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1 Introduction

In mathematics, Heyting algebras is special bounded lattices that constitutes a
generalization of Boolean algebras. In the 19th century, Luitzen Brouwer founded
the mathematical philosophy of intuitionism. Intuitionism is based on the idea
that mathematics is a creation of the mind and believed that a statement could
only be demonstrated by a direct proof. Arend Heyting, a student of Brouwer’s,
formalized this thinking into his namesake algebras (Heyting algebra). Heyting

algebras have played an important role and have its comprehensive applications in



many aspects including genetic code of biology, dynamical systems and algebraic
theory [2, 3, 4, 5, 6, 7, 8, 14].

The complexities of modeling uncertian data in economics, engineering, envi-
ronment and many other fields cannot successfully use classical methods because
of various uncertainties typical for those problems.

To overcome these difficulties, Molodtsov [17] introduced the concept of soft
set as a new mathematical tool for dealing with uncertainties. Maji et al. [15]
also studied several operations on the theory of soft sets. Since then, soft set
theory has wide range of application in economics, engineering, environment,
information science, inteligence system and algebraic structure [10, 11, 16].

In this paper, we define the intersection soft filter (IS-filter), Boolean inter-
sectional soft filter (Boolean IS-filter), and ultra inetersectional soft filter(Ultra
[S-filter) and investigates related properties. We discuss characterizations of IS-
filter and Boolean IS-filter and consider relations between IS-filters and Boolean
[S-filters.

In section 2, we recall the definition of heyting algebra and investigate several
properties of Heyting algebras. Also we introduce filter and soft set.

In section 3, we introduce the definition of IS-filter and investigate several
properties.

In section 4, we introduce the concept of Boolean IS-filter and investigate
some of the properties. Also we investigate the relation between IS-filter and
Boolean IS-filter.

In section 5, we introduce the concept of ultra IS-filter and investigate some
of the properties. Also we introduce the concept of prime I[S-filter and investigate

the relation between ultra IS-filter and prime Boolean IS-filter.



2 Preliminaries

In this section, we review some definitions and properties that will be useful in

our results. At first we introduce the definition of a Heyting algebra.

Definition 2.1. [1| Heyting algebra is defined to be a bounded lattice ‘H such
that for any pair of elements z,y € H, there is the largest element 2z € H such
that 2z A x < y. This element is denoted by x — y and is called an implication.
The operation which sends each element x the element 2/ = x — 0 is called a

negation.

The definition of implication is equivalent to the existence of an element x — y
such that

N <y < z<z—>Yy

Some elementary properties of Heyting algebras are summarized by the fol-

lowing.

Proposition 2.2. [1] For elements x,y, z in a Heyting algebra:
(hpl) 2 A (2 —y) <y,

(hp2) Ay <z<=y <z -z,

(hp3) e <y<=z—y=1,

(hpd) y <z =y,

(hph) e <y=z—2<z—y and y =z <z — 2,



(hp6) = — (y = 2) = (A y) = 2,
(hp7) 2 A (y = 2) =2 A {(z Ay) = (A 2)}
(hp8) z A (z = y) =z Ay,
(hp9) (zVy) = z=(z = 2)A(y = 2),
(hpl0) z = (yA2) = (z = y) A(z = 2).
Proof. (hpl) (x = y)<(z —y) & (Y Ar<ysaA(z—y) <y

(hp2) (=)zANy=yrAex<zey<z—z

(Cly<z—zeyhr<zes oAy <z

(hp3)z wy=1<1<zrz—osyslrz<ysz<y.

(hpd) zhy<y<ecyrhz<ysy<z-—uy.

(hpb) zA (z = z) <z <y

=(z—=>2)Nz<y

=z—=z<z—=y,

andrz<y=zA(y—2) <yANly—2)=yAz<z
=(y—2) Nx <z

= (y—=2) < (x—2).

(hp6) (zAy) Az = (y—=2) =yA(@A(z—=(y—=2) SyA(ly—2) <z

& (@ =y —=2)A @Ay <z,



sox— (y—2) < (rAy) — =z
Conversely, (z Ay)A ((zAy) = 2) <z (zA((xAy) = 2) Ay <z
soxA((xANy) —2) <y—z,

and hence (zAy) » 2z <z — (y — 2).

(hp7) 2 A (z — y) <z,and (zAy) Az A(y = 2) <z Az,

sox Ay —2) < (xAy) — (zA2).

Hence z A (y = 2) <z A{(x ANy) = (z A 2)}.

Conversely, z A ((z Ay) = (x A2)) <z and (yAz)A((zAy) = (zAz)) <
T Nz< 2z,

sox A((xAy) — (zA2) <y— =z

Hence x A{(z Ay) = (z A 2)} <xA(y — 2).

(hp8) z A (z — y) <zand z A (x = y) < v,
soxA(z—=y)<zAy.

Conversely, t A\y<zandzAy<z—ysoxAy<zA(x—y).

(hp9) z <z Vy and y <z Vy implies

(xVy) s z<z—zand (xVy) > 2<y— 2

so(xVy) = z<(r—2)A({y—2).

