ (ω −ω(α ′q′)). (2.90)

The mass variance parameter m(2)
i (b) can be defined as:

m(2)
i (b) = ∑

i
fi(b)

�
m̄(b)−m(b)

m̄(b)

�2

. (2.91)

The mass variance parameter is obtained from the ensemble average of the random distri-
bution of masses as:



∆M(lb)∆M(l′b′)

�
avg =



(∆M(lb))2�

avg δll′δbb′

=m(2)
i (b)δll′δbb′ . (2.92)

We use the above equation to obtained
��∆M̃b(Q)

��2 in term of m(2)
i (b) as:
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��∆M̃b(Q)
��2 =∆M̃b(Q)∆M̃b′(Q

′)

=
1

N0
∑
ll′

∆M(lb)∆M(l′b′)e−i(Ql−Q′l′)

=
1

N0
∑
ll′

m(2)
i (b)δbb′e

−i(Ql−Q′l′)δll′

=
1

N0
m(2)

i δbb′∆(Q−Q′). (2.93)

We have substituted Eqn.2.93 in Eqn.2.90 and obtained as:

1
τiso

=
π

2N0
ω2(αq) ∑

α ′q′
δ (ω −ω(α ′q′))∑

b
m(2)

i (b)
��e(b|αq)e∗ (b|α ′q′)

��2 . (2.94)

The Eqn.2.94 represents the phonon-isotope scattering rate and it can be obtained for the
crystal structure where mass disorder exists due to the different isotopes.

Phonon-boundary scattering

In the polycrystalline material, the phonon means free path (MFP) exceeds the grain size at
the low temperature. At the low-temperature range, the phonons are scattered at the grain
boundaries various times before they are scattered with another phonons or isotopes. There-
fore, phonon-boundary scattering is very prominent at the low temperature. The expression
for the phonon-boundary scattering is derived as[60, 62, 78]:

1
τb

=
vαq

L
, (2.95)

where vαq is the phonon group velocity, and L is the average grain size. This equation consid-
ers completely diffusive nature of the scattering, i.e. all incoming phonons are absorbed and
re-emitted at the grain boundaries. This model gives a good approximation for the materials
where phonon-boundary scattering occurs uniformly all over the volume. This condition can
be fulfilled in the polycrystalline materials with a small acoustic mismatch between the grains.
For the more accurate calculation of the κl , the surface roughness must be considered in the
phonon-boundary scattering. The phonon-boundary scattering can be estimated as:

1
τb

=
1− p
1+ p

vαq

L
,
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where p denotes the specularity parameter which describes the effect of surface roughness on
the phonon-boundary scattering. It is zero for the completely rough surface and one for the
perfectly smooth surface.

2.2 Density functional theory

The Schrödinger equation was formulated in the 1920’s which opens the ways to investigate
the electrical, magnetic, mechanical and optical properties of the materials without knowledge
of the experimental and empirical data and it is dependent on the sole information of the
constituent atoms[79]. However, it is challenging to solve exactly for the systems including
two or more interacting particles. Several numerical methods, like the variational method,
the perturbation theory, the Quantum Monte Carlo method and semi-classical expansion, have
been developed to approximate the solution of the many-body Schödinger equation. Among
these approaches, density functional theory (DFT) is broadly used because of its high accuracy
and required low computational power. The main aim of DFT is to decrease the complication
of the many-body problem by using the electron density as a primary variable to describe the
many-body effects in a single particle formalism. DFT is comprehensively studied in many of
excellent books[80–83] and review articles[84–87].

2.2.1 The many-body Schrödinger equation

To understand the material properties from the quantum mechanical approaches is based on
solving the many-body nonrelativistic time-independent Schrödinger equation and it can be
written as:

ĤΨ = EΨ, (2.96)

where Ĥ, Ψ, and E are the many-body Hamiltonian, many-body wavefunction and ground
state energy of the system, respectively. The many-body wavefunction relies on the all elec-
trons and nuclei coordinates, and it can be expressed for N electrons and M nuclei as:

Ψ = Ψ(r1,r2, ...,rN ;R1,R2, ...,RM). (2.97)

The many-body Hamiltonian can be written as:
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Ĥ =−∑
i

h̄2

2me
∇2

i −∑
I

h̄2

2MI
∇2

I +
1
2 ∑

i̸= j

e2

4πε0

1��ri − r j
��

+
1
2 ∑

I ̸=J

e2

4πε0

ZIZJ

|RI −RJ|
−∑

i,I

e2

4πε0

ZI

|ri −RJ|
, (2.98)

where i and j are the indexes for the valence electrons, I and J are the indexes for the ions, me

and ri are masses and positions of the electrons, MI and RI are masses and positions of the ion,
and ZI and ZJ are the atomic (charge) number of the nucleus I and J, respectively. The first
two terms represent the kinetic energy (K.E) of the electrons and ions respectively. Third and
fourth terms are the electron-electron Coulomb interaction and ion-ion Coulomb interaction,
respectively. The final term is the Coulomb interaction between the electron and the ion. To
simplify the many-body Hamiltonian given in Eq.2.98, Hartree atomic units (h̄ = me = e =

1
4πε0

= 1) are introduced. The Eq.2.98 can be written as:

Ĥ =−∑
i

∇2
i

2
−∑

I

∇2
I

2MI
+

1
2 ∑

i̸= j

1��ri − r j
��

+
1
2 ∑

I ̸=J

ZIZJ

|RI −RJ|
−∑

i,I

ZI

|ri −RJ|
. (2.99)

The solution of the Eq.2.99 is only possible for a minimal system because of the electron-
electron Coulomb interaction. The complication of the solution to Eq.2.99 rises exponentially
with the size of a system, and therefore, appropriate approximations are required[85].

2.2.2 Born-Oppenheimer approximation

The Born-Oppenheimer or the adiabatic approximation is established on the fact that the ions
are more massive than the electrons, so the electrons are responded faster than the ions.
This approximation decreases the complication of the Schrödinger equation by decoupling
the movement of electrons and nuclei[88]. In this approximation, the nuclei have fixed po-
sitions with an infinite effective mass. It makes dramatic changes in the Hamiltonian as the
K.E of the ion can be ignored, and the ion-ion Coulomb interaction becomes a constant. By
considering the nuclear coordinates as extrinsic parameters and the wavefunction as relying
only on electronic positions. The electronic Schrödinger equation without ionic coordinates
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can be expressed as:

"
−∑

i

∇2
i

2
+∑

i
Vn(ri)+

1
2 ∑

i̸= j

1��ri − r j
��

#
Ψe = EeΨe, (2.100)

where Ψe is the electronic wavefunction and Ee and Vn(r) are defined as:

Ee = E − 1
2 ∑

I ̸=J

ZIZJ

|RI −RJ|
,

and
Vn(r) =−∑

I

ZI

|r−RI|
.

2.2.3 Independent electron approximation

In this approximation, electron-electron Coulomb interaction is ignored, the many-body Schrödinger
equation can be reformulated as a set of single electron Schrödinger equations:

Ĥ0φi(ri) = εiφi(ri), (2.101)

where Ĥ0 and φi are the single electron Hamiltonian and wavefunction. The single electron
Hamiltonian can be written as:

Ĥ0 =−∇2
i

2
+Vn(r), (2.102)

and many electrons wavefunctions can be decoupled into single electron wavefunctions as:

Ψe(r1,r2, ...,rN) = φ1(r1)φ2(r2)...φN(rN). (2.103)

These non-interacting single electron Schrödinger equations are very simpler to solve com-
pared to Eq.2.100. The sum of the electron finding probabilities in each state is the electronic
charge density in this approximation and it can be written as:

n(r) = ∑
i
|φi(r)|2 . (2.104)

However, the approximation does not justified because electron-electron is missing which
should not be ignored in any meaningful calculation.
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2.2.4 Hartree and Hartree-Fock approximation

Hartree introduced an improved version of the independent electron approximation in 1928.
He added new potential energy term called Hartree potential (VH) to the single electron Hamiltonian[89].
The Hartree potential satisfies Poisson’s equation

∇2VH(r) =−4πn(r), (2.105)

with the Hartree potential solution

VH(r) =
Z

dr′
n(r′)
|r− r′| . (2.106)

Now, the single electron Schrödinger equation can be written as:

�
−∇2

2
+Vn(r)+VH(r)

�
φi(r) = εiφi(r). (2.107)

The total electron wavefunction (ΨH) in Hartree approximation is similar to Eq.2.103 and
it can be written as:

ΨH
e (ri) = φ1(r1)φ2(r2)...φN(rN). (2.108)

However, the Hartree approximation didn’t consider the anti-symmetric nature of the
wavefunction. In the Hartree-Fock approximation, the anti-symmetric nature of the wave-
function is taken into account and the many-body wavefunction can be expressed as a Slater
determinant:

ΨHF
e (ri) =

1
N!

det{φ1(r1)φ2(r2)...φN(rN)}. (2.109)

The Hartree-Fock approximation contains exchange effects but ignores the correlation ef-
fects.

2.2.5 Hohenberg-Kohn theorems

The DFT is based on the two theorems given by Hohenberg and Kohn in 1964[90]. These
theorems are stated that:

Theorem I: The external potential (Vext(r)) for any interacting fermions system is uniquely
determined (up to a constant) from its ground state particle density (n0(r)).

Theorem II: The ground state energy can be determined variationally, the particle density
n(r) that minimizes the universal energy functional E[n(r)], is the exact ground state density
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n0(r).
According to the first theorem, many-body Hamiltonian and wavefunctions for all states

can be determined from the ground state density. So the ground state density is required
to obtain all the properties of the system. The second theorem explains that the universal
energy functional is needed to calculate the exact ground state density and energy. However,
the universal functional is not known. Therefore, the Kohn-Sham equations are required to
calculate the universal energy functional.

2.2.6 The Kohn-Sham equations

The success of DFT depends on the approach suggested by Kohn and Sham in 1965. In this
approach, the many-body system, where the particles interact with each other, is replaced by
an auxiliary system (particles do not interact but moving through a potential called Kohn-
Sham potential (VKS)) and it is supposed that the ground state density is the identical for both
systems[91]. The ground state total energy of the many-electron system can be expressed as a
functional of the electron density:

E[n] = F [n] =
Z

drn(r)Vn(r)+Ts[n(r)]+


Ψe[n]

��T̂ +Ŵ
��Ψe[n]

�
, (2.110)

where T̂ is the kinetic energy, and it can be written as:

T̂ =−∑
i

∇2
i

2
, (2.111)

and the Coloumb energy, Ŵ , can be expressed as:

Ŵ =
1
2 ∑

i̸= j

1��ri − r j
�� . (2.112)

The potential experienced by the electrons due the nuclei is dependent on the particle den-
sity but the other terms in energy functional only implicitly rely on the particle density. Kohn
and Sham divide these terms into Coloumb energy and kinetic energy of separate electrons and
add an extra term which takes into account for any difference called exchange and correlation
energy (Exc). The energy functional can be written as:

F [n] =
Z

drn(r)Vn(r)+ T̂ [n(r)]+EH [n(r)]+Exc[n(r)]. (2.113)

The exchange and correlation term includes all contributions, which are not enclosed by
the independent electron approximation, to the energy functional. Kohn and Sham minimized
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the universal energy functional with respect particle density (δF [n]
δn = 0) under the condition

that one-particle wavefunctions are orthogonal to each other, ie.


φi|φ j

�
= δi j . The N one

particle equations can be derived as:

ĤKSφi(r) = εiφi(r), (2.114)

where the Hamiltonian ĤKS is defined as:

ĤKS =−1
2

∇2 +VKS(r), (2.115)

where VKS represents the Kohn-Sham potential and it can be expressed as:

VKS(r) =Vn(r)+
δEH

δn(r)
+

δExc

δn(r)

=Vn(r)+VH(r)+Vxc(r). (2.116)

These equations 2.114, 2.115, and 2.116 are called Kohn-Sham equations. The Kohn-
Sham equations reduce the effort of solving a complicated many-body system to independent-
electron system existing in an effective potential.

2.2.7 Exchange-correlation approximations

The exact exchange-correlation functional is not known, and so proper approximations are
needed. The local density approximation and the generalized gradient approximation are com-
monly used as an exchange-correlation functional[84, 92–94].

Local density approximation

The local density approximation (LDA) was the first effort to compute the exchange-correlation
energy, and it is strongly interrelated to the homogeneous electron gas (HEG) model presented
by Fermi and Thomas in 1920s. In this method, the exchange and correlation energy can be
calculated by considering local electronic density only. It can be written as:

ELDA
xc [n(r)] =

Z
drn(r)εxc[n(r)], (2.117)

where εxc is the exchange-correlation energy per electron of a the HEG of density n(r). The
term εxc can be divided into the exchange and correlation parts, εxc = εx + εc. The exchange
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energy per electron in HEG model is provided by a simple analytic form:

εx =−3
4

�
3
π

� 1
3

n
1
3 . (2.118)

The exchange energy for LDA is given as:

ELDA
x [n(r)] =−3

4

�
3
π

� 1
3 Z

drn(r)
4
3 . (2.119)

The correlation energy for LDA has been computed to very high precision by Ceperley
and Alder[84]. Later, It has been calculated by various groups, and the correlation energy
generated by Perdew and Zunger[92] are the most famous and commonly used in the DFT
calculations. The LDA is more suitable for the systems where the density changes slowly.

Generalized gradient approximation

The LDA is more suitable for the systems where the density changes slowly. In systems
where the electron density is inhomogeneous, efforts have been made to improve the LDA
called as generalized gradient approximation (GGA). The inhomogeneities of the electron
density can be accurately explained by including density gradient corrections (∇n(r)) and
higher derivative of the density. The GGA exchange and correlation energy can be written as:

EGGA
xc [n(r)] =

Z
εGGA

xc [n(r), |∇n(r)|]n(r)dr. (2.120)

The GGA predicts better binding energies and bond lengths compared to the LDA for
the systems where charge density changes rapidly. Perdew and Wang first proposed it in
1991 known as PW91[94]. Later, Perdew, Burke and Ernzerhof[95] known as PBE generated
this functional using different parameterization and the physics and chemistry community
commonly use it.

2.2.8 Pseudopotentials

The wavefunction of the deep core electrons (closed shell electrons) are tightly bonded to the
nuclei in the solid-state systems, and their distribution remains unaffected by changing the
chemical environment. However, the electrons in the valence shell are highly energetic and
strongly affected by the neighboring atoms. Therefore, the valence electrons are determined
most of the interesting physical properties of solids rather than the closed shell electrons. At
the same time, the core electrons description require a considerable amount of basis functions



2.2 Density functional theory 39

which consume enough computation time. To overcome this problem, the pseudopotential
approximation changes the strong Coloumb potential with a weaker pseudopotential.

