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Abstract 

 
Uncertainty Quantification in Heat and Fluid Flows Around Staggered 

Pin-Fin Arrays Based on Hybrid RANS/LES Model 

 

 

In the present work, the three dimensional heat and fluid flows around staggered pin-

fin arrays are predicted using two Hybrid RANS/LES, Improved Delayed Detached Eddy 

Simulation(IDDES) and Stress Blended Eddy Simulation (SBES) and one transitional 

Unsteady Reynolds Averaged Navier-Stokes (URANS) model, k- SSTLM. The periodic 

segment geometry with total 8 pins is considered with the channel height of 2D and the 

distance of 2.5D between each pin. The corresponding Reynolds number based on the pin 

diameter and the maximum velocity between pins is 10,000. Two Hybrid RANS/LES 

results show superior prediction in mean velocity profiles around pins, pressure 

distributions on the pin wall and Nusselt number distributions. However, transitional 

model, k- SSTLM show large discrepancy except in the front part where the flow is not 

fully developed. The two Hybrid RANS/LES models resolve the vortical structures well 

Specially, SBES model is able to capture the three dimensional vortical structures after 

the pin. The effect of the blending function switching between RANS and LES mode of 

two Hybrid RANS/LES model is investigated. 

 

The Uncertainty Quantification Forward problem is conducted with non-intrusive 

polynomial chaos expansion. The input variable is set as inlet velocity. it is assumed as a 

uniform distribution or normal distribution. Its mean 𝜇  is 3.45m/s and standard 

deviation 𝜎 is ±0.1 𝜇. The quantity of interest is the average Nusselt number and the local 

Nusselt number. The results show that probability density function of output is strongly 



 

affected by probability distribution of input.  

 

Keywords: Staggered Pin-Fin array, Improved Delayed Detached Eddy Simulation 

(IDDES), Stress Blended Eddy Simulation(SBES), Hybrid RANS/LES, k-ω SSTLM, 

Uncertainty Quantification(UQ), Polynomial Chaos Expansion, Latin Hypercube 

Sampling(LHS) 
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Chapter 1. Introduction 

 

1.1 Introduction 

The pin-fin structures which are adopted in heat exchanger, nucleate reactor and turbine 

blade cooling system are considered as a common way to enhance the heat transfer 

efficiency. Even though its geometry is relatively simple, the structure of fluid and heat 

transfer phenomenon is complex. Therefore, many experimental or numerical research are 

conducted to evaluate the performance and to elucidate the fluid and heat transfer 

mechanism around the pin-fin structures. 

 

Fig. 1. Pin-Fin structure used widely 
 

 

Ames et al. [1, 2, 3] conducted an experiment to study the heat transfer and fluid 

dynamics of staggered pin fins array using a hot wire measurement and an infrared camera 

at Reynolds number 3,000, 10,000 and 30,000 based on the maximum velocity between 

the pins. Pressure coefficient distributions, velocity distribution, and Nusselt number 

distribution were acquired near the cylindrical pins and off the end-walls. The experimental 

results showed that the turbulence augmentation along the row are major parameter for heat 

transfer in a staggered pin fins array. Averaged end-wall Nusselt number had a good 
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agreement with Metzger and Haley’s correlation and Van Fossen’s correlations. Ames et 

al. [2] also applied CFD simulations with 3D steady k-ε turbulence model series (standard, 

RNG, realizable) on the same configuration. However, they showed the limitation of steady 

k-ε turbulence models which failed to capture the unsteady vortex shedding in a staggered 

pin fin arrays. 

Delibra and Hanjalic et al. [4, 5, 6] conducted computational fluid dynamic simulation 

with three kinds of turbulence models at two different Reynolds numbers 10,000 and 

30,000. They used unsteady RANS model named ζ-f model, dynamic Smagorinsky 

subgrid-scale LES model and hybrid LES/RANS model combined with ζ-f model and 

dynamic Smagorinsky subgrid-scale model. The ζ-f model was able to capture the unsteady 

flow features caused by vortex shedding. However it showed discrepancy in  resolving the 

wake’s size and structure behind the first pin as much as LES. In view of the heat transfer, 

the average end-wall Nusselt number of ζ-f model’s result was close to the results of LES. 