Conversely, (zVy)A(x = 2)AN(y = 2) <{zA(x—=2)}V{yAn(y = 2)} <

z2Vz=2zs0(x—=2)AN(y—2) < (zVy) — =

(hpl0) yAz<yand y Az <z

implies t —» (yAz) <z —zandz — (yAz) <z — 2,



sox— (YyAz) <(x—=y) Az —2).
Conversely, y <z — y implies z Ay < z A (z — y),
soz Az =y AN(x—=2)<zAyAN(z—2)<yAz

Hence (z = y) Az — 2) <z — (y A 2).

The following corollary is an immediate consequence of Proposition 2.2.

Corollary 2.3. For elements x,y, z in a Heyting algebra:
(hpll) 2 = (y = 2) =y — (x — 2),
(hpl2) = 1=11—>z =20 —x =1,
(hpl3) z — (y = x) =1,
(hpld) (xVy) < (r—=vy) —y.
Proof. (hpll) Using (hp6) we have x — (y = 2) = (z Ay) > 2= (yAzx) = 2 =

y— (z— 2).

(hpl2) 2 <1l=zx—1=1.
By (hp8),we have 1l =2 =1A(1 - 2)=1Az =z and

r<r=x—xr=1.

(hp13) Using (hpll) and (hpl2), we have

r—(y—z)=y—>(r—x)=y—1=1

(hp14) Using (hp6) and (hp9), we get (x Vy) — ((r = y) = y)

6



=@ = (e =y) = yY) A= (z—=y) —=y)

=(@—=y) = @=2y)A(z—=y) = (y—y)

=1AN(z—y)—1)

=1A1

—1,

and so (x Vy) < (z — y) — y by (hp3). O

Here are some well known examples.

Example 2.4. [8] (1) Every Boolean algebra is a Heyting algebra and every
Heyting algebra is a distributive lattice.
(2) Every bounded chain lattice H is a Heyting algebra. Indeed, for any

a,beH

1 if a <,
a—b:=

b otherwise.

In what follows let H denote an Heyting-algebra unless otherwise specified.

Some kinds of filters in a Heyting algebra is defined as follows.

Definition 2.5. 7] A nonempty subset F of H is called a filter of H if it satisfies
1) Vz,yeH) (reFrx<y = yeF),

(2) Ve,yeH) (x,ye F,x Ay € F).

Proposition 2.6. |[7| A nonempty subset F of H is called a filter of H if it

satisfies

(1) 1 e F,



(2) Ve,yeH) (ke Fo »yeF = yeF).

Definition 2.7. 7] Let F be a filter of H. F is called a Boolean filter of # if it
satisfies (x A 2') € F for all z € H.

Definition 2.8. [7| Let F be a filter of H. F is called an ultra filter of H if it

satisfies z € F or ' € F for all z € H.

Molodtsov [17] introduced the concept of soft set as a new mathematical tool,
and Cagman et al. [10] provided new definitions and various results on soft set
theory.

In what follows, let U be an initial universe set and E be a set of parameters.

Let Z(U) denotes the power set of U and A, B,C,--- C E

Definition 2.9. [10, 17] A soft set f4 of E (over U) is defined to be the set of
fa=A{falx) e Z(U):x € E, falx) =0ifx ¢ A},

where f4 is a mapping given by f4: E — Z2(U).

Example 2.10. Let U = {¢1,¢9,¢3,¢4, 05,66} be a universal set consisting of
a set of six cars under consideration and E = {ej, ey, €3, €4, €5, €6, €7} a set of
parameters with respect to U, where each parameters e;,7 = 1,2, 3, ..., 7 stands for
expensive, cheap, sedan, wagon, sport utility vehicle, in good repair, in bad repair,
respectively and A = {eq, e3, e} C E. A soft set f4 describes the attractiveness of
the cars, such that fa(e;) = {c1, s}, fales) = {cs, c5,c6} and fa(es) = {c1, 3, ¢5}-
Then the soft set f4 is a parameterized family {fa(e1), fa(es), fa(es)} of subsets
of U.



Remark 2.11. [17| Zadeh’s fuzzy set may be considered as a special case of the
soft set. Let A be a fuzzy set, and puy be the membership function of the fuzzy
set A, that is p4 is a mapping of U into [0,1]. Let us consider the family of a-level

sets for function pa

Joa(a) ={z €U | pa(z) > a},ac|0,1].

If we konw the family fjo1), we can find the function ji4(2) by mean of the

following formulae:

pa(x) = sup{a:a € 0,1,z € fo1(a)}

Thus, every Zadeh’s fuzzy set A may be considered as the soft set fi 1.

Definition 2.12. [10, 17| For a soft set f4 of E over U and a subset 7 of U, the

set
ia(faiT) ={z € A falz) 27}

is called the 7-inclusive set of f4.



3 Intersectional soft filter (IS-filter)

In this section, we introduce the concept of IS-filter in Heyting algebras, and

investigate their properties.

Definition 3.1. A soft set fy of H is called an IS-filter of H if it satisfies:
(1) (Ve,yeH) (x<y = fulz) C fuly)),

(f2) (Vz,y € H) (fulz Ay) 2 fulz) N fu(y)) .

We provide characterizations of an IS-filter.