In general, pseudopotential formalism should satisfy the two conditions. The first con-
dition is the use of a much weaker pseudopotential to replace core electrons and the second
condition is to remove the papid oscillations of the valence electrons wavefunctions in the
core region. Furthermore, it is also required within the pseudopotential scheme that the pseudo
wavefunction and pseudopotential follow the all-electron behavior beyond the core region with
the same eigenvalues of the many-body Schrödinger equation as shown in Fig.2.2. Many dif-
ferent approaches are used to generate the pseudopotential from first-principles, such as ultra-
soft pseudopotentials (USPPs)[96, 97], norm conservating pseudopotentials (NCPPs)[98, 99]
and projector augmented wave (PAW) potentials. We have used the PAW method in this
work[100, 101].
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Figure 2.2: Comparison of a wavefunction within the strong Coloum potential of the nucleus
(blue dotted lines) to the one within pseudopotential (solid red lines). The real and pseudopo-
tential meet beyond the cutoff radius rc. This figure is adapted from ref. [102]



Chapter 3

Thermoelectric and phonon transport
properties of two–dimensional IV–VI
compounds

3.1 Introduction

Renewable energy is a very important field due to the insufficiency of natural energy source
and global warming[103]. One of the best renewable energy sources is waste heat, which can
be converted into electricity via the Seebeck effect[104, 105]. The performance of thermoelec-
tric materials is measured by a dimensionless quantity ZT called the figure of merit[106, 107]:

ZT =
σS2

κ
T (3.1)

where σ , S, κ , and T are electrical conductivity, Seebeck coefficient, thermal conductivity, and
temperature, respectively. The lattice thermal conductivity κl and the electronic thermal con-
ductivity κe are included in the thermal conductivity κ in eq. 3.1. A large Seebeck coefficient,
large electrical conductivity, and low thermal conductivity are needed for high thermoelectric
performance, but a low amount of charge carrier is required to improve the Seebeck coeffi-
cient, which reduces the electrical conductivity[108].

Improving ZT has been a big challenge, and different approaches have been used. Semi-
conductors composed of heavy elements such as Zn4Sb3 , PbTe and BiSb have been used to re-
duce the thermal conductivity[44, 45, 109]. Point defects (R1−y Fe4−xCoxSb12 and CeyFexCo4−xSb12)
have been produced to decrease the lattice thermal conductivity and the optimized electrical
conductivity[46, 110]. Some bulk complex materials also show very good thermoelectric per-
formance such as filled skutterudites (La0.9Fe3CoSb12), half-Heusler alloys (ZrCoSnxSb1−x),



42 Thermoelectric and phonon transport properties of two–dimensional IV–VI compounds

and clathrates (Sr8Ga16Ge30 ) because of their low thermal conductivity and high periodicity
in the crystal structure[47, 111–114]. Zhao et al. recently reported that bulk SnSe is a very
good thermoelectric material with a ZT of 2.6 at 973 K[115]. It was theoretically predicted
that bulk SnS, GeSe, and GeS would also show very good thermoelectric performance[116].

One of the efficient methods to increase ZT is reducing the dimensionality of the mate-
rial, which increases the Seebeck coefficient due to the increased density of states near the
Fermi level[48, 117, 118]. It is reported that the reduction in dimensionality enhances the en-
ergy storage and conversion[119], the ZT of bulk Bi2Te3 is improved 13 times by converting
into the quantum well. Fei et al. and Cheng et al. reported that a bismuth monolayer and
phosphorene showed very promising thermoelectric properties[120, 121].

We studied two-dimensional SnSe, SnS, GeSe, and GeS materials for thermoelectric ap-
plications. Monolayers of these materials have already been experimentally synthesized,
and they have band gaps less than 2 eV[122–125]. They have been recently reported to
have low lattice thermal conductivity as well[126], which is a requirement for efficient ther-
moelectric materials. Group IV–VI compounds in bulk form have very good thermoelec-
tric efficiency and a simple orthorhombic SnSe crystal was reported to have outstanding
thermoelectricity[115, 116, 127]. It was recently discovered that even a monolayer of SnSe
shows optimal thermoelectric properties[128], which motivateed us to study the thermoelec-
tric properties of monolayer IV–VI compounds SnSe, SnS, GeSe, and GeS.

3.2 Methodology

Our calculations are based on density functional theory combined with Boltzmann transport
theory and were performed using the Vienna Ab initio Simulation Package (VASP) and the
Boltztrap code[101, 129, 130]. The generalized gradient approximation proposed by Perdew-
Burke-Ernzerhof was chosen as an electronic exchange correlation functional[131]. The vdW-
DF scheme is used to include the van der Waals interaction[132]. A Monkhorst mesh of
10×10×1 k-points is used for lattice optimization and 450 eV is used as a plane wave cutoff
energy. Structures are optimized until the Hellmann–Feynman force on each atom is less than
0.001 eV/Å. A vacuum region of 15 Å in the z-direction is produced to avoid the interaction
between periodic images.

Thermoelectric properties were computed by solving the Boltzmann transport equation un-
der a constant relaxation time (τ) and a rigid band approximation performed in the Boltztrap
code[130]. We used a very dense k-point mesh of 60×60×1 to obtain convergent density of
states. The Seebeck coefficient S(T,n), electrical (σ/τ) and electronic thermal (κe/τ) conduc-
tivities devided by the relaxation time were calculated. Boltztrap code used Wiedemann-Franz
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Figure 3.1: Crystal structure of two-dimensional monochalcogenides SnSe, SnS, GeSe, and
GeS. (a) Side view perpendicular to the zigzag direction, (b) top view, (c) side view perpen-
dicular to the armchair direction.
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Composition
Lattice parameter (Å) Band gap (eV)

Monolayer Monolayer Bulk
a b GGA GGA

SnSe 4.36 (4.41) 4.29 (4.17) 0.99 (1.00) 0.65 (0.69)
SnS 4.31 (4.26) 4.07 (4.06) 1.42 (1.52) 0.86 (0.91)

GeSe 4.41 (4.38) 3.99 (3.95) 1.16 (1.22) 0.83 (0.87)
GeS 4.48 (4.43) 3.70 (3.67) 1.71 (1.70) 1.18 (1.25)

Table 3.1: Calculated lattice parmeters and band gaps of SnSe, SnS, GeSe, and GeS. The
values in the parentheses are from the Refs. [116, 138].

law to calculate electronic thermal conductivty from electrical conductivity.
To calculate the lattice thermal conductivity (κl), we used the ShengBTE code[133]. The

second-order (harmonic) and the third-order (anharmonic) interatomic force constants (IFCs)
are required to calculate lattice thermal conductivity. In order to calculate the second-order
IFCs, we used the Phonopy code with a supercell of 5 × 5 × 1 and a k-mesh of 10 × 10 × 1.
For the third-order IFCs, a supercell of 4 × 4 × 1 was used with the of interactions up to the
15th nearest neighbors[134–136].

3.3 Results and discussions

3.3.1 Structure optimization and electronic structure

Bulk SnSe, SnS, GeSe, and GeS have an orthorhombic crystal structure with the space group
Pnma(62), while their monolayer analogs have the space group Pmn21(31) (See Fig. 3.1). The
structures are optimized with a large vacuum space of 15 Å in the z-direction until the forces
on each atom become zero. The optimized lattice parameters are given in Table 3.1, and they
are in good agreement with previous reports[137, 138].

Electronic structures are very important for understanding the thermoelectric behavior of
materials. The band gaps of SnSe, SnS, GeSe, and GeS are calculated using the exchange-
correlation functional within a generalized gradient approximation (GGA), as shown in Table
3.1. The GGA functional calculations show indirect band gaps for SnSe, SnS, and GeS and a
direct band gap for GeSe, as shown in Fig. 3.2. Density of states (DOS) of the SnS and GeS
monolayers has sharp peaks near conduction band minima and valence band maxima as shown
in Fig. 3.2(b,d), which may enhance the Seebeck coefficient. All these monolayers have band
gaps less than 2 eV, which suggests that they can be used as thermoelectric materials. It is
very difficult to get the optimal value of the ZT for wide band gap materials because heavy
doping is required.
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Figure 3.2: Band structures along the high-symmetry k-points Γ, X , S, and Y and density of
states of (a) SnSe, (b) SnS, (c) GeSe, and (d) GeS

3.3.2 Carrier mobility and relaxation time

The carrier mobility (µ) of the group IV–VI monolayers is calculated in order to get relaxation
time (τ). Our method to calculate the mobility is based on deformation potential theory used
extensively to calculate carrier mobility andrelaxation time of two-dimensional materials[139–
142], the expression to calculate the mobility is given by[139, 143]:

µ =
eh̄3C2D

kBT m∗mdE2
1

(3.2)

where C2D is the two-dimensional elastic constant determined by fitting the energy-strain
curve to quadratic polynomial (see Fig. 3.3 ), our calculated values for C2D are consistent with
previous reported values[144]. T represents the temperature, m∗ is the effective mass in the
transport direction, and md is calculated as md =

√mxmy . Here mx and my are the effective
masses along armchair and zigzag directions. E1 is the deformation potential constant defined
as: E1 =

∂Eedge
∂δ , where Eedge is the conduction band minima (CBM) and δ is uniaxial strain.

The shift in CBM by applying uniaxial strain is shown in Fig. 3.4. The relaxation time is
evaluated from mobility using the following relation:

τ =
m∗µ

e
(3.3)
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The calculated E1, C2d , m∗ and temperature-dependent µ and τ are tabulated in Table 3.2.
We found an anisotropic behaviour in mobility and relaxation time for these monolayer. The
carrier mobility of SnSe is in a good agreement with ref. [140]. The GeS has the highest
carrier mobility and relaxation time along the armchair direction among these four monolayer
due to the low deformation constant and the low effective mass.

3.3.3 Thermoelectric properties

Electrical and electronic thermal conductivities

The thermoelectric properties of SnSe, SnS, GeSe, and GeS are calculated using the Boltz-
mann transport equation for electrons under a constant scattering time. Boltztrap code cal-
culates relaxation-time dependent electrical conductivity (σ/τ) and electronic thermal con-
ductivity (κe/τ). Since there is no experimental data available for the electrical conductivity
to calculate the exact value of the relaxation time of these monolayers, deformation potential
theory is used to predict the temperature-dependent relaxation time for each material as com-
piled in Table 3.2. The electrical (σ ) and electronic thermal (κe) conductivities are plotted as
a function of carrier concentration (n) in Fig. 3.5(a–d) and (e–g) respectively, at 300 K, 500
K, and 700 K along armchair and zigzag directions. The carrier concentration shows the dop-
ing (positive values for p-type doping and negative values for n-type doping). The electrical
and thermal conductivities increase by increasing carrier concentration. When the Fermi level
occurs in the middle band gap region, the conductivities are increased slowly with respect to
the carrier concentration and when it moves down into the valence band (for p-type) or moves
up into conduction band (for n-type), the conductivities are increased quickly. GeSe has the
highest electrical conductivity of 69.85×106 S/m at n= −8.9 ×1014 /cm 2 in the n-type doping
among these compounds. The band gap is higher for the monolayer than bulk (see Table 3.1).
The monolayers have lower electrical conductivity than the bulk due to the increase in the
band gaps.

Seebeck coefficient

The Seebeck coefficients are calculated as a function of carrier concentration at different tem-
peratures along the armchair and zigzag direction, as shown in Fig. 3.6. As the temperature
decreases, the Seebeck coefficient also increases because of bipolar conduction[145]. The
Seebeck coefficients of the two-dimensional monochalcogenides are two times greater than
those of the bulk material as shown in the Table 3.3. This results from, the increase in the
band gaps and the density of states near the Fermi level. The GeS has the largest Seebeck
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Figure 3.5: Electrical (σ ) and electronic thermal (κe) conductivities for the (a,e) SnSe, (b,f)
SnS, (c,g) GeSe, and (d,h) GeS along the armchair (solid lines) and zigzag (dashed lines)
directions at 300 K, 500 K, and 700 K.

coefficient of 2810 µVK−1 at 300 K because of the large band gap and the flatness in the band
structure. The Seebeck coefficient (S) is calculated with the expression,

S =

R ∞
−∞ dE g(E) (E −µ)

�
−∂ f (E,µ,T )

∂E

�

T
R ∞
−∞ dE g(E)

�
∂ f (E,µ,T )

∂E

� (3.4)

where E, g(E), f (E,µ,T ), µ , and T are the energy, the transport function, the Fermi function,
the chemical potential, and temperature, respectively[146]. The transport funtion is

g(E) = N(E)v2(E)τ(E) (3.5)

where N(E) is the density of states, v(E) is Fermi velocity and τ(E) is scattering time[146].
The Seebeck coefficient changes dramatically near the Fermi level because of the term ∂ f

∂E in
Eq. 3.4 which behaves like a Dirac delta function.

Composition SnSe SnS GeSe GeS
Bulk[116] 990 1260 1240 2000
Monolayer 1750 2380 1960 2810

Table 3.3: The largest values of Seebeck coefficients (S) of bulk and monolayer SnSe, SnS,
GeSe and GeSe at 300 K (unit: µVK−1)
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Phonon dispersion and lattice thermal conductivity

Phonon dispersions of SnSe, GeSe, SnS, and GeS were computed to examine the thermal
stability using density functional perturbation theory[147], as shown in Fig. 3.7. There is
no imaginary line in the dispersion curves, which means that these materials are vibrationally
stable. There are twelve modes of vibrations: three lower modes that are acoustic (a transverse
acoustic mode, a longitudinal acoustic mode, and a flexural acoustic mode), and the others are
optical modes. The flexural acoustic mode is an out-of-plane transverse acoustic mode similar
to other two-dimensional materials like graphene, phosphorene, and stanene, quadratic near
Γ point[148–150]. The flexural mode vibrational direction is exactly perpendicular to the
plane. It is an important mode in order to understand thermal and mechanical properties of
two-dimensional materials.