But both values were underpredicted to experimental results. Although a hybrid 

LES/RANS model used same grid with the URANS simulation, the results showed 

relatively better agreement than URANS results with LES and experimental results. 

The study by Hao and Gorle [7] adopted a pin-fin array based on LES and k- SST 

model to perform a prior examination of selected RANS model considering discrepancies 

of Reynolds stress tensor. The wall-resolving LES results showed good agreement with 

experimental data including mean velocity, Reynolds shear stress and local averaged 

Nusselt number. They also found that the linear eddy viscosity model of RANS is 

inadequate in a complex engineering problem such as pin-fin array and provide the insight 

on correcting the shape of the Reynolds stress tensor through reference data from LES. 

The stochastic method for heat transfer prediction based on LES and steady RANS was 

applied to a duct flow with pin-fin arrays by Carnevale et al.[8]. The Reynolds number was 
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considered as a random variable with a normal distribution. The results of LES showed the 

probability of a specified heat loading under a probabilistic condition. However, the results 

of steady RANS showed different level of uncertainty with LES. This showed that a 

different turbulence model result in a different level of uncertainty and that the propagation 

of uncertainty from epistemic uncertainty to aleatoric uncertainty is turbulence model 

dependent. 

Recently, due to the increase of computing performance and decrease of simulation cost, 

scale resolving simulation (SRS) techniques are applied frequently to various engineering 

problems with high Reynolds number. When it is considered that Large Eddy 

Simulation(LES) still has some limitation in application to high Reynolds number flows 

which requires tremendous mesh points to resolve turbulent boundary layer appropriately, 

Hybrid RANS/LES can be the best alternative method to simulate turbulent heat and fluid 

flows. Many Hybrid RANS/LES methodologies including Detached Eddy 

Simulation(DES)[9] are proposed and applied to various engineering problems to show 

successful prediction of turbulent flows. 

Menter[10] proposed the new version of a Hybrid RANS/LES model named Stress 

Blended Eddy Simulation (SBES) combined with the Delayed Detached Eddy 

Simulation(DDES) model and Improved Delayed Detached Eddy Simulation(IDDES) 

model. The original DES model was improved to overcome the unphysical prediction such 

as grid induced separation(GIS) and log-layer mismatch(LLM), which were inherent issues 

related with the mesh for switching between RANS and LES model in previous version of 

DES. The predictive capability of SBES model was evaluated through simulations of 

turbulent mixing layer by Frank and Menter[11] and of vertical axis wind turbine by 

Syawitri et al.[12]. Frank and Menter [11] simulated the turbulent mixing of two parallel 

planar water jets and showed that the prediction of SBES model was superior than one of 
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URANS k- ω SST model. The simulation of three-straight-bladed vertical axis wind turbine 

(VAWT) based on two grid topologies of O-type and C-type was conducted by Syawitri et 

al.[12] to show that SBES was able to resolve more turbulent structures like LES and the 

predicted power coefficient of wind turbine was more accurate than unsteady k-ε realizable 

enhanced wall treatment results. 

In the present work, heat and fluid flows around staggered pin-fin arrays are 

investigated using two Hybrid RANS/LES models, IDDES and SBES, and one transitional 

model. The adopted geometry is staggered pin-fin arrays [4] which is well known 

benchmark problem for evaluation of heat transfer phenomenon and Reynolds number 

based on the pin diameter and velocity between pins is corresponding to 10,000. We tried 

to evaluate the predictive capabilities of two Hybrid RANS/LES and one URANS models 

in convective heat transfer characteristics and flow around pin-fin arrays. 