Proposition 3.2. A soft set f4 of H is an IS-filter of H if and only if it satisfies:
(3) Ve eH) (fu(l) 2 fulz)),

(f4) (Vz,y € H) (fu(y) 2 fulz) N fulz —y)).

Proof. Suppose that fy of H is an IS-filter of H. Since x < 1 for all z € H, it
follows from Definition3.1(f1) that

Jn(1) 2 fulz)
for all x € H. This proves (£3) hold. By (hpl), we have z A (z — y) < y. Hence
() 2 fulx A (z = y)).

By Definition3.1(2),

fu(y) 2 fulz A (z = y)) 2 fulz) N fulz — y).

10



This proves (f4).
Conversely, assume that fy, satisfies conditions (f3) and (f4). Let z,y € H
such that © <y then z — y = 1 by (h3). By condition (f4) and (f3), we have

) 2 fu(@) 0 fulz —y)
= fu(z) N fu(1)
= fu(z),
which implies, f3(x) C fu(y). This prove (f1).
By (hp6) and (hpl2), we have = — (y — (@ Ay)) = (x Ay) — (zAy) = 1.
By Definition 3.1 (£2), we have

fu(@ Ny) 2 fuly) N fuly — (2 Ay))
2 fu(y) N (fulz) N fulz = (y = (2 AY))))
= fu(y) O (fu(x) 0 fre(1))
(@) N fuly),
for all z,y € H. This proves (£2), and so fy is an IS-filter of H. O

)
)
)
= fu(z)

The following example shows that an IS-filter exists.

Example 3.3. Let H = {0,a,b,1} be a set with the following Cayley table and

Hasse diagram.

S
(=
—_
(= — (= —
—_
S
S

11



Then H is a Heyting algebra. Let fz be a soft set over U = Z in H given as

follows:

e
2N if otherwise

){ 2Z if z€{a,1}

1. (f1) is clear.

2. We will show that (fx(y) 2 fu(z) N fu(z = vy)).

1) y=0
([ £0(0) 1 fu(0 = 0) = 2N N fu(1) = 2N 27
IN = F(0) fula) N fyla — 0) =22 N fu(b) =2ZN2N
fu®) N fu(b—0)=2NN fyla) =2NN2Z
| ()N fr(l = 0) =220 fu(0) =2ZN2N

2) y=a
([ £,4(0) N (0 = @) = 2N A fu(1) = 2N N 27
27 = fula) fula) N fula —a) =2ZN fy(l) =2Z2N27
fu®) N fyb—a)=2NnN fyla) =2NN2Z
| (D)0 fu(l = a) =220 fru(a) =2Z2N022

3) y=>
([ 1,4(0) N f4(0 = b) = 2N A f,(1) = 2N N 27
ON = Fub) O fu(a) N fyla — b) =2ZN fyu(b) =2ZN2N
fu) N fu(b—b) =2NN fu(1) =2NN2Z
\ ()N fy(l =b) =27ZnN fu(b) =2ZN2N

12



([ 1,4(0) N f(0 = 1) = 2N A fu(1) = 2N N 27
27 — Fu(1) D fula) N fula—1)=2ZnN fy(1) =2Z2N2Z7
L ) N (1= 1) =220 fu(l) =2Z2N02Z

Then fy, is an IS-filter of H.

Theorem 3.4. A soft set fy in H is an IS-filter of H if and only if
(f5) (Va,b,ce H) (a— (b—c)=1= fy(c) D fula)N fu(d)).

Proof. Assume that f is an IS-filter of H. Let a, b, c € H be such that a — (b —
c) = 1. By (hp3), we have a < b — ¢. Then fy (b — ¢) D fy(a) by (f1), and so

fr(e) 2 fu(b) N fa(b — ¢) 2 fru(b) N fu(a).

Conversely, let fy be a soft set of H satisfying (f5). By = < 1 and (hp12) we

have © — (z — 1) = 1 it follows from (f5) that

fu(1) 2 fu(z) 0 fu(z) = ful)

for all z € H. Using (hpl2), we know that (z — y) — (x — y) = 1 for all
x,y € H = 1. It follows from (f5) that

u(y) 2 fu(z) N fu(z — y)

for all z,y € H. Therefore f4 is an [S-filter of H. O

Corollary 3.5. A soft set fy in H is an IS-filter of H if and only if

13



(f6) (Va,b,ceH) ((aNb) <c= fulc) 2 fula) N fu(b)) .

Proof. Using (hp2) and (hp3), we have (a Ab) — ¢ = (a — (b — ¢)) = L.
Therefore Corollary is valid by Theorem 3.4. m

Theorem 3.6. Let fy be a soft set in H. Then fy is an IS-filter of H if and
only if it satisfies conditions (£3) and

(f7) (Vo,y,z € H) (fule = 2) 2 ful(z = (y = 2)) N fuly))-

Proof. Assume that fy, is an IS-filter of H. Since x — (y — 2) =y — (z — 2),
we have

= (y—2)—>Wy—(r—2)=1

by (hp3). From Theorem 3.4, we have

fulr = 2) 2 fule = (y = 2)) N fuly)

for all z,y,z € H. Convesely, suppose that f3 satisfies condition (f3) and ({7).
Putting z = 1 in (f7) and using (hp12), we have

fu(z) = fu(l = 2) 2 fu(1 = (y — 2)) N fu(y) = fuly — 2) 0 fuly)

for all z,y € H. Therefore f4 is an [S-filter of H. O

Theorem 3.7. Let fy be a soft set in H. Then fy is an IS-filter of H if and
only if it satisfies conditions (f3) and

(18) (Va,y € H) (fulz = 2) 2 fulz = (y = 2))) N fulz = y)).