The lattice conductivities are calculated by solving the Boltzmann transport equation for
phonons (BTEP) using the iterative method and the relaxation time approximation (RTA).
The iterative method exactly solves the BTEP, while RTA is a good approximation for low
conductivity compounds. The results in Fig. 3.8 show good agreement with recently reported
results[126]. All four of the materials have very low lattice thermal conductivity compared to
other two-dimensional materials like graphene, phosphorene, and monolayer of MoSe2, and
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Figure 3.7: Phonon dispersions along high symmetry k-points for (a) SnSe, (b) SnS, (c) GeSe,
and GeS

WSe2, and are comparable to the monolayer bismuth as shown in Table.3.4[121, 148, 149,
151]. We also found the different lattice thermal conductivity along the armchair and zigzag
directions. Because of the heavy masses of Sn and Se, SnSe has the lowest lattice conductivity
of 2.44 Wm−1K−1 and 2.63 Wm−1K−1 at room temperature along the armchair and zigzag
directions, respectively.

According to glass dynamical theory, the lattice thermal conductivity is calculated asκl =

1/3Cvlvs, where Cv is the heat capacity, l is the mean free path, and vs is the sound velocity.
As the temperature increases, the lattice softens and the stiffness decreases, which reduces the
sound velocity and hence the lattice thermal conductivity[152]. This trend is shown in Fig.
3.8.

Figure of merit (ZT )

Finally, using the Seebeck coefficient and the electrical and thermal conductivities, we calcu-
lated ZT as a function of the carrier concentration along the armchair and zigzag directions at
300 K, 500 K, and 700 K, as shown in Fig. 3.9. These monolayers had very high ZT . SnSe
had the highest ZT of 2.63 along the armchair direction at 700 K because of the high electrical
conductivity and Seebeck coefficient and the low lattice thermal conductivity. In the case SnS,
a high ZT of 1.88 is predicted along the zigzag direction.
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Compound
κl (Wm−1K−1)

Monolayer
Bulk

zigzag armchair
Graphene 2200[148] 2200[148] 2000[153]

Phoshorene 30.1[149] 13.6[149] -
Bi monolayer 3.8[121] 3.8[121] -

MoSe2 70[151] 70[151] 40[151]
WSe2 42[151] 42[151] 35[151]
SnSe 2.6 2.4 0.32[116]
SnS 4.7 4.4 0.45[116]

GeSe 6.7 5.2 0.39[116]
GeS 10.5 7.8 0.52[116]

Table 3.4: Comparison of lattice thermal conductivities κl of group IV-VI monolayers with
other two-dimensional materials at room temperature
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Figure 3.8: Lattice thermal conductivity (κl) for the group IV–VI monolayers are calculated as
a function of the temperature using iterative (solid lines) and SMRTA (dashed lines) method.



54 Thermoelectric and phonon transport properties of two–dimensional IV–VI compounds

0

0.5

1

1.5

2

2.5

−4−2024

(g)

Z
T

n (10
13

 cm
−2

)

0

0.5

1

1.5

2

2.5
(e)

Z
T

0

0.5

1

1.5

2

2.5
(c) n−typep−type

Z
T

0

0.5

1

1.5

2

2.5
(a) 

Z
T

Armchair direction

(b)

Zigzag direction

(d) n−typep−type

(f)

−4−2024

(h)

n (10
13

 cm
−2

)

T=300 K
T=500 K
T=700 K

Figure 3.9: Calculated Figures of merit (ZT ) as a function of the carrier concentration (n) for
the monolayer of (a,b) SnSe, (c,d) SnS, (e,f) GeSe, and (g,h) GeS along armchair and zigzag
directions at temperature 300 K, 500 K, and 700 K.



3.4 Summary 55

3.4 Summary

We analyzed the structural, electronic, thermoelectric, and phonon-transport properties of
the two-dimensional monochalcogenide compounds SnSe, SnS, GeSe, and GeS using den-
sity functional theory combined with Boltzmann transport theory for electrons and phonons.
These compounds are energetically and vibrationally stable, and SnSe, SnS, and GeS have
indirect band gaps while GeSe has a direct band gap. The Seebeck coefficients of these
two-dimensional materials are two times larger than those of their bulk structures, and two-
dimensional GeS has the largest Seebeck coefficient of 2810 µVK−1 at room temperature.
These monolayer materials have very low lattice thermal conductivities in comparison to
other two-dimensional materials. ZT of SnSe, GeSe and GeS along the armchair direction
was 2.63, 1.99, and 1.85, respectively, while that of ZT of SnS along the zigzag direction was
1.88. These ZT values are higher than those of their bulk analogs. Hence, the materials are
very promising for thermoelectric applications.





Chapter 4

Ultra low lattice thermal conductivity and
high carrier mobility of monolayer SnX2

4.1 Introduction

After the exploration of graphene, the search of new two-dimensional materials started both for
fundamental research and device applications in the field of optoelectronics and energy con-
version and storage [147, 154–156]. Monolayer MoS2-like transition metal dichalcogenides
have gained a tremendous interest due to their variety in band gaps, mechanical and chemi-
cal properties, and applications in thin film solar cells, metal ion batteries, and thermoelectric
devices[35, 157–161]. Thermoelectric materials convert the waste heat energy directly into
the useful electrical energy.

One of the crucial problems in the thermoelectric materials is the high lattice thermal con-
ductivity which decreases the ZT . Materials having low lattice thermal conductivity are more
significant in thermoelectrics. Since the electronic thermal conductivity has a direct depen-
dence on the electrical conductivity, reducing the electronic thermal conductivity by reducing
the electrical conductivity is not an effective way. According to Slack’s theory of nonmetallic
crystals, the requirements for low lattice thermal conductivity are strong anharmonicity (large
Grüneisen parameters), weak interatomic bonding interactions, structural complexity, and ma-
terials containing heavy elements[29]. For example, because of the high lattice thermal con-
ductivity (2200 W/mK) of graphene, its use in thermoelectric devices is not attractive[148]. On
the other hand, several two-dimensional materials like stanene, silicene, phosphorene, MoS2,
MoSe2, WSe2, SnSe, and Bi have been reported for low lattice thermal conductivities at room
temperature[21, 36, 126, 149, 150, 162–164].

In semiconductor devices, the carrier mobility by holes and electrons plays an important
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role. The lattice thermal conductivity can be reduced by producing vacancies or doping heavy
elements, but they decrease the carrier mobility as well. However, high carrier mobility cou-
pled with low lattice thermal conductivity is required for efficient thermoelectric materials.
Graphene, phosphorene, silicene, and monolayer MoS2, TiS3, SnSe, GeS, PbS, and PbSe
have been reported to have high carrier mobility[139, 140, 165–167]. Monolayer SnX2 (X
= S, Se) have been recently synthesized and their structural parameters and electronic band
structures are well studied[168]. Several recent reports show that the bulk SnX2 has very low
lattice thermal conductivity[169, 170], but the lack of researches about the lattice thermal con-
ductivity and carrier mobility for their monolayer phases motivates us to study them. Since
these monolayers contain heavy elements such as Sn and Se with weak interatomic bondings,
it is expected of these materials to have low lattice thermal conductivity.

This paper explores the phonon transport properties such as phonon dispersion, phonon
group velocities, Grüneisen parameters, lattice thermal conductivities, and phonon-limited
carrier mobilities of the monolayer SnX2, using the PBTE and deformation potential theory.
It is found that the lattice thermal conductivity of monolayer SnSe2 at room temperature is
as low as 3.82 W/mK, which is attributed to the heavy atomic masses of Sn and Se and its
strong phonon anharmonicity. The calculated lattice thermal conductivities are lower than in-
plane lattice thermal conductivity of their bulk phases unlike MoS2 and MoSe2[151, 171]. The
carrier mobility of the monolayer SnS2 at room temperature is as high as 756.60 cm2V−1s−1

for electrons and 187.44 cm2V−1s−1 for holes. Contribution of each mode in lattice thermal
conductivity is evaluated; longitudinal acoustic (LA) mode is found as the main contributor
in the monolayer SnS2 while transverse acoustic (TA) mode in the monolayer SnSe2. The
size effects on lattice thermal conductivity are also discussed. Owing to their ultra low lattice
thermal conductivity and high carrier mobility, monolayer SnS2 and SnSe2 are promising for
thermoelectric applications.

4.2 Computational method

All density functional theory calculations are performed by adopting VASP[129] with the
projector augmented wave method[101]. The generalized gradient approximation in the form
of Perdew-Burke-Ernzerhof[93] is used as an exchange correlation functional. The kinetic
energy cutoff is set to 500 eV. The Monkhorst-Pack k-mesh of 15×15×1 is used and the
structure is optimized until the largest Hellmann-Feynman force component on each atom is
less than 0.001 eV/Å. The Heyd–Scuseria–Ernzerhof hybrid functional is used to calculate
the band structure and carrier mobility. Phonopy code is used to calculate the phonon spectra,
phonon group velocities, Grüneisen parameters, and harmonic force constants with a supercell
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Figure 4.1: (a) Top and (b) side views of the monolayer SnX2 (X = S, Se). The dashed lines
show the primitive unit cell (with lattice vectors a⃗ and b⃗).

of 6×6×1 using the finite displacement method[134, 147]. Lattice thermal conductivity is
calculated by solving the Boltzmann transport equation for phonons as implemented in the
ShengBTE code[133, 135]. The anharmonic force constants are obtained using a supercell of
5×5×1 including five nearest neighbors.

4.3 Results and discussions

4.3.1 Structure optimization and phonon spectra

The energetically and dynamically stable 1T phase of monolayer tin dichalcogenides (SnX2)
lies in the P3̄m1 space group (No. 164) as shown in Fig. 4.1. The optimized lattice parameters
of a hexagonal primitive unit cell are a=b=3.69 Å for monolayer SnS2 and a=b=3.86 Å for
monolayer SnSe2. The lattice parameters are in good agreement with the previously reported
values[172, 173]. Monolayer SnX can be derived from the distorted tetrahedra of Sn( II )
atoms with a lone pair. In this monolayer three Sn–X bonds form with two different bond
lengths. However, monolayer SnX2 is derived from the octahe- dral coordination of Sn( IV )
to form a hexagonal structure.
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The phonon spectra of the monolayers SnX2 are shown in Fig. 4.2. The absence of imag-
inary frequencies in the phonon band structure for monolayer SnX2 guarantees its dynamical
stability. Among the total nine vibrational modes for the three atoms in a primitive unit cell,
the lowest three modes are acoustic (LA, TA, and ZA (flexural acoustic mode)) modes and the
other six modes with relatively high frequencies are optical ones. The maximum frequency
of vibration is 347.85 cm−1 for monolayer SnS2 and 249.36 cm−1 for monolayer SnSe2. The
phonon band gap between acoustic and optical modes for monolayer SnS2 is larger than that
for monolayer SnSe2 because of the higher mass ratio of Sn to S than Sn to Se. The LA and TA
modes are linear and the ZA mode is nearly quadratic at the gamma point. The phonon spec-
tra of these monolayers are very similar, but the frequencies of monolayer SnSe2 are slightly
shifted downward compared to that of monolayer SnS2 because of its larger reduced mass.
Monolayer SnX2 has higher phonon frequencies than monolayer SnX due to the difference
in the oxidation state of Sn in both these cases, as reported in ref. [126]. The optical bands
in phonon dispersion of the monolayer SnX are dispersive, which significantly increases the
contribution of these branches to the lattice thermal conductivity (see Table 4.1).

4.3.2 Phonon group velocities, Grüneisen parameters, and Debye tem-
peratures

In order to understand the lattice thermal conductivity of the monolayer SnX2, we explore
the phonon related properties such as phonon spectra, phonon group velocity, Grüneisen pa-
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System ZA (%) TA (%) LA (%) Optical (%) κl(Wm−1K−1) ΘD (K)
SnS2 36.26 25.56 33.89 4.29 6.41 136.9
SnSe2 29.85 32.32 29.53 8.30 3.82 107.8
SnS 27.07[126] 19.79[126] 25.97[126] 27.17[126] 3.21[126] ——
SnSe 31.39[126] 25.16[126] 14.90[126] 28.55[126] 2.95[126] ——
MoS2 29.1[160] 30.4[160] 39.1[160] 1.4[160] 101[160] 262.3[35]

Graphene 76[16] 15[16] 8[16] 1[16] 3288[16] 2300[174]
Stanene 13.5[150] 26.9[150] 57.5[150] 2.1[150] 11.6[150] 72.5[150]
Silicene 38.98[21] 21.63[21] 20.97[21] 18.42[21] 27.72[21] 798.1[21]

Table 4.1: The percentage contribution of acoustic modes (ZA, TA, LA) and optical modes
toward the lattice thermal conductivity at room temperature, and the Debye temperature

rameter and the Debye temperature. Phonon group velocities are computed from the phonon
spectra along the Γ-M and Γ-K directions, as shown in Fig. 4.3. The phonon group velocity
of each mode is given by: vk =

∂ωk(q)
∂q , where ω , k and, q represent the vibrational frequency,

the vibrational mode index, and the wave vector respectively. The phonon group velocities
of monolayer SnS2 at low frequency limit are 1948 m/s in the ZA mode, 3222 m/s in the TA
mode, and 5160 m/s in the LA mode. For monolayer SnSe2 the group velocities are 1604 m/s
in the ZA mode, 2514 m/s in the TA mode, and 4044 m/s in the LA mode. The phonon group
velocity of monolayer SnX2 in the LA mode is smaller than those of graphene[175] (22000
m/s), phosphorene[176] (8640 m/s), and silicene[21] (9520 m/s), and larger than stanene[150]
(3600 m/s) and monolayer MoS2[163] (1108 m/s).

The Grüneisen parameter γ is calculated for each phonon mode in order to quantify the an-
harmonicity of monolayer SnX2 as plotted in Fig. 4.4. The Grüneisen parameters are evaluated
using the definition[177]:

γk(q) =− a0

ωk(q)
∂ωk(q)

∂a

where a0 is the equilibrium lattice constant. Very large absolute values of the Grüneisen
parameter are found at long wavelength limit, which shows large phonon anharmonicity of
monolayer SnX2. The Slack’s equation for lattice thermal conductivity[29] is:

κl =
AM̄ΘDδ

1
3 N

1
3

γ2T

where A is a constant and M̄, ΘD, δ , N, γ , and T are average atomic mass, Debye temperature,
volume per atom, number of atoms per unit cell, Grüneisen parameter, and temperature, re-
spectively. Therefore, strong anharmonicity (or large Grüneisen parameter) is required for low
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Figure 4.4: Mode-dependent Grüneisen parameters of (a) monolayer SnS2 and (b) monolayer
SnSe2

lattice thermal conductivity. Low Grüneisen parameter is reported for germanene, stanene, and
silicene, and high for monolayer WS2, MoS2, and MoSe2[35, 175].

