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ABSTRACT

Study on constructions of quantum error

correction codes

by: Duc Manh Nguyen

Advisor: Prof. Sunghwan Kim

Submitted in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy (Electrical Engineering)

January 2020

Quantum computation is proven to give us effective solutions for difficult problems

such as factoring large integer numbers in polynomial time, searching in un-ordered

database, increasing the security of cryptography protocol; these tasks are difficult

or less effective in classical computation. However, the effect of noise and imperfect

environment in a quantum channel can affect the performance of quantum computa-

tion. Therefore, quantum error correction codes (QECC) is proposed to achieve the

fault-tolerant quantum computation.

In this thesis, I study the design of QECCs and provide several contributions to

quantum stabilizer code construction. I use stabilizer formalism to explain the quan-

tum error correction codes as quantum stabilizer codes. The quantum stabilizer codes

allow to remove and detect the errors by the group of quantum operators. In addi-

tion, quantum stabilizer codes can be constructed from binary or qua-ternary codes.

So, our methods are using the combinatoric such as circulant, different sets, self-

orthogonal, self-dual with Hermitian inner product, trace inner product to construct

suitable classical codes; then, I investigate outstanding quantum stabilizer codes.
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Chapter 1

Introduction

1.1 Motivation

Quantum mechanisms utilize two degrees of freedom of photons, allowing for vari-

ous probabilities of possible measurement outcomes of a physical system [1]. Quantum

processing devices are based on quantum mechanisms, which give us the ability to

deal with the various tasks such as factoring a large integer number in polynomial

time [2], searching from un-ordered sets [3], and improving the security of cryptogra-

phy [4] [5]. However, the effects of the noisy and imperfect environments of a quantum

channel can reduce these performance advantages. Therefore, quantum error correct-

ing codes (QECCs) have been proposed to protect quantum information from noisy

environments. The first QECCs were proposed in the 1990s by Shor [6] and Steane [7],

and the general theory for QECCs, i.e., the stabilizer formalism, was introduced in

1997 by Daniel Gottesman [8]. In 1996, two independent research groups, Calder-

bank and Shor [9] and Stean [7] adopted the relationship between quantum codes and

1
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self-orthogonal codes. Therefore, quantum codes can be constructed using two clas-

sical linear error correction codes, i.e., the Calderbank-Shor-Stean (CSS) structure.

The advantage of the CSS structure is that we can obtain the parameters of quan-

tum codes directly from the parameters of two classical codes. Therefore, the CSS

structure has been used by numerous researchers to construct quantum binary codes,

such as BCH codes [10], Reed Solomon codes [11], quasi-cyclic LDPC codes [12],

and SPC codes [13]. Quantum computations are performed through two techniques,

the first technique was provided by Deutsch, DeutschJozsa, Grover, P. Shor and so

on [2] [3] [14] [15]. In this technique, a set of unitary transformations are applied on a

quantum system and then the problem is solved according to the state of one qubit,

or more, after measurement process to solves the problem at hands. The second is

called Zidan’s technique that solves the problem at hands by applying some unitary

transformation(s) on a system of size n qubits, then measures the degree of entangle-

ment (by concurrence measure) between two ancillary qubits. Hence, the solution of

the problem at hands is obtained based on the concurrence value [16]. Recently, with

the development of quantum information theory, more applications for quantum error

correction codes in quantum information have been demonstrated, such as quantum

algorithms [16] [17], quantum simulations [18], and quantum network coding [19].

Quantum stabilizer code is a kind of QECC constructed based on the stabilizer

formalism. The most important advantage of quantum stabilizer codes is that quan-

tum errors that affect an encoded quantum state can be diagnosed and removed by

a group of quantum operators, thereby stabilizing this encoded quantum state. In

addition, the stabilizer formalism allows quantum codes to be presented by classical
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error correction codes. Therefore, quantum stabilizer codes can be constructed from

binary error correction codes if they satisfy a symplectic inner product (SIP). Many

quantum stabilizer codes have been constructed based on the binary formalism with

combinatorial design, such as quantum codes based on difference sets [71], based on

group association schemes [72], based on circulant matrices [73] [74], or based on CSS

structure over Finite field [75]. In paper [76], a quantum stabilizer code was proven to

correspond to an additive code over Galois field 4 (GF(4)), which is self-orthogonal

with respect to the trace-inner product. So far, many papers have focused on (1)

the design of classical additive codes over GF(4) to achieve corresponding quantum

stabilizer codes, such as self-dual codes over GF(4), which have dimension ”0” and

can be represented by graphs [77]; (2) QECCs based on self-dual codes over GF(4)

with the highest known minimum weights [78]; and (3) QECCs based on Hermitian

self-orthogonal codes with extension design [79]. However, self-orthogonal codes with

high error-correcting capacity are restricted, and therefore, further investigation was

required to generate good stabilizer codes. Introduction of entanglement-assisted

quantum error correction code (EAQECC) by Brun et al. [90] is one answer to this

problem. More precisely, it enables us to construct the quantum error-correction

codes not only from self-orthogonal classical codes, but also from arbitrary classical

codes with the help of copies of maximally entangled quantum states shared between

encoder and decoder. To design efficient EAQECC, however, it is desirable to use the

fewest entangled states possible, because the cost to prepare those states is relatively

high. Hence, the construction of EAQECC with small amounts of entangled states is

a much more attractive issue [90, 91]. Therefore, several constructions of EAQECC
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have been proposed. Since the stabilizer code that is useful for fault-tolerant com-

putation [98], in this thesis, we consider several construction methods for quantum

stabilizer codes, entanglement-assisted quantum error correction codes with the aim

of design quantum codes with high error correction capacity and large information

length.

1.2 A brief background on quantum error correc-

tion code

In this section, we introduce the concepts of quantum information theory, quan-

tum error correction codes (QECC), quantum stabilizer codes, binary formalism of

QECC, QECC over Galois Field 4 (GF(4)), and entanglement-assisted quantum error

correction codes (EA-QECC).

1.2.1 Quantum information

Bits or binary digits are the basic units of information that are used in classical

computing and digital communication. The basic unit of quantum information is

called a quantum bit (qubit). If a bit has two basic states of zero or one, a qubit

uses the superposition principle of the two basic states. Hence, we use the two-

dimensional Hilbert space (H2) of complex number to model the quantum informa-

tion. The Hilbert space is spanned by two basic states H2 = span{|0〉 , |1〉} where

the mathematical expressions are |1〉 =

 0

1

 and |0〉 =

 1

0

. Therefore, the su-
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perposition state of a quantum system is denoted as, |ψ〉 =

 a1

a2

 = a1 |0〉+ a2 |1〉 ,

where a1 and a2 are complex numbers that satisfy the equation: |a1|2 + |a2|2 = 1. In

a quantum system, if quantum states are used n times in a single qubit (n-qubits)

physical system, the system consists of the n times tensor product of two-dimensional

Hilbert space (H2
⊗n).

In classical computation, Boolean functions f : {0, 1} → {0, 1} are performed over

a single bit. In the case of quantum computation, reversible operation represented

by unitary matrices are performed over a qubit. Representative quantum operations

are Pauli operators. Four Pauli operators (matrices) I, σX, σY, and σZ are

I =

 1 0

0 1

 , σX =

 0 1

1 0

 , σY = j

 0 −1

1 0

 , σZ =

 1 0

0 −1

 ,
where j =

√
−1. The transformations of quantum states by Pauli operators is as

I |ψ〉 =

 1 0

0 1

×
 α

β

 =

 α

β

 = α |0〉+ β |1〉 ,

σX |ψ〉 =

 0 1

1 0

×
 α

β

 =

 β

α

 = β |0〉+ α |1〉 ,

σY |ψ〉 =

 0 −j

j 0

×
 α

β

 =

 −jβ
jα

 = j(−β |0〉+ α |1〉),

σZ |ψ〉 =

 1 0

0 −1

×
 α

β

 =

 α

−β

 = α |0〉 − β |1〉 .

Therefore, operators σX, σZ, and σY are regarded as a bit flip, a phase flip, and

a combination of bit and phase flips, respectively. Multiplications between Pauli
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operators are defined as

σX
2 = σY

2 = σZ
2 = I;

σX × σY = jσZ andσY × σX = −jσZ → σX × σY = −σY × σX;

σY × σZ = jσX andσZ × σY = −jσX → σY × σZ = −σZ × σY;

σZ × σX = jσY andσX × σZ = −jσY → σZ × σX = −σX × σZ.

The Pauli group P1 on a qubit is a group composed of Pauli operators and their

multiplications with the factor±1, ±j. Then, P1 = ±{I, σX, jσX, σY, jσY, σZ, jσZ}.

The Pauli group on n qubits Pn is defined as n tensor product of the Pauli opera-

tors. Then, the elements of Pn are either commutative or anti-commutative. The

commutative operator ◦ for two operators A and B is defined as

A ◦B =
n∏
i=1

Ai•BiwhereAi•Bi =

 +1, ifAi ×Bi = Bi ×Ai

−1, if Ai ×Bi = −Bi ×Ai

.

Quotient group Pn/C where C = {±I, ±j I} is defined as the center of Pn [36].

Therefore, the notation X↔ σX, Y ↔ −jσY, Z↔ σZ [37] are used in the rest of

the paper.

The proposals for the first generation of quantum systems make use of two-level

systems as the basis elements. However, recent innovations in quantum error correc-

tion code, quantum cryptography, and quantum algorithms demonstrate that there

are advantages to use high-level quantum systems over qubit analogues. To describe

the high-level quantum system, we use the Galois field for the basic elements. Let

p be a prime number and the Galois field GFp be the finite field of p elements

{0, 1, 2, ..., p− 1} that is closed under addition and multiplication modulo p. Addi-

tionally, assume a qupit (p-level quantum bit) whose Hilbert space (Hp) is represented
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by orthogonal bases Hp = span{|0〉 , |1〉 , ..., |p− 1〉}, where the mathematical ex-

pression is

|0〉 =



1

0

...

0


p×1

, |1〉 =



0

1

...

0


p×1

, ..., |p− 1〉 =



0

0

...

1


p×1

.

Let ω be the p-th root of unity, ω = e
2πi
p . Additionally, we define the generalized

Pauli matrix such that the generalization of the bit-flip matrix is

X(p) =

p−1∑
j=0

|j + 1〉 〈j|=



0 0 · · · 0 1

1 0 . . . 0 0

0 1 . . . 0 0

...
...

...
...

...

0 0 . . . 1 0


.

Then, we have X(p) |r〉 = |r + 1〉 and X(p)p = X(p)0 = I(p). The generalization of

the phase-flip matrix is

Z(p) =

p−1∑
j=0

ωj |j〉 〈j|=



ω0 0 · · · 0

0 ω1 · · · 0

...
...

...
...

0 0 · · · ωp−1


.

Then, we have Z(p) |r〉 = ωr |r〉 and Z(p)p = Z(p)0 = I(p). We note that here X(p),

Z(p), Y(p), and I(p) are the generalized Pauli matrices over GF (p) with the size

p× p.
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1.2.2 QECCs and stabilizer formalism

QECCs are used in quantum computing to protect quantum information from

errors due to decoherence and other quantum noises. QECCs are essential to achieve

fault-tolerant quantum computation [20]. In classical error correcting code, it is easy

to make the copy of information. In contrast, it is impossible to make the copy of

quantum information due to the non-cloning theorem [21]. Therefore, quantum infor-

mation can be extended to highly entangled quantum state with the help of ancillary

qubits and Unitary transforms. Classical error correcting codes use a syndrome mea-

surement to diagnose errors which corrupt an encoded state. QECC also employs the

syndrome detection with the help of quantum stabilizers operators. A block diagram

of the QECC process is shown in Figure 1.1. The quantum information can be pro-

tected from noisy quantum channel with the help of ancillary qubits, the quantum

stabilizer operators, and syndrome measurement.
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{ | , }.nC ψ ψ ψ⊗= ∈ = ∀ ∈H g gS S   

Figure 1.1: Quantum error correction operating process.

The quantum code for the binary case with parameter [[n, k, dmin]] encodes k

information qubits into the system of n qubits, and it can correct the
⌊
dmin−1

2

⌋
error.

The first quantum code is the Shor code with parameters [[9,1,3]]; this is based on
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repetition codes. The second quantum code is [[7,1,3]], which is based on the classical

hamming code [7,1,3] with a CSS structure. Next, the stabilizer formalism is used

to express the quantum codes. With the stabilizer formalism, quantum codes are

viewed via group theory of the quantum stabilizer operator; thus, we are working

with quantum operators rather than with quantum states. Let H⊗n be the state

space of n-qubits. The quantum stabilizer group S is an Abelian subgroup of Pn

and is closed under multiplication. Further, there is no trivial subspace CS ⊂ H⊗n

that is fixed (or stabilized) by S. The stabilized CS defines a codeword such that

CS = { |ψ〉 ∈ H⊗n : g |ψ〉 = |ψ〉 , ∀g ∈ S}. The quantum code with parameter

[[n, k, dmin]] corresponds to the group S with its generators, g = {g1,g2, ..,gn−k}.

The constraints for the generators in g are such that any two elements in g must

commute with each other. Since the number of generators (n − k) is less than or

equal to n, (n − k) is a well-defined quantity ; it is called the rank of the stabilizer.

If the stabilizer has the rank n (k = 0), the stabilizer will be referred to as the full

rank stabilizer and the corresponding quantum code is denoted as [[n, 0, dmin]]. The

codewords, or the stabilizer state of the full rank stabilizers group, will be called the

graph state; this has many applications in one-way quantum computers, secure state

distribution, secret sharing, etc. It is known that, for a quantum code [[n, k, dmin]]p,

the quantum singleton bound or Knill-Laflamme bound is n−k ≥ 2(dmin− 1). Then,

the quantum codes whose parameters satisfy dmin =
⌊
n+2
2

⌋
will be maximum distance

separable codes, which are referred to as the optimal quantum codes.

Considering a set of error operators {E} ⊂ Pn, the collection of Pauli operators

takes a state |ψ〉 to the corrupted state E |ψ〉. A given operator E either is com-
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mutative or anti-commutative with each stabilizer operator Si. Then, the corrupted

state E |ψ〉 is diagnosed by elements Si of the set S. The outcome of the diagnostic

procedure is a vector of {+1,−1} indicating whether or not E can be detected. The

indication for the error detection is expressed as follows.

Si × E |ψ〉 =

 E× Si |ψ〉 = E |ψ〉 , Error undetected.

−E× Si |ψ〉 = −E |ψ〉 , Error detected.

(1.1)

The condition for quantum error correction is that E is a set of correctable error

operators for CS if

Ei
†Ej /∈ N(S)\S, ∀Ei,Ej ∈ E,

where Ei
† is conjugate transpose of Ei and N(S) is the normalize of S in Pn such as

N(S) = {A ∈ Pn | A†EA ∈ S, ∀E ∈ S}.

Note that N(S) is the collection of all operators in Pn that commutes with S. Then,

the minimum distance of stabilizer code is determined by dmin = min(W(E)) s.t.

E ∈ N(S)\S, where the weight of an operator, W(∗), is the numbers of positions not

equal to Pauli operator I.

Since we can express the generator of the quantum stabilizer code as a binary field,

due to the fact that any n-qubit Pauli operator can be expressed as a multiplication

of an X-containing operator and an Z-containing operator, we define the mapping

between Pauli operators and binary vectors as I ↔ (0, 0), X ↔ (1, 0), Z ↔ (0, 1),

and Y ↔ (1, 1). As a consequence, (n− k) generators of an [[n, k]] code are formed

in a binary field as H = [HX|HZ] where HX,HZ are (n− k)×n binary matrices and

”|” denotes the row concatenation. Hence, H represents binary matrices with the size
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(n − k) × 2n. The commutative constraint between generators must change to the

symplectic product constraint as

HZ ×HX
T + HX ×HZ

T = 0m , (1.2)

where 0m is the matrix of all zero elements with size m ×m. From the binary form

of a stabilizer code, by using Gaussian elimination, the parity-check matrix H can be

uniquely determined in standard form as follows,
r︷︸︸︷
I

n−k−r︷︸︸︷
A1

k︷︸︸︷
A2

r︷︸︸︷
B

n−k−r︷︸︸︷
C1

k︷︸︸︷
C2

0 0 0 D I E

 } r

} n− k − r
(1.3)

The linear combinations among rows of parity-check matrix H generate the sta-

bilizer group S in binary modulo-2 addition. Since the dual-space of H has the

dimension of 2n−m = m+ 2k, the normalize group N(S) that commutes with S can

be considered as the dual-space of S generated by a (m + 2k) × 2n binary matrix.

The last 2k rows are called the logical operators X and Z which satisfy the following

conditions 

Xi ◦Xj = +1

Zi ◦ Zj = +1

Xi ◦ Zj = +1 for i 6= j

Xi ◦ Zj = −1 for i = j

(1.4)

The standard form of the logical operators is given as follows:
X =

[
0 ET I (ETC1 + C2

T ) 0 0

]
Z =

[
0 0 0 A2

T 0 I

] (1.5)

The operation of encoding a general stabilizer code can be described as

|σ1σ2...σk〉 =
1√

2n−k
×

(
n−k∏
i=1

(I + gi)

)
×X1

σ1 ×X2
σ2 × ...×Xk

σk |00...0〉n, (1.6)
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where |00...0〉 is the n-qubits state and ci ∈ {0, 1}.

Above, we considered quantum stabilizer codes with a binary form over {0, 1}2n.

Since these codes are defined over {0, 1}2n, we call them quantum binary codes.