14



Proof. Assume fy is an IS-filter of H. Since y A (y — z) < z, we have
r—=z>r—((y—=2)ANy)=(— (y—2)A(z—vy).
by (hp5) and (hp10). From Corollary 3.5, we have

fu(x = 2) 2 ful(z — (y = 2)) N fulz = y).

Conversely, suppose that fz satisfies conditions (f1) and (f8). Taking = 1 in
(f8) and using (f2), we have

fu(2) 2 fuly = 2) N fu(y)

for all x,y € ‘H. Hence fy is an IS-filter of H. m

Theorem 3.8. Let fy be an IS-filter in H. Then fy is an IS-filter of H if and
only if it satisfies conditions (f3) and

(19) (Va,y,z € H) (fulz = 2) 2 fulz = y) N0 fuly = 2)).
Proof. Assume that fs is an IS-filter of . By (hp6), (hp8), and (hp11), we have

=y =y =2 = (r=2)= (z = y) = (r—=2)

( ) =

= —=z2) = (e —=y)Az) = 2)
( ) = ((z Ay) = 2)
( )z = (y = 2))

=z = ((y—=2) =y —2)

=z —1

=1.

15



It follows from Theorem 3.4, we have we have

fulx = 2) 2 fuler = y) N fuly — 2)}

This proves (f9) hold. Suppose that f3 satisfies conditions (f3) and (f9). Obvi-
ously fx(1) O fu(x). Taking x = 1 in (f9) and using (hpl2), we have fy(z) 2
fuly — 2) N fu(y) for all x,y € fz. This proves (f4), and so fy is an [S-filter of
‘H by Proposition 3.2

Theorem 3.9. Let fy be a soft set in H. Then fy is an IS-filter of H if and

only if it satisfies the following conditions:
(f10) (Vo,y € H) (fuly = ) 2 ful2)),
(f11) (Vz,a,b € H) (ful(a = (b = z)) = ) 2 faula) N fr(b)).
Proof. Assume that fy is an IS-filter of H. Using (hp13), we get
Py = 2) 2 fulz = (y = 2)) 0 fu(z) = fu(D) N fu(z) = fr(z)

for all z,y € H. By (hpll) and a — ((a = (b = 2)) = (b = z)) = (a = (b —
z)) = (a— (b—2) =1 wegetaC((a—(b—2z) — (b— x)). It follows
from (f3) that

fulla = (b—z)) = (b— 1)) 2 fula).

By Theorem 3.6 we have

fulla = (b —=2)) =) 2 ful(a— (b= ) = (b= x))Nfr(b) 2 fula)Nfu(b).

16



Conversely, let fz be an IS-filter in H satisfying conditions (f10) and (f11). If we
take y = x in (f11), then

fu(1) = fulz — ) 2 fu(w)
for all # € H. Using (f11), we obtain
) =l = y) = ful((z = y) = (@ —=y) = y) 2 fulr = y) N fulz)

for all z,y € H. Therefore f is an [S-filter of H. O

Theorem 3.10. Let f3 be an IS-filter of H. Then the following are equivalent:
(f12) (Vz, 2 € H) (fulz = 2) 2 fulz = (&' = 2)),

(f13) (Vz,2 € H) (fulz = 2) = fulz = (2" = 2)),

(f14) (Vo,y,2 € H)  (fule = 2) 2 fuly = (z = (2' = 2)) N fuly),

(f15) (Vx,y,z € H) (fulx — 2) 2 {fulx = (' = ) N fuly = 2)}).

Proof. (f12) = (f13) Assume that f3 satisfies the condition (f12) and let z,y, z €
H. Using (hp5) and (hpll), we know that

r—=2<Z 5 @—=z2)=0— (= 2).

Using (f1), we have

@ = 2) C fulz — (2 = 2)).

Therefore fy(x — 2) = fy(x — (2 — 2)).
(f13) = (f14) Assume that f3 satisfies the condition (f13) and let x,y, z € H.

Since fy is an IS-filter of H, we have

fu(z = (2= 2)) 2 fuly = (= (2" = 2))) N fauly).

17



Using (f13), then we have

fulz = 2) = fulz = (' = 2)) 2 fuly = (2 = (£ = 2))) N fuly).
(f14) = (f15) Assume that fy, satisfies the condition (f14) and let x,y, z € H.
By (hpb) and (2 = y) < ((y — 2z) — (¢/ — 2)) then we have
r—(Z oy <z—((y—=2) — (G —2).