Finally we calculate the Debye temperature (ΘD) that is defined as[178]:

1
Θ3

D
=

1
3

�
1

Θ3
ZA

+
1

Θ3
TA

+
1

Θ3
LA

�

where Θi = h̄ωmax
i /kB is the Debye temperature for each mode (i = ZA, TA, LA) and ωmax

i

is the maximum frequency of the ith mode. The Debye temperatures for SnX2 are listed in
Table 4.1, which are smaller than those of graphene, silicene, monolayer MoS2 and larger
than that of stanene[150, 160, 175]. Small Debye temperatures for SnS2 and SnSe2 mean
that many phonon modes are activated at room temperature, which leads to increasing phonon
population and phonon scattering rate[179] to reduce the lattice thermal conductivity.

4.3.3 Lattice thermal conductivity

Lattice thermal conductivity is calculated using both the iterative and single mode relaxation
time approximation (SMRTA) methods, as shown in Fig. 4.5. We find very low lattice thermal
conductivity for monolayer SnS2 (6.41 W/mK for the iterative method and 5.44 W/mK for
the SMRTA method) and SnSe2 (3.82 W/mK for the iterative method and 3.23 W/mK for
the SMRTA method) at room temperature. The difference in the lattice thermal conductivity
between the two methods for SnS2 is larger than SnSe2 because the SMRTA method is usually
a good approximation for low thermal conducting materials. In the SMTRA method, the
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individual phonon mode is excited and has no memory of the initial phonon distribution. This
approach only works when normal processes are dominated over the Umklapp processes. It is
not a good approximation for high thermal conducting materials such as graphene or GaN. The
iterative method solves the Boltzmann transport equation exactly and gives a fully converged
value of the lattice thermal conductivity. It is equally applicable for high and low lattice
thermal conducting materials[180]. Low lattice thermal conductivities of the monolayer SnX2

are due to their low phonon velocities, strong anharmonicity, and low Debye temperatures as
compared to other two-dimensional materials.

Contributions of acoustic and optical modes to the lattice thermal conductivity are tabu-
lated in the Table 4.1. The contributions from the ZA mode of SnX2 are smaller than that of
graphene, because graphene has the reflection symmetry which does not allow the ZA-mode
anharmonic phonons to scatter. Approximately 60% contribution to the lattice thermal con-
ductivity of monolayer SnX2 comes from the TA and LA modes (unlike graphene) because of
the strong anharmonic interactions. The contribution of SnX2 is compared with well-known
two-dimensional materials in Table 4.1.

The cumulative lattice thermal conductivity as a function of phonon mean free path (MFP,
Λ) is plotted in Fig. 4.6. The cumulative lattice thermal conductivity shows the dependence
of lattice thermal conductivity on the size of the sample and the lattice thermal conductiv-
ity reaches its saturation value when the size of the sample is equal to or larger than the for
maximal phonon MFPs (Λmax). It also gives information regarding which phonon (long MFP
or short MFP) contributes more to the lattice thermal conductivity. It is a very useful prop-
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Figure 4.6: The cumulative lattice thermal conductivity as a function of phonon MFP for (a)
monolayer SnS2 and (b) monolayer SnSe2 at room temperature

erty in order to get information about how nanostructuring can decrease the lattice thermal
conductivity[15, 181, 182]. Λ for monolayer SnS2 is 486.2 nm and 278 nm for monolayer
SnSe2. The values of Λmax of SnS2 and SnSe2 are very large, which means that nanostructur-
ing can be effectively modulated by the lattice thermal conductivity. In order to find an impor-
tant parameter for designing nanostructuring, called the representative phonon MFP (Λ0), the
data is fitted to a single parametric function[133, 149]:

κl(Λ ≤ Λmax) =
κmax

1+Λ0/Λ
,

where κmax is the maximal lattice thermal conductivity. The values of Λ0 for monolayers SnS2

and SnSe2 are 67.7 nm and 34.1 nm, respectively.

4.3.4 Carrier mobility

Since Bardeen and Shockley proposed deformation potential theory to evaluate the carriers
mobility[143], deformation potential theory has been extensively used to calculate the mobil-
ity of two-dimensional materials[183–186]. In this theory, the mobility of single layer material
µ2D is defined as

µ2D =
eh̄3C2D

kBT m∗mdE2
1
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where T is temperature, m∗ = h̄2(d2E
dk2 ) is the effective mass obtained from the curvature of the

band at the band edge whereas curvature (d2E
dk2 ) is calculated by least squares fit to a quadratic

function„ and md =
p

m∗
Γ−Mm∗

M−K is the average effective mass. C2D is the elastic constant
defined by C2D = [∂ 2E/∂δ 2]/A0, where E is the total energy after applying uniaxial strain
(δ = ∆l/l0) and A0 is the area at equilibrium. The deformation potential constant E1 is defined
as: E1 = ∆V/δ , where ∆V represents the shift in band edge (conduction band minima or
valence band maxima) by applying uniaxial strain δ .

The calculated electronic band structures for the monolayer SnS2 and SnSe2 are shown in
Figs. 4.7(a and b) with indirect band gaps of 2.38 and 1.39 eV, respectively. Band structure
and carrier mobility calculations are based on the HSE06 method, a more accurate but com-
putationally more expensive method. In both the monolayers, the conduction band maxima
(CBM) are located at the M point and the valence band minima (VBM) are located between
the Γ and M points. The VBM and CBM positions with respect to uniaxial strain are plotted
in Figs. 4.7(c and d). The deformation potential constants are obtained by linear fitting of
the CBM (for electrons) or VBM (for holes) versus the strain curve as listed in Table 4.2.
The effective masses of an electron and a hole listed in Table 4.2 are calculated by fitting the
bands near CBM and VBM to quadratic functions. Our effective mass values are consistent
with previously reported ones[187]. The effective masses of the holes in the monolayer SnX2

are heavier than those of electron due to the flatness of valence band. The small effective
masses of electron indicate that the electron mobility would be high. The elastic constants
(C2D) are calculated directly from the strain−stress relationship and the calculated values of
C2D for monolayer SnS2 and SnSe2 are 66.86 N/m and 56.32 N/m, respectively, and they are
consistent with previous studies[159, 188]. The monolayer SnS2 has higher elastic constants
compared to monolayer SnSe2 due to the stronger Sn-S bond than Sn-Se.

The electronic properties of the monolayer SnX2 are driven by carrier mobilities and
strongly held by their effective masses. The carrier mobilities are determined by applying stan-
dard two-dimensional model, the so-called acoustic phonon-limited mobility model in which
acoustic phonon scattering is the fundamental process[139, 140, 185]. The carrier mobility
and relaxation time (τ = µm∗/e ) for the electrons and holes of monolayer SnX2 are computed
on the basis of the calculated effective mass, elastic constant, and deformation potential con-
stant as listed in Table 4.2. Predicted carrier mobilities of electron and hole are highly asym-
metric: a high mobility of 756.60 cm2V−1s−1 for electrons and 187.44 cm2V−1s−1 for holes
in monolayer SnS2. The electron carrier mobilities of SnX2 are higher than those of monolay-
ers MoS2 (60.32 cm2V−1s−1) and Ti2CO2 (611 cm2V−1s−1) because of the lower effective
mass and lower deformation potential constant of monolayer SnX2 [139, 189]. It is lower than
that for monolayer SnSe (1200 cm2V−1s−1) and phosphorene (1100 cm2V−1s−1)[140, 185].
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Composition carrier m∗
Γ−M m∗

K−M md E1 (eV) µ (cm2V−1s−1) τ (fs)

SnS2
electron 0.73 0.30 0.46 -2.34 756.60 314.03

hole -2.12 -0.40 0.92 -1.97 186.44 225.93

SnSe2
electron 0.71 0.31 0.47 -2.79 462.61 186.74

hole -2.06 -0.39 0.89 -2.37 115.65 135.46

Table 4.2: Effective mass (m∗
Γ−M, m∗

K−M), average effective mass (md), in-plane stiffness
(C2D), deformation constant (E1), and mobility (µ) for hole and electron in single layer SnX2at
300 K. The unit of effective masses is me.

Such large electron carrier mobilities grant n-type electronic properties to monolayer SnX2

materials.

4.4 Summary

In conclusion, we have explored ultralow lattice thermal conductivity and high carrier mobil-
ity in monolayer SnS2 and SnSe2 using first principles calculations. In order to explain the
ultralow lattice thermal conductivities, we have calculated the phonon spectra, phonon group
velocities, Grün̈eisen parameters, and Debye temperatures. Monolayer SnSe2 has lower lat-
tice thermal conductivity than SnS2 due to its low phonon group velocity, heavy mass of Se,
strong anharmonicity, and low Debye temperature. The contribution of each vibrational mode
to the lattice thermal conductivity is calculated and the size dependence of the lattice thermal
conductivity is also discussed. The phonon MFPs for these materials are so large that phonon
transport properties can be changed more efficiently by nanostructuring. The electron and hole
mobility of monolayer SnSe2 is higher than that of monolayer SnS2 because of the low effec-
tive masses. The ultralow lattice thermal conductivity and high carrier mobility of monolayer
SnS2 and SnSe2 suggest that they are good candidates for thermoelectric applications.



Chapter 5

Phononic thermal transport in
two-dimensional indium chalcogenide
compounds (InX , X=S, Se, Te)

5.1 Introduction

Thermal transport is a critical and key parameter in the optoelectronic, modern electronics,
heat dissipation, and thermoelectric devices. In semiconductors and insulators, thermal trans-
port derives from the atomic vibrations called phonons[13, 62, 190]. Thermoelectric materials,
which convert the waste heat into useful electrical energy, are very promising to solve the en-
ergy and environmental crisis[103, 191]. The performance of thermoelectric devices measures
by a dimensionless figure of merit (ZT ), ZT = σS2T/(κe +κl), where σ , S, κe, κl , and T are
the electrical conductivity, Seebeck coefficient, electronic thermal conductivity, lattice ther-
mal conductivity, and temperature. The electronic transport properties σ , S, and κe are very
difficult to optimize because they are interrelated to each other. Thus, minimizing the lattice
thermal conductivity or search materials with low littice thermal conductivity is a suitable
option to improve the ZT . Slack et al. reported that low bonding interaction, high anhar-
monicity, high average atomic mass, low Debye temperature, and complex structure required
for the low lattice thermal conductivity[29]. High anharmonicity and low Debye temperature
increase the phonon scattering rates which lower the lattice thermal conductivity. High aver-
age atomic mass reduces the phonon vibration frequency, phonon group velocities and hence
lattice thermal conductivity.

Many studies have been done based on first principles and classical molecular dynam-
ics in search of the ideal two-dimensional thermoelectric material with a low lattice thermal
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conductivity[126, 149, 192]. Two-dimensional semiconductors such as silicene[22], borophene[193],
stanene[150], arsenene[194], phosphorene[149], and monolayers SnSe[126, 162], MoS2[40],
WSe2[164] extensively studied and explored low lattice thermal conductivity, but still, efforts
are needed to find materials, which show good electronic transport properties as well as low
lattice thermal conductivity. We cannot use graphene for thermoelectric applications because
of the high lattice thermal conductivity[16].

Two-dimensional indium chalcogenide compounds are polar materials due to the consid-
erable charge transfer between indium and chalcogen atoms which causes to the creation of
dipoles. A long-range electric field generates by the relative motion of these dipoles, which
produces interaction between the dipoles. This dipole-dipole interaction strongly affects the
frequencies of the optical branches and causes to splitting between the longitudinal optical
(LO) and transverse optical (TO) branches near the Γ-point. It has been shown both the-
oretically and experimentally that the long-range dipole-dipole interactions lead to LO-TO
splitting near the Γ-point in bulk InSe. We expect stronger dipole-dipole interaction in mono-
layer InX compared to their bulk counterpart because of their smaller dielectric permittivity.
Thus, the effect of dipole-dipole interaction on the phonon spectra and lattice thermal con-
ductivity would be meaningful to investigate. Secondly, it reported that monolayers InX have
low elastic moduli in comparison to other two-dimensional materials[195] and contains heavy
elements such as In, Te, and Se, and we expect low lattice conductivity. Wickramaratne et
al. have predicted excellent electronic thermoelectric properties for these monolayers[196] ,
but there is a lack of study about phononic thermal transport properties which motivates us to
study.

Here, we present a comprehensive investigation of the phonon transport properties and
intrinsic lattice thermal conductivities of the monolayers InX by solving the PBTE based on
first-principles calculations. The long-wavelength dispersion of longitudinal optical branch
and lattice thermal of these monolayers are strongly affected by the non-analytical correction
to the dynamical matrix, and it is found that the lattice thermal conductivity of monolayer
InS is increased 23.17%. Lattice thermal conductivity trend (κInS>κInSe>κInTe) is explained
with the help of the phonon spectra and its anharmonicities. . The predicted lattice thermal
conductivity value of the monolayer InTe is lower than silicene, phosphorene, monolayers
MoS2 and MoSe2. Furthermore, the contribution of each mode toward total lattice thermal
conductivity is extracted and we also discuss the dependence of the lattice thermal conductivity
on temperature and size.
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5.2 Methodology

The optimized lattice parameters and interatomic force constants (IFCs) are obtained by us-
ing plane augmented wave method[101] based on density functional theory calculations with
VASP[129]. We use generalized gradient approximation parameterized by the Perdew−Burke−Ernzerhof
(PBE)[93] as exchange-correlation potential with a plane wave energy cutoff of 500 eV. All
atoms in the unit cell are allowed to relax until the maximum force on each atom is smaller
than 10−4 eV/Å with a k-point mesh of 25×25×1. A vacuum thickness of 25 Å is used in
order to avoid interactions between the periodic images.

Harmonic force constants are determined using the finite displacement method as imple-
mented in the Phonopy package[134]. A 6×6×1 supercell is used for the calculations of
the phonon spectra, phonon group velocity, and harmonic constants. A 5×5×1 supercell is
employed for the anharmonic force constants including the fifth nearest neighbor interaction.
ShengBTE code[133] is used to calculate the lattice thermal conductivity with a q-point mesh
of 120×120×1.