Furthermore, uncertainty quantification is conducted with non-intrusive polynomial 

chaos expansion. The input variable is the inlet velocity. The probability distributions of 

input variable are uniform distribution and normal distribution. The mean value 𝜇  is 

3.45m/s and standard deviation 𝜎 is assumed as ±0.1𝜇. The quantity of interest (QoI) is 

average Nusselt number and local Nusselt number. 
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Chapter 2. Numerical Methods 

 
In this chapter, the numerical method used in the present work is explained. The 

SIMPLEC algorithm is used for pressure and velocity coupling. All of the spatial 

discretization are second order upwind scheme and unsteady term is discretized in the 

second order in implicit method. The time step size, Δt is set to 0.001 sec[6]. In the present 

work, one URANS model and two Hybrid RANS/LES models are considered; one URANS 

model is k-ω SST Lengtry-Menter transition model and two Hybrid RANS/LES models 

are IDDES and SBES models. These turbulence models are explained below. 

 

2.1 Governing Equation 

There are assumptions used in present works below. 

 

1. All fluid is incompressible viscous flow. 

2. The properties of fluid are not variable depending on the variation of temperature. 

3. The gravity is not considered. 

 

There are three governing equations ( Mass conservation, Momentum conservation and 

Energy conservation ). Considering the assumptions above, the mass conservation equation 

can be expressed below. 

 

 
𝜕𝑢𝑖

𝜕𝑥𝑖
= 0 (2.1) 

 

𝜌 is the density of fluid and 𝒖 is the flow velocity. Momentum conservation equation 

(called Navier-Stokes equation) and Energy conservation equation can be written as, 
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𝜕𝑢𝒊

𝜕𝑡
+

𝜕(𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(𝜈

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ) (2.2) 

 

 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
+

𝜕𝑢𝑗𝜌𝐶𝑝𝑇

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑖
𝑘

𝜕𝑇

𝜕𝑥𝑗
+ 𝑄 (2.3) 

 

where 𝐶𝑝  is the specific heat at constant pressure.  𝑇 and 𝑘  is the temperature and the 

thermal conductivity, respectively. −𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  is the Reynolds stress term and how to modeling 

this term makes the difference between the turbulence models. 

 

2.2 Turbulence Models 

2.2.1  k-ω SSTLM 

The k-ω SSTLM model is proposed by Menter and Lengtry[13]. It is also known as k- 

ω SST γ-Reθ model or k- ω Transition model. It includes two more transport equations 

relative to the original model for intermittency γ and for momentum thickness Reynolds 

number Reθ. The equations are described as follow : 

 

 
𝜕(𝜌𝛾)

𝜕𝑡
+

∂(𝜌𝑢𝑗𝛾)

∂x𝑗
= 𝑃𝛾1 − 𝐸𝛾1 + 𝑃𝛾2 − 𝐸𝛾2 +

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝛾
)

𝜕𝛾

𝜕𝑥𝑗
] (2.4) 

 

 𝑃𝛾1 = 𝐶𝑎1𝐹𝑙𝑒𝑛𝑔𝑡ℎ𝜌𝑆[𝛾𝐹𝑜𝑛𝑠𝑒𝑡]
𝐶𝛾3  , 𝐸𝛾1 = 𝐶𝑒1𝑃𝛾1𝛾 (2.5) 

 

 𝑃𝛾2 = 𝐶𝑎2𝜌Ω𝛾𝐹𝑡𝑢𝑟𝑏 , 𝐸𝛾2 = 𝐶𝑒2𝑃𝛾2𝛾 (2.6) 
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Where 𝑆 is the strain rate magnitude, 𝐹𝑙𝑒𝑛𝑔𝑡ℎ is an empirical correlation that controls 

the length of the transition region, and 𝐶𝑎1  and 𝐶𝑒1  are constant values of 2 and 1, 

respectively. The Ω is the vorticity magnitude. 