It follows from (f1) that

(@ = ((y = 2) = (¢ = 2))) 2 fulz = (&' = y)).
Using (f14), (hpll), and (£3), we have
Sz = 2) 2 fully = 2) = (x = (2 = 2))) N fuly = 2)
=fulz—=>((y=2) = —=2)N fuly = 2)
2 fulz = (&' =) N fuly = 2)
for all z,y € H.
(f15) = (f12) Assume that fy satisfies the condition (f12) and let z,y, 2z € H.
Taking y = z in condition (f15) and using (f3), we obtain
fule = 2) 2 fulz = (2" = 2)) N fulz = 2)
= fulz = (&' = 2)) N fu(1)

= fulz — (' — 2).

Therefore fy(x — 2) D fy(x — (2 = y)).

The relation between IS-filter and its inclusive set is as follows:

18



Theorem 3.11. A soft set fy of H is an IS-filter of H if and only if the nonempty
T-inclusive set iy (fy;7) is a filter of H for all T € 2(U).

Proof. Suppose that fy is an IS-filter of ‘H and for each 7 € Z(U) be such that
in (fa;7) # 0, then there exists a € iy (fx;7) such that fy(a) D 7.

By (f3) we have fy(1) D fu(a) D 7 and 1 € iy (fx; 7). Let x,y € H be such
that © — y € iy (fy; 7) and © € iy (f3; 7). Then fy(z — y) 2 7 and fy(x) D 7.
It follows from (f4) that

fuy) 2 fulz = y) N fu(z) 27,

that is, y € iy (f3; 7). Thus iy (fu;7) (£ 0) is a filter of H by Proposition 2.6.

Conversely, suppose that 7-inclusive set iy (fy;7) is a filter of H for all 7 €
P(U) with iy (f;7) (£ 0). For any = € H, let fy(z) = 7. Then x € iy (f;7) .
Since iy (fy;7) is a filter of H, hence 1 € iy (fy; 7). It follows that

(1) 2 fulz) =
Let x,y € H such that fy(x — y) N fy(x) = 7. Then
T, x =y €in(fr;7)

Since 7-inclusive set iy (fx;7) is a filter of H, then we have y € iy (f; 7). It

follows that
i) 2 fule = y) N fulz) =1

Therefore fz is an [S-filter of H by Proposition 3.2.
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Theorem 3.12. If f3 is an IS-filter of H, then the set
Lo={z e H| fulz) 2 fula)}
is a filter of H for every a € H.

Proof. Assume that fy; is an IS-filter. For any x € H, since fx(1) O fx(x), then
1eTl,. Let x,y € H be such that x € ', and * — y € I',. Then

fu(x) 2 fula) and fr(z = y) 2 fula).
It folllow from (f1) that
u(y) 2 ful2) 0 fulz = y) 2 fula).

Hence y € T',, and so I', is a filter of H. O

Theorem 3.13. Let a € H and let fy be a soft set of H. Then
(1) If T, is a filter of H, then fy satisfies the following condition:
(f12) (Vo,y e H) (fuler = y) N fu(z) 2 fula) = yela).
(2) If fy satisfies (f1) and (f12), then T, is a filter of H.

Proof. (1) Assume that I', is a filter of H. Let z,y € H be such that fy(z —

y) N fu(x) O fru(a). Then we have the following consequence
r—yel, and z €T,.

Since I', is a filter, we have y € [',.
(2) Suppose that fy, satisfies (f3) and (f12). From (f1) it follows that 1 € [',.
Let x,y € H be such that x € I';, and z — y € I',. We have
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fru(x) 2 fula) and fu(r —y) 2 fula).

This implies that fy(z) N fu(x — y) 2 fx(a). By the assumed condition (f12),
we get y € I',. Therefore I', is a filter of H by Proposition 2.6. O]
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4 Boolean intersectional soft filter (Boolean IS-

filter)

In this section, we introduce the concept of Boolean [S-filter and investigate

some of the properties.

Definition 4.1. An IS-filter f3 of H is said to be Boolean IS-filter if the following

assertion is valid.

(Ve e H) (fulzxVva')= fu(1)).

Remark 4.2. Every Boolean IS-filter is IS-filter of H, but the converse may not

be true a shown in the following example.

Example 4.3. Let H = [0, 1] and define A, V and implication — on H as follows:

r Ay = min{z,y}, 1 if z <y,
Ty =
rVy =max{z,y} y if o>y

for all z,y € ‘H. Then H is a Heyting-algebra. Let fy be a soft set of H in which

T if x € [0.5,1],
fu(z) =

() otherwise,

where 7(#£ 0) € Z(U). Then fy is an IS-filter of H.
But it is not a Boolean IS-filter of H over U since fy(1) = 7 and

Ful5V3) = Sl V (5 = 0)) = ful3 V0) = fulz) =0
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The following proposition serve as an useful satrting point in this chapter.

Proposition 4.4. Let fy be an IS-filter of H, then the following are equivalent:
(1) (Vz,z €M) fulz = 2) = fulz = (&' = 2)),
(2) (Ve €H) fulz) = fuld’ — =),
(3) (Vz,y €M) fulz) 2 fullz = y) = =),
(4) (Vo,y €M) fulz) = ful(z = y) = 2),
(5) (Vo,y,2 € H) fu(z) 2 ful(z = ((x = y) = 2)) N ful2).