5.3 Results and Discussions

5.3.1 Structure and phonon dispersion

Bulk indium chalcogenides exist in rhombohedral, tetragonal, cubic, orthorhombic, mono-
clinic, and hexagonal structures[197–199]. Here, we study only the energetically and dynami-
cally stable hexagonal monolayer of indium chalcogenides with space group P6̄m2 (187) with
four atoms in the primitive unit cell as shown in Fig. 5.1. The optimized lattice parameters
of monolayer InS, InSe, and InTe are a=b=3.919, 4.093, and 4.382 Å, respectively, and they
agree well with previous reports[200] (See Table 5.1). The vertical distance between two
chalcogen atoms (dX−X ) is used as a thickness in the lattice thermal conductivity calculation.

The phonon band structures are shown in Fig. 5.2. Two in-plane acoustic modes (longitudinal
acoustic (LA) and transverse acoustic (TA) modes) are linear near at the Γ-point, and one out-
of-plane acoustic mode (flexural acoustic (ZA) mode) has a quadratic nature near the Γ-point.
The quadratic nature of ZA mode is a common feature of the two-dimensional materials, and it
studied very well for graphene[13], hexagonal boron nitride[201], silicene[22], and monolayer
MoS2[202]. The ZA mode is critical in thermal transport because it contributes the major
part of the lattice thermal conductivity in graphene[13]. The absence of the imaginary line
in phonon band structures confirms the dynamical stability of these monolayers. The phonon
dispersions of these monolayers look similar, and the band gap between low-frequency optical
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(a)

(b)

dX-XdIn-In

d In
-X

Figure 5.1: Atomic crystal structure of monolayer InX (X=S,Se,Te) from (a) top and (b) side
views. The arrows indicate lattice vectors and the dash lines represent a unit cell. Blue and
brown spheres, respectively represent the In and X atoms. (c) The representation of optical
branches vibration in the long-wavelength limit.

Table 5.1: The calculated lattice constants (a), the distance between Indium atoms (dIn−In),
the distance between Indium and chalcogen atoms (dIn−X ), and the vertical distance between
chalcogen atoms of the monolayer InX . The values in parentheses are taken from ref.[200] .

Composition a (Å) dIn−In(Å) dIn−X (Å) dX−X (Å)

InS 3.919 (3.92) 2.827 (2.83) 2.551 5.182 (5.18)
InSe 4.093 (4.09) 2.816 (2.83) 2.689 5.385 (5.38)
InTe 4.382 (4.38) 2.823 (2.82) 2.884 5.596 (5.60)
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Table 5.2: The dielectric constants and Born effective charges of the monolayer InX .

Composition εxx=εyy εzz
In X

Z∗
xx = Z∗

yy(e) Z∗
zz(e) Z∗

xx = Z∗
yy(e) Z∗

zz(e)
InS 2.912 1.373 2.466 0.293 -2.466 -0.293
InSe 3.305 1.409 2.505 0.250 -2.505 -0.250
InTe 4.024 1.462 2.368 0.200 -2.368 -0.200

modes and high-frequency optical modes is 82.4, 41.3 and 27.8 cm−1 for the monolayer InS,
InSe, and InTe, respectively.

The non-analytical corrections are applied to the dynamical matrix by calculating the di-
electric constants and Born effective charges as summarized in Table 5.2, which split longitu-
dinal optical (LO) and transverse optical (TO) branches at the Γ-point in these monolayers as
shown in Fig.5.2. These LO-TO splitting are very strong and they are about ten times larger
than monolayer MoS2.The polarization density produced by the atomic displacement (ua

LO)
and the associated long-range electric fields are the responsible for the LO-TO splitting. The
polarization density (P) Fourier transform can be written as:

P(qp) =
e2

V ∑
a

Za.ua
LO, (5.1)

where e is the electron charge, qp is the in-plane phonon momentum, and Za is the Born
effective charges tensor associated with atom a. The polarization charge density (qp.P(qp)) is
zero for the TO branch because the direction of propagation and the polarization is orthogonal
to each other and the LO branch produces an electric field. The restoring force on the atoms
is increased due to the electric field, and additional energy is required for the displacement of
the LO branch with respect to the TO branch. The relationship between the frequency squares
of these branches can be expressed as:

ω2
LO = ω2

TO +Wc(qp)
e2|qp|2

V

�
∑
a

eqp .Za.ea
LO√

Ma

�2

, (5.2)

where Wc(qp) is the screened Coulomb interaction (which is inversely proportional to the
dielectric constant) and eqp = qp/|qp|. The LO-TO splitting depends on the screening and the
momentum direction (qp) along the Born effective charges. The large LO-TO splitting in the
monolayer InS, compare to monolayer InSe and InTe, is due to the small dielectric constant
which increases the screening potential.
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Figure 5.2: Phonon band structures of the monolayer (a) InS, (b) InSe, and (c) InTe along
high-symmetry points Γ-K-M-Γ. Solid lines represent the phonon spectra in which non-
analytical correction is included, and yellow dash lines represent the optical branches without
non-analytical corrections.

5.3.2 Lattice thermal conductivity

The lattice thermal conductivities as a function temperature are plotted for the InS, InSe, and
InTe monolayers in Fig. 5.3 (a). The lattice thermal conductivities decrease in the temperature
range from 100 K to 750 K, and they are fitted well with the κl ∼ 1/T relationship, which
demonstrates that the dominant three-phonon scattering processes in this temperature range
are the Umklapp process. The lattice thermal conductivities of the three monolayers are 56.45
W/mK (InS), 44.43 W/mK (InSe), and 33.05 W/mK (InTe) at room temperature. Our calcu-
lated value of lattice thermal conductivity for the monolayer InSe agrees well with the recently
reported value[203]. They possess low lattice thermal conductivity, especially for monolayer
InTe. The lattice thermal conductivity of InTe is lower as compared to a lot of other two-
dimensional materials, such as silicene[22], phosphorene[149], hexagonal boron nitride[50],
and monolayer MoS2[40]. The lattice thermal conductivities of the monolayers InX are higher
than monolayer SnSe[162], SnS[162], SnSe2[204], SnS2[204], and stanene[150]. The possi-
ble reasons of lower lattice conductivity in monolayer InTe are the small phonon band gap
between the optical modes because the small gap causes stronger scattering between the opti-
cal modes phonon and heavy mass of In and Te.

We have also computed the lattice thermal conductivities without the non-analytical cor-
rections as shown in Fig. 5.3 (b) to estimate the effect of LO-TO splitting and we found that the
lattice thermal conductivities are strongly affected by the dipole-dipole interactions. They are
decreased by 23.17%, 21.20%, and 12.62% for monolayer InS, InSe, and InTe, respectively.
The non-analytical corrections will shift the optical bands in a neighborhood of Γ-point, thus
changing the amount of phase space available for three-phonon scattering. The phase space
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Figure 5.3: Lattice thermal conductivities of the monolayer InS, InSe, and InTe as a func-
tion of temperature calculated using iterative solutions of the phonon Boltzmann transport
equation, lattice thermal conductivity (κl) with non-analytical corrections, and lattice thermal
conductivity (κ ′

l ) without non-analytical corrections. Solid lines are from the fitting of lattice
thermal conductivities to 1/T .

for these monolayers increases substantially when we remove the non-analytical corrections,
which explains the increase in thermal conductivities.

5.3.3 Debye temperature, phonon group velocity, Grüneisen parameter,
and phonon lifetime

The lattice thermal conductivities are changed drastically in the low-temperature range (100
K ∼ 300 K), and this change is partially attributed to the low Debye temperature (Θα

D) of
the acoustic phonon modes as given in Table 5.3. The Debye temperature corresponds to the
temperature at which a phonon mode starts to be excited, and it is defined as Θα

D =
hωα

m
kB

, where
α shows ZA, TA, and LA modes, and ωα

m is the maximum frequency of the corresponding
phonon mode. More phonon modes are activated in this temperature range, and the population
of phonons is increased. Enhancement in the phonon population leads to an increase in phonon
scattering rates and hence, the lattice thermal conductivity is dramatically decreased.

The contribution of the ZA, TA, LA, and optical branches to the lattice thermal conductiv-
ity at room temperature is calculated as given in Table 5.4. The main contributor to the lattice
thermal conductivity is the LA branch because of the large LA branch phonon group velocity
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Table 5.3: Debye temperature (Θα
D), representative mean free path (rMFP), specific heat (Cv),

lattice thermal conductivity (κl) with non-analytical corrections, and lattice thermal conduc-
tivity (κ ′

l ) without non-analytical corrections of the monolayer InS, InSe, and InTe.
Composition ΘZA

D (K) ΘTA
D (K) ΘLA

D (K) rMFP (nm) Cv (105J/Km3) κl(W/mK) κ ′
l (W/mK)

InS 74.79 95.57 135.73 535.16 4.64 57.09 43.86
InSe 65.34 75.64 111.96 774.07 4.40 44.43 35.01
InTe 52.89 55.28 90.03 350.75 3.89 33.05 28.88

Table 5.4: Percentage contribution of the ZA, TA, LA, and optical phonon branches to lattice
thermal conductivity at room temperature for the monolayer InS, InSe, and InTe.

Composition ZA (%) TA (%) LA (%) Optical (%)
InS 27.18 19.97 39.35 13.48
InSe 22.66 23.09 43.34 10.91
InTe 17.14 18.35 48.33 16.18

and long phonon lifetime. In the case of graphene, the main contributor is ZA branch where
ZA contributes by 76%[16]. In these monolayers, the acoustic branches are granted by ap-
proximately 85%, and optical branchs are contributed approximately 15%. Optical branches
contribute more significant as compared to graphene, stanene and monolayer MoS2.

The phonon properties are investigated to understand the underlying phenomena of lower
lattice thermal conductivity in these monolayers and the trend of lattice thermal conductivity
(InS > InSe > InTe ). The solution of the PBTE within single mode relaxation time approxima-
tion (SMRTA), the lattice thermal conductivity of a two-dimensional material can be written
as κxx

l = 1
2 ∑α Cv,αvα

x .(v
α
x +∆α

x )τα , where Cv,α is the specific heat. The phonon heat capacities
for the monolayers InX are calculated using the relation: Cv,α = kB

V N ∑α(
h̄ωα
kBT )

2n0
α(n

0
α +1) and

the values are given in Table 5.3. The specific heat of the monolayer InTe is lower than those
of the monolayers InS and InSe. The lower specific heat of the monolayer InTe is due to low
vibrational frequency, and it is partially responsible for lower lattice thermal conductivity of
InTe among monolayers InX .

Phonon group velocity is an important factor that affects the lattice thermal conductivity.
Phonon group velocities of monolayer InX are calculated along the Γ-M, and Γ-K directions
as shown in Fig. 5.4 and they are determined from the slope of the phonon dispersion. Phonon
group velocities of the monolayer InTe are found lower as compared to the monolayer InS
and InSe and the acoustic phonon group velocities for monolayer InTe at the Γ-point are 1793
m/s and 2747 m/s for TA, and LA branches, respectively. The group velocities of the optical
modes are very low as compared to the acoustic branches, and this low group velocities of the
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Figure 5.4: Branch-dependent phonon group velocities with non–analytical corrections in
monolayer (a,d) InS, (b,e) InSe and (c,f) InTe along the Γ-K and Γ-M directions, respectively.

optical branches cause lower contribution to lattice thermal conductivity.

The phonon lifetimes are extracted for each phonon mode in order to get more physical
insight as shown in Fig. 5.5. The phonon-phonon scattering rates are dominated by isotopic
and boundary scattering rates in the finite sample. In the monolayer InS, ZA mode is con-
tributed 27.40% to the lattice thermal conductivity (larger than LA, TA and optical modes)
because of longer phonon lifetime. However, LA mode is contributed more considerable in
the monolayer InSe and InTe due to longer phonon lifetimes and large group velocity. The op-
tical phonon lifetimes are very short that why they contribute very little to the lattice thermal
conductivity.

Grüneisen parameter measures the anharmonicity in the chemical bonding, which drives
the normal and umklapp phonon-phonon scattering processes. It is calculated from the change
in phonon frequency with respect to change in lattice constant, and it can be expressed as:

γα =− a0

ωα

∂ωα
∂a

where γα is the Grüneisen parameter of the α branch and a0 is the equilibrium lattice constant.
The Grüneisen parameter for each phonon branch is computed as shown in Fig. 5.5 (a-c) to
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Figure 5.5: Mode dependent Grüneisen parameters and phonon lifetimes at room temperature
as a function of frequency for the monolayer InS (a,d), InSe (b,e), and InTe (c,f), respectively.

clarify the origin of low lattice thermal conductivities in these monolayers. The Grüneisen
parameters are anomalously large for these monolayer InX , which lead to the low lattice ther-
mal conductivity. Large Grüneisen parameters are the consequence of weak bonding in these
monolayers. Strong anharmonicity leads to short phonon lifetime because phonon-phonon
scattering rates also depend on anharmonicity of the material.

5.3.4 Size-dependent lattice thermal conductivity

The effect of size on the lattice thermal conductivity is significant in the nanoscale devices
because when the sample size decreases from maximal phonon mean free path (MFP), the
phonon-boundary scattering is increased and thus lattice thermal conductivity is decreased.
To investigate the size-dependence, the cumulative lattice thermal conductivity as a function
of phonon MFP is calculated as illustrated in Fig. 5.6 for the monolayer InX . The cumula-
tive lattice thermal conductivity increases as phonon MFP increases and saturates at maximal
phonon MFP . The maximal phonon MFP values for the monolayer InS, InSe and InTe, are
61.35 µm, 35.11 µm, and 29.15 µm, respectively. The cumulative lattice thermal conductivity
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is fitted to a uniparametric function in Eq. 5.3 to evaluate the representative mean free path
(rMPF, L0) and the fitted curves are shown in Fig.5.6. The uniparametric function is given as

κl(L) =
κmax

l

1+ L0
L

(5.3)

where κl is the cumulative lattice thermal conductivity, and κmax
l is the maximal lattice thermal

conductivity. The rMFP values are tabulated in Table 5.3, which are larger than those of phos-
phorene, monolayer SnS2 and SnSe2, and smaller than that of stanene[150, 204]. The rMFP
is very important in the designing of nanostructure because the phonon-boundary scattering
dominates over the three-phonon scattering when the size of the sample below rMFP.

5.4 Summary

In conclusions, phonon thermal transport properties, and temperature- and size-dependent lat-
tice thermal conductivities of the monolayer InX investigated by employing first-principles
calculations coupled with an iterative solution of the phonon Boltzmann transport equation
The lattice thermal conductivity of these monolayers decreased with increasing temperature
and perfectly follows the relation κl ∼ 1/T The predicted values of the lattice thermal con-
ductivity at room temperature are low as compared to lots of other two-dimensional materials.
The low lattice thermal conductivities originated from the strong anharmonicity, low phonon
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group velocity, low Debye temperature, and short phonon lifetimes. The lattice thermal con-
ductivity can be effectively reduced by nanostructuring due to the large phonon MFP. Our
work proposes that these materials can be considered for thermoelectric applications.