 

 𝑅𝑒𝑉 =
𝜌𝑦2𝑆

𝜇
 , 𝑅𝑇 =

𝜌𝑘

𝜇𝜔
 (2.7) 

 

 𝐹𝑜𝑛𝑠𝑒𝑡1 =
𝑅𝑒𝑉

2193𝑅𝑒𝜃𝑐
 , 𝐹𝑜𝑛𝑠𝑒𝑡2 = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝐹𝑜𝑛𝑠𝑒𝑡1, 𝐹𝑜𝑛𝑠𝑒𝑡1

4 ), 2.0) (2.8) 

 

 𝐹𝑜𝑛𝑠𝑒𝑡3 = 𝑚𝑎𝑥 (1 − (
𝑅𝑇

2.5
)

3

, 0) , 𝐹𝑜𝑛𝑠𝑒𝑡 = 𝑚𝑎𝑥(𝐹𝑜𝑛𝑠𝑒𝑡2 − 𝐹𝑜𝑛𝑠𝑒𝑡3, 0) (2.9) 

 

 𝐹𝑡𝑢𝑟𝑏 = 𝑒−(
𝑅𝑇
4

)
4

 (2.10) 

 

Where 𝑦  is the wall distance and 𝑅𝑒𝜃𝑐  is the critical Reynolds number where the 

intermittency first starts to increase in the boundary layer. The constants for the 

intermittency equation are : 𝐶𝑎1 = 2; 𝐶𝑒1 = 1; 𝐶𝑎2 = 0.06; 𝐶𝑒2 = 50; 𝐶𝛾3 = 0.5; 𝜎𝛾 = 1 

The transport equation for the transition momentum thickness Reynolds 𝑅𝑒𝜃 is  

 

 
𝜕(𝜌𝑅𝑒𝜃)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝑅𝑒𝜽) = 𝑃𝜃𝑡 +

𝜕

𝜕𝑥𝑗
[𝜎𝜃𝑡(𝜇 + 𝜇𝑡)

𝜕

𝜕𝑥𝑗

(𝑅𝑒𝜃)] (2.11) 

 

 𝑃𝜃𝑡 = 𝐶𝜃𝑡

𝜌

𝑡
(𝑅𝑒𝜃𝑡 − 𝑅𝑒𝜃)(1.0 − 𝐹𝜃𝑡) , 𝑡 =

500𝜇

𝜌𝑈2
 (2.12) 
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 𝐹𝜃𝑡 = 𝑚𝑖𝑛 [𝑚𝑎𝑥 {𝐹𝑤𝑎𝑘𝑒𝑒
(−

𝑦
𝛿
)
4

 , 1.0 − (
𝛾 − 1/50

1.0 − 1/50
)
2

} , 1.0] (2.13) 

 

 𝜃𝐵𝐿 =
𝑅𝑒𝜃𝜇

𝜌𝑈
 , 𝛿𝐵𝐿 =

15

2
𝜃𝐵𝐿  , 𝛿 =

50Ω𝑦

𝑈
𝛿𝐵𝐿 , 𝑅𝑒𝜔 =

𝜌𝜔𝑦2

𝜇
 (2.14) 

 

 𝐹𝑤𝑎𝑘𝑒 = 𝑒−(
𝑅𝑒𝜔
1𝐸5

)
2

 (2.15) 

 

The model constants for the 𝑅𝑒𝜃 equation are : 𝐶𝜃𝑡 = 0.03; 𝜎𝜃𝑡 = 2.0; the empirical 

correlation used in this model is based on the pressure gradient coefficient 𝜆𝜃 and turbulent 

intensity 𝑻𝒖. 

 

 𝑇𝑢 =
100

𝑈
√

2

3
𝑘 , 𝜆𝜃 =

𝜃2

𝜈
∙
𝑑𝑈

𝑑𝑠
 (2.16) 

 

 𝑅𝑒𝜃𝑡 = {
[1173.51 − 589.428𝑇𝑢 +

0.2196

𝑇𝑢2
] 𝐹(𝜆𝜃)        𝑇𝑢 ≤ 1.3

331.50[𝑇𝑢 − 0.5658]−0.671𝐹(𝜆𝜃)      𝑇𝑢 > 1.3
 (2.17) 

 