Proof. (1) = (2) Assume that f, satisfies the condition (1) and let = € H. Using

condition (1), we have
fu(@) = ful = 2) = fu(l = (2" = 2)) = fuld — ).
(2) = (3) Since 2’ <z >y, (r = y) — = < 2’ — z, and s0
fu(@ =) 2 fullz —y) — 2).

Thus, from (2), we can deduce that fy(z) = fy(z' — z) O fu((zr = y) — z).

(3) = (4) On the other hand, since = < (z — y) — x, we have

fu(@) € fu((z —y) — ).

Thus, we can get
fu(@) = fu((@ = y) = 2).

(4) = (5) Since fy is an IS-filter of #H, then

Pu(x = y) = ) 2 fulz = ((z = y) = 2)) N fu(2).

23



It follows from (4) that

fu(@) = fulz = y) = 2) 2 fulz = ((z = y) = 2)) 0 fu(2).

(5) = (1) Since z <z — z, we have (r — 2) <2 and 2/ — (x — 2) < (z —

2)" — (x — z). Thus, we have
fu((z = 2) = (x = 2) 2 fy(z' = (x — 2)).
It follows from (5) that

1= (((x—=2)—=0)—= (x—2)N fx(l)

= ful(r = 2)" = (x = 2)) N fu(1)

(
O fu((z — 2) = (x = 2))
(

which implies fy(z — z) 2 fy(2’ — (z — 2)). Therefore, it follows from Theo-

rem 3.10 that fy(z — 2) = fu(z' — (v — 2)).

In the following theorem, we have a characterization of Boolean IS-filters.

Theorem 4.5. Let fy be an IS-filter of H , then the following are equivalent:
(1) fx is a Boolean IS-filter of H,
(2) Ve,zeH) fylx—2)= fylx— (2 = 2)).

Proof. (1) = (2) Suppose that fy is a Boolean IS-filter and let x,y € H.
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Using (f2) we have
(@ = 2) 2 fu((zV2) = (x = 2)) N fu(z V)
2 fu((zV ) = (z = 2)) N fu(l)
2 ful(zVv2) = (x = 2)).

From (hp9), (hpll), (hp12), and Definition 3.1, we get

/

A (2 —
=z—=(EZ=22)AN(E = (x—2)
=x—=>DAE = (x—2))
=1A(Z = (x — 2))

= s (x—2)=2x— (= 2).

Thus
fu(x = 2) 2 ful(z V) = (z = 2)) = fulz = (2 = 2)).

(2) = (1) Assume that f3 satisfies (2). Using Theorem 3.10 (3) and (hpl2),

we have

fu((2' =) = 2) = fu((@ = 2) = (2 = 2) = fu(1).
Using (hp5), (hp9), (hpll), and (hp12), we have

(@ = z2)—> < (@ —=2)—= (xV)

(x = 2)A (2 = 2)) = (V)

(zVa')—=zx)— (xVa).
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It follow from Definition 3.1 and Proposition 4.4 that

(1) = fu((a" = 2) — )

C fu(((xva') =)= (zva))
= fu(z Vv a'),

and so fy(z V z') = fx(1). Therefore fy is a Boolean IS-filter. O

Combining Theorem 3.10, Proposition 4.4, and Theorem 4.5, we have the
following result.
Theorem 4.6. Let fy; be an IS-filter of H. Then the following are equivalent:
(1) fx is a Boolean IS-filter of H,
2) (Vo,ze M) (fulz = 2) = fulz = (2 = 2)),
3) (Ve,yeH)  (fulz) 2 fullz = y) = 2)),

4) (Vo,y,2 € H) (fulr = 2) 2 {fulz = (' = y)) 0 fuly = 2)}).

We now give an equivalent condition for a Boolean [S-filter.
Some properties of Heyting algebras can be observed in the following.
Lemma 4.7. In Heyting algebra H , the following are hold:
(1) Ve,y,z€H) (z—=y<(y—2z2) — (z—2)
(2) Vo,y,z€H) (r—=y<(z—2z)—=(z2—=vy)
3) Vo,yeH) (@ —=y) —2y<(z—(z—=y)—(—=y)
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Proof. (1) Since z Ay <y, we have z A (x — y) <z Ay <y by (hp8). It follows
from (hp8) that

(@A(@=y) ANy —=2)<yAly—2) < (yAz) <z
and so from (hp2)
(x—=YNYy—2) <z—z

Thus, we have

r—=y<(y—2z)—(r—2).

(2) Since z Ax < z, we have 2 A (z = z) < 2z Az < z by (hp8). It follows
from (hpb) and (hp6) that

r—=y<(zA(z—zx) >y
=((z—=2)Nz2)—>y

<(z—z)—=(2—y).
(3) Using (hp12) and (hp6), we get

(z—=y) —2y<l=(@—y —=(r—=y)
=((xAz)=y) = (= y)

=(x—(r—vy) = (zr—y).

Theorem 4.8. Let fy; be an IS-filter of H. Then the following are equivalent:
(1) fz is a Boolean IS-filter of H,
2) (Vo,ye M) (fullz —y) = y) =) 2 fuly = 2)),
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3) (Vz,y,2 € H) (ful(x = y) = y) = ) 2 fu(z) N fulz = (y = 2))),

4) (Ve,y e ) (fulz) 2 ful(z = y) = 2)).