Chapter 6

Strain engineering of phonon thermal
transport properties in monolayer
2H-MoTe2

6.1 Introduction

The evolution of the two-dimensional transition metal dichalcogenides (TMDs) as a new class
of materials, offers unique electronic, optical, mechanical, and thermal properties[205, 206].
Two-dimensional TMDs are bringing numerous applications in next-generation energy stor-
age, optoelectronic, nanoelectronic, and thermoelectric devices[159, 161, 206–208]. TMDs
have the chemical formula MX2, where M is a transition metal and X stands for a chalcogen
atom[209, 210]. Since bulk TMDs form layered structures and the interlayers are bonded
weakly under van der Waals interactions, each layer of TMDs can be easily exfoliated[211,
212]. Most of monolayer TMDs exist in the H phase (trigonally coordinated) or the T phase
(octahedrally coordinated) while a very few of them exist in the both H and T phases[206].
Monolayer MoTe2 has gained much attention and been explored due to its unique properties
such as the strong binding energy, the direct band gap (1.1 eV), and the strong spin-orbit
coupling, and it has been comprehensively studied for valleytronics and exciton and trion
effects[213–216].

In semiconductors and insulators, heat is carried by phonons while electrons contribute
very little even at low temperature. Therefore, lattice thermal conductivity is commonly used
to analyze thermal transport phenomena in materials. Low lattice thermal conductivity is re-
quired for the thermoelectric [118, 217] and thermal rectification[218] applications. Many
two-dimensional materials such as monolayers of SnSe, SnS, GeSe, GeS, SnSe2, SnS2, phos-
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phorene, and stanene show very low lattice thermal conductivities[28, 126, 149, 162, 204].
Highly thermal conducting materials are used in the power sources and transistors to dissi-
pate waste heat efficiently[219]. Graphene, hexagonal boron nitride (h-BN), and pentago-
nal monolayers such as penta-Gr, penta-SiC2 and penta-SiN2 are highly thermal conducting
materials[28, 50, 52]. Phonon thermal tranport properties of monolayer 2H-MoTe2 are not yet
studied and we expect low lattice thermal conductivity due to the heavy atomic masses of Mo
and Te.

Strain is a very useful and effective tool to enhance the performance of the semiconduct-
ing devices. It can tune electronic, optical, and thermoelectric properties. However, the ef-
fect of tensile strain on the phonon thermal transport of two-dimensional materials is unpre-
dictable because the flexural or out-of-plane acoustic (ZA) mode becomes harder and the trans-
verse acoustic (TA) and longitudinal acoustic (LA) modes become softened. The lattice ther-
mal conductivities of graphene[49], h-BN[50], silicene[22], antimonene[51], germanene[23],
stanene[23], monolayer penta-SiC2[52], and multilayer graphene[53] are increased under ten-
sile strain and the enhancement in the lattice thermal conductivities are attributed to the anoma-
lous behavior of the ZA mode and the increase in lifetime of the ZA mode phonons under ten-
sile strain. While the lattice thermal conductivities for monolayer MoS2[54] and penta-Gr[52]
are decreased. We have choosen monolayer MoTe2 (a widely used material in the nanoscale
devices) to study the phonon thermal transport properties for two reasons: (1) MoTe2 has a
band gap around 1.1 eV and we expect low lattice thermal conductivity to use it for thermo-
electric applications. (2) Since nanoscale devices are usually under strain and heat conduction
is sensitively affected by strain, it is important to study strain-dependent thermal transport.

In this work, density functional theory (DFT) combined with the Boltzmann transport
equation (BTE) is used to calculate the phonon transport properties and lattice thermal con-
ductivities of the unstrained and strained monolayer 2H-MoTe2. By applying the biaxial ten-
sile strain, the LA and TA modes are softened, which decreases phonon group velocity. The
phonon lifetime reduces under the tensile strain due to the increase in the phonon-phonon
scattering rate. The role of strain on Grüneisen parameter and heat capacity is also discussed.
Since the decrease in phonon group velocity and phonon lifetime makes the lattice thermal
conductivity decreased significantly, the tensile-strained monolayer 2H-MoTe2 can be a good
candidate for thermoelectric applications.

6.2 Methodology

Harmonic (second order) and anharmonic (third order) interatomic force constants are needed
for calculating the lattice thermal conductivity and they are computed using the finite displace-
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Figure 6.1: (a) Top view and (b) side view of the 2H-MoTe2 monolayer structure, Mo and
Te atoms are represented by grey and skyblue spheres, respectively. The arrows indicates
stretching of the monolayer.

ment method with the total energy calculations[135, 220]. All the total energy calculations
were carried with the density functional theory (DFT) calculations using the VASP[129]. The
projector augmented wave method[101] and the generalized gradient approximation within the
Perdew-Burke-Ernzerhof [93] exchange correlation functional were used with a plane-wave
energy cutoff of 500 eV. For geometry optimization, the electronic stopping criterion was set
to 10−8 eV with a 25×25×1 k-mesh and all atoms in a unit cell were relaxed until Hellmann-
Feynman forces were less than 0.001 eV/Å. A 7×7×1 supercell was used to calculate the
harmonic force constants and a 5×5×1 supercell was used to calculate the anharmonic force
constants and up to the 10th nearest neighbors were included. The Phonopy code[134] was
used to compute harmonic force constants and phonon transport properties and the ShengBTE
code[133] was used to compute the lattice thermal conductivities. A q-point grid of 90×90×1
was considered for the lattice thermal conductivity calculations.

6.3 Results and discussions

6.3.1 Role of tensile strain on the lattice thermal conductivity

Fig. 6.1 shows the top and side views of the relaxed monolayer 2H-MoTe2 with a lattice
constant of 3.55 Å in P3m1(156) space group and it is well agree with previous reports[221,
222]. Mo is sandwiched between two Te layers to form a trigonal prismatic 2H-MoTe2. The
vertical distance between two Te layers and the Mo-Te bond length are 3.61 Å and 2.53 Å,
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Figure 6.2: (a) Lattice thermal conductivity of monolayer 2H-MoTe2 as a function of temper-
ature, (b) total lattice thermal conductivity, contribution of the ZA and TA/LA modes to the
lattice thermal conductivity at 300 K as a function of tensile strain.

respectively.

The temperature- and strain-dependent lattice thermal conductivities for the monolayer
2H-MoTe2 are calculated based on the iterative solution of the phonon Boltzmann transport
equation, as shown in Fig. 6.2. The thermal conductivity of the stable monolayer decreases
with increasing temperature due to the increase in phonon-phonon scattering rate, as shown in
Fig. 6.2(a). The room-temperature (300 K) thermal conductivity is 42.2 nW/K in monolayer
2H-MoTe2, which is lower than graphene[28], monolayer MoS2[34] and larger than mono-
layer SnSe[162], SnS[162] and stanene[28]. We fit the lattice thermal conductivity to the
inverse of the temperature, i. e. κxx′

l ∼ 1/T . The solid line in Fig. 6.2(a) fits the data and it
perfectly coincides with the calculated thermal conductivity.

The lattice thermal conductivities under different biaxial tensile strains are shown in Fig.
6.2(b) at 300 K. The lattice thermal conductivity at the 8% strain is decreased to 17.07 nW/K,
and it is almost 2.5 times smaller than that of the unstrained 2H-MoTe2. Similar trend is found
in penta-Gr[52] and monolayer MoS2[54]. However, in the case of graphene[49], silicene[22],
stanene[23], and germanene[23], the lattice thermal conductivities are increased by increasing
tensile strain because the buckled structure of silicene, stanene, and germanene become more
planar under tensile strain, which leads to reflectional symmetry, and the scattering of the LA
mode phonons and TA mode phonons with ZA mode phonons are reduced which increase
the ZA mode phonons lifetime[190]. In the case of monolayer MoTe2, there is no reflection
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symmetry before and after applying strain. The phonon scattering rates are increased under
tensile strain which decreases the lattice thermal conductivity. The reduction in the lattice
thermal conductivity is due to the decrease in the phonon group velocity, the phonon heat
capacity, and the phonon lifetime and the increase in the Grüneisen parameter as discussed in
the following sections.

Next, we analyze the contribution of each mode to the lattice thermal conductivity and
how these contributions are changed with tensile strain as presented in Fig. 6.2(b). For the
unstrained case, the 69.2% of the contribution to the total lattice thermal conductivity comes
from the ZA mode and 29.9% from the TA/LA modes. The contribution from optical modes
are negligible because of the low phonon group velocity and the high phonon-phonon scatter-
ing rate. As the tensile strain increases, the contribution from the ZA mode decreases because
this mode becomes harder under tensile strain, which decreases the phonon group velocity and
phonon lifetime. The contribution from the TA/LA modes becomes larger due the softening
of these modes. At the 8% strain, the contribution from the ZA mode reduces to 41.6% and
the contribution from the LA/TA modes increases to 56.1%.

6.3.2 Phonon dispersion and Raman shift under tensile strain

Phonon dispersion is very important in order to investigate the lattice thermal conductivity.
The phonon dispersions are shown in Fig. 6.3 for unstrained monolayer 2H-MoTe2 and for dif-
ferent biaxial tensile strains. There is no imaginary line in phonon dispersion, and it confirms
that monolayer MoTe2 is thermally stable. The phonon dispersion curve for the unstrained
case is consistent with the previously reported first principles calculations[222]. By increas-
ing the tensile strain to 8%, the out-of-plane acoustic mode, the so-called flexural acoustic
(ZA) mode, is stiffened, and the quadratic nature of the ZA mode near the Γ point turns into
a straight line as shown Fig. 6.3(f). The quadratic nature of the ZA mode is due to rotational
symmetry, and the rotational symmetry is broken and hence quadraticity of the ZA mode dis-
appears when the tensile strain is applied. However, the in-plane acoustic modes (the LA and
TA modes) become softened and the frequencies in phonon spectra are shifted downward un-
der tensile strain because atoms are further away and interact less strongly (and the second
derivatives of the interaction also become lower). Less stiff bonds lead to lower frequencies.
The gap between the acoustic modes and optical modes becomes smaller by increasing the
tensile strain due to the red-shift in frequencies of spectra. Since the acoustic modes and the
optical modes are coupled with each other at the 8% tensile strain, this coupling may reduce
the lattice thermal conductivity due to the increased acoustic-optical phonon scattering.

A theoretical investigation of the phonon dispersion at the Γ−point is also performed in
order to find the position of the peaks in the Raman/infrared spectra. Monolayer 2H-MoTe2
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Figure 6.4: (a) Prominent peaks E’ and A′
1 in the Raman spectra under biaxial tensile strain

and (b) schematic representation of the Raman/Infrared active modes A′′
2(I), E ′(I+R), A′

1(R),
and E ′′(R) of the monolayer 2H-MoTe2.

has D3h symmetry and their phonons irreducible representation can be defined as[223]:

Γ ≡ 2A′′
2(I)⊗A′

1(R)⊗2E ′(I +R)⊗E ′′(R)

where A′′
2(I) is the infrared active mode, E ′(I + R) is the both Raman and infrared active

modes and A′
1(R) and E ′′(R) are Raman active modes. The predicted values for the A′′

2(I),
E ′(I +R), A′

1(R) and E ′′(R) are 286.02 cm−1, 231.09 cm−1, 170.25 cm−1 and 114.78 cm−1

which well agree with recently reported experimental results[224]. The E ′(I +R) and A′(R)
are the prominent peaks in the Raman spectra and the these peaks are red-shifted linearly
under biaxial tensile strain as shown Fig. 6.4.

6.3.3 Effect of strain on phonon group velocity, phonon heat capacity,
and Grüneisen parameter

To understand the underlying mechanism of strain-dependent lattice thermal conductivity we
analyzed the the phonon group velocity, the phonon heat capacity, and the Grüneisen param-
eter. Strain-dependent phonon group velocities are shown in Fig. 6.5: the ZA-mode phonon
group velocity at the Γ point is increased from 0.47 km/s to 1.58 km/s by applying tensile



88 Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe2

0

1

2

3

4

0 20 40 60 80

(a)

ZA

G
ro

u
p

 v
el

o
ci

ty
 (

k
m

/s
)

Frequency (cm
-1

)

0 20 40 60 80 100

(b) 

TA

Frequency (cm
-1

)

0 20 40 60 80 100

(c) 

LA

Frequency (cm
-1

)

100 150 200 250

(d) 
Optical

Frequency (cm
-1

)

unstrained
2% strain
4% strain
6% strain
8% strain

Figure 6.5: (a) Phonon group velocities of the monolayer 2H-MoTe2 (a) ZA mode, (b) TA
mode, (c) LA mode, and (d) optical modes under different tensile strains.

strains from 0% to 8% due to linear dispersion at the Γ point and the major part of the ZA-
mode phonon group velocities are decreased under tensile strains as shown in Fig. 6.5(a).
The phonon group velocities of the in-plane acoustic (LA and TA) modes are reduced with in-
creasing tensile strain. The largest phonon group velocity at the Γ point of the TA/LA modes
is decreased from 2.5/4.0 km/s to 1.99/3.12 km/s at the tensile strain of 8% because these
modes become softened. One of the possible causes in reduction of the lattice thermal con-
ductivity with tensile strain is the decrease in phonon group velocities of the acoustic modes.
The velocities of optical modes are increased with increasing strain but the effect is very small
because optical modes contribute very little to the lattice thermal conductivity.

Phonon heat capacity (Cph) is studied under different tensile strains as shown in Fig. 6.6.
For the unstrained case, the value of Cph is 4.33×105 J/Km3 and it is reduced to 3.79×105

J/Km3 for the 8% tensile-strained case due to the decrease in the phonon density of states
from linearization and stiffening of the ZA mode. It is one of the reasons why the lattice
thermal conductivity is reduced under tensile strain.

The Grüneisen parameter measures the anharmonicity of a system presented in Fig. 6.6,
and according to Slack’s theory, it is inversely related to the lattice thermal conductivity. The
Grüneisen parameter is increased from 0.77 to 1.35 at 8% tensile strain. The increase in the
Grüneisen parameter reduces the lattice thermal conductivity.