Generally, we denote quantum non-binary codes with parameters [[n, k, dmin]]p, which

are defined over GFp
n(the qupits case). The quantum code for this case corresponds

to the commutative group of generalized Pauli operators. Based on the generalized

Pauli matrices X(p) and Z(p) in Section 2.1, we have Z(p)bX(p)a = ωa•bX(p)aZ(p)b

with the following notations:

1. a • b =
n∑
i=1

ai · bi where a = (a1a2 · · · an) and b = (b1b2 · · · bn),

2. X(p)a = X(p)a1 ⊗X(p)a2 ⊗ · · · ⊗X(p)an ,

3. Z(p)b = Z(p)b1 ⊗ Z(p)b2 ⊗ · · · ⊗ Z(p)bn .

We consider the commutative property between X(p)u1Z(p)v1 and X(p)u2Z(p)v2 .

Since,

1. X(p)u1Z(p)v1)(X(p)u2Z(p)v2) = (X(p)u1ωu2·v1X(p)u2)(Z(p)v1Z(p)v2) =

ωu2·v1(X(p)u1X(p)u2)(Z(p)v1Z(p)v2 ,

2. X(p)u2Z(p)v2)(X(p)u1Z(p)v1) = (X(p)u2ωu1·v2X(p)u1)(Z(p)v2Z(p)v1) =

ωu1·v2(X(p)u2X(p)u1)(Z(p)v2Z(p)v1 ,

X(p)u1Z(p)v1 and X(p)v2Z(p)v2 are commutative if and only if ωu1•v2 = ωu2•v1

hence u1 •v2 = u2 •v1. Then, the representation of the quantum stabilizer code for

the qupits case is H =

[
HX(p) HZ(p)

]
, where HX(p), HZ(p) are the matrices over
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the Galois field and the symplectic inner product (SIP), which is satisfies

HX(p) ⊗HZ(p)
T = HZ(p) ⊗HX(p)

T , (1.7)

Here, the multiplication (⊗) and summation (⊕) operators are over the GF (p).

The CSS structure is an advantageous construction for quantum codes since the

quantum codes can be investigated using the best classical codes based on the CSS

structure. In addition, both quantum binary codes and quantum non-binary codes

can be constructed by the CSS structure. Hence, we summarize the generalized

CSS structure for the construction of binary and non-binary quantum codes in the

following Lemma.

Lemma 1.1 (Quantum CSS structure) Let C1 and C2 be two linear codes with pa-

rameters [[n, k1, d1]]p and [[n, k2, d2]]p, respectively. If C2
⊥ ⊆ C1, then there exists a

quantum code with the parameter [[n, k1 + k2 − n, d ≥ min{d1, d2}]]p.

As with the stabilizer formalism, the parity-check matrix of quantum codes based on

the CSS structure can be expressed as follows:

H =

 H(C2) 0

0 H(C1)

 .
The SIP for the above matrix is given as H(C2)×H(C1)

T = 0.

1.2.3 QECCs over Galois field 4

The Galois field with 2 elements (GF(2)) is defined over the set of 0 and 1, i.e.,

GF(2) = {0, 1}, under addition and multiplication forms that satisfy pre-defined

axioms. Galois field GF(4) is an extension of GF(2), where its primitive element is ω,
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Table 1.1: Mapping between Pauli operators and GF(4) elements.

I 0

X 1

Y ω2 = ω + 1

Z ω

Multiplication operator Addition

Commutative Trace-inner product

where ω2 = ω+1. Hence, GF(4) is the set of four elements {0, 1, ω, ω+1} for additive

form or {0, 1, ω, ω2} for multiplicative form. We define some basic functions over

GF(4) as follows:

1. Conjugate function: For any x ∈ GF(4) : x = x2.

2. Trace function: For any x ∈ GF(4), T r : GF(4) → GF(2), T r(x) = x + x =

x+ x2.

3. Trace-inner product: For two vectors over GF (4 ) : u = (u1 , u2 , ..., un) and

v = (v1, v2, ..., vn), Trace-inner product: ” • ” : GF (4 )n → GF (2 ), we have:

u • v = Tr(u× v) =
n∑
i=1

Tr(ui × vi2).

A quantum stabilizer code can be considered as an additive code over the finite

field GF(4) by identifying the four Pauli operators with the elements of GF(4). The

mapping between the Pauli operators and elements of GF(4) is shown in Table 1.1.

Proposition: We can consider a quantum stabilizer code as an additive code

over the finite field GF(4) by identifying the four Pauli operators with the elements
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of GF(4). We denote GF(4) = {0, 1, ω, ω2} where ω2 = ω + 1. The mapping is in

Table 1.1.

Given four elements in GF(4), some products have been defined as follows:

Definition: Conjugation in GF(4) is defined by x := x2. The trace function,

tr : GF(4) → GF(2), is defined by tr(x) := x + x. The trace inner product of two

vector lengths, n, over GF(4), u and v, is given by u∗v :=
∑
i

tr(uivi). The Hermitian

product (.) of two vector lengths, n, over GF(4), u and v, is defined as u.v :=
∑
i

uivi.

In particular, we have: tr(0) = tr(1) = 0, tr(ω) = tr(ω2) = 1 and 0 = 0, 1 = 1,

ω = ω2. Hence, as in the mapping in Table 1.1, adding two vectors over GF(4)

corresponds to multiplying two mapping Pauli operators. For single Pauli operators,

they commute when, in the first case, one of them is I, or in the second case, when

they are equal to each other. Hence, their trace product is always 0, due to tr(0) = 0

and when x 6= 0, x3 = 1, then, tr(x3) = tr(1) = 0. Otherwise, the trace product

of single Pauli operators is 0. From that, Pauli operators arising from vector x, y

commute when the trace product (components-wise) is even; or stated another way,

x ∗ y =
∑
tr(xiyi) = 0. To state the relationship between QECC and additive code

over GF(4), the two following lemmas have been studied:

Lemma 1: An additive code (n, 2n−k) code C such that there are no vectors of

weight < d in C⊥\C, where C⊥ is the Hermitian dual of C, that yields a quantum

code with parameters [[n, k, d]].

Lemma 2: Linear code C is self-orthogonal with respect to trace if and only if

it is self-orthogonal with respect to Hermitian product.

Proof: We notice C is linear, which means if u,v ∈ C, we have ωu, ωv ∈ C.
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From u.v = α + ωβ, we have: 0 = tr(u.v) = tr(α + βω) = β. From ω2u.v =

ω2α + ω3β = ω2α + β, we have 0 = tr(ω2u.v) = tr(ω2α + β) = α. Since the linear

code C is an additive code, its parameters are (n, 22k) = (n, 2n−(n−2k)). Therefore, as

Lemma 1.2.3, the stabilizer code [[n, n− 2k, d]] is obtained.

Combining Lemma 1.2.3 and Lemma 1.2.3, we have the following corollary:

Corollary: Let C be a Hermitian self-orthogonal linear [n, k] code over GF(4)

such that there are no vectors of weight < d in C⊥\C, where C⊥ is the Hermitian

dual of C. Then, there is a quantum stabilizer code [[n, n− 2k, d]].

From Corollary 1.2.3, we will change the problem of building the stabilizer code

into finding a Hermitian self-orthogonal linear code. First, it is an additive code over

GF(4); then, it actually requires the two following conditions for each row vector, (for

example, u1, u2):

1. to be orthogonal to each other; that is, ui.uj = 0 for any i, j ∈ {1, 2}; and

2. to be orthogonal to itself; that is, the weight of u1, u2 (the number of elements

with difference 0) has to be even.

1.2.4 Entanglement-assisted QECC

An EAQECC is an extension of quantum stabilizer codes with parameter [[n, k,

dmin; c]]. Like classical coding theory, it also encodes k logical qubits into n physical

qubits but with the help of c copies of maximally entangled Bell states. It has been

shown that EAQECCs have considerable advantages over standard quantum stabilizer

codes from pre-existing entanglement between transmitter and receiver to improve the

reliability of transmission. In addition, while quantum stabilizer codes based on CSS
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can use dual-containing classical linear binary or quaternary code, non-self-orthogonal

codes can be transformed into an EAQECCs.

Let a size of a group be the number of elements in the group. If S is the non-

Abelian in Pauli group Pn of size m, then there exists a set of generators for S of

the form {Z1, Z2, . . . , Zs+c, Xs+1, Xs+2, . . . , Xs+c} (where s + c = m) with the

following commutation properties:


[Zi,Zj] = 0 and [Xi,Xj] = 0 for all i, j;

[Xi,Zj] = 0 for all i 6= j;

{Xi,Zi} = 0 for all i,

(1.8)

where [A, B] and {A, B} are a commutator and a anti-commutator of generator

A and B, respectively. The [A, B] and {A, B} of generator A and B can be expressed

as A × B − B × A and A × B + B × A, respectively. Then, the non-Abelian

group can be partitioned into:

1. A commuting subgroup, the isotropic group S I = {Zc+1, Zc+2, . . . , Zc+s}.

2. Entanglement subgroup pairs SE = {Z1, Z2, . . . , Zc, X1, X2, . . . , Xc} with

anti-commuting pairs; the anti-commuting pairs (Zi, Xi) being shared between

source and receiver.

The Gram–Schmidt procedure to drop the non-Abelian group into the partitions of

operators with the above properties (called the isotropic and entanglement subgroup)

was introduced and discussed [90]. From the isotropic and entanglement subgroup,

EAQECC code C EA are defined as [[n, k ; c]] that encodes k = n − s − c qubits into

n physical qubits with the help of s = n − k − c ancillas qubits and c ebits shared
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between the sender and receiver, that can correct any error from the following set of

errors, N :

N =
{
Em

∣∣ ∀E1, E2 ⇒ E2
†E1 ∈ SI ∪ (Pn − N(S))

}
.

Code space C EA is a simultaneous eigenspace of the Abelian extension of S [96].

The Abelian extension is Galois extension by using ancilla operators. From N, we

can determine dmin, and it tells us the detectable and correctable EAQECCs.

From the isotropic and entanglement subgroup, the operation of EAQECC can be

considered. For example, the following state shared between A (Alice) and B (Bob)

is an entanglement state:

|Φ〉 =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

The first half of the entanglement pair belongs to Alice and the second half to

Bob. Then, the operating principle is illustrated in Figure 1.2. The Sender A encodes

the quantum information state |ψ〉 with the help of local ancillary qubits |0〉 and her

half of shared ebits, |Φ〉, and then shares the encoded qubits over a noisy quantum

channel. The Receiver B performs multi-qubit measurement on all qubits to diagnose

the channel error and perform recovery unitary operation R to reserve the action of

the channel.

The most important relationship between EAQECCs and classical codes is given

in the following theorem [90,92]:

Theorem 1. Let C be a binary classical code [n, k, d] with parity check matrix H. We

can obtain a corresponding [[n, 2k − n + c, d; c]] EAQECC, where c = rank
{
HHT

}
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is the number of ebits needed.

As a consequence, there are lots of papers using this theorem for EAQECC con-

struction. From binary code C with parameter [n, k, d ] and the generator ma-

trix G = [Ik | Akx(n-k)], the EAQECC with [[2n − k, k, d ’; c]] can be made [92],

where c = 2n − 2k and d ’ ≥ d. Tomas [93] used the generalized quadrangle

GQ(s,1) for the construction of classical binary code and proved the number of

ebits is 2. The circulant matrix Pm =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 . . . 1

1 0 0 . . . 0


, and Am

(i) (i = 0, 1,

2, . . . , m − 1) is an m × m binary matrix where the (i + 1) row is 1 and other

rows are 0, and defines classical binary codes [94]. Then, the number of ebits is
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proven to be 1 for some conditions. Qian and Zhang [95] used shortened Hamming

codes with parameter
[
m(m−1)

2
, (m−1)(m−2)

2
, 3
]
, and proved EAQECCs with parameter[[

m(m−1)
2

, (m−1)(m−4)
2

+ 1, 3; 1
]]

exist if m is even.

1.3 Contribution and layout of the thesis

The dissertation consists of seven chapters structured as follows:

In Chapter 1, we sum up all the background knowledge relevant to my studies of

quantum information theory, quantum error correction codes, and related works of

construction of quantum error correction codes. Then, we present the outline of the

dissertation.

In Chapter 2, we study the construction of quantum stabilizer codes based on

difference sets. From the suitable DSs, the circulant matrices are designed and used

to construct the parity-check matrix. Then, the generators of the stabilizer should first

be chosen to make independent rows of parity-check matrix. Finally, the codewords

and minimum distance are determined.

In Chapter 3, we study the construction of quantum codes from symmetric matri-

ces that are based on the CSS structure. The parity-check matrices are first generated

from two constructions and proven to satisfy the symplectic inner product for the con-

struction of binary and non-binary quantum stabilizer codes. Then, the parameters

of these codes are calculated and explained in detail. Some quantum codes are proven

to achieve equality of the quantum singleton bound.

In Chapter 4, we study the approach to the construction of additive codes over

GF(4), which are self-orthogonal with respect to Hermitian product. The minimum
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distance of this classical linear code was proved to be 4 in all cases. The corresponding

quantum stabilizer code can be transformed from this classical code; we prove all the

optimal codes that can be accomplished from this construction with lengths 5, 6, 7,

8, 9, and 10.

In Chapter 5, we study the construction of self-orthogonal trace-inner product

codes over GF(4). From two binary vectors, we generate the circulant and modified

circulant matrices, and the generator matrix for quaternary linear codes is proposed.

Then, the quantum stabilizer codes are derived from the linear codes. The advantage

of the proposed construction is that our proposed codes give various dimensions of

QECCs, and these minimum distances have good values.

In Chapter 6, we study the novel approaches to construction of EAQECC. First,

we propose a new method for the construction of the isotropic subgroup based on

circulant matrices. Then, the entanglement subgroup can be determined from a

method of transforming the isotropic group into standard form; hence, the parameters

of codes are found, and for effective preparation of the entangled state, the number

of ebits should be as few as possible. To explain the practical construction of the

quantum codes, design of the proposed EAQECC with lengths up to 12 are shown. In

addition, the minimum distance is calculated and explained to show that the proposed

construction has good correctable capability, in comparison with recent EAQECC.

Finally, Chapter 7 concludes the dissertation with a summary and discussion of

future research directions.



Chapter 2

New Constructions of Quantum

Stabilizer Codes Based on

Difference Sets

2.1 Introduction

Low-density parity-check (LDPC) codes were first introduced by Gallager [22].

Then, an excellent performance close to Shannon channel capacity was obtained

according to large block size of binary parity-check matrix in classical communi-

cation [23]. Innovative designs of the parity-check matrix have been proposed for

LDPC codes with better performances or with easy implementation. The applica-

tion of combinatoric design on LDPC codes was proposed to increase the girth of

the parity-check matrices [24]. Adaptive selection of quasi-cyclic LDPC (QC-LDPC)

codes suitable for visible light communication had been studied to adjust the dim-

22
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ming control [25]. New quantum codes have been proposed based on LDPC codes

with the Calderbank-Shor-Steane (CSS) form in [26,27] and quantum LDPC with the

non-CSS form in [28,29].

A difference set (DS) in combinatorics [30–32] is defined as a subset in which each

difference of two elements occurs in the group. Perfect DSs have been used to build

up cyclic codes which have remarkable performance in classical channels. Hence,

the new trial using DSs on quantum code was first studied in [33] where DSs are

used to construct dual-containing sparse-graph codes for QECCs. Further, one-time

DSs were used to construct entanglement-assisted quantum LDPC codes in [34] and

these quantum codes have shown a significant improvement in the error probability

performance. The quantum QC-LDPC codes based on the DSs in [35], where the set

of DSs is easily generated by only a single parameter; however, a lot of the DSs cannot

be defined except for prime numbers of the form n = 4k − 1, where k is even number.

In this chapter, new constructions of quantum stabilizer codes based on DSs are

proposed. From the suitable DSs, the circulant matrices are designed and used to

construct the parity-check matrix. Then, the generators of the stabilizer should first

be chosen to make independent rows of parity-check matrix. Finally, the codeword

and minimum distance are determined. Two quantum stabilizer codes with lengths of

seven and 15 from the proposed design are shown to express the practical application.
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2.2 Proposed construction

2.2.1 Difference sets and shifted difference sets

A (n, k, λ) difference set (DS) D = {d1, d2, . . . , dk} is defined as a collection of

k residues (∈ {0, 1, 2, . . . , n− 1}). Then, for any residue α 6= 0, the congruence

di − dj = α (modulo n) has exactly λ solution pairs (di, dj) with di, dj ∈ D. The

necessary condition of the parameters (n, k, λ) is k(k − 1) = λ(n − 1) [30]. Assume

that the (n, k, λ) DS D = {d1, d2, . . . , dk} is given, then the shifted set D(s) =

{d1 + s, d2 + s, . . . , dk + s} is also a new DS with the same parameters (n, k, λ). A

DS with three elements and its shifted DS are shown in Example 1.

Example 1. A perfect DS is (7, 3, 1) with D = {1, 2, 4}, 1− 2 ≡ 6 2− 1 ≡ 1 4− 1 ≡ 3

1− 4 ≡ 4 2− 4 ≡ 5 4− 2 ≡ 2

modulo 7.

The shifted (7, 3, 1) DS with offset 6 is D (6) = {0, 1, 3}, 0− 1 ≡ 6 1− 0 ≡ 1 3− 0 ≡ 3

0− 3 ≡ 4 1− 3 ≡ 5 3− 1 ≡ 2

modulo 7.

The notation D(s) stands for the shifted DS from D with the offset s.