Proof. (1) = (2) Suppose that f3 is a Boolean IS-filter of H. Since x < ((z —

y) = y) — = we have
(z=y)=y) =) 2y<z—y
by Lemma 4.7. Using Lemma 4.7 and (hp 11), we get

((z=y)=y) =2)=y) = ((r—=y) =y =)

>z —y) = (((r—=y) =y —2)

(r—=y)—=y) = (z=y) =)
>y —x,
and so
fu((((x—=y) =y) = 2)=y) = (r=y) =y = 2) 2 fuly =)

for all =,y € H by Definition 3.1 (f1). It follows from Proposition 4.4 that

(@ —=y) = y) = y) 2 (@ —=y) =) = 2) 2y) = ((z=y) = y) =)
2 fuly = ).
(2) = (3) Assume that the condition (2) holds in H and let x,y € H. Since
fx is an IS-filter, we have
fuly = z) 2 fulz) N (z = (y — 2)).
By appling to (2), we get
(= y) = y) =) 2 fuly = 2)
2 fu(z)N(z = (y = 2)).
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(3) = (4) Assume that f3 satisfies the condition (3) and that f3 is an IS-filter

of H . Since z — (((x = y) = y) = (r = y) = (x = y) = 1, we have
r<(r—=vy) =y

Using (hp5) and (hp6), we get

(z—=y) =)< (zr—y) = (z—>y) —y)

(=9 A (z=y) =y
=(x—=vy) =y
By Definition 3.1 (f1), we have
iz = (((z = y) = y) € fullz = y) =)

By Lemma 4.7 (3), we have ((z = y) vy < (v = (z = vy)) = (z = v)).
By (hp5), (z = (x = y)) = (x = y)) 22 < ((x = y) = y) =z
By the condition (3),

ful(z = y) =) C fu(((z = (z = y) = (2 —y) =)
= fu(((z = y) = y) = x).

Hence
(@ —=y) = 2) € fullz = y) = ) N ful((c = y) = y) = )
By Proposition 3.2 (f3),
fu((z = y) = x) C fulx).
Since z — ((z = y) = y) = (z = y) — (@ = y) = 1, we have
z<(r—=y) =y
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Using (hp5) and (hp6), we get

(z—=y) =)< (z—y) = (z—>y) =y

(z =y A(r=y) =y

=(x—vy) =y
By Definiton 3.1 (f1), we have
(e = (e = y) = y) € fullz = y) = y).

By Lemma 4.7 (3), we have ((z = y) =y < (z — (z = y)) = (xr = y)).
By (hp5), (z = (z = y)) = (x = y)) e <((z 2 y) 2 y) =z
By the condition (2),

(@ = y) = 2) C ful((z = (= y) = (@ —=y) =)
= fu(((z = y) = y) = z).
Hence

ful(z —=y) =) C ful(x = y) = y) N ful((xz = y) = y) = ).

By Proposition 3.2 (f4),

ful(z = y) = ) C fu(x).

(4) = (1) By Theorem 4.6.
O]

In the following theorem, we give relationship between IS-filters and its inclu-

sive set is shown as follows.
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Theorem 4.9. A soft set fy; on H is a Boolean IS-filter of H if and only if
the monempty T-inclusive set iy (fy;7) on H is a Boolean filter of H for all

Te20U).

Proof. Suppose that f3 is a Boolean IS-filter of H. Let 7 € 2(U) with iy (fy;7) #
(). Then iy (fy;7) is a filter of H by Theorem 3.11. Hence, 1 € iy (fy;7), and
so 7 C fx(1). For all x € H. It follows from Definition 4.1 that

7 C fu(1) = fu(z v a')

and so that o V @’ € iy (fy; 7). Therefore iy (f;7) is a Boolean filter of ‘H
Conversely suppose that iy (fy;7) is a Boolean filter of H for all 7 € £ (U)

with iy (f3;7) # 0. Then iy (fy;7) is a filter of H, and so fy is an IS-filter of

H. Note that 1 € iy (f; 7). Since iy(f; fx(1)) is a Boolean filter of H, we get

x V' € iy(fr; fu(1))
for all x € H. Hence fy(x V 2') D f(1). This implies that fy(x V 2’') = fx(1).
Therefore fz is a Boolean IS-filter of H. ]
In the following theorem, we establish the extension property of a Boolean

IS-filter.

Theorem 4.10. ( Extension property ) Let fy and gy be IS-filters of H such
that fy(1) = gn(1) and fy(z) C gy(x) for all x € H. If gy is a Boolean IS-filter
of H, then so is fy.

Proof. Assume that fz is a Boolean IS-filter of H. Then fy(z V 2') = fy(1) for
all x € H. Hence
fu(e v a') 2 gu(x v a') = gu(1) = fu(l) (1)
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for all € H. This implies that fy(x V 2') = fx(1). Therefore fz is a Boolean
I[S-filter of H.
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5 Ultra intersectional soft filter (Ultra IS-filter)

In this section, we introduce the concept of ultra IS-filter and investigate some
of the properties. Also we introduce the concept of prime IS-filter and investigate

the relation between ultra IS-filter and prime Boolean IS-filter.