6.3.4 Strain-dependent phonon lifetime

The phonon lifetime as a function of frequency and strain is plotted in Fig. 6.7. The phonon
lifetime is larger at the low frequency limit (acoustic modes) due to the low phonon-phonon
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Figure 6.6: Phonon heat capacity (Cph) and Grüneisen parameter as a function of strain at
room temperature.

scattering rate. Thus, acoustic modes can transport nearly all heat in monolayer 2H-MoTe2.
The phonon lifetime is decreased under tensile strain, specially at low frequency because of
the softening of the TA/LA modes, which increases phonon density of states and consequently
gives rise to high scattering rate for the TA/LA phonons. Since the main contributors to the
lattice thermal conductivity are the TA/LA modes at the 8% strain, the reduction in the phonon
lifetime of these modes can be one of the possible causes for the reduction of the lattice thermal
conductivity. Similar mechanisms are found in MoS2[54] and ZrS2[142] monolayers, where
the phonon lifetime is decreased under tensile strain, while it is found that phonon lifetimes
are increased under tensile strain in silicene[22], stanene[23], and germanene[23].

6.3.5 Effect of strain on phonon mean free path

The cumulative lattice thermal conductivity is presented in Fig. 6.8 as a function of phonon
mean free path (MFP) under different tensile strains at room temperature. It characterizes how
phonons with different MFPs are contributed to the total lattice thermal conductivity. Large
MFP phonons contribute a significant amount to the cumulative lattice thermal conductivity at
zero strain. As the tensile strain increases, the shorter MFP phonons are dominated. Further-
more, we fit our data to a parametric function to find the characteristic phonon MFP, which is
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a very important parameter in nanostructuring. The function is given by:

κl(lMFP) =
κmax

1+ l0/lMFP

where κmax, l0, and lMFP are maximal lattice thermal conductivity, characteristic phonon MFP
and phonon MFP, respectively. The calculated values of the l0 at 0%, 2%, 6%, and 8% strains
are 1054.22 nm, 651.36 nm, 296.25 nm, 244.31 nm and 219.39 nm, respectively. Character-
istic phonon MFP (l0) is very important parameter for experimentalist in the designing of the
nanoscale devices.

6.4 Summary

In conclusion, strain-dependent thermal transport properties of the monolayer 2H-MoTe2 were
comprehensively investigated. We found that the lattice thermal conductivities were reduced
approximately three times at the 8% tensile strain for 2H-MoTe2 contrary to graphene, sil-
icene, germanene, and penta-SiC2. The reduction in lattice thermal conductivity under the
biaxial tensile strain is due to the reduction in the phonon group velocity, the phonon heat
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capacity, and the phonon scattering time. The mode-contribution to the thermal conductiv-
ity was also evaluated. The ZA mode is the main contributor for the unstrained case, but the
TA/LA modes are more significant for the 8% strain case. The lattice thermal conductivity as a
function of MFP was analyzed under different tensile strains. Strained monolayer 2H-MoTe2

may be more appropriate for thermoelectric applications due to the lower thermal conductiv-
ity. Our findings provide basic understanding of thermal transport in monolayer 2H-MoTe2

for future applications.





Chapter 7

Superior and anisotropic thermal
transport in the hybridized monolayer
(BC2N) of boron nitride and graphene

7.1 Introduction

Efficient heat dissipation is highly demanded continuing development in the nanoscale elec-
tronic industry, and extensive research is undergone to increased levels of dissipated power[59,
225, 226]. A material with high thermal conductivity has become very important for the de-
sign of the next generation nano-electronic devices[225, 226]. The performance and lifetime
of large-scale integrated circuits can be increased by enhanced heat dissipation. Thus, high
thermal conductivity is a crucial factor in the performance of some electronic devices, espe-
cially power electronics[59, 227]. However, low thermal conductivity and high electrical con-
ductivity are needed for the thermoelectric applications[23, 108, 162, 228]. The heat transport
in bulk materials is reduced when they are set-up on a nanoscale due to the increased in phonon
scattering with boundary. However, theoretical studies showed that anomalously large thermal
conductivity is possible in one-dimensional and two-dimensional materials[229, 230].

The thermal interface material (TIM) is the critical part of power generation technologies,
photovoltaic solar cell, and electronics used in communications and information processing[231,
232]. TIM is inserted between the heat source and heat sink to fill the space produced by the
imperfect surface finish. A solar cell converts 15% absorbed light into electrical energy and
70% into heat. Efficient heat dissipation is required to prevent solar cell from damage and
degradation of the performance.

Several theoretical methods are developed to determine the accurate value of the lattice
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thermal conductivity, such as classical molecular dynamics (MD)[233] and iterative or sin-
gle mode relaxation time approximation (SMRTA) solution of Boltzmann transport equation
based on first principles[133]. Classical MD is an efficient method to determine lattice thermal
conductivity but not rigorous due to the improper parameter in interatomic potential. While
the first-principles calculation is fascinating due to the parameter-free procedure to predict the
thermal conductivity of materials of interest and yields very accurate results in good agreement
with experimental observation.

Many efforts have been devoted to searching ideal two-dimensional materials which have a
suitable bandgap and high lattice thermal conductivity[28, 78, 201, 234–238]. As for graphene
and hexagonal boron nitride (h-BN), both materials have some advantages and some deficien-
cies e. g. graphene has very high carrier mobility, but it is not suitable for many practical
applications (such as field effect transistor) due to zero bandgap, and h-BN has wide bandgap
but low carrier mobility due to the flat band structure at Fermi level. Recently, monolayer
BC2N (the hybrid of graphene and h-BN) has gained considerable attention due to its ideal
electronic properties, such as direct bandgap of 1.6 eV and high carrier mobility[239, 240].
Liu et. al. predicted the energetically stable model among several possible models[241], and
it is composed of the B-N and C-C zigzag chains as shown in Fig. 7.1. Monolayer BC2N
on the Ir(111) surface is epitaxially grown under very high vacuum[242]. Recently, Lin et
al studied thermal transport properties in the monolayer BC2N using classical MD[243] but
due to imprecise results of the classical MD motivate us to study thermal transport in the
hybrid monolayer using first-principles calculations, and we expect very high lattice thermal
conductivity due to strong C-C bonding and light masses of the boron, carbon, and nitrogen
atoms.

In this paper, we systematically investigate the thermal transport properties of the mono-
layer BC2N by solving the PBTE iteratively based on first-principles calculations. We find a
very high and anisotropic lattice thermal conductivity. The lattice thermal conductivity along
the zigzag direction is very high as compared to armchair direction due to the strong C-C
bonding along the zigzag direction. To explain ultra-high lattice thermal conductivity of the
monolayer BC2N, we calculate the phonon dispersion, phonon lifetimes and phonon group
velocities. We also calculate the electronic thermal transport properties and found a very high
value at room temperature. Due to the high thermal conductivity, monolayer BC2N will be
a promising material for thermal management and heat dissipation in the nano-electronic de-
vices.
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Figure 7.1: Crystal structure of the monolayer BC2N (a) top view (b) side view. The golden,
white and green spheres represent carbon, nitrogen, and boron atoms, respectively, and The
arrows indicate armchair and zigzag directions (c) electron localization function of the mono-
layer BC2N starts from 0 (blue) to 1 (red).

7.2 Methodology

All first-principles calculations are performed using the projector augmented wave method[101]
as implemented in VASP[129] coupled with generalized gradient approximation electron-
electron interaction defined as Perdew-Burke-Ernzerhof exchange-correlation functional[95].
The geometry of the system is optimized until Hellmann-Feynman force is converged to 10−4

eV/A and energy difference is converged to 10−6 eV. Kinetic energy cutoff of 600 eV is used
with a 15×15×1 k-points mesh, and a vacuum space of 40 Å along z-direction is taken to
avoid interaction with other neighboring layers. Band structure calculation is based on the
Heyd-Scuseria-Ernzerhof hybrid functional.

Harmonic and anharmonic interatomic force constants are needed for the calculation of
lattice thermal conductivity and they are obtained from the first principles using the phonopy
code[134] with supercell size of 6×6×1 and the thirdorder.py script[40] with supercell size of
5×5×1 supercells, respectively.

The electron Boltzmann transport equation is solved under relaxation time approximation
(RTA), as implemented in Boltztrap code[130], is used to calculate the electrical conductivity
(σ ) and Seebeck coefficient (S) and can be expressed as:

σαβ (T,µ)
τ

=
1
V

Z
e2vα (⃗k)vβ (⃗k)[

∂ fµ(T,ε)
∂ε

]dε
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and

Sαβ (T,µ) =
1

eT

R
vα (⃗k)vβ (⃗k)(ε −µ)[∂ fµ (T,ε)

∂ε ]dε
R

vα (⃗k)vβ (⃗k)[∂ fµ (T,ε)
∂ε ]dε

where µ is the chemical potential, vα (⃗k) = 1
h̄∇⃗k,αε⃗k is the electron group velocity, and

fµ(T,ε) is the Fermi-Dirac distribution function. The electronic thermal conductivity (κe)
is obtained from the electrical conductivity using the Wiedemann-Franz law. To ensure the
accuracy of electronic transport properties, we used a very dense k-mesh of 70×70×1 in the
energy calculations.

7.3 Results and Discussions

7.3.1 Geometry optimization, electron charge density, and band struc-
ture

Monolayer BC2N possesses Pmm2 symmetry (C1
2v, 25) as shown in Fig.7.1(a) and it is a

hybrid monolayer of the graphene and h-BN. Lattice constants of the orthorhombic unit cell
along the armchair and zigzag directions are 4.36Å and 2.48Å, respectively. The unit cell
of the monolayer BC2N composed of two carbon (C) atoms, one boron (B) atom and one
nitrogen (N) atom and bond lengths of the C-C, C-N, C-B, and B-N are 1.42Å, 1.39Å, and
1.53Å and 1.44Å, respectively, well agreed with previous results[243]. The charge density of
the optimized 2x3 unit cell is illustrated in Fig. 7.1 (c) and due to the lone pair of N atom,
electron charge density is higher at N site which makes a stronger bond between C and N
atoms. We found an anisotropic bonding behavior along zigzag and armchair directions, the
bonding along the zigzag direction is stronger than armchair because of the strong covalent
bonding (C-C chain). Although, the C-N bonding is stronger but there no chain along the
armchair direction. The strong bonding between C and N is verified by higher Young modulus
along the zigzag direction (315.62 Nm−1) than armchair direction (304.67 Nm−1). The Young
modulus is calculated from the elastic stiffness constants of C11 =302.97 Nm−1, C22 =312.22
Nm−1, and C12=58.29 Nm−1.

Normal density functional theory calculation is not a good way to obtain the band structure
because it underestimates the bandgap as compared to the experimental bandgap value. Band
structure is calculated using the HSE06 hybrid functional as shown in Fig. 7.2(a) in which
the horizontal dotted line represents the Fermi level. We have found that monolayer BC2N is
a semiconductor with a direct bandgap of 2.165 eV at the S symmetric point. This value is
very close to the experimentally observed bandgap (2.0 eV)[244]. The valence band and the
conduction band along the S-Y are very flat, and we expect substantial Seebeck coefficient
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Figure 7.2: Electronic band structure of the monolayer BC2N calculated using the HSE06
method. The black lines in the band structure represent the valence band and conduction
band.

because the effective mass will very large along this direction.

7.3.2 Total and mode-dependent lattice thermal conductivity

The intrinsic lattice thermal conductivity (κl) as a function of temperature is calculated for
the monolayer BC2N, as shown in Fig. 3, and it is based on harmonic and anharmonic IFC’s
obtained from the first principles calculations. The predicted values of the κl at room tempera-
ture are 893.90 W/mK and 1275.79 W/mK along armchair and zigzag directions, respectively,
which is largest among the semiconducting two-dimensional materials such as silicene[21],
phosphorene[149], anitmonene, and monolayer SnSe2[204], MoS2[34], SnSe[126, 162], MoTe2[245].
The superior lattice thermal conductivity is attributed to large phonon group velocity, long
phonon lifetime, strong bonding and reflection symmetry in the monolayer BC2N (similar to
graphene)[190]. The κl along the armchair and zigzag directions is highly anisotropic and
the ratio of κarmchair

l to κzigzag
l is 1.43. The strong anisotropy is associated with anisotropic

bonding in BC2N monolayer because bonding has a direct relation to the κl in the Slack’s ex-
pression and anisotropic phonon dispersion along Γ-X and Γ-Y directions. The κl decreases
with temperature ascending and perfectly follows the relation κl ∝ 1/T . The decrease in the
κl is originated from the increase in phonon-phonon scattering at high temperature, and it is a
common phenomenon in two-dimension crystalline materials except for monolayer GaN and
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Figure 7.3: (a) Lattice thermal conductivity (κl) and contribution of ZA, TA, LA, and optical
modes to the lattice thermal along the armchair (a) and zigzag (b) directions as a function of
the temperature of the monolayer BC2N.

ZnO[192, 246], in which the κl is dependent anomalously on temperature.
The mode-dependent contribution to the total κl along the armchair and zigzag directions

are shown in Fig. 7.3 for the monolayer BC2N. The acoustic phonon modes are the main con-
tributor to the total κl in both directions, and ZA, TA and LA modes are contributed 71.22%,
14.93%, and 7.92% along the armchair direction and 81.63%, 12.86%, and 3.99% along the
zigzag direction, respectively. A similar trend is found in graphene and h-BN. The large con-
tribution of ZA mode is related to reflection symmetry which prevents scattering ZA mode
phonons with other modes phonons. Thus, ZA mode phonons have the long lifetime, which is
caused to the high lattice thermal conductivity.

7.3.3 Phonon dispersion and group velocity

Phonon band structure is obtained along the high symmetric path Γ-X-S-Y-Γ, as shown in Fig.
7.4 (a) and there is no imaginary line in the phonon band structure which confirmed the ther-
modynamic stability of the monolayer BC2N. There are twelve branches in phonon dispersion
corresponding to four atoms in the primitive cell. The lowest-three phonon branches at the Γ-
point are the acoustic branches labeled in Fig. 7.4 as ZA (out-of-plane flexural acoustic), TA
(in-plane transverse acoustic), and LA (in-plane longitudinal acoustic). The TA/LA modes are
linear at the Γ-point similar to the bulk case, and the ZA branch has quadratic nature near the
Γ-point due to the rotational symmetry, which is similar to the other two-dimensional material
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such as graphene, h-BN, and silicence. This branch is essential to analyzed lattice thermal
conductivity in two-dimensional materials. The gap between ZA branch and TA/LA branches
along the Γ -Y direction is larger than gap along the Γ -X direction, which prevents scattering
of ZA phonons with TA/LA phonons and enhance the lattice thermal conductivity along that
direction. The highest frequency is located along the Γ -Y direction of 47.19 THz, which is
slightly lower than graphene.