2.2.2 Circulant permutation matrices

Let In be the identity matrix of size n × n. Then, In(x ) is the shift of In where

the rows of In are circularly shifted to the right by x positions (0 ≤ x ≤ n − 1).
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Generally, we notice that In(0) = In and In(x ± kn) = In(x) for any integer k. Let

In(1)c be the c times of multiplying In(1), we have In(1)c = In(c) (0 ≤ c ≤ n − 1).

Example 2. With n = 4, we have:

I4(0) = I4 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, I4(2) =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


, and

I4(2) =



0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


×



0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


=



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


= I4(1)2.

A n× n circulant permutation binary matrix Pn is defined as

Pn =



i0 i1 i2 · · · in−1

in−1 i0 i1 · · · in−2

in−2 in−1 i0 · · · in−3

...
...

...
. . .

...

i1 i2 i3 · · · i0


,

where ik is the binary value. Pn can be given as the linear combination of identity

matrix and its shifted matrices.

Pn = i0 × In(0) + i1 × In(1) + i2 × In(2) + . . .+ in−1 × In(n− 1). (2.1)

It is assumed that i0 + i1 + . . . + in−1 = k. Let t0¡t1 < . . . < tk−1 be the position

index of nonzero elements in the sequence set {i0, i1, . . . , in−1}. For example, if the
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sequence set {i0, i1, . . . , in−1} is {1, 1, 0, 0, 1, 0, 1}, then t0 = 0, t1 = 1, t2 = 4,

and t3= 6. The matrix Pn can also be expressed by using the Hall-polynomial form

pn(x) [30] as

pn(x) = xt0 + xt1 + . . .+ xtk−1 (2.2)

Let T be the transpose operator. Then, the transpose matrix of Pn is denoted as

Pn
T. Let pn(x)T be the Hall-polynomial form of Pn

T. Then, the polynomial pn(x)T

is expressed as

pn(x)T = x−t0 + x−t1 + . . .+ x−tk−1 , (2.3)

where t0, t1, . . . , tk−1 are the values in (8). For a (n, k, λ) DS D = {d1, d2, . . . , dk},

the circulant permutation matrix Pn in (7) is made where the element ij is 1 if j ∈ D

and is 0 otherwise. Then, the Hall-polynomial form pn(x)D for the DS D is expressed

as

pn(x)D = xd1 + xd2 + . . .+ xdk (2.4)

2.2.3 Construction of quantum stabilizer code based on DS

With difference sets (n, k, λ) D, the product of the two circulant permutation

matrices can be expressed as a function of parameter of DS and the shift values in

the following theorem.

Theorem 1. Let h1(x) and h2(x) be the Hall-polynomials of D(s1) and D(s2), which

are defined as h1(x) = pn
D(s1) and h2(x) = pn

D(s2), respectively. Let the circulant

permutation matrices H1 and H2 correspond to h1(x) and h2(x), respectively. Then,

the product of the two polynomials h1(x), h2(x)T and the product of the two matrices
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H1 and H2
T are given as

h1(x)×h2(x)T = (k−λ)×xs1−s2+λ×
n−1∑
l=0

xl and H1×H2
T = (k−λ)×In(s1−s2)+λ×Jn,

where the size of matrix Jn is n× n and whose entries are all one.

Proof. From the definition of the Hall-polynomial, h1(x ) and h2(x ) can be ex-

pressed as

h1(x) = xd1+s1 + xd2+s1 + . . .+ xdk+s1 andh2(x) = xd1+s2 + xd2+s2 + . . .+ xdk+s2 .

Then, the Hall-polynomial h2(x )T for (9) is given as h2(x)T = x−d1−s2 +x−d2−s2 +

. . . + x−dk−s2 . Therefore, the product of the two polynomials h1(x ) and h2(x )T is

given as

h1(x)× h2(x)T = (xd1+s1 + xd2+s1 + . . .+ xdk+s1)× (x−d1−s2 + x−d2−s2 + . . .+ x−dk−s2)

=
k∑
i=1

[x(di+s1)−(d1+s2) + x(di+s1)−(d2+s2) + . . .+ x(di+s1)−(dk+s2)]

=
k∑
i=1

xs1−s2 × [xdi−d1 + xdi−d2 + . . .+ xdi−dk ]

= xs1−s2 ×
k∑

u=1

k∑
v=1

xdu−dv = xs1−s2 ×

[
k × x0 +

k∑
u=1

k∑
v=1, v 6=u

xdu−dv

]
.

(2.5)
k∑

u=1

k∑
v=1, v 6=u

xdu−dv in 2.5 can be expressed as

k∑
u=1

k∑
v=1, v 6=u

xdu−dv = λ×
n−1∑
l=1

xl = λ×
n−1∑
l=0

xl − λ× x0.

Hence, Equation 2.5 is expressed as

xs1−s2 ×

[
k × x0 +

k∑
u=1

k∑
v=1, v 6=u

xdu−dv

]
= xs1−s2 ×

[
k × x0 + λ×

n−1∑
l=0

xl − λ× x0
]

= (k − λ)× xs1−s2 + λ× xs1−s2 ×
n−1∑
l=0

xl = (k − λ)× xs1−s2 + λ×
n−1∑
l=0

xl.

(2.6)
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Since the circulant permutation matrices corresponding to the polynomials xs1−s2

and
n−1∑
l=0

xl are In(s1 − s2) and Jn, respectively, the product of H1 and H2
T is ex-

pressed as

H1 ×H2
T = (k − λ)× In(s1 − s2) + λ× Jn (2.7)

Therefore, the expressions in 2.6 and 2.7 prove Theorem 1.�

Since the product of H1 and H2
T in Theorem 1 is expressed as the function of

k, λ, s1, and s2, the constraint on parameter of DSs to satisfy the SIP condition of

parity-check matrix is explained in the following theorem.

Theorem 2. For any (n, k, λ) DS D where k ≡ λ modulo 2 and any integers s1 6= s2

where s1, s2 ∈ {0, 1, . . . , n− 1}, parity-check matrix H = [H1|H2] where H1 and H2

corresponding to h1(x) = pn
D(s1) and h2(x) = pn

D(s2), respectively, satisfies the SIP

condition (2).

Proof. From Theorem 1, we have:

H1 ×H2
T = (k − λ)× In(s1 − s2) + λ× Jn (2.8)

H2 ×H1
T = (k − λ)× In(s2 − s1) + λ× Jn (2.9)

The summation of 2.8 and 2.9 is

H1 ×H2
T + H2 ×H1

T = (k − λ)× In(s1 − s2) + λ× Jn + (k − λ)× In(s2 − s1) + λ× Jn

= (k − λ)× [In(s1 − s2) + In(s2 − s1)] + 2λ× Jn.

(2.10)

If k − λ is even, all elements of the matrix (k − λ) × [In(s1 − s2) + In(s2 − s1)]

in 2.10 are even. Moreover, all elements of the matrix 2λ× Jn in 2.10 are also even.
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Table 2.1: Difference sets (DSs) with parameters k ≡ λ modulo 2.

No n,k,λ Difference Set

1 7, 3, 1 1 2 4.

2 7, 4, 2 0 3 5 6.

3 15, 7, 3 0 1 2 4 5 8 10.

4 21, 5, 1 3 6 7 12 14.

5 23, 11, 5 1 2 3 4 6 8 9 12 13 16 18.

6 31, 15, 7 1 2 3 4 6 8 12 15 16 17 23 24 27 29 30.

7 47, 23, 11 1 2 3 4 6 7 8 9 12 14 16 17 18 21 24 25 27. 28 32 34 36 37 42.

8 199, 99, 49 1 2 4 5 7 8 9 10 13 14 16 18 20 23 25 26 28 29 31 32 33 35 36
40 43 45 46 47 49 50 51 52 53 56 57 58 61 62 63 64 65 66 70 72
79 80 81 86 89 90 91 92 94 98 100 102 103 104 106 111 112 114
115 116 117 121 122 123 124 125 126 128 130 131 132 139 140
144 145 151 155 157 158 160 161 162 165 169 172 175 177 178
180 182 184 187 188 193 196.

Then, all elements of the matrix (k−λ)× [In(s1 − s2) + In(s2 − s1)] + 2λ×Jn in 2.10

are even. Therefore, if k ≡ λ modulo 2, the equation H1 ×H2
T + H2 ×H1

T = 0n is

always true. Therefore, the parity-check matrix H of H1 and H2 which is made from

the parameter of DS with the constraint k ≡ λ modulo 2 satisfies the SIP condition.�

In Table 2.1, eight DSs with the constraint k ≡ λ modulo 2 are listed among

the DSs in. For the practical applications of proposed construction, two DSs with

parameters (7, 4, 2) and (15, 7, 3) are considered in Examples 3 and 4.

Example 3. For the DS D = {0, 3, 5, 6} with parameter (7, 4, 2), two shifted

DSs are considered as D(1) = {0 + 1, 3 + 1, 5 + 1, 6 + 1} = {0, 1, 4, 6}, D(4)

= {0 + 4, 3 + 4, 5 + 4, 6 + 4} = {0, 2, 3, 4}. Then, the Hall-polynomials for
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D(1) and D(4) are h1(x) = p7
D(1) and h2(x) = p7

D(4), respectively. Therefore, the

corresponding binary matrices for the Hall-polynomials are given as

H1 =



1 1 0 0 1 0 1

1 1 1 0 0 1 0

0 1 1 1 0 0 1

1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1

1 0 0 1 0 1 1



, H2 =



1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1

1 0 0 1 0 1 1

1 1 0 0 1 0 1

1 1 1 0 0 1 0

0 1 1 1 0 0 1



, H = [H1|H2]. (2.11)

It follows that two products H1 ×H2
T and H2 ×H1

T are given by:

H1 ×H2
T =



2 2 2 2 4 2 2

2 2 2 2 2 4 2

2 2 2 2 2 2 4

4 2 2 2 2 2 2

2 4 2 2 2 2 2

2 2 4 2 2 2 2

2 2 2 4 2 2 2



= (4− 2)× I7(1− 4) + 2× J7,



Chapter 2: New Constructions of Quantum Stabilizer Codes Based on
Difference Sets 31

H2 ×H1
T =



2 2 2 4 2 2 2

2 2 2 2 4 2 2

2 2 2 2 2 4 2

2 2 2 2 2 2 4

4 2 2 2 2 2 2

2 4 2 2 2 2 2

2 2 4 2 2 2 2



= (4− 2)× I7(4− 1) + 2× J7.

Then, the SIP product is H1×H2
T +H2×H1

T =



2 2 2 6 6 2 2

2 2 2 2 6 6 2

2 2 2 2 2 6 6

6 2 2 2 2 2 6

6 6 2 2 2 2 2

2 6 6 2 2 2 2

2 2 6 6 2 2 2



= 07 modulo

2.

The seven quantum stabilizer operators corresponding to the seven rows in H 2.11

are given as

g1 = YXZZYIX; g2 = XYXZZY I ; g3 = I XYXZZY;

g4 = YIXYXZZ; g5 = ZYIXYXZ; g6 = ZZY IXYX; g7 = XZZYIXY.

Among the seven operators, there are a maximum of three linearly independent

operators. If g1, g2 and g3 are chosen as the maximum of three linearly independent

operators, the other operators are expressed as g4 = g1× g3; g5 = g1× g2× g3; g6 =

g1 × g2; g7 = g2 × g3. With S = 〈g1,g2,g3〉, a stabilizer subgroup is composed as
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S = {YXZZYIX,XYXZZYI, IXYXZZY,YIXYXZZ,ZYIXYXZ,ZZYIXYX,

XZZYIXY, IIIIIII}.

Using Equation 1.3, we transform the H matrix in 2.11 into its standard form as
1 0 0 1 0 1 1 0 1 1 1 0 0 1

0 1 0 1 1 1 0 1 1 0 0 1 0 1

0 0 1 0 1 1 1 1 1 1 0 0 1 0

 .
Then, as Equation 1.5, the logical operators X and Z are calculated as

X =



0 0 0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0


and Z =



0 0 0 0 0 0 0 1 1 0 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0 1 0 0

0 0 0 0 0 0 0 1 1 1 0 0 1 0

0 0 0 0 0 0 0 1 0 1 0 0 0 1



⇔



X1 = ZI IXI I I

X2 = IZI IXI I

X3 = I IZI IXI

X4 = ZZI I I IX

and



Z1 = ZZIZ I I I

Z2 = IZZIZI I

Z3 = ZZZIIZI

Z4 = Z IZI I IZ

.

The codewords of the quantum stabilizer code [[7,4]] are expressed as

|c1c2c3c4〉 = 1√
23
×
(

3∏
i=1

(I + gi)

)
×X1

c1 ×X2
c2 ×X3

c3 ×X4
c4 |0000000〉

= 1√
23
×X1

c1 ×X2
c2 ×X3

c3 ×X4
c4

(∑
s∈S

s |0000000〉
)
,

where
3∏
i=1

(I + gi) =
∑
s∈S

s and ci ∈ {0, 1}.

The minimum distance dmin of the [[7,4]] code is determined by the smallest weight

of N(S)\S. One of the smallest weights is X1 × IIIIIII. Since W( X1 × IIIIIII)

= 2, the minimum distance dmin is 2. Therefore, the quantum stabilizer code from the

DS with parameter (7, 4, 2) is [[7,4,2]].



Chapter 2: New Constructions of Quantum Stabilizer Codes Based on
Difference Sets 33

Example 4. A DS D = {0 1 2 4 5 8 10} with parameters (15, 7, 3) is considered to

construct a quantum stabilizer code with length 15. The parity-check matrix is given

as H = [H1H2] where

H1 =



0 1 1 1 0 1 1 0 0 1 0 1 0 0 0

0 0 1 1 1 0 1 1 0 0 1 0 1 0 0

0 0 0 1 1 1 0 1 1 0 0 1 0 1 0

0 0 0 0 1 1 1 0 1 1 0 0 1 0 1

1 0 0 0 0 1 1 1 0 1 1 0 0 1 0


, H2 =



0 1 1 0 0 1 0 1 0 0 0 0 1 1 1

1 0 1 1 0 0 1 0 1 0 0 0 0 1 1

1 1 0 1 1 0 0 1 0 1 0 0 0 0 1

1 1 1 0 1 1 0 0 1 0 1 0 0 0 0

0 1 1 1 0 1 1 0 0 1 0 1 0 0 0


.

Five independent generators can be chosen as

g1 = IYYX IYXZIX IXZZZ

g2 = Z IYYXIYXZIX IXZZ

g3 = ZZIYYXIYXZIXI XZ

g4 = ZZZIYYXI YXZIXIX

g5 = XZZZIYYXIYXZIX I

.



Chapter 2: New Constructions of Quantum Stabilizer Codes Based on
Difference Sets 34

By using Gaussian elimination, the logical operators X and Z can be written as

X1 = Z I IZZX I I I I I I I I I, Z1 = Z I Z I ZZ I I I I I I I I I

X2 = ZZZI I I X I I I I I I I I, Z2 = ZZZZZ I Z I I I I I I I I

X3 = I ZZZ I I I X I I I I I I I, Z3 = ZZ I Z I I I Z I I I I I I I

X4 = I IZZZ I I IX I I I I I I, Z4 = I Z Z IZI I I Z I I I I I I

X5 = ZIZZ I I I I IX I I I I I, Z5 = Z I I Z ZI I I I Z I I I I I

X6 = I ZIZZ I I I I IX I I I I, Z6 = ZZZ I I I I I I I Z I I I I

X7 = Z I I I I I I I I I IX I I I, Z7 = I ZZ Z I I I I I I I Z I I I

X8 = I ZI I I I I I I I I I XI I, Z8 = I I Z ZZ I I I I I I I Z I I

X9 = I IZ I I I I I I I I I IX I, Z9 = Z I Z Z I I I I I I I I I Z I

X10 = I I I Z I I I I I I I I I I X, Z10 = IZ I Z Z I I I I I I I I I Z

Therefore, the codewords for the [[15,10,2]] stabilizer code can be expressed as

|c1c2 . . . c10〉L = 1√
25
×
(

5∏
i=1

(I + gi)

)
×X1

c1 ×X2
c2 × . . .×X10

c10 |0102. . . 015〉

= 1√
25
×X1

c1 ×X2
c2 × . . .×X10

c10

(∑
s∈S

s |0102. . . 015〉
)
.

As shown in Table 2.2, the parameter constraints for difference sets in proposed

construction are different from the ones in [35]. Since 2p − 1 ≡ p − 1 modulo 2

where p is an even number, DSs which are used in [35] can be also used in the

proposed construction. In contrast, DSs in the proposed construction are not always

used in [35] because 4p − 1 must be a prime number. As a result, the proposed

construction is more general than [35]s construction and the proposed construction

enlarges the results of using DSs for quantum stabilizer code construction. In addition,

in comparison to the proposed codes with existing quantum codes, quantum codes

with length 7 and 15 are discussed. It is known that existing quantum stabilizer
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Table 2.2: Comparison of our proposed method and [35]s method.

Paper [35]’s Construction Proposed Construction

Focus on the difference set with parameters:
(n, k, λ) = (4p − 1, 2p − 1, p − 1) where p is
even number and 4p − 1 is a prime number.

Focus on the difference set with
parameters: (n, k, λ) where k ≡
λ(modulo 2)

codes with length 7 have code parameters [[7,3,2]] from quadratic residue sets in [38],

or [[7,3,2]] and [[7,4,2]] constructed over the quaternary alphabet, listed in [39]. To

compare to the proposed codes and codes in [38], the number of information bits of

the proposed codes is 1 bit larger than the referenced code. As referenced in the list

in [39], a stabilizer with length 15 and the same parameters of [[15,10,2]] that were

constructed over quaternary alphabet are found.