 𝐹(𝜆, 𝑇𝑢) = {
1 − [−12.986𝜆𝜃 − 123.66𝜆𝜃

2 − 405.689𝜆𝜃
3 ]𝑒−(

𝑇𝑢
1.5

)
1.5

  𝜆𝜃 ≤ 0

1 + 0.275[1 − 𝑒[−35.0𝜆𝜃]]𝑒[
−𝑇𝑢
0.5

]        𝜆𝜃 > 0

 (2.18) 

 

2.2.2  Improved Delay Detached Eddy Simulation (IDDES) 

The IDDES model [16] combines the DDES model [17] and the wall-modelled LES 

(WMLES) model [18, 19]. The original DES model proposed by Spalart et al.[17] and 

Menter [20] is known to be abnormally sensitive to mesh resolution, which determines the 

length scale between the RANS model and the sub-grid scale model. If the change of grid 
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density is abrupt or if the mesh is not refined enough for a WMLES, the modelled 

turbulence and eddy viscosity decreases. This phenomenon is called modelled stress 

depletion (MSD), which causes early unphysical separation termed grid-induced separation 

(GIS) [17]. The GIS deteriorates the solution near the regions between the RANS mode 

and the LES mode. Moreover, the DES model shows a relatively strong logarithmic layer 

mismatch (LLM) between the inner RANS and the outer LES. This issue of LLM is also 

shown in the DDES model, and the IDDES model has a feature to switch the turbulence 

length scale in the dissipation term of the turbulent kinetic energy equation :  

 

 
𝜕(𝜌𝑘)

𝜕𝑡
+ ∇ ∙ (𝜌𝒖𝑘) = ∇ ∙ [(𝜇 + 𝜎𝑘𝜇𝑘)∇𝑘] + 𝑃𝑘 − 𝜌√𝑘3 𝑙𝐼𝐷𝐷𝐸𝑆⁄  (2.19) 

 

 𝑙𝐼𝐷𝐷𝐸𝑆 = 𝑓𝑑 ∙ (1 + 𝑓𝑒) ∙ 𝑙𝑅𝐴𝑁𝑆 + (1 − 𝑓𝑑) ∙ 𝑙𝐿𝐸𝑆 (2.20) 

 

 𝑙𝐿𝐸𝑆 = 𝐶𝐼𝐷𝐷𝐸𝑆∆ , 𝑙𝑅𝐴𝑁𝑆 =
√𝑘

𝐶𝜇𝜔
 (2.21) 

 

 ∆ =  min {𝐶𝜔 max[𝑑𝑤 , ℎ𝑚𝑎𝑥]  , ℎ𝑚𝑎𝑥} (2.22) 

 

Where ∆ is the LES length scale and ℎ𝑚𝑎𝑥 is the maximum edge length of the cell. 𝑑𝑤 

denotes the distance from the wall. 

 

 𝑓𝑑 = 𝑚𝑎𝑥{(1 − 𝑓𝑑𝑡), 𝑓𝑏}  , 𝑓𝑑𝑡 = 1 − tanh[(𝐶𝑑𝑡1 ∙ 𝑟𝑑𝑡)
𝐶𝑑𝑡2] (2.23) 

 

 
𝑟𝑑𝑡 =

𝜈𝑡

𝜅2𝑑𝑤
2√0.5(𝑆2 + Ω2)

 , 𝑟𝑑𝑙 =
𝜈

𝜅2𝑑𝑤
2√0.5(𝑆2 + Ω2)

 
(2.24) 
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 𝑓𝑏 = 𝑚𝑖𝑛{2𝑒𝑥𝑝(−9𝛼2) , 0} , 𝛼 = 0.25 −
𝑑𝑤

ℎ𝑚𝑎𝑥
 (2.25) 

 

 𝑓𝑒 = 𝑓𝑒2 ∙ 𝑚𝑎𝑥((𝑓𝑒1 − 1.0), 0) (2.26) 

 

 

𝑓𝑒1 = {
2𝑒𝑥𝑝(−11.09 ∙ 𝛼2)     𝑤ℎ𝑒𝑛 𝛼 ≥ 0

2𝑒𝑥𝑝(−9 ∙ 𝛼2)             𝑤ℎ𝑒𝑛 𝛼 < 0
             

𝑓𝑒2 = 1 − 𝑚𝑎𝑥(𝑓𝑡 , 𝑓𝑙) 