Phonon group velocities and phonon lifetimes are calculated to understand the reason for
the high and anisotropic thermal transport in monolayer BC2N. Phonon group velocity is
obtained from the slope of the phonon dispersion, vg = dω(q)

dqph
, as shown in Fig. 7.4 (b,c).

It is a very important quantity to understand thermal transport in the material. The phonon
group velocity of ZA mode is exactly zero at the Γ -point due to quadratic nature of phonon
dispersion and the LA mode has the largest phonon group velocities are 20.47 km/s and 20.35
km/s along the Γ -X and Γ -Y directions at gamma point. The phonon dispersion along the
Γ -X and Γ -Y directions are strongly anisotropic, and this anisotropic behavior produces
different phonon group velocities in different directions, which may cause anisotropic lattice
thermal conductivity. The anisotropic phonon group velocities are due to the anisotropic bond
strength because of phonon group velocity is directly proportional to the bond strength[62]
(vg ∼

p
K/M). However, since the ZA mode group velocities are smaller than TA/TA acoustic

mode but the ZA mode contributes the major part of the lattice thermal conductivity, the
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BC2N.

phonon group velocity is not only the factor leading to large lattice thermal conductivity.

7.3.4 Phonon lifetime

To understand the significant difference in the contribution of each phonon mode to κl , we
analyze the phonon lifetimes (τλ ) of each phonon mode as shown in Fig. 7.5. The phonon life-
times are calculated using the Matthiessen rule expressed as[62]: 1/τλ = 1/τ3ph

λ +1/τboundary
λ +

1/τ iso
λ . The 1/τλ is the total phonon scattering rate, the 1/τ3ph

λ is the three phonons scatter-
ing rate, the 1/τboundary

λ is boundary scattering rate, and the 1/τ iso
λ is isotopic impurity scat-

tering rate. All scattering processes must satisfy the energy and momentum conservation,
ωλ ±ωλ ′ = ωλ ′′ and q± q′ = q′′+G, where G is the reciprocal lattice vector, the G value is
zero for Normal processes and exists for the Umklapp processes. Among the phonon lifetime
values, the ZA mode phonons have significantly larger lifetimes than other mode phonons.
Monolayer BC2N is one atom thick plane similar to graphene, and the out-of-plane symme-
try exists which restricts scattering of the ZA mode phonons with other mode phonons and
only allow even number ZA mode phonons scattering-processes (ZA+ZA ↔ LA/TA and ZA
+ LA/TA ↔ ZA). Therefore, the ZA mode phonons are contributed quite a large contribution
to the total κl .
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Figure 7.6: (a) Lattice thermal conductivity as a function of phonon mean free path (PMFP)(Λ)
at different temperatures, and (b) lattice thermal conductivity as a function of temperature at
different sample sizes. Solid lines represent the armchair direction, and dash lines represent
the zigzag direction.

7.3.5 Lattice thermal conductivity as a function of the size

Phonon means free paths (PMFPs, Λ) are become shorten when we go from monocrystalline
to the polycrystalline material because the phonons are scattered with grain boundary in the
polycrystalline material. When the grain size (Lg) is larger than PMFPs (Λ ≪ Lg), the dom-
inant scattering will be phonon-phonon scattering, and phonon transport inside the grain will
be diffusive. However, when the grain-size is smaller than PMFPs (Lg ≪ Λ ), the dominant
scattering will be phonon-boundary scattering, and the phonon transport inside the grain will
be ballistic. To check the consistency of our monocrystalline results with experimental poly-
crystalline results, we must analyze κl as a function of PMFPs to get a more extensive picture
of phonon thermal transport. The κl along zigzag and armchair directions as a function of
PMFP at different temperatures is plotted in Fig. 7.6(a). All values of PMFP are greater than
105 nm at room temperature and very large compared to other two-dimensional materials ex-
cept graphene and h-BN. The κl may reduce in the polycrystalline BC2N sample with grain
sizes range from 104 nm to 105 nm.

The lattice thermal conductivity of monolayer BC2N with different sample sizes L=1µm,
3µm, 5µm, and 10µm as a function of temperature is shown in Fig. 7.6(b). The κl is strongly
affected by sample size, the κl for the BC2N sheet with L=1µm along the armchair and zigzag
directions are 396.29 W/mK and 514.75 W/mK, respectively. The κl along the zigzag di-
rection is more reduced than along armchair direction because long wavelength (ZA mode)
phonons, which have the largest relative contribution to κl along zigzag than armchair direc-
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tion, are suppressed. When the sample size decreases, the κl is reduced, and temperature-
dependence is weakened because the phonon-boundary scattering is dominant from three-
phonon scattering.

7.3.6 Electronic thermal transport properties

We now focus our attention on the electronic thermal transport properties of the monolayer
BC2N. We have obtained electronic transport properties using Boltzmann transport theory
under constant relaxation time. The precise value of the electronic relaxation time (τe) can
only be estimated from experiments, but there is no experimental data available for monolayer
BC2N. So, scaled electrical conductivity (σ/τe), electronic thermal conductivity (κe/τe), and
Seebeck coefficient as a function of chemical potential (µ) are shown in Fig. 7.7 for the
temperature range 300-700 K. The electronic transport properties are dramatical change with
mu, which indicates that an optimal carrier concentration is required for the high electronic
transport properties. The σ/τe and κe/τe increase with increasing temperature near to the
Fermi level (Fermi level is set at 0 eV), they become independent of temperature away from
the Fermi level. Similar behavior is observed in graphene. The rigid band approximation is
used to check the effect of doping on the electronic transport properties, which is a reasonable
approximation for the small doping. The positive and negative chemical potentials (shown
in Fig. 7.7) represent the n-type and p-type dopants, respectively. As the Fermi level move
into the conduction band (n-type doping) or valence band (p-type doping), the σ/τe and κe/τe

are increased because number of charge carriers (n) are increased. The Seebeck coefficient
along the armchair and zigzag directions are almost the same and isotropic. It decreases with
increasing temperature due to the bipolar effect. The Seebeck coefficient has two peaks around
Fermi level, and p-type Seebeck coefficient at 300 K is 2644 µVK which is slightly higher
than the n-type. When we go away from the Fermi level the charge carriers increase, the
Seebeck coefficient values decrease because it is inversely proportional n2/3[108].

7.4 Summary

Phononic and electronic transport properties have been investigated using first principle calcu-
lations coupled with the Boltzmann transport equation. Monolayer BC2N has very high elastic
constants, and it has a reflection symmetry, which prevents the scattering of ZA phonons with
other modes phonons. Therefore, we have predicted very large values of lattice thermal con-
ductivity (κl) along the armchair and zigzag directions at room-temperature. The κl along
the armchair and zigzag directions are exhibited anisotropy, and the anisotropy value is 1.43.
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Figure 7.7: Scaled Electrical (σ/τ) and electronic thermal (κe/τ) conductivities, and Seebeck
coefficients of the monolayer BC2N as a function of chemical potential along the zigzag (solid
line) and armchair directions (dash line) at 300K, 500K, and 700K.

The effect of size on the κl is also discussed, and it is found that the κl at room-temperature
is reduced 2.25 and 2.47 times along armchair and zigzag directions, respectively, when the
sample size is taken 1µm. The reduction in κl at small sample size is due to the increased in
phonon boundary scattering. The electronic transport properties are also studied, and we found
very high electronic thermal conductivity and Seebeck coefficient. Monolayer BC2N can be a
promising material in thermal management because of the high thermal conductivities.





Chapter 8

Conclusions and future research
directions

8.1 Conclusions

The primary objective of this thesis is to predict accurate lattice thermal conductivity of the
two-dimensional materials which is important for a broad spectrum of applications, such as
high-performance thermoelectric devices, thermal barrier coatings, thermal medical therapies,
and thermal management of the nanoelectronics. The performances and the advancements in
the nano-devices depend on the thermal transport in their constituent materials. However, the
thermal transport in the two-dimensional materials alters drastically as compared to the bulk.
Therefore, the fundamental understanding of phonon thermal transport in two-dimensional
materials would be useful to tailor their thermal properties, according to the utilization.

In this thesis, phonon thermal transport in two-dimensional was investigated using the den-
sity functional theory combined with an iterative solution to the Boltzmann transport equation.
The precise understanding of each phonon mode is obtained by calculating the phonon dis-
persion and phonon scattering rate of each phonon mode separately. Such an understanding is
essential in the ability to engineer materials with craved thermal conductivity. The theoretical
backgroung to calculate the lattice thermal conductivity is explained in Chapter 2.

In Chapter 3, we explored structural, electronic, thermoelectric, and phonon transport
properties of two-dimensional monochalcogenides (SnSe, SnS, GeSe, and GeS) using density
functional theory and semiclassical Boltzmann transport theory for electrons and phonons. To
check the vibrational stability of these monolayers, we performed phonon dispersions calcu-
lations. The Seebeck coefficients of these monolayers become twice as compared to their bulk
analogs. Lattice thermal conductivities of these monolayers were very low as compared to
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other two-dimensional materials. Due to large Seebeck coefficients and low lattice thermal
conductivities we propose that these materials are very good thermoelectric materials.

In Chapter 4, we systematically investigated lattice thermal conductivity and carrier mobil-
ity of the SnX2 (X : S, Se). Ultra-Low lattice thermal conductivities were found in SnS2 (6.41
W/mK) and SnSe2 (3.82 W/mK) at room temperature. We also calculated the phonon related
properties like phonon spectra, phonon group velocity, Debye temperature and Grüneisen pa-
rameter. Effect of size on the lattice thermal is explored in order to design nano thermoelectric
devices. The contribution toward total lattice thermal conductivity of the acoustic and optical
mode was calculated. The phonon-limited carrier mobility was evaluated for the monolayer
SnX2 at room temperature and it was found that monolayer SnS2 and SnSe2 had high elec-
tronic mobilities of 756.60 cm2 V−1 s−1 and 462.61 cm2 V−1 s−1. Due to ultra-low lattice
thermal conductivities coupled with high carrier mobility, these materials can be exploited for
thermoelectric applications.

In Chapter 5, we presented a comparative study of lattice thermal conductivity and phonon
transport properties of the semiconducting monolayers InX (X=S, Se, Te). The predicted lat-
tice thermal conductivities at room temperature are 56.45 W/mK, 44.43 W/mK and 33.05
W/mK for the monolayer InS, InSe and InTe, respectively. We also investigated the effect of
non-analytical corrections on the phonon spectra and lattice thermal conductivity, and found
that the longitudinal optical (LO) and transverse optical (TO) branches was split near the Γ-
point and lattice thermal conductivities are increased for these monolayers. To understand the
lattice thermal conductivity trend among these monolayers, we analyzed the phonon group ve-
locity, phonon-phonon scattering rate, Debye temperature, and phonon anharmonicity. Size-
dependent lattice thermal conductivity is also calculated and found a very large representa-
tive mean free path is indicating that nanostructuring can effectively reduce the lattice thermal
conductivity. The relative contribution of the phonon modes to the lattice thermal conductivity
fully quantify by our calculations and predicted that the longitudinal acoustic branch was the
main contributor to the lattice thermal conductivity. Due to the low lattice thermal conductiv-
ities of these monolayers, they can be useful in the nanoscale thermoelectric devices.

In Chapter 6, we studied the effect of strain on the phonon thermal transport properties of
the two-dimensional 2H-MoTe2. The strain is a handy and useful tool to enhance the perfor-
mance of the semiconducting devices. It can tune electronic, optical, and thermoelectric prop-
erties. However, the effect of tensile strain on the phonon thermal transport of two-dimensional
materials is unpredictable because the flexural acoustic (ZA) mode becomes harder and trans-
verse acoustic (TA) and longitudinal acoustic (LA) modes become softened. We found that
the lattice thermal conductivity was reduced approximately 2.5 times at 8% tensile strain for
the two-dimensional 2H-MoTe2 contrary to graphene, germanene, silicene, germanene, and
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Penta-SiC2. The reduction in lattice thermal conductivity attributes to the reduction in the
phonon group velocity, the phonon heat capacity, and the phonon scattering time. We also
evaluated the contribution of each mode to the lattice thermal conductivity. The ZA mode
contribution decreased while the TA/LA modes contributions increased under tensile strain.
These results highlighted that tensile strain is a key parameter to tune the lattice thermal con-
ductivity and other phonon thermal transport properties of the two-dimensional 2H-MoTe2.

In Chapter 7, we predicted an ultra-high and anisotropic lattice thermal conductivity in the
monolayer BC2N. The predicted values of lattice thermal conductivity at room-temperature
are 893.90 W/mK and 1275.79 W/mK along armchair and zigzag directions, respectively.
These values are probably the highest that have ever been reported for the two-dimensional
semiconducting materials, which we attributed to the high vibrational frequencies, large phonon
group velocities, long phonon lifetime, low phonon anharmonicity, and strong bonding in
monolayer BC2N. We also calculate the electrical and electronic thermal conductivities, which
are also very high. Monolayer BC2N can be used for thermal management in the nanoelec-
tronic devices because of the ultra-high lattice thermal conductivity.

8.2 Future research directions

The lattice dynamics method has the main advantage of giving the entire phonon proper-
ties and relating these directly to the lattice thermal conductivity. The accurate modeling of
phonon thermal transport across lateral and vertical heterostructures using lattice dynamic
based methods should be the subject of future work. In heterostructure, the properties can be
tuned by changing the stacking orientation and interlayer distance, which opens the door to the
new possibilities and novel applications. The combination of the semiconducting monolayers
can merge the excellent thermoelectric properties with ultra-low lattice thermal conductivity
and high electrical conductivity. We expect that lattice thermal conductivity is reduced in the
heterostructure because the interface suppress the phonons and we will search type II band
structure alignment heterostructure to increase electrical conductivity. I have proposed the
following topics to support my prospective research:

1. InX /GaX (X=S,Se, Te) heterobilayer as potential thermoelectric material

2. Thermoelectric properties of the InAs/InSb heterostructure: a first principles study

3. Thermoelectric properties of the HfSe3/ZrSe3 heterostructure

4. Phonon and thermoelectric properties of TiS3/ZrSe3 heterostructure
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