Chapter 3

New construction of binary and

nonbinary quantum stabilizer

codes based on symmetric matrices

3.1 Introduction

The high-dimensional degrees of freedom of photons can encode more quantum

information than their two-dimensional counterparts, and this increased information

capacity has advantages in quantum applications, such as quantum communication,

quantum cryptography, and quantum algorithm. However, controlling and manipu-

lating these systems has many challenging; QECCs are one solution that aims to solve

these issues [40]. Additionally, QECCs for high-dimensional quantum systems must

be considered in non-binary cases, by using non-binary quantum stabilizer codes. The

CSS structure has been considered for non-binary quantum codes for qudits, where

36
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the classical codes are over the Galois field [41]. Since the self-orthogonal codes over

a finite field that satisfy the conditions of the CSS structure-based quantum code and

self-orthogonal codes can be constructed effectively by combinatoric design, cyclic

codes, and constacyclic codes, many quantum codes have been constructed in recent

years; these are based on the CSS structure via a finite field [42] [43] [44]. In addition,

the stabilizer formalism allows quantum codes to be presented by binary matrices, i.e.,

parity-check matrices with symplectic inner product (SIP) constraints [45] [46] [47].

Hence, we can consider the construction of quantum codes based on the CSS structure

to be in the form of matrices. For example, in [13] the authors used a permutation-

based technique for this construction, and in [48] the authors searched for a suitable

monomial matrix for the construction. The papers [13] [48] provided some good quan-

tum non-binary codes with the singleton bound; however, many constructions remain

to be discovered.

In this chapter, we propose the new construction of quantum codes from symmetric

matrices that are based on the CSS structure. The parity-check matrices are first

generated from two constructions and proven to satisfy the symplectic inner product

for the construction of binary and non-binary quantum stabilizer codes. Then, the

parameters of these codes are calculated and explained in detail. Some quantum

codes are proven to achieve equality of the quantum singleton bound.
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3.2 Proposed construction

3.2.1 Quantum stabilizer codes for the binary case

In this subsection, we propose the construction of quantum stabilizer codes for

the binary case. Construction 1a considers the construction of a parity-check matrix

based on identity and symmetric matrices. In another case, the parity-check matrix

in construction 2a is based on the CSS structure.

Construction 1a: Let I be the identity binary matrix with size n × n. Let

A be the symmetric matrix (AT = A) over binary with size n × n. The proposed

parity-check matrix has the following form:

H =

[
I A

]
(3.1)

This corresponds to the quantum stabilizer code with parameter [[n, 0]].

Proof: Based on the properties of symmetric matrices, we have:

IAT + AIT = AT + A = 0.

The SIP equation 1.2 for the parity-check matrix in equation 3.1 is satisfied. Since

H has the size n× 2n, we get the quantum stabilizer code with parameter [[n, 0]].

Construction 2a: Let I be the identity binary matrix with size n × n. Let

A be the symmetric matrix (AT = A) over binary with size n × n. The proposed

parity-check matrix has the following form:

H =

 H1 0

0 G2

 =


[

I A

]
0

0

[
A I

]
 (3.2)

This corresponds to the quantum stabilizer code with parameter [[2n, 0, d]].
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Proof: Based on the definition in equation 3.2, we have following formulation:

H1 ×G2
T =

[
I A

]
×
[

A I

]T
=

[
I A

]
×

 AT

IT


= I×AT + A× IT = AT + A = 0.

In addition, we also have:

G2 ×H1
T =

[
A I

]
×
[

I A

]T
=

[
A I

]
×

 IT

AT


= A× IT + I×AT = A + AT = 0.

Then, the SIP for the parity-check matrix in (4) is:

HX ×HZ
T + HZ ×HX

T =

 H1

0


 0

G2


T

+

 0

G2


 H1

0


T

=

 H1

0

[ 0T G2
T

]
+

 0

G2

[ H1
T 0

]

=

 H1 × 0T H1 ×G2
T

0× 0T 0×G2
T

+

 0×H1
T 0× 0T

G2 ×H1
T G2 × 0T


=

 0 H1 ×G2
T

G2 ×H1
T 0

=

 0 0

0 0

 .
Since H has the size 2n × 4n, we get the quantum stabilizer code with parameter

[[2n, 0]].

In the following examples, the quantum stabilizer codes for the qubits case are

given. In example 1 through example 3, we consider the quantum stabilizer codes for

the qubits case based on construction 1a where the code lengths are 5, 6, and 7. In
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the examples, we first give the construction of the parity-check matrices, and then

the parameter of the code is calculated by the Magma tools function QuantumCode,

MinimumWeight [52]. Since any symmetric matrix satisfies our construction, there

are many candidates for the parity-check matrices. Therefore, for each code length,

we give the quantum stabilizer code with a largest minimum distance, which we

calculated by the Magma tools function.

Example 1: We consider the following parity-check matrix with the size 5× 10:

H =



1, 0, 0, 0, 0

0, 1, 0, 0, 0

0, 0, 1, 0, 0

0, 0, 0, 1, 0

0, 0, 0, 0, 1

1, 1, 0, 1, 1

1, 0, 1, 1, 0

0, 1, 1, 0, 1

1, 1, 0, 1, 0

1, 0, 1, 0, 1


.

It corresponds to the quantum stabilizer code with parameter [[5, 0, 3]].

Example 2: We consider the following parity-check matrix with the size 6× 12:

H =



1, 0, 0, 0, 0, 0

0, 1, 0, 0, 0, 0

0, 0, 1, 0, 0, 0

0, 0, 0, 1, 0, 0

0, 0, 0, 0, 1, 0

0, 0, 0, 0, 0, 1

1, 0, 1, 1, 0, 1

0, 0, 1, 0, 1, 1

1, 1, 0, 0, 0, 1

1, 0, 0, 1, 1, 1

0, 1, 0, 1, 0, 1

1, 1, 1, 1, 1, 0


.

This corresponds to the quantum stabilizer code with parameter [[6, 0, 4]].
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Example 3: We consider the following parity-check matrix with the size 7× 14:

H =



1, 0, 0, 0, 0, 0, 0

0, 1, 0, 0, 0, 0, 0

0, 0, 1, 0, 0, 0, 0

0, 0, 0, 1, 0, 0, 0

0, 0, 0, 0, 1, 0, 0

0, 0, 0, 0, 0, 1, 0

0, 0, 0, 0, 0, 0, 1

1, 0, 1, 0, 1, 0, 1

0, 1, 0, 0, 1, 0, 1

1, 0, 1, 1, 0, 1, 1

0, 0, 1, 0, 1, 1, 0

1, 1, 0, 1, 1, 0, 1

0, 0, 1, 1, 0, 1, 0

1, 1, 1, 0, 1, 0, 1



.

This corresponds to the quantum stabilizer code with parameter [[7, 0, 3]].

In the following examples (from example 4 to example 8), we consider the quan-

tum stabilizer codes for the qubits case based on the construction 2a with the code

lengths up to 12. As construction 2a requires the symmetric matrices to construct

the parity-check matrix, there are many candidates for the symmetric matrices. By

using the CSS structure, we can determine the parameter of the corresponding quan-

tum stabilizer code via the parameters of two classical codes. Then, we choose the

symmetric matrices with large maximum distances to get quantum stabilizer codes

with large maximum distances.

Example 4: We consider two classical codes with the parity-check matrices and

the generators matrices as follows,

H1 =

 1, 0, 1, 0

0, 1, 0, 1


(classical [4,2,2] code) and

G2 =

 1, 0, 1, 0

0, 1, 0, 1
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(classical [4,2,2] code).

This corresponds to the quantum stabilizer code with parameter [[4,0,2]].

Example 5: We consider two classical codes with the parity-check matrices and

the generators matrices as follows:

H1 =


1, 0, 0, 1, 1, 1

0, 1, 0, 1, 1, 0

0, 0, 1, 1, 0, 1


(classical [6,3,3] code) and

G2 =


1, 1, 1, 1, 0, 0

1, 1, 0, 0, 1, 0

1, 0, 1, 0, 0, 1


(classical [6,3,3] code).

This corresponds to the quantum stabilizer code with parameter [[6,0,3]].

Example 6: We consider two classical codes with the parity-check matrices and

the generators matrices as follows:

H1 =



1, 0, 0, 0, 0, 0, 1, 1, 1, 1

0, 1, 0, 0, 0, 1, 1, 0, 1, 1

0, 0, 1, 0, 0, 1, 0, 1, 1, 1

0, 0, 0, 1, 0, 1, 1, 1, 1, 0

0, 0, 0, 0, 1, 1, 1, 1, 0, 1
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([8,4,4] code) and

G2 =



0, 1, 1, 1, 1, 1, 0, 0, 0, 0

1, 1, 0, 1, 1, 0, 1, 0, 0, 0

1, 0, 1, 1, 1, 0, 0, 1, 0, 0

1, 1, 1, 1, 0, 0, 0, 0, 1, 0

1, 1, 1, 0, 1, 0, 0, 0, 0, 1


([8,4,4] code).

This corresponds to the quantum stabilizer code with parameter [[8,0,4]].

Example 7: We consider two classical codes with the parity-check matrices and

the generators matrices as follows:

H1 =



1, 0, 0, 0, 0, 0, 1, 1, 1, 1

0, 1, 0, 0, 0, 1, 1, 0, 1, 1

0, 0, 1, 0, 0, 1, 0, 1, 1, 1

0, 0, 0, 1, 0, 1, 1, 1, 1, 0

0, 0, 0, 0, 1, 1, 1, 1, 0, 1


([10,5,4] code) and

G2 =



0, 1, 1, 1, 1, 1, 0, 0, 0, 0

1, 1, 0, 1, 1, 0, 1, 0, 0, 0

1, 0, 1, 1, 1, 0, 0, 1, 0, 0

1, 1, 1, 1, 0, 0, 0, 0, 1, 0

1, 1, 1, 0, 1, 0, 0, 0, 0, 1


([10,5,4] code).

This corresponds to the quantum stabilizer code with parameter [[10,0,4]].
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Example 8: We consider two classical codes with the parity-check matrices and

the generators matrices as follows:

H1 =



1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0

0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1

0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1

0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1

0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0

0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1


([12,6,4] code) and

G2 =



1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0

0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0

1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0

0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0

1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0

0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1


([12,6,4] code).

This corresponds to the quantum stabilizer code with parameter [[12,0,4]].

3.2.2 Quantum stabilizer codes for the nonbinary case

In this subsection, we propose the construction of quantum stabilizer codes for

the non-binary case. Construction 1b considers the construction of the parity-check

matrix over GFp, which is based on identity and symmetric matrices over GFp. In

construction 2b, the parity-check matrices over GFp are based on the CSS structure.
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Construction 1b: Let I be a matrix with size n × n over GFp, where all the

elements are zeros except for those on the main diagonal, which are one. Additionally,

the matrix A is a symmetric matrix with size n×n over GFp, AT = A. The proposed

parity-check matrix has the following form:

H =

[
I A

]
, (3.3)

which corresponds to the quantum stabilizer code with parameter [[n, 0]]p.

Proof: Based on the properties of A and I, we have:

I×AT = AT = A = A× IT .

The SIP equation 1.7 for the parity-check matrix in equation 3.3 is satisfied. Since

H has the size n× 2n, we get the quantum stabilizer code with parameter [[n, 0]]p.

Construction 2b: Let I be the matrix with size n × n over GFp, where all the

elements are zeros except for those on the main diagonal, which are one. Additionally,

the matrix A is the symmetric matrix (AT = A) with size n× n over GFp, and −A

denotes the matrix where its elements are the minus modulo p for corresponding

elements of A. The proposed parity-check matrix has the following form,

H =


[

I A

]
0

0

[
−A I

]
 , (3.4)

which corresponds to the quantum stabilizer code with parameter [[2n, 0]]p.

Proof: Based on the definition in equation 3.4, we have the following formula:

H1 ×G2
T =

[
I A

]
×
[
−A I

]T
=

[
I A

]
×

 −AT

IT


= I× (−AT ) + A× IT = −A + A = 0.
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Then, we have:

HX ×HZ
T =

 H1

0

×
 0

G2


T

=

 H1

0

× [ 0T G2
T

]

=

 H1 × 0T H1 ×G2
T

0× 0T 0×G2
T

=

 0 H1 ×G2
T

0 0

 .
In addition, we also have the following formula:

HZ ×HX
T =

 0

G2

×
 H1

0


T

=

 0

G2

× [ H1
T 0

]

=

 0×H1
T 0× 0T

G2 ×H1
T G2 × 0T

=

 0 0

G2 ×H1
T 0

 .
Thus, HX×HZ

T = HZ×HX
T (= [0]) and the parity-check matrix in equation 3.4 is

satisfied by the SIP equation 1.7. Since H has the size 2n× 4n, we get the quantum

stabilizer code with parameter [[2n, 0]]p.

In the following examples, we consider the quantum stabilizer codes over GF(3)

and GF(5) that are based on construction 1b, where the code lengths are 4, 5, and 6.

Using the same process as section 3.1, we choose the candidates and then calculate

the parameters of quantum stabilizer codes by using the Magma tools function Quan-

tumCode, MinimumWeight. Quantum stabilizer codes with large minimum distances

are given in the examples.



Chapter 3: New construction of binary and nonbinary quantum stabilizer codes based
on symmetric matrices 47

Example 9: We consider the following parity-check matrix with the size 4× 8:

H =



1, 0, 0, 0

0, 1, 0, 0

0, 0, 1, 0

0, 0, 0, 1

2, 1, 1, 1

1, 0, 1, 1

1, 1, 2, 0

1, 1, 0, 2


This corresponds to the quantum stabilizer code with parameter [[4, 0, 2]]3.

Example 10: We consider the following parity-check matrix with the size 5×10:

H =



1, 0, 0, 0, 0

0, 1, 0, 0, 0

0, 0, 1, 0, 0

0, 0, 0, 1, 0

0, 0, 0, 0, 1

2, 1, 0, 0, 2

1, 2, 0, 2, 2

0, 0, 1, 1, 1

0, 2, 1, 1, 0

2, 2, 1, 0, 1


This corresponds to quantum stabilizer code with parameter [[5, 0, 3]]3.

Example 11: We consider the following parity-check matrix with the size 6×12:

H =



1, 0, 0, 0, 0, 0

0, 1, 0, 0, 0, 0

0, 0, 1, 0, 0, 0

0, 0, 0, 1, 0, 0

0, 0, 0, 0, 1, 0

0, 0, 0, 0, 0, 1

4, 0, 2, 1, 0, 1

0, 0, 1, 0, 1, 1

2, 1, 0, 0, 0, 1

1, 0, 0, 3, 1, 1

0, 1, 0, 1, 0, 1

1, 1, 1, 1, 1, 0


.

This corresponds to quantum stabilizer code with parameter [[6, 0, 4]]5.

In the following examples (from example 12 to example 15), we consider the quan-

tum stabilizer codes over GF(3) and GF(7) based on construction 2b with code length
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up to 12. By using the CSS structure, we can determine the parameter of the cor-

responding quantum stabilizer code via the parameters of two classical codes. Then,

we choose the symmetric matrices with large maximum distances to get quantum

stabilizer codes with large maximum distances.

Example 12: We consider two classical codes with parity-check matrices and

generators matrices as follows: [4, 2, 2]3 code, where

H1 =

 1, 0, 2, 0

0, 1, 0, 2


and [4, 2, 2]3 code, where

G2 =

 1, 0, 1, 0

0, 1, 0, 1

 .
This corresponds to the quantum stabilizer code with parameter [[4, 0, 2]]3.

Example 13: We consider two classical codes with parity-check matrices and

generators matrices as follows: [6, 3, 3]7 code where

H1 =


1, 0, 0, 0, 1, 1

0, 1, 0, 1, 2, 0

0, 0, 1, 1, 0, 3


and [6, 3, 3]7 code where

G2 =


0, 6, 6, 1, 0, 0

6, 5, 0, 0, 1, 0

6, 0, 4, 0, 0, 1

 .
This corresponds to the quantum stabilizer code with parameter [[6, 0, 3]]7.
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Example 14: We consider two classical codes with parity-check matrices and

generators matrices as follows: [8, 4, 4]3 code, where

H1 =



1, 0, 0, 0, 2, 1, 1, 1

0, 1, 0, 0, 1, 0, 1, 1

0, 0, 1, 0, 1, 1, 2, 0

0, 0, 0, 1, 1, 1, 0, 2


and [8, 4, 4]3 code, where

G2 =



1, 2, 2, 2, 1, 0, 0, 0

2, 0, 2, 2, 0, 1, 0, 0

2, 2, 1, 0, 0, 0, 1, 0

2, 2, 0, 1, 0, 0, 0, 1


.

This corresponds to the quantum stabilizer code with parameter [[8, 0, 4]]3.

Example 15: We consider two classical codes with parity-check matrices and

generators matrices as follows: [10, 5, 4]3 code, where

H1 =



1, 0, 0, 0, 0, 2, 1, 0, 0, 2

0, 1, 0, 0, 0, 1, 2, 0, 2, 2

0, 0, 1, 0, 0, 0, 0, 1, 1, 1

0, 0, 0, 1, 0, 0, 2, 1, 1, 0

0, 0, 0, 0, 1, 2, 2, 1, 0, 1
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and [10, 5, 4]3 code, where

G2 =



1, 2, 0, 0, 1, 1, 0, 0, 0, 0

2, 1, 0, 1, 1, 0, 1, 0, 0, 0

0, 0, 2, 2, 2, 0, 0, 1, 0, 0

0, 1, 2, 2, 0, 0, 0, 0, 1, 0

1, 1, 2, 0, 2, 0, 0, 0, 0, 1


.

This corresponds to the quantum stabilizer code with parameter [[10, 0, 4]]3.