Definition 5.1. A soft set fy of H is called an ultra IS-filter of H if it is an
[S-filter of H that satisfies:

(Vz € H) (fulx) = fu(l) or fu(a') = fu(1)).
We give an example of an ultra IS-filter.

Example 5.2. Let H = {0,a,b,¢,1} be a set with the following Cayley table

and Hasse diagram:

—10 a b ¢ 1
0|1 1 111 1
a0 1 b c 1 c a
blo01 1 ¢1 b
cl0 a a1l 1 0
110 a b ¢ 1

Then H is a Heyting algebra.
Let fz be a soft set of H in which

Ful) = n if x € {1,a,b},

To otherwise,

where 75 C 71 € ‘H. Then fy is an ultra [S-filter of H.
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In the following theorem, we investigate the characterization of ultra IS-filter.

Theorem 5.3. For an IS-filter fy; of H, the following assertions are equivalent:

(1) fy is an ultra IS-filter,

(2) (Vz,y € H) (fulx) # fu(l) and fu(y) # (1) = fulz = y) = fu(1)
and  fu(y — x) = fu(1)).

Proof. Suppose that fy(z) # fy(1) and fu(y) # fu(1). Then fu(z') = fu(1)
and f#(y') = fxu(1) by hypothesis. Since

fr(x = y) 2 fulr — 0) = fr(a) = fu(1)

we get fy(z — y) > fu(l) and so fy(z — y) = fx(1). Similary, it follows from
fu(y) # fu(1) that fu(y — x) = fu(1).

Conversely, let fy(z) # fu(1) and fu(y) # fu(1) mply fr(z — y) = f(1)
and  fy(y — ) = fx(1)). Assume that fy(z) # fx(1). Since 0 < z, we have
#(0) C fu(z). If f1(0) = fx(1) then fy(x) = fx(1). This is contradiction. So
fu(x — 0) = fy(a') = fx(1). Therefore fy is an ultra IS-filter. O

In the following definition, we introduce the concept of prime IS-filter.

Definition 5.4. An IS-filter f3 of H is said to be prime IS-filter if the following

assertion is valid.

(Ve e M) (fulzVy) C fulr)U fuly)).
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Theorem 5.5. Fvery ultra IS-filter is a prime IS-filter.

Proof. Suppose that fy; is an ultra IS-filter and let z,y € H. By (hpl4), we get
(xVy) < (x —y) = y. By fy is an IS-filter of H, we have

fuxVvy) C fullz —=y) —y).

From 0 <y and Proposition 2.2 hp(5), we get (z — y) — y < 2’ — y. Thus,
fu(@xVy) C fu((z = y) = y) C fu(z — y) by Definition 3.1.
So

fu(zVy) C fula — ).

For any x € H, if fy(z) = fx(1). then

fu(xVy) C fu(1) = fulz) U fuly).

If fu(x) # fu(1) then
fu(2') = fu(1)

by Hypothesis. Thus,

) 2 fu(@) 0 fu(a” —y)
= fu(1) N fu(z" = y)
= fu(@ = y)
by Definition 3.1. Therefore,

fu(zVy) C ful@ —=y) C fuly) C fulz) U fuly).

This means that f3 is a prime [S-filter of H.
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The converse of Theorem 5.5 is not true in general as can be seen by the

following example.

Example 5.6. Let H = [0, 1] and define A, V and implication — on H as follows:

r Ay = min{z,y}, 1 if z <y,
T =y =
rVy =max{r,y} y if >y
for all z,y € H. Then H is a Heyting-algebra. (In Example 4.3) Let fx be a soft

set of H in which
n if x €10,0.5],

T2 if z € (05, 1],

fu(z) =

where 77 C 75 in H. Then fy is a prime IS-filter of H. But it is not an ultra

I[S-filter of ‘H over U since f#(0.5) # fx(1) and f(0.5") # fx(1).

We introduce the concept of prime Boolean IS-filter.

Definition 5.7. An IS-filter fz of H is said to be prime Boolean IS-filter if it is
both prime IS-filter and Boolean IS-filter.

In the following theorem, we investigate the relation between ultra IS-filters

and prime Boolean IS-filters.

Theorem 5.8. In a Heyting-algebra H, the notion of an ultra IS-filter coincides
with the notion of prime Boolean IS-filter.

Proof. In Theorem 5.5, we show that every ultra [S-filter is a prime I[S-filter. For

any x € H, since x <z V', 2’ <xVa, weget

fu(@) € fu(zva), fu(@) C fulzva')
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According to the definition of ultra IS-filter, we have

fula) = fu(1) or fu(a') = fu(1).
Thus
fu(1) C fulzvah).
From this and Definition 3.1(f1), we get

(1) = fu(zVva).

This means that f3 is a Boolean IS-filter of H.
Conversely, suppose that fz is a Boolean prime IS-filter of H.

For any = € H,

fu(xva') = fu(1) < fu(x) U fru(2)

by Definitions 4.1 and 5.1
Let fy(x) # fx(1). Then

fru(x) < fu(1), fula’) < fu(1),

by Definition 3.1 (f1). So we have fx(2') = fx(1). Thus, fy is an ultra IS-filter
of H.
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