(2.27) 

 

 𝑓𝑡 = tanh ((𝐶𝑡
2 ∙ 𝑟𝑑𝑡)

3
) , 𝑓𝑙 = tanh ((𝐶𝑙

2 ∙ 𝑟𝑑𝑙)
3
) (2.29) 

 

𝑓𝑑𝑡 is the empirical function for shielding of the DDES model from MSD, which is similar 

to 𝑓𝑑 in the DDES model. 𝜈 and 𝜈𝑡 are the molecular and eddy viscosity, respectively. 𝑆 

and 𝛺 are the strain rate and vorticity tensor. Detailed formulations and related constants 

can be found in Gritskevich et al. [16] 

 

2.2.3  Stress Blended Eddy Simulation (SBES) 

An SBES turbulence model was proposed by Menter [10] considering the ability to 

blend the RANS model directly into LES model based on the same shielding function fSDES 

of the SDES model.[14] Menter[10] recommended this method, “Automatic Zonal 

Modeling,” to satisfy 1) a high degree asymptotic shielding of the RANS boundary layer 

under mesh refinement, 2) reliable and swift switching from RANS to LES in separate 

shear layers (SSLs), 3) operation in WMLES mode, 4) able to combine all RANS and all 

LES models, and 5) robustness even on non-perfect industrial meshes [10]. The equation 

for blending of stress tensors can be expressed as : 
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 𝜏𝑖𝑗
𝑆𝐵𝐸𝑆 = 𝑓𝑆𝐷𝐸𝑆𝜏𝑖𝑗

𝑅𝐴𝑁𝑆 + (1 − 𝑓𝑆𝐷𝐸𝑆)𝜏𝑖𝑗
𝐿𝐸𝑆 (2.30) 

 

where 𝜏𝑖𝑗
𝑅𝐴𝑁𝑆 is the RANS Reynolds stress tensor and 𝜏𝑖𝑗

𝐿𝐸𝑆 is the LES stress tensor. In the 

case of the eddy viscosity model, the formulation above simplifies to : 

 

 𝜇𝑡
𝑆𝐵𝐸𝑆 = 𝑓𝑆𝐷𝐸𝑆𝜇𝑡

𝑅𝐴𝑁𝑆 + (1 − 𝑓𝑆𝐷𝐸𝑆)𝜇𝑡
𝐿𝐸𝑆 (2.31) 

 

When 𝑓𝑆𝐷𝐸𝑆 is zero, the RANS model is applied; when the 𝑓𝑆𝐷𝐸𝑆 is 1, the algebraic LES 

model is applied. In the present work, the two-equation model (k-ω SST) is used for the 

RANS model, and the Wall-Adapting Local Eddy-viscosity (WALE) model is adopted for 

the LES model. The SBES model can switch from the RANS model to LES faster than the 

other hybrid RANS/LES models in separate layers since the level of turbulence stress of 

the LES model in the RANS boundary layer is low. As a result, the solution is more realistic 

and consistent. 

 

2.3 Discretization Schemes and Coupling Algorithm 

2.3.1 Upwind Scheme 

An upwind scheme is one of the discretization schemes for convection-diffusion term 

in Navier-Stokes equation and Energy conservation equation. there are a lot of numerical 

schemes for the discretization of the convection-diffusion term in finite volume method 

(FVM). For example, central scheme, upwind scheme, hybrid scheme and QUICK etc are 

representative. Especially, upwind scheme has been wildly used as a spatial discretization 

scheme. 
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Fig. 2. Schematic diagram of Upwind scheme  

 

Fig.2 shows the nodal values used to calculate cell face value. 𝜙 is the value of a 

property. If 𝑢𝑤 and 𝑢𝑒 have a positive value, 𝜙𝑊 = 𝜙𝑤 and 𝜙𝑃 = 𝜙𝑒. It is different with 

central scheme; (