In Table 3.1, we summarize some quantum binary and non-binary codes with

lengths ranging from four to 12 over two proposed constructions. The optimal quan-

tum stabilizer codes are defined as the codes where the parameters equalize the

equation of the Knill-Laflamme bound; detail discussion in section 2. The proposed

construction aims to provide quantum stabilizer codes with the full rank quantum

stabilizer group ([[n, 0, d]]p). As was previously discussed, the full rank quantum

stabilizer codes can provide a perfect graph state, which has many applications in

one-way quantum computers, secure state distribution, secret sharing, and quantum

algorithm [54] [55].
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Table 3.1: Binary and non-binary quantum stabilizer codes from proposed
construction.

Construction Code Length Code Parameters Note

2a 4 [[4,0,2]] Optimal quantum stabilizer code

1b 4 [[4, 0, 2]]3 Optimal quantum stabilizer code

2b 4 [[4, 0, 2]]3 Optimal quantum stabilizer code

1a 5 [[5,0,3]] Optimal quantum stabilizer code

1b 5 [[5, 0, 3]]3 Optimal quantum stabilizer code

1a 6 [[6,0,4]] Optimal quantum stabilizer code

2a 6 [[6,0,3]]

1b 6 [[6, 0, 4]]5 Optimal quantum stabilizer code

2b 6 [[6, 0, 3]]7

1a 7 [[7,0,3]] Optimal quantum stabilizer code

2a 8 [[8,0,4]] Optimal quantum stabilizer code

2b 8 [[8, 0, 4]]3 Optimal quantum stabilizer code

2a 10 [[10,0,4]] Optimal quantum stabilizer code

2b 10 [[10, 0, 4]]3 Optimal quantum stabilizer code

2a 12 [[12,0,4]]



Chapter 4

Quantum Stabilizer Codes

Construction from Hermitian

Self-orthogonal Codes over GF(4)

4.1 Introduction

Stabilizer codes, first introduced by Gottesman [56], have become an important

class of QECC. These codes are useful for building quantum fault-tolerant circuits [57].

Stabilizer codes append ancilla qubits to qubits to be protected, and the most impor-

tant advantage of stabilizer codes is that errors can be detected and removed by stabi-

lizer operators, rather than from the quantum state itself. In addition, the stabilizer

formalism allows us to construct quantum stabilizer code from binary formalism as the

classical parity-check matrix over binary in the constraint referred to as the symplec-

tic inner product (SIP) [56]. Therefore, several stabilizer codes have been proposed

52
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where constructions are analogous to classical linear codes, such as quantum BCH

codes [58], entanglement-assisted quantum code based on LDPC [59], quantum Reed-

Solomon codes [60], quantum code based on classical cyclic and modified cyclic [61]

and analogous to combinatorial design, such as cyclic difference sets [62], quadratic

residue sets [63], and group association scheme [64]. It also turns out that another

useful construction can be found by considering classical error correction codes, but

instead of using binary vectors, we use vectors over the Galois field (GF) [65]. Since

additive codes over GF can be defined as additive subgroups, the additive codes have

been popularly used in construction of quantum codes. Hence, the problem of finding

QECC is transformed into a problem of finding additive self-orthogonal code under

a certain inner product over GF(4). So our proposal is to construct good Hermitian

self-orthogonal code in order to construct good QECCs using the idea of Calderbank

et al. [65].

The key result of this chapter is to propose a new approach to the construction

of additive codes over GF(4), which are self-orthogonal with respect to Hermitian

product. The minimum distance of this classical linear code was proved to be 4 in

all cases. The corresponding quantum stabilizer code can be transformed from this

classical code; we prove all the optimal codes that can be accomplished from this

construction with lengths 5, 6, 7, 8, 9, and 10.
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4.2 Proposed construction

In this section, the construction is first proposed and proven to satisfy the condi-

tions of Hermitian self-orthogonal codes. We prove the codes have a good minimum

distance. Then, six optimal quantum stabilizer codes are showed as transformation

from the Hermitian self-orthogonal codes. In addition, the explanations for general

length are mentioned.

4.2.1 Extension for generator matrix

Theorem 4.1 Let G be the generator matrix over GF(4) in following form: G =

[I|G0] where

I =



1 0 ... 0

0 1 ... 0

...
...

. . .
...

0 0 ... 1


,G0 =



g1

g2

...

gm


, (4.1)

and all the elements of matrix I are in GF(4), and gi(i = 1, 2, · · · ,m) are the vectors

with finite length over GF(4) that satisfy two conditions:

1. the number of nonzero elements in gi is odd, and

2. the Hermitian product of any pair (gi, gj) (where i, j = 1, 2, · · · ,m) is zero.

Then, G is the generator matrix of a Hermitian self-orthogonal code over GF(4).

Proof: From Condition 1, each vector gi(i = 1, 2, · · · ,m) has odd weight, and then,

each row in G has even weight. Hence, the Hermitian product of each row in G with

itself is zero (the summation of even numbers of 1 is 0). In addition, the Hermitian
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product of each of the two rows in G is 0 due to Condition 2; the Hermitian product

of each pair (gi,gj)(where i, j = 1, 2, · · · ,m) is zero.

We call G0 the matrix created from gi(i = 1, 2, · · · ,m), or the right-part of generator

matrix G. Then, we have the extension from G0 as the following theorem to get larger

matrices, G1, G2, that protect the two conditions in Theorem 4.1. G1, G2 can also

be the right part of G.

Theorem 4.2 From generator matrix G0 with length l and dimension m, Let’s ex-

tend new matrices G1 and G2 with length l+2, and the dimension to m+1 or m+2,

as in the following form:

G1 =

 A1 X1

Y G0

 ,G2 =

 A2 X2

Y G0

 , (4.2)

where A1 = [0 1], A2 =

 1 0

0 1

, X1 = [x1 x2 ... xn] is an even weight vector with

the elements over GF(4), X2 =

 X1

X1

, Y =



y1 y1

y2 y2

· · ·

ym ym


with elements yi := X1.gi

(where yi denotes the conjugate of yi and (.) denotes the Hermitian product; gi is ith

row of G0. Then, G1 and G2 satisfy the two conditions in Theorem 4.1 and can be

used as the right part in generator matrix G of a Hermitian self-orthogonal code over

GF(4).

Proof: The weight of [x1 x2 ... xn] is even, and the weight of each gi(i = 1, 2, ,m)

is odd, so it is clear that the weight of each row in G1 and G2 is odd. So, the first
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condition in Theorem 4.1 is satisfied. In addition, the extension elements help us to

save the Hermitian product since it comes from the definition of yi:

yi := [x1 x2 ... xn] .gi

⇒ 1yi + [x1 x2 ... xn] .gi = 1yi + 1yi = 0.

So, the second condition in Theorem 4.1 is satisfied.

Since G1 and G2 satisfy the two conditions in Theorem 4.1 and can be used as

the right part in generator matrix G of a Hermitian self-orthogonal code over GF(4),

Theorem 4.2 is proven.

4.2.2 Optimal quantum stabilizer code results

In this part, the results from our proposal have showed. We divide the results

into two cases. We first consider the odd lengths with 5, 7, and 9 qubits. Then,

we consider the qubits with even lengths 6, 8, and 10. The relations between the

outcomes are explained in each example.

Example 1: In the case of five qubits, the optimal code we expected is QECC

[[5, 1, 3]] code. With the form in Eq. 4.1, it reduces to find that G0 with two vectors

has size 3. Because elements of G0 are from GF(4) = {0, 1, ω, ω2}, it is trivial to

check out the conditions, and we get three candidates for G0 as follows:

G0
1 =

 1 ω ω2

ω2 ω 1

 (4.3)

G0
2 =

 1 1 1

1 ω ω2

 (4.4)
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G0
3 =

 1 ω ω

ω ω 1

 . (4.5)

As mapping between elements in Table 1.1, we can get the standard form (the theorem

about binary form with standard form can be found at Chapter 1 of generators for

each stabilizer code as follows

Case 1: From G0
1 in Eq. 4.3, we have Hermitian self-orthogonal code [5, 2, 4] with

the generators G =

 1 0 1 ω ω2

0 1 ω2 ω 1

, and it corresponds to stabilizer code in

binary standard form: 

g1 = [1000011110]

g2 = [0100011011]

g3 = [0010111101]

g4 = [0001110110]

.

From standard form, the logical operators and minimum distance are calculated ex-

actly and we have QECC [[5, 1, 3]] code.

Case 2: From G0
2 in Eq. 4.4, we have Hermitian self-orthogonal code [5, 2, 4] with

the generators G =

 1 0 1 1 1

0 1 1 ω ω2

, and it corresponds to stabilizer code in

binary standard form: 

g1 = [1001100101]

g2 = [0101011001]

g3 = [0010110110]

g4 = [0000001111]

.

This code was already reported in a database [68].

Case 3: From G0
3 in Eq. 4.5, we have Hermitian self-orthogonal code [5, 2, 4] with
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the generators G =

 1 0 1 ω ω

0 1 ω ω 1

, and it corresponds to stabilizer code in

binary standard form: 

g1 = [1000111011]

g2 = [0100100110]

g3 = [0010111000]

g4 = [0001110111]

.

This code was already reported [56] as binary cyclic construction.

Example 2: With quantum stabilizer code length 7, the existing good code is

[[7, 1, 3]] QECC, which was reported as Steane code with CSS construction. Here, the

construction is based on Theorem 4.1 from following G0, and it is easy to verify that

G0 satisfies the two conditions of Theorem 4.1 due to its trivial length:

G0 =

 1 0

0 1

 .
Applying Theorem 4.2, we get extension G1 from G0:

G1 =


1 0 ω2 ω2

ω ω 1 0

ω ω 0 1

 .

Then, the generator matrix for Hermitian self-orthogonal code is:

G =


1 0 0 1 0 ω2 ω2

0 1 0 ω ω 1 0

0 0 1 ω ω 0 1

 . (4.6)
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The generators in Eq. 4.6 correspond to additive quaternary code [7, 3, 4]. We trans-

form them to quantum stabilizer code [[7, 1, 3]] with binary standard form:

g1 = [10001001010110]

g2 = [01000011000100]

g3 = [00100010001100]

g4 = [00011000011101]

g5 = [00000111001000]

g6 = [00000000110011]

.

Example 3: With quantum stabilizer code length 9, the existing good code is

Shor code [2]. Here, we construct the new [[9, 1, 3]] quantum code starting from the

following G0 that satisfies the two conditions of Theorem 4.1

G0 =


1 ω ω

ω 1 ω

ω ω 1

 .

Applying Theorem 4.2, we get the extension from G0:

G1 =



1 0 0 1 1

0 0 1 ω ω

ω2 ω2 ω 1 ω

ω2 ω2 ω ω 1


.
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Then, the generator matrix for Hermitian self-orthogonal code is:

G =



1 0 0 0 1 0 0 1 1

0 1 0 0 0 0 1 ω ω

0 0 1 0 ω2 ω2 ω 1 ω

0 0 0 1 ω2 ω2 ω ω 1


. (4.7)

Generators G in Eq. 4.7 correspond to additive linear code [9, 4, 4], and it transforms

to quantum stabilizer code [[9, 1, 3]] in binary standard form:

g1 = [100001101000100111]

g2 = [010000100000000011]

g3 = [001000100000111010]

g4 = [000100100001011001]

g5 = [000011101001000111]

g6 = [000000011001100000]

g7 = [000000000100010011]

g8 = [000000000011100111]

.

In the following examples, we consider the codes when encoding lengths are k = 0.

It is a special case of quantum code when stabilizer codes are [[n, 0, d]]; it means

quantum code has a one-dimensional code subspace, and there is only one encoded

state. It is useful for studies of the correlations in decoherence, and code state is

maximally entangled [69].

Example 4: We consider G0 with the size 3 × 3; it is a trivial case, and we get
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candidates as follows:

G0
1 =


1 ω ω

ω 1 ω

ω ω 1

 (4.8)

G0
2 =


1 1 1

1 ω ω2

1 ω2 ω

 (4.9)

The corresponding quantum stabilizer code [[6, 0, 4]] over GF(4) from Hermitian self-

orthogonal code has the following form:

Case 1: From G0
1 in Eq. 4.8, we have [6, 3, 4] Hermitian self-orthogonal code with

generator G =


1 0 0 1 ω ω

0 1 0 ω 1 ω

0 0 1 ω ω 1

, which corresponds to stabilizer code in binary

standard form: 

g1 = [100001010100]

g2 = [010001011101]

g3 = [001001000110]

g4 = [000101010111]

g5 = [000011011000]

g6 = [000000111111]

.

Case 2: From G0
2 in Eq. 4.9, we have [6, 3, 4] Hermitian self-orthogonal code with

generator G =


1 0 0 1 1 1

0 1 0 1 ω ω2

0 0 1 1 ω2 ω

, which corresponds to stabilizer code in bi-
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nary standard form: 

g1 = [100100001101]

g2 = [010101000011]

g3 = [001101001110]

g4 = [000011001101]

g5 = [000000100111]

g6 = [000000011011]

.

Example 5: With construction base on Theorem 4.1 from G0, QECCs with

length eight satisfy the two conditions of Theorem 4.1 due to the simple form of G0:

G0 =

 1 0

0 1

 .
Applying Theorem 4.2, we get extension G2 from G0:

G2 =



1 0 ω2 ω2

0 1 ω2 ω2

ω ω 1 0

ω ω 0 1


.

Then, the generator matrix for Hermitian self-orthogonal code is:

G =



1 0 0 0 1 0 ω2 ω2

0 1 0 0 0 1 ω2 ω2

0 0 1 0 ω ω 1 0

0 0 0 1 ω ω 0 1


. (4.10)

We have corresponding quantum stabilizer code [[8, 0, 4]], interpreted from Hermitian

self-orthogonal code [8, 0, 4] with the generators in [63].
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Example 6: We construct the new [[10, 0, 4]] quantum code starting from G0. It

is easy to verify the two conditions of Theorem 4.1 due to the simple form of G0:

G0 =


1 ω ω

ω 1 ω

ω ω 1

 .

Applying Theorem 4.2, we get extension G2 from G0 in the following form:

G2 =



0 1 0 ω2 ω2

1 0 0 ω2 ω2

0 0 1 ω ω

1 1 ω 1 ω

1 1 ω ω 1


.

Then, the generator matrix for Hermitian self-orthogonal code is:

G =



1 0 0 0 0 0 1 0 ω2 ω2

0 1 0 0 0 1 0 0 ω2 ω2

0 0 1 0 0 0 0 1 ω ω

0 0 0 1 0 1 1 ω 1 ω

0 0 0 0 1 1 1 ω ω 1


. (4.11)

We have corresponding QECC [[10, 0, 4]] that interprets Hermitian self-orthogonal

code [10, 5, 4] with the generators in Eq. 4.11.

4.2.3 Extension to get a longer length

We have already studied the proposed construction, and the optimal results of

quantum stabilizer codes with odd lengths are [[5, 1, 3]], [[7, 1, 3]], [[9, 1, 3]] and in the
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case of even lengths, we consider the optimal codes to be [[6, 0, 4]], [[8, 0, 4]], [[10, 0, 4]].

To analyze longer lengths, we considered the two following lemmas for n = 2m and

n = 2m− 1.

Lemma 4.1 Let G be the generator matrix of [2(m − 2),m − 2, 4] Hermitian self-

orthogonal code, where G = [I|G0]. Then, the generator matrix G of the Hermitian

self-orthogonal [2m,m, 4] code (m > 5) will be G = [I|G2] where G2 is achieved by

extending it from G0 by Theorem 4.2. It is interpreted to be [[2m, 0, 4]] QECC.

Proof: From Theorem 4.2, the construction of the generator matrix is

G2 =

 A2 X2

Y G0

 ,
and we have the following comments.

1. The distance between the two first rows of G is 4. They are calculated directly.

2. The linear code comes from the last m − 2 rows of G where the distance at

least equals the distance of [I|G0], which is already known to have the distance

4.

3. We consider one row in the two first rows of G and one from the last n− 2. In

the first half, the distance is 2. In the second half, the first two elements have

minimum distance at least 1, and the remaining have a minimum distance of

at least 1 (because their weights are even and odd). Then, we have a minimum

distance for two rows of at least 4.

From three comments above, minimum distance for linear code is 4. Then, the new

code with proposed construction with G2 be the right part is [2m,m, 4].
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Example 7: We construct the new [[12,0]] quantum code starting from G0 with

the right part of the generator matrix in Eq. 4.10:

G0 =



1 0 ω2 ω2

0 1 ω2 ω2

ω ω 1 0

ω ω 0 1


.

Then, from G0, for even length, we extend G0 to G2 under Theorem 4.2, with

x = [1 ω 1 ω]. The generator matrix is as follows:

G =



1 0 0 0 0 0 1 0 1 ω 1 ω

0 1 0 0 0 0 0 1 1 ω 1 ω

0 0 1 0 0 0 0 0 1 0 ω2 ω2

0 0 0 1 0 0 ω ω 0 1 ω2 ω2

0 0 0 0 1 0 ω ω ω ω 1 0

0 0 0 0 0 1 0 0 ω ω 0 1


. (4.12)

Generators in Eq. 4.12 correspond to [12, 6, 4] Hermitian linear code. Then, [[12, 0, 4]]

quantum stabilizer code is transformed.

When we consider the extension by G1 =

 A1 X1

Y G0

 , we get the following

lemma:

Lemma 4.2 Let G be the generator matrix of [2(m − 2),m − 2, 4] Hermitian self-

orthogonal code, where G = [I|G0]. Then, generator matrix G of Hermitian self-

orthogonal [2m − 1,m − 1, 4] code (m > 5) will be G = [I|G1] where G1 is achieved

by extending it from G0 with Theorem 4.2. It can be interpreted to be [[2m− 1, 1, 3]]

QECC.
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Example 8: We construct the new [[11, 1]] QECC starting from G0 with the

right part of G in Eq. 4.10:

G0 =



1 0 ω2 ω2

0 1 ω2 ω2

ω ω 1 0

ω ω 0 1


.

Then, from G0, an even length, we extend G0 to G1 with Theorem 4.2, for example

with x = [1 ω 1 ω]. We have the following generator matrix:

G =



1 0 0 0 0 1 0 1 ω 1 ω

0 1 0 0 0 0 0 1 0 ω2 ω2

0 0 1 0 0 ω ω 0 1 ω2 ω2

0 0 0 1 0 ω ω ω ω 1 0

0 0 0 0 1 0 0 ω ω 0 1


. (4.13)

The generator in Eq. 4.13 corresponds to [11, 5, 4] Hermitian linear code and [[11, 1, 3]]

quantum stabilizer code.



Chapter 5

Quantum Stabilizer Codes Based

on a New Construction of

Self-orthogonal Trace-inner

Product Codes over GF(4)

5.1 Introduction

Quantum stabilizer code is a kind of QECC constructed based on the stabilizer

formalism. The most important advantage of quantum stabilizer codes is that quan-

tum errors that affect an encoded quantum state can be diagnosed and removed by

a group of quantum operators, thereby stabilizing this encoded quantum state. In

addition, the stabilizer formalism allows quantum codes to be presented by classical

error correction codes. Therefore, quantum stabilizer codes can be constructed from

67
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binary error correction codes if they satisfy a symplectic inner product (SIP). Many

quantum stabilizer codes have been constructed based on the binary formalism with

combinatorial design, such as quantum codes based on difference sets [71], based on

group association schemes [72], based on circulant matrices [73] [74], or based on CSS

structure over Finite field [75]. In paper [76], a quantum stabilizer code was proven to

correspond to an additive code over Galois field 4 (GF(4)), which is self-orthogonal

with respect to the trace-inner product. So far, many papers have focused on (1)

the design of classical additive codes over GF(4) to achieve corresponding quantum

stabilizer codes, such as self-dual codes over GF(4), which have dimension ”0” and

can be represented by graphs [77]; (2) QECCs based on self-dual codes over GF(4)

with the highest known minimum weights [78]; and (3) QECCs based on Hermitian

self-orthogonal codes with extension design [79]. Most of these designed algorithms

have focused on the self-dual trace-inner product codes or Hermitian self-orthogonal

code over GF(4). Hence, many constructions remain to be discovered by using the

design of self-orthogonal trace-inner product codes.

The key result of this chapter is to propose a new construction of self-orthogonal

trace-inner product codes over GF(4). From two binary vectors, we generate the

circulant and modified circulant matrices, and the generator matrix for quaternary

linear codes is proposed. Then, the quantum stabilizer codes are derived from the

linear codes. The advantage of the proposed construction is that our proposed codes

give various dimensions of QECCs, and these minimum distances have good values.
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5.2 Proposed construction

5.2.1 Proposed self-orthogonal trace-inner product codes over

GF(4)

In this subsection, we first propose the construction of self-orthogonal, trace-inner

product codes over GF(4). The proposed construction if given as follows:

Construction 1: Let A and B be binary matrices. Specifically, A is the circulant

matrix generated from the vector [a0 a1 · · · an−1] and its circulants to the right, and

B is the circulant matrix generated from the vector [b0 b1 · · · bn−1] and its circulants

to left. Matrices A and B are size n×n and can be represented in the following form:

A =



a0 a1 · · · an−1

an−1 a0 · · · an−2

...
...

. . .
...

a1 a2 · · · a0


and B =



b0 b1 . . . bn−1

b1 b2 . . . b0

...
...

. . .
...

bn−1 b0 . . . bn−2


(5.1)

Next, the generator matrices of the additive code over GF(4) can be constructed

as follows:

F = A + ωB =



a0 a1 · · · an−1

an−1 a0 · · · an−2

...
...

. . .
...

a1 a2 · · · a0


+ ω



b0 b1 . . . bn−1

b1 b2 . . . b0

...
...

. . .
...

bn−1 b0 . . . bn−2
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=



a0 + ωb0 a1 + ωb1 · · · an−1 + ωbn−1

an−1 + ωb1 a0 + ωb2 · · · an−2 + ωb0

...
...

. . .
...

a1 + ωbn−1 a2 + ωb0 · · · a0 + ωbn−2


=



f0

f1

...

fn−1


. (5.2)

Then, the matrix F with the above construction satisfies the conditions necessary

to be the generator of a self-orthogonal trace-inner product code.

Proof:

For any binary values ak, bk, and a GF(4) element ω, we first consider some basic

equations over GF(4):

1. ak
2 = ak

3 = ak

2. (ak + ω × bk)2 = ak + ω2 × bk

3. ω2 = ω + 1 and ω3 = 1

4. Tr(ak × bk) = 0

5. Tr(ω× ak + ω2× bk) = ω× ak + ω2× bk + (ω × ak + ω2 × bk)2 = ω× ak + ω2×

bk + ω2 × ak + ω × bk = (ω + ω2)× (ak + bk) = ak + bk.
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First, we consider the trace-inner product of two elements f0 and f1 as following.

f0 • f1

= Tr
[
(a0 + ωb0)× (an−1 + ωb1)

2]+ Tr
[
(a1 + ωb1)× (a0 + ωb2)

2]+ ...

+Tr
[
(an−1 + ωbn−1)× (an−2 + ωb0)

2]
= Tr [(a0 + ωb0)× (an−1 + ω2b1)] + Tr [(a1 + ωb1)× (a0 + ω2b2)] + ...

+Tr [(an−1 + ωbn−1)× (an−2 + ω2b0)]

= Tr [a0an−1 + b0b1 + ωb0an−1 + ω2a0b1] + Tr [a1a0 + b1b2 + ωb1a0 + ω2a1b2] + ...

+Tr [an−1an−2 + bn−1b0 + ωbn−1an−2 + ω2an−1b0]

= Tr [ωb0an−1 + ω2a0b1] + Tr [ωb1a0 + ω2a1b2] + ...+ Tr [ωbn−1an−2 + ω2an−1b0]

= (b0an−1 + a0b1) + (b1a0 + a1b2) + (b2a1 + a2b3) + ...+ (bn−1an−2 + an−1b0)

= b0an−1 + (a0b1 + b1a0) + (a1b2 + b2a1) + (a2b3 + ...+ bn−1an−2) + an−1b0

= b0an−1 + an−1b0 = 0.

(5.3)

Generally, to prove the self-orthogonal nature of matrix F, we consider the trace-

inner product of any two rows, such as the l-th row and the (l+ k)-th row, of matrix

F. We will prove that fl • fl+k = 0. Based on the full circulant properties of F, we

can also generate the full matrix F using the vector in the l-th row. Hence, without

loss of generality and to reduce the complexity of the proof equation, we just need to

consider the trace-inner product of f0 and fk. Their trace-inner product is expressed

as following.
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f0 • fk

= Tr
[
(a0 + ωb0)× (an−k + ωbk)

2]+ Tr
[
(a1 + ωb1)× (an−k+1 + ωbk+1)

2]+ ...

+Tr
[
(an−1 + ωbn−1)× (an−k−1 + ωbk−1)

2]
= Tr [(a0 + ωb0)× (an−k + ω2bk)] + Tr [(a1 + ωb1)× (an−k+1 + ω2bk+1)] + ...

+Tr [(an−1 + ωbn−1)× (an−k−1 + ω2bk−1)]

= Tr [a0an−k + b0bk + ωb0an−k + ω2a0bk] + ...

+Tr [an−1an−k−1 + bn−1bk−1 + ωbn−1an−k−1 + ω2an−1bk−1]

= Tr [ωb0an−k + ω2a0bk] + ...+ Tr [ωbn−1an−k−1 + ω2an−1bk−1]

= (b0an−k + a0bk) + (b1an−k+1 + a1bk+1) + (b2an−k+2 + ...+ (bn−1an−k−1 + an−1bk−1)

=
n−1∑
x=0

bxan−k+x +
n−1∑
y=0

aybk+y =
n−1∑

z+k−n=0

bz+k−naz +
n−1∑
y=0

aybk+y

=
n−1∑
z=0

bz+kaz +
n−1∑
y=0

aybk+y = 0.

(5.4)

As shown by the above explanation, the trace-inner product of any two vectors

with generators in F is zero, which implies that matrix F is the generator matrix of

a self-orthogonal, trace-inner product code.

5.2.2 Generator matrix generation of the proposed quantum

stabilizer codes with length from 7 to 12

In this subsection, quantum stabilizer codes based on the proposed construction

are investigated. For each code length, we first give the construction of the generator

matrix of the additive code over GF(4) based on Construction 1. Then, using Table I,

we obtain the generator matrix of quantum stabilizer codes that corresponding to the
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self-orthogonal trace-inner product codes. The parameters of the quantum stabilizer

codes are calculated from the generator matrix of the linear codes over GF(4) by

using the Magma calculation tool’s QuantumCode, MinimumWeight functions [82].

Since any two binary vectors are satisfied by our proposed construction, there are

many candidates for the generator matrix of additive codes over GF(4). Therefore,

for each code length, we consider quantum stabilizer codes with various dimensions

and the minimum distances that were determined by the Magma tool’s functions.

Example 1: Quantum stabilizer codes with a length of seven.

We explain the code construction of the proposed quantum stabilizer code with length

n = 7. First, we consider an additive code over GF(4), where its generator is gener-

ated from two vectors u = [1 1 0 0 1 0 1] and v = [1 0 0 1 0 1 1].

From the two vectors u and v, as shown in Construction 1, we have the corre-

sponding generator matrix:

F =



1, 1, 0, 0, 1, 0, 1

1, 1, 1, 0, 0, 1, 0

0, 1, 1, 1, 0, 0, 1

1, 0, 1, 1, 1, 0, 0

0, 1, 0, 1, 1, 1, 0

0, 0, 1, 0, 1, 1, 1

1, 0, 0, 1, 0, 1, 1



+ ω



1, 0, 0, 1, 0, 1, 1

0, 0, 1, 0, 1, 1, 1

0, 1, 0, 1, 1, 1, 0

1, 0, 1, 1, 1, 0, 0

0, 1, 1, 1, 0, 0, 1

1, 1, 1, 0, 0, 1, 0

1, 1, 0, 0, 1, 0, 1



=



ω + 1, 1, 0,ω, 1,ω,ω + 1

1, 1,ω + 1, 0,ω,ω + 1,ω

0,ω + 1, 1,ω + 1,ω,ω, 1

ω2, 0,ω2,ω2,ω + 1, 0, 0

0,ω + 1,ω,ω + 1, 1, 1,ω

ω,ω,ω + 1, 0, 1,ω + 1, 1

ω + 1,ω, 0, 1,ω, 1,ω + 1



.

Using Magma calculation tool’s QuantumCode and MinimumWeight functions

with the matrix F as the input, we get a quantum stabilizer code with parameter
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[[7, 1, 3]], the standard form for its generators are:

G =



1, 0, 0, 1, 0, 1, 1

w, 0, 0,w, 0,w,w

0, 1, 0, 1, 1, 1, 0

0,w, 0,w,w,w, 0

0, 0, 1, 0, 1, 1, 1

0, 0,w, 0,w,w,w


and



g1 = XIIXIXX

g2 = ZIIZIZZ

g3 = IXIXXXI

g4 = IZIZZZI

g5 = IIXIXXX

g6 = IIZIZZZ

.

Similar to the mapping between GF(4) and Pauli matrix in Table 1, we have quantum

stabilizer operators for quantum stabilizer code [[7,1,3]] as shown above.

Example 2: Quantum stabilizer codes with lengths from 8 to 10.

For n = 8, let us consider an additive code over GF(4), where its generator is gener-

ated from two vectors u = [0 1 1 1 0 1 0 0], and v = [1 1 1 0 1 0 0 0]. This results

in a quantum stabilizer code with parameter [[8, 1, 3]] and its generators are reduced

as follows.

G =



0, 1, 1, 1, 0, 1, 0, 0

0, 0, 1, 1, 1, 0, 1, 0

0, 0, 0, 1, 1, 1, 0, 1

1, 0, 0, 0, 1, 1, 1, 0

0, 1, 0, 0, 0, 1, 1, 1

1, 0, 1, 0, 0, 0, 1, 1

1, 1, 0, 1, 0, 0, 0, 1



+ ω



1, 1, 1, 0, 1, 0, 0, 0

1, 1, 0, 1, 0, 0, 0, 1

1, 0, 1, 0, 0, 0, 1, 1

0, 1, 0, 0, 0, 1, 1, 1

1, 0, 0, 0, 1, 1, 1, 0

0, 0, 0, 1, 1, 1, 0, 1

0, 0, 1, 1, 1, 0, 1, 0



.

For n = 9, let us consider an additive code over GF(4), where its generator is

generated from two vectors u = [0 1 1 0 0 1 0 0 1], and v = [1 1 0 0 1 0 0 1 0]. This
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results in a quantum stabilizer code with parameter [[9, 1, 3]], and its generators are

reduced as follows.

G =



0, 1, 1, 0, 0, 1, 0, 0, 1

1, 0, 1, 1, 0, 0, 1, 0, 0

0, 1, 0, 1, 1, 0, 0, 1, 0

0, 0, 1, 0, 1, 1, 0, 0, 1

1, 0, 0, 1, 0, 1, 1, 0, 0

0, 1, 0, 0, 1, 0, 1, 1, 0

0, 0, 1, 0, 0, 1, 0, 1, 1

1, 0, 0, 1, 0, 0, 1, 0, 1



+ ω



1, 1, 0, 0, 1, 0, 0, 1, 0

1, 0, 0, 1, 0, 0, 1, 0, 1

0, 0, 1, 0, 0, 1, 0, 1, 1

0, 1, 0, 0, 1, 0, 1, 1, 0

1, 0, 0, 1, 0, 1, 1, 0, 0

0, 0, 1, 0, 1, 1, 0, 0, 1

0, 1, 0, 1, 1, 0, 0, 1, 0

1, 0, 1, 1, 0, 0, 1, 0, 0



.

For n = 10, let us consider an additive code over GF(4), where its generator is

generated from two vectors u = [0 1 1 1 0 1 1 0 1 0], and v = [1 1 1 0 1 1 0 1 0 0].

This results in a quantum stabilizer code with parameter [[10, 1, 3]], and its generators

are reduced as follows.

G =



0, 1, 1, 1, 0, 1, 1, 0, 1, 0

0, 0, 1, 1, 1, 0, 1, 1, 0, 1

1, 0, 0, 1, 1, 1, 0, 1, 1, 0

0, 1, 0, 0, 1, 1, 1, 0, 1, 1

1, 0, 1, 0, 0, 1, 1, 1, 0, 1

1, 1, 0, 1, 0, 0, 1, 1, 1, 0

0, 1, 1, 0, 1, 0, 0, 1, 1, 1

1, 0, 1, 1, 0, 1, 0, 0, 1, 1

1, 1, 0, 1, 1, 0, 1, 0, 0, 1



+ ω



1, 1, 1, 0, 1, 1, 0, 1, 0, 0

1, 1, 0, 1, 1, 0, 1, 0, 0, 1

1, 0, 1, 1, 0, 1, 0, 0, 1, 1

0, 1, 1, 0, 1, 0, 0, 1, 1, 1

1, 1, 0, 1, 0, 0, 1, 1, 1, 0

1, 0, 1, 0, 0, 1, 1, 1, 0, 1

0, 1, 0, 0, 1, 1, 1, 0, 1, 1

1, 0, 0, 1, 1, 1, 0, 1, 1, 0

0, 0, 1, 1, 1, 0, 1, 1, 0, 1



.
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Example 3: Quantum stabilizer codes with a length of eleven.

For n = 11, let us consider an additive code over GF(4) where its generator is gen-

erated from two vectors u = [1 1 1 0 0 1 1 0 0 0 1], and v = [1 1 0 0 1 1 0 0 0 1 1].

This results in quantum stabilizer codes with parameters [[11, 1, 3]] and [[11, 2, 3]],

and these generators are reduced as shown below:

For the quantum stabilizer code with parameter [[11, 1, 3]]:

G =



1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1

1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0

0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0

0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0

0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1

1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1

1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0

0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0

0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1

1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1



+ ω



1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1

1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1

0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1

0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0

1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0

1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1

0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1

0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0

0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0

1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0



.
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For the quantum stabilizer code with parameter [[11, 2, 3]]:

G =



1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1

1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0

0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0

0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0

1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1

1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0

0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0

0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1

1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1



+ ω



1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1

1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1

0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1

0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0

1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1

0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1

0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0

0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0

1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0



.

Example 4: Quantum stabilizer codes with a length of twelve.

For n = 12, let us consider an additive code over GF(4), where its generator is gener-

ated from two vectors u = [1 1 1 0 0 1 0 1 0 1 0 1], and v = [1 1 0 0 1 0 1 0 1 0 1 1].

This results in quantum stabilizer codes with parameters [[12, 1, 4]], [[12, 2, 3]], [[12, 3, 3]],

and [[12, 4, 3]]. These generators are reduced as shown below.
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For the quantum stabilizer code with parameter [[12, 1, 4]].

G =



1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1

1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0

0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1

1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0

0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1

1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0

0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1

1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0

0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0

0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1

1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1



+ ω



1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1

1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1

0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1

0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0

1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0

0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1

1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0

0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1

1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0

0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1

1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0



.

For the quantum stabilizer code with parameter [[12, 2, 3]]:

G =



1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0

0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1

1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0

0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1

1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0

0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1

1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0

0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0

0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1

1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1



+ ω



1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1

0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1

0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0

1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0

0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1

1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0

0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1

1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0

0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1

1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0



.
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For the quantum stabilizer code with parameter [[12, 3, 3]]:

G =



0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1

1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0

0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1

1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0

0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1

1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0

0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0

0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1

1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1



+ ω



0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1

0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0

1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0

0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1

1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0

0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1

1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0

0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1

1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0



.

For the quantum stabilizer code with parameter [[12, 4, 3]]:

G =



0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1

1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0

0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1

1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0

1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0

0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0

0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1

1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1



+ ω



0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1

0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0

1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0

0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1

0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1

1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0

0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1

1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0



.

5.2.3 Comparison between proposed codes with referenced

codes

The minimum distance of quantum stabilizer codes with lengths ranging from 7

to 12 and the dimension k ranging from 1 to 4, which were derived from our proposed
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k 1 2 3 4
n d0 d1 d2 d3 d4 d0 d1 d2 d3 d4 d0 d1 d2 d3 d4 d0 d1 d2 d3 d4

7 3 - - - - - - - - - 2 - 2 2 - - - - - -
8 3 - - - - - - - - - - - - - - 2 - - - 2
9 3 - - - - - - - - - - - - - - - - - - -
10 3 4 - 3 - 2 4 - - - 2 3 - - - 2 3 - - -
11 3 - - - - 3 - - - - - - - - - - - - - -
12 4 - - - - 3 - - - - 3 - - - - - - - - -

Figure 5.1: Minimum distance of proposed [[n, k, dmin]] in comparison with four ref-
erenced papers.

construction and referenced researches [83] [84] [85] and [86], are listed together in

Figure 5.1. For each value in row k and column n, the notation d0 stands for the

minimum distance of the existing quantum stabilizer code [[n, k, d0]] derived from our

proposed construction. Similarly, the notations d1, d2, d3, and d4 denote the minimum

distance of the existing [[n, k, di]] (i = 1, 2, 3, 4) in the referenced papers [83] [84] [85]

and [86], respectively. The blanks in Figure 5.1 mean that there are no existing

quantum stabilizer codes with length n and dimension k.

As can be seen in Figure 5.1, the proposed code construction methods can gener-

ate more quantum stabilizer codes than the referenced constructions for code length

ranging from 7 to 12. Moreover, the minimum distances of the proposed quantum

stabilizer codes are than or equal to the ones of three referenced codes, i.e., [83] [84]

and [86]. The minimum distances of quantum stabilizer codes in [85] are larger than

the ones of the proposed codes for a code length of 10; the code construction in [85]

was specifically designed for only a length of 10. Therefore, quantum stabilizer codes

where these lengths are 7, 8, 9, 11, or 12 cannot be generated from the code construc-

tion in [85]. The constraint method, limitations of code length, and distinct results of
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Table 5.1: Comparison between referenced papers and proposed method.

Paper Construction
Method

Limitation of Code
Length

Main Results

[83] Based on the combi-
nation of properties of
Legendre symbols and
the Pauli block matrix.

Limited due to the con-
dition of Legendre sym-
bols; only applicable for
p = 4m + 1 and p =
4m+ 3.

No optimal quantum
stabilizer codes in the
literature.

[84] Based on difference sets
and cyclic code

Limited because differ-
ence sets do not exist
for all lengths.

Many results with min-
imum distance of two:
[[5, 1, 2]] and [[6, 1, 2]].

[85] Based on non-residue
sets, extended to block
square matrix and
cyclic code.

Limited code
length since residue
sets are just for
p = 4n + 1, 8n − 1 and
p = 4n − 1, 4n + 1 to
get codes with lengths
equal to pk.

Quantum code with
length of 10: [[10, 1, 4]],
[[10, 2, 4]], [[10, 3, 3]],
and [[10, 4, 3]].

[86] Based on the Pauli
block transformation
for codes with even
lengths.

Quantum codes limited
to even lengths.

No optimal quantum
stabilizer codes in the
literature.

Proposed
method

Based on the circulant
matrix.

No limitations; any
length has its own
parity-check matrix.

Optimal codes with
generators in the
standard form can be
constructed. Codes
with a minimum dis-
tance of three or four
are shown.

the proposed code constructions and the four referenced construction are summarized

in Table. 5.1.



Chapter 6

Minimal-Entanglement

Entanglement-Assisted Quantum

Error Correction Codes from

Modified Circulant Matrices

6.1 Introduction

Stabilizer codes, first introduced by Gottesman [87], have become an important

class of QECC, since these codes are useful for building quantum fault-tolerant cir-

cuits [88]. Stabilizer codes append ancilla qubits to qubits to be protected, and

the most important advantage of stabilizer codes is that errors can be detected and

removed from stabilizer operators, rather than from the quantum state itself. In

addition, the stabilizer formalism allows us to construct quantum stabilizer codes

82
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from binary matrices over binary in the constraint referred to as the symplectic in-

ner product (SIP) [87]. With Calderbank-Shor-Steane (CSS)-based construction [89],

the problem turned out to be utilizing self-orthogonal classical codes. However, self-

orthogonal codes with high error-correcting capacity are restricted, and therefore,

further investigation was required to generate good stabilizer codes. Introduction of

entanglement-assisted quantum error correction code (EAQECC) by Brun et al. [90]

is one answer to this problem. More precisely, it enables us to construct the quantum

error-correction codes not only from self-orthogonal classical codes, but also from ar-

bitrary classical codes with the help of copies of maximally entangled quantum states

shared between encoder and decoder. To design efficient EAQECC, however, it is de-

sirable to use the fewest entangled states possible, because the cost to prepare those

states is relatively high. Hence, the construction of EAQECC with small amounts of

entangled states is a much more attractive issue [90,91]. Therefore, several construc-

tions of EAQECC have been proposed, such as construction from arbitrary matrices

where the number of ebits is determined by parameters of classical codes [92], from

low-density parity-check (LDPC) codes [91], from generalized quadrangles [93], from

circulant permutation matrices [94], and from shortened Hamming codes [95]. Almost

all existing constructions consider classical codes to calculate the number of ebits. To

do so, the problem of transforming the classical form to basic form of EAQECC was

proposed in the Gram–Schmidt procedure. This aims to classify the classical form into

isotropic and entanglement subgroups, but the complexity of the Gram–Schmidt pro-

cedure also increases in proportion to the length of the codes [96]. Furthermore, the

encoding transforms the non-commuting set of generators into its canonical form [97].
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Then, quantum circuits composed of CNOT, H, and S gates can be derived directly

with complexity O(n2). The canonical form gives the relationship between EAQECC

and quantum stabilizer codes, even though we can use the property of the stabilizer

code that is useful for fault-tolerant computation [98].

The key result of this chapter is to propose novel approaches to construction

of EAQECC. First, we propose a new method for the construction of the isotropic

subgroup based on circulant matrices. Then, the entanglement subgroup can be

determined from a method of transforming the isotropic group into standard form;

hence, the parameters of codes are found, and for effective preparation of the entan-

gled state, the number of ebits should be as few as possible. To explain the practical

construction of the quantum codes, design of the proposed EAQECC with lengths up

to 12 are shown. In addition, the minimum distance is calculated and explained to

show that the proposed construction has good correctable capability, in comparison

with recent EAQECC.

6.2 Proposed construction

In this section, general properties of cyclic matrices and circulant matrices are

introduced first. Then, we discuss the construction of the isotropic subgroup from

the proposed modified circulant matrix, and then the calculation for an entanglement

group is given. As a consequence, the parameters for EAQECC are obtained.
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6.2.1 Cyclic matrices

Definition 1. (Cyclic Matrix) Let In be the n × n identity matrix. A cyclic

matrix In(x ) is a shifted identity matrix with the rows of In circularly shifted to the

right by x positions, where x ∈ {0, 1, ..., n− 1} is the offset.

In general, it is known that In(0) = In and In(x ± kn) = In(x) for any integer

k. The multiplication of In(1) and In(1) is In(2). Therefore, if In(1)c is denoted as c

times the multiplication of In(1), then In(1)c = In(c).

Example 1. For n = 4, the cyclic matrix and relations are given as follows:

I4 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, I4(1) =



0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


, (6.1)

and I4(1)2 =



0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


×



0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


=



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


= I4.

Definition 2. (Left-cyclic Matrix) Let Jn be the n× n binary matrix made from

the π-rotation of identity matrix In. A cyclic matrix Jn(x) is a shifted Jn with the

rows of Jn circularly shifted to the right by x positions, where x ∈ {0, 1, ..., n− 1} is

the offset.

In general, it is known that the transpose matrix of any Left-cyclic matrix is

equal to itself. Therefore, any Left-cyclic matrix is a symmetric matrix.
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Example 2. For n = 4, the following Left-cyclic matrix and relations are given:

J4 =



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


, J4(1) =



1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


and J4(1)T = J4(1) =



1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


.

(6.2)

6.2.2 Circulant matrices

Definition 3. (Circulant Matrix-CM) An n × n binary matrix Q1 is called a

CM if it is expressed as

Q1 =



i0 i1 i2 · · · in−1

in−1 i0 i1 · · · in−2

in−2 in−1 i0 · · · in−3

...
...

...
. . .

...

i1 i2 i3 · · · i0


,

where the entries {i0, i1, ... , in−1} of matrix Q1 are the binary values.

Circulant matrix Q1 can be expressed by using a cyclic matrix as follows:

Q1 = i0× In(0) + i1× In(1) + i2× In(2) + ...+ in−1× In(n− 1) =



u× In(0)

u× In(1)

...

u× In(n− 1)


,

where u = [i0 i1 . . . in−1]. Therefore, we can denote Q1 as the function of vector u

and variable n. Hereafter, we denote Q1 as P1(u, n).
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Definition 4. (Left-circulant Matrix—Left-CM) An n × n binary matrix Q2

is called a Left-CM if it is expressed as

Q2 =



j0 j1 j2 · · · jn−1

j1 j2 j3 · · · j0

j2 j3 j4 · · · j1

...
...

...
. . .

...

jn−1 j0 j1 · · · jn−2


,

where the entries {j 0, j 1, . . . , j n−1} of matrix Q2 are the binary values.

Circulant matrix Q2 can be expressed by using a left-cyclic matrix, such as

Q2 = j0×Jn(1)+j1×Jn(2)+j2×Jn(3)+...+jn−2×Jn(n−1)+jn−1×Jn(0) =



v × In(0)

v × In(n− 1)

...

v × In(1)


,

where v = [j 0 j 1 . . . jn-1]. Therefore, we can denote Q2 as the function of vector v

and variable n. Hereafter, we denote Q2 as P2(v, n).

6.2.3 Construction of parity-check matrices of EAQECC based

on modified circulant matrices

From the combination of circulant matrices and the left-circulant matrices, the

parity check matrix that corresponds to isotropic subgroup have been formed in The-

orem 2, then the anti-commuting subgroup are determined as logical operators of the

parity check matrix as Theorem 3. Finally, the EAQECCs [[n, k, dmin; 1]] are found

as the Corollary 1.
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Theorem 2. For any two binary vectors u, v of size n, two circulant matrices are

P1(u, n) and P2(v, n). Then, the parity-check matrix H = [HX | HZ], where HX

and HZ correspond to P1(u, n) and P2(v, n), respectively, satisfies the SIP condition

in (2).

Proof: From Definitions 3 and 4, P1(u, n) and P2(v, n) can be written as

P1(u, n) = In(iu1) + In(iu2) + ...+ In(iuk)⇔ HX = In(iu1) + In(iu2) + ...+ In(iuk),

P2(v, n) = Jn(iv1) + Jn(iv2) + ...+ Jn(ivh)⇔ HZ = Jn(iv1) + Jn(iv2) + ...+ Jn(ivh),

where {u1, u2, . . . , uk} and {v 1, v 2, . . . , vk} are the positions of 1 at vectors u and

v, respectively.

From the properties of circulant matrices, we get following equation for any 0 <

m, l l n: 
Jn(m) = Jn(0)× In(m),

In(l)× Jn(0) = Jn(0)× In(n− l),

In(l)T = In(n− l).

In addition, any left-cyclic matrix is a symmetric matrix. So, the following equa-

tion is always true:

In(l)× Jn(m) = Jn(m)× In(l)T ⇔ In(l)× Jn(m)T = Jn(m)× In(l)T . (6.3)

From 6.3, we get:

(In(iu1) + In(iu2) + ...+ In(iuk))(Jn(iv1) + Jn(iv2) + ...+ Jn(ivh))T

= (Jn(iv1) + Jn(iv2) + ...+ Jn(ivh))(In(iu1) + In(iu2) + ...+ In(iuk))
T .

⇔ HX ×HZ
T = HZ ×HX

T ⇔ HX ×HZ
T + HZ ×HX

T = 0n modulo 2.
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Therefore, the matrix H = [HX | HZ] satisfies the SIP condition in (2), and Theorem

2 is proven.

Since the parity-check matrices constructed from Theorem 2 satisfy the SIP con-

dition in (2), we can choose the independent vectors from H to create corresponding

isotropic subgroup SI. To have the entanglement subgroup, the following theorem

can be considered to satisfy the conditions.

Theorem 3. Given that parity-check matrix H of size (n − k) × 2n and its vectors

are an independent relationship, we can transform H into the standard form Hst in

the following form:

Hst =


r︷︸︸︷
I

n−k−r︷︸︸︷
A1

k︷︸︸︷
A2

r︷︸︸︷
B

n−k−r︷︸︸︷
C1

k︷︸︸︷
C2

0 0 0 D I E

 } r

} n− k − r
(6.4)

Then, the pairs of anti-commuting can be determined as XE =

ZE =

[ 0 ET I (ETC1 + C2
T ) 0 0 ]

[ 0 0 0 A2
T 0 I ]

(6.5)

where the rank of matrix XE and ZE are k.

Proof.

(1) To transform the parity-check matrix to standard form, we use the Gauss-Jordan

elimination, swap the qubits, and add one row to another. The codewords and

stabilizer are invariant to these changes. So, step by step, the standard form

can be obtained with 6.4.
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(2) From the standard form, Hst, we calculate the encoded Pauli operators X and

Z that satisfy the following conditions:

[Xi,Xj] = 0,

[Zi,Zj] = 0,

[Xi,Zj] = 0 for i 6= j,{
Xi,Zj

}
= 0 for i = j.

Consequently, encoded Pauli operators X and Z can be used as XE and ZE. Theorem

3 is proven. �

EAQECCs use pre-existing entanglement between transmitter and receiver to im-

prove the reliability of transmission. Hence, before transmission we must manufacture

the entanglement state between transmitter and receiver. It will be difficult to set

up if the number of ebits becomes larger. So, an EAQECC design to minimize the

numbers of ebits is an important constraint. In following Corollary, we will consider

the result of the Theorem 2 when the number of ebits is 1.

Corollary 1. From the Theorem 3, firstly we choose one pair of anti-commuting

from SE, it denotes as {X1, Z1}. Then, we choose n − k − 1 generators {Z2, Z3,

. . . , Zn-k} from parity check matrix that satisfy the commutation property of isotropic

sub-group SI. The minimum distance dmin is calculated from the generators of SE and

SI. The EAQECCs with parameter [[n, k, dmin;1]] is constructed.

Proof.

As the definition of EAQECC in , the non-Abelian group can be partitioned into:

1. A commuting subgroup, the isotropic group S I = {Zc+1, Zc+2, . . . , Zc+s}.
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2. Entanglement subgroup pairs SE = {Z1, Z2, . . . , Zc, X1, X2, . . . , Xc} with

anti-commuting pairs; the anti-commuting pairs (Zi, Xi) being shared between

source and receiver.

Then, from the isotropic and entanglement subgroup, EAQECC code C EA are

defined as [[n, k ; c]] that encodes k = n − s − c qubits into n physical qubits with

the help of s = n − k − c ancillas qubits and c ebits shared between the sender

and receiver. As the expectation to get the minimum distance, one entanglement

pair is chosen, hence c = 1, the operators are chosen above, the minimum distance is

determined by the minimum weights of operators in the error set N :

N =
{
Em

∣∣ ∀E1, E2 ⇒ E2
†E1 ∈ SI ∪ (Pn − N(S))

}
.

Finally, the parameter of EAQECC [[n, k, dmin;1]] are determined and the Corol-

lary is proven. �

Following examples show the outputs of Corollary 1 where the minimum distance

dmin ≥ 3, we search vectors which make codes with various minimum distance. Then,

among many candidates of the vectors, to achieve largest minimum distance that has

the error correctable ability the number of error ≥ 1 when the length of code up to 12.

Example 3. For n = 7, let us consider the EAQECC when u = [1 1 0 0 1 0 1] and

v = [1 0 0 1 0 1 1]. We have a code with the minimum number of ebits and good

minimum distance, as in the following explanations.

Per Theorem 2, we have the corresponding parity-check matrix:
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H =



1 1 0 0 1 0 1 1 0 0 1 0 1 1

1 1 1 0 0 1 0 0 0 1 0 1 1 1

0 1 1 1 0 0 1 0 1 0 1 1 1 0

1 0 1 1 1 0 0 1 0 1 1 1 0 0

0 1 0 1 1 1 0 0 1 1 1 0 0 1

0 0 1 0 1 1 1 1 1 1 0 0 1 0

1 0 0 1 0 1 1 1 1 0 0 1 0 1



(6.6)

The six generators are chosen from the first six rows of matrix H, which satisfy

the independent condition to generate all elements of an inotropic subgroup. By

using Gaussian elimination and interchanges of columns, matrix H in 6.6 takes the

standard form:

Hst =



1 0 0 1 0 1 1 0 0 0 0 0 0 0

0 1 0 1 1 1 0 0 0 0 0 0 0 0

0 0 1 0 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 0 0 1

0 0 0 0 0 0 0 1 1 0 0 1 0 1

0 0 0 0 0 0 0 1 1 1 0 0 1 0


(6.7)

And the corresponding entanglement subgroup pair is calculated as:

X1 =

[
0 0 0 1 1 0 1 0 0 0 0 0 0 0

]
,

Z1 =

[
0 0 0 0 0 0 0 1 0 1 0 0 0 1

]
.

(6.8)

Then, from vectors in 6.7 and 6.8 we have the generators for EAQECC as follows:
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SE = {X1, Z1} and S I = {Z2, Z3, Z4, Z5, Z6} where

Z2 = [1 1 0 0 1 0 1 1 0 0 1 0 1 1] ,

Z3 = [1 1 1 0 0 1 0 0 0 1 0 1 1 1] ,

Z4 = [0 1 1 1 0 0 1 0 1 0 1 1 1 0] ,

Z5 = [1 0 1 1 1 0 0 1 0 1 1 1 0 0] ,

Z6 = [0 0 1 0 1 1 1 1 1 1 0 0 1 0] .

The generators S = <S I, SE > correspond to EAQECC [[7,1,3;1]] that encodes

one information qubit into seven physical qubits with the help of s = 6 ancilla qubits

and only one pair entanglement -assisted ebit, and they can correct one error.

Example 4. For n = 9, let us consider the EAQECC where u = [0 1 1 0 0 1 0 0 1]

and v = [1 1 0 0 1 0 0 1 0]. We have a code with the minimum number of ebits and

good minimum distance, as in the following explanations.

From Theorem 2, we have the corresponding parity-check matrix:

H =



0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0

1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1

0 1 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 1 0

1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0

0 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1

0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0

1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0

1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1



(6.9)
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The eight generators are chosen from the first eight rows of matrix H, which

satisfies the independent condition to generate all elements of an inotropic subgroup.

By using Gaussian elimination and interchange of columns, matrix H in (10) takes

the standard form:

Hst =



1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0

0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1

0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1

0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0

0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1

0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0

0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 1



(6.10)

And the corresponding entanglement subgroup pair is calculated as:

X1 = [0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0] ,

Z1 = [0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1] .

(6.11)

Then, from vectors in 6.10 and 6.11, we have the generators for EAQECC as

follows: SE = {X1, Z1} and S I = {Z2, Z3, Z4, Z5, Z6, Z7, Z8}, where
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Z2 = [0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0] ,

Z3 = [1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1] ,

Z4 = [0 1 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1] ,

Z5 = [0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 1 0] ,

Z6 = [0 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1] ,

Z7 = [0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0] ,

Z8 = [1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0] .

The generators S = < S I, SE > correspond to EAQECC [[9,1,3;1]] that encodes

one information qubit into nine physical qubits with the help of s = 7 ancilla qubits

and one pair entanglement -assisted ebit, and they can also correct one error.

Example 5. For n = 10, let us consider the EAQECC when u = [0 1 1 1 0 1 1 0 1

0] and v = [1 1 1 0 1 1 0 1 0 0]. We have a code with the minimum number of ebits

and good minimum distance as in the following explanations.

Per Theorem 2, we have the corresponding parity-check matrix:
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H =



0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0

0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1

1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1

0 1 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1

1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 0

1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1

0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1

1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0

1 1 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1



(6.12)

The nine rows of matrix H satisfy the independent condition to generate all el-

ements of an inotropic subgroup. By using Gaussian elimination and interchange of

columns, matrix H in 6.12 takes the standard form:

Hst =



1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0

0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1

0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0

0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 1

0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0

0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1

0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1

0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1



(6.13)

And the corresponding entanglement subgroup pair is calculated as:
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X1 = [0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0] ,

Z1 = [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1] .

(6.14)

a/ Then, from vectors in (14) and (15) we have the generators for EAQECC as

follows: SE = {X1, Z1} and S I = {Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9} where

Z2 = [0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0] ,

Z3 = [0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1] ,

Z4 = [1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1] ,

Z5 = [0 1 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1] ,

Z6 = [1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 0] ,

Z7 = [1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1] ,

Z8 = [0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1] ,

Z9 = [1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0] .

The generators S = < S I, SE > correspond to EAQECC [[10,1,3;1]] that encodes

one information qubit into 10 physical qubits with the help of s = 8 ancilla qubits

and only one pair entanglement-assisted ebit, and they can correct one error.

b/ When we calculate with SE = {X1, Z1} where

X1 = [0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0] ,

Z1 = [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1] .

and S I = {Z2, Z3, Z4, Z5, Z6, Z7, Z8} where
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Z2 = [0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0] ,

Z3 = [0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1] ,

Z4 = [0 1 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1] ,

Z5 = [1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 0] ,

Z6 = [0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1] ,

Z7 = [1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0] ,

Z8 = [1 1 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1] .

The generator S = < S I, SE > correspond to EAQECC [[10,2,3;1]] that encodes

two information qubits into 10 physical qubits with the help of s = 7 ancilla qubits

and only one pair entanglement-assisted ebit, and they can correct one error.

Example 6. For n = 11, let us consider the EAQECC when u = [1 1 1 0 0 1 1 0 0

0 1], v = [1 1 0 0 1 1 0 0 0 1 1]. We have a code with the minimum number of ebits

and good minimum distance as in the following explanations.

Per Theorem 2, we have the corresponding parity-check matrix:
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H =



1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1

1 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 1

0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1

0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0

0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0

1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1

1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1

0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0

0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0

1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0



(6.15)

The ten rows of matrix H satisfy the independent condition to generate all ele-

ments of an inotropic subgroup. By using Gaussian elimination and interchange of

columns, matrix H in 6.15 takes the standard form:
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Hst =



1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1

0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1

0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1

0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1

0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1

0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 1 0

0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 1 1



(6.16)

And the corresponding entanglement subgroup pair is calculated as:

X1 = [0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0] ,

Z1 = [0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1] .

(6.17)

a/ Then, from vectors in 6.13 and 6.14, we have the generators for EAQECC as

follows: SE = {X1, Z1} and S I = {Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10} where
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Z2 = [1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1] ,

Z3 = [1 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 1] ,

Z4 = [0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0] ,

Z5 = [0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0] ,

Z6 = [1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1] ,

Z7 = [1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1] ,

Z8 = [0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0] ,

Z9 = [0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0] ,

Z10 = [1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0] .

The generators S = < S I, SE > correspond to EAQECC [[11,1,4;1]] that encodes

one information qubit into 11 physical qubits with the help of s = 9 ancilla qubits

and only one entanglement-assisted ebit, and the minimum distance is four.

b/ When we calculate with SE = {X1, Z1} where

X1 = [0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0] ,

Z1 = [0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1] .

and S I = {Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9} where

Z2 = [1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1] ,

Z3 = [0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0] ,

Z4 = [0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0] ,

Z5 = [1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1] ,
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Z6 = [1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1] ,

Z7 = [0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0] ,

Z8 = [0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0] ,

Z9 = [1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0] .

The generator S = < S I, SE > correspond to EAQECC [[11,2,3;1]] that encodes

two information qubits into 11 physical qubits with the help of s = 8 ancilla qubits

and only one pair entanglement-assisted ebit, and they can correct one error.

c/ When we calculate with SE = {X1, Z1} where

X1 = [0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0] ,

Z1 = [0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1] .

and S I = {Z2, Z3, Z4, Z5, Z6, Z7, Z8} where

Z2 = [1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1] ,

Z3 = [0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0] ,

Z4 = [1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1] ,

Z5 = [1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1] ,

Z6 = [0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0] ,

Z7 = [0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0] ,

Z8 = [1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0] .

The generator S = <S I, SE > correspond to EAQECC [[11,3,3;1]] that encodes

three information qubits into 11 physical qubits with the help of s = 7 ancilla qubits

and only one pair entanglement-assisted ebit, and they can correct one error.
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d/ When we calculate with SE = {X1, Z1} where

X1 = [0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0] ,

Z1 = [0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1] .

and S I = { Z2, Z3, Z4, Z5, Z6, Z7} where

Z2 = [1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1] ,

Z3 = [0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0] ,

Z4 = [1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1] ,

Z5 = [1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1] ,

Z6 = [0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0] ,

Z7 = [0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0] .

The generator S = <S I, SE > correspond to EAQECC [[11,4,3;1]] that encodes

four information qubits into 11 physical qubits with the help of s = 6 ancilla qubits

and only one pair entanglement-assisted ebit, and they can correct one error.

Example 7. For n = 12, let us consider the EAQECC where u = [1 1 1 0 0 1 0 1 0

1 0 1], v = [1 1 0 0 1 0 1 0 1 0 1 1]. We have a code with the minimum number of

ebits and good minimum distance, as in the following explanations.

Per Theorem 2, we have the corresponding parity-check matrix:
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H =



1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1

1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1

0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1

1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0

0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0

1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1

0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0

1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 0

0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1

1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0



(6.18)

The eleven rows of matrix H satisfy the independent condition to generate all

elements of an inotropic subgroup. By using Gaussian elimination and interchange

of columns, matrix H in (19) takes the standard form:
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Hst =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0

0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0

0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1

0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1



(6.19)

And the corresponding entanglement subgroup pair is calculated as:

X1 = [0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0] ,

Z1 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1] .

(6.20)

a/ Then, from vectors in 6.13 and 6.14 we have the generators for EAQECC as

follows: SE = {X1, Z1} and S I = {Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11} where
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Z2 = [1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1] ,

Z3 = [1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1] ,

Z4 = [0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1] ,

Z5 = [1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0] ,

Z6 = [0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0] ,

Z7 = [1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1] ,

Z8 = [0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0] ,

Z9 = [1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1] ,

Z10 = [0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 0] ,

Z11 = [0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1] .

The generators S = <S I, SE > correspond to EAQECC [[12,1,4;1]] that encodes

one information qubit into 12 physical qubits with the help of s = 10 ancilla qubits

and only one pair entanglement -assisted ebit and the minimum distance is four.

b/ When we calculate with SE = {X1, Z1} where

X1 = [0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0] ,

Z1 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1] .

and S I = {Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10} where
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Z2 = [1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1] ,

Z3 = [0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1] ,

Z4 = [1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0] ,

Z5 = [0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0] ,

Z6 = [1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1] ,

Z7 = [0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0] ,

Z8 = [1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1] ,

Z9 = [0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 0] ,

Z10 = [0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1] .

The generator S = <S I, SE > correspond to EAQECC [[12,2,4;1]] that encodes

two information qubits into 12 physical qubits with the help of s = 9 ancilla qubits

and only one pair entanglement-assisted ebit, and they can correct one error.

The results of the proposed EAQECC with lengths up to 12 are listed in Table

6.1. The detailed values of the operators are calculated in Examples 3–7.

In comparison with the results of referenced studies [92–95], the proposed EAQECC

shows outperform as a smaller number of ebits and larger minimum distance. As the

construction of EAQECC by generalized quadrangles in [93] and circulant matrix

in [94], the two main things are clearly to conclude the advances of proposed meth-

ods that are code lengths and the classification of generators. Firstly, in [93, 94], the

code lengths are limited as the conditions to construct the parity check matrix, in

contrast the proposed method can find the corresponding EAQECCs for any length.

In addition, proposed codes are expressed as the standard form transformation to

classify subgroups S I and SE; hence, the operators of subgroups are clearly deter-
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Table 6.1: Entanglement-assisted quantum error correction code (EAQECC) [[n, k,
d ; c]] from proposed method with c = 1 and d ≥ 3.

n k d

7 1 3

8 1 3

9 1 3

10 1 3

10 2 3

11 1 4

11 2 3

11 3 3

11 4 3

12 1 4

12 2 4

12 3 3

12 4 3

12 5 3

mined, instead of knowing the numbers and operators not being determined, as seen

in elsewhere, hence the minimum distance of outputs are not calculated in [93, 94],

furthermore the determined generators also open the effective way to implement the

quantum system in future works. For more details, the comparisons are listed in

Table 6.2.
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Table 6.2: Comparison of this proposed paper to other research.

Construction Ebits To classify subgroups Minimum distance

Arbitrary binary
linear code [92]

2n – 2k Gram-Schmidt procedure ≥3

Generalized quad-
rangles [93]

2 Gram-Schmidt procedure Not mentioned

Circulant permuta-
tion [94]

1 Gram-Schmidt procedure Not mentioned

Shortened Ham-
ming code [95]

1 Gram-Schmidt procedure 3

The proposed
method

1 Standard form transfor-
mation of matrix

3, ≥4



Chapter 7

Summary of Contributions and

Further Works

7.1 Thesis conclusion

Quantum computer have proven to have many advantages of quantum mechan-

ical phenomena such as quantum superposition of quantum state and quantum en-

tanglements between qubits, to solve many certain problems efficiently, faster, and

confidential than the classical counterparts. Since the affect of noise and unwanted

environments, the ability to mitigate the noise resulting from decoherence will deter-

mine whether building of quantum computer is feasible. Quantum error correction

codes are essential to achieve fault-tolerant quantum computation.

The correspondence between quantum error correction codes and classical error

correction codes is a topic has been researched during past three decades. There are

some similarities between QECCs and classical codes as well as there are some sub-

110
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stantial differences. In this thesis, we consider some types of classical codes which are

suitable for construction of quantum error correction codes. The main contributions

of this dissertation can be listed as follows.

• First, the conditions of a DS are examined to satisfy the SIP condition and a

new construction method of quantum stabilizer codes from the DS is proposed.

The condition of a DS to satisfy the SIP constraint is equivalent to determine

a DS with k ≡ λ modulo 2. Quantum stabilizer codes [[7,4,2]] and [[15,10,2]]

are presented from the proposed construction with DS (7, 4, 2) and DS (15,

7, 3), respectively, for practical applications. Moreover, since there are many

DSs with parameters that satisfy k ≡ λ modulo 2, it is possible to produce

new quantum stabilizer codes with greater length. In comparison with the

referenced construction, the proposed construction provides more candidates

for the quantum stabilizer code based on DSs.

• Second, we studied the quantum stabilizer code constructions based on the sym-

metric matrices for binary and non-binary cases. The quantum stabilizer codes

based on the two proposed constructions whose parameters achieved equality of

the quantum singleton bound are explained in detail. These optimal quantum

stabilizer codes are candidates for use in quantum applications such as quantum

cryptography, quantum communication, and quantum entanglement based on

the graph state.

• Third, a new approach to constructing additive codes over GF(4), which are

self-orthogonal with respect to Hermitian product, is proposed for even lengths
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and odd lengths, and the minimum distance is proven to be four. Moreover,

the transformation to quantum stabilizer code is also considered. Six optimal

quantum stabilizer codes [[5, 1, 3]], [[7, 1, 3]], [[9, 1, 3]], [[6, 0, 4]], [[8, 0, 4]], and

[[10, 0, 4]] have been interpreted from corresponding linear codes with the stan-

dard form to show their practicality in quantum stabilizer codes. This code

construction method can be applied for the code, can correct at least one error

in quantum information theory, and can have a good quantum state.

• Fourth, we propose quantum stabilizer codes based on a new construction

method by using self-orthogonal linear codes over GF(4), which satisfy the

trace-inner product. The proposed quantum stabilizer codes provide various

dimensions for any length and demonstrate improved error correction in com-

parison with referenced quantum codes. The comparison results between our

proposed codes and referenced codes show that the proposed codes can support

various dimensions and have better correction capabilities.

• Fifth, the construction of EAQECC-based on circulant matrices has been stud-

ied. Not using the Gram-Schmidt procedure to classify the subgroups of EAQECC,

we first propose the construction and calculation for each subgroup. This work

aims to reduce the complexity in the classification and determination of ebits.

Some EAQECCs with a minimum number of ebits, and the capability to cor-

rect errors were showed clearly, with generators of each subgroup. This promises

effective codes in comparison with other results.
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7.2 Future research directions

Although many aspects of quantum error correction codes were studied in the

literature, there remain interesting research topics for the quantum information pro-

cessing. In this dissertation, we only studied the construction of one famous type of

quantum error correction codes called quantum stabilizer codes. From the design of

QECCs from stabilizer formalism, we can get the quantum stabilizer group. And not

only we gain the error correction from this group from syndrome calculation but also

we can get full entanglement state, or stabilizer frames. These help us on designing

of quantum computation circuit model, quantum key distribution protocol, and the

design of stabilizer frames which can boost quantum circuits. It promises the further

research on applications of construction of quantum stabilizer codes.

In addition, some quantum algorithms such that quantum walks, Deutsch-Jozsa

algorithm, and quantum three-stage protocol have been discussed to show the ad-

vantages of quantum computation in order of comparison with classical computation.

Most quantum algorithms based on the quantum computation which use the unitary

transform over Hilbert space to utilize ancilla qubits as input qubits, by Hadarmard

transform or Fourier transform, we can get the superposition states from arbitrary

state or role back from superposition to arbitrary qubits. The oracle or rotation gates

are applied to the superposition state. The advantages of quantum algorithms lie on

quantum entanglement and the no-cloning theorem. And they required small times

to query from oracle in comparison to classical computation. Then, we give some

improvements quantum algorithms to achieve better quantum algorithms on security,

better effective protocol, and re-consider the quantum walk on the 1-D lines.



Chapter 7: Summary of Contributions and Further Works 114

Currently, there are some open source to implement quantum computation and

quantum algorithm such as IBMQX. We plan to research on this setups to test,

implement out standing algorithms, and our proposed algorithms.
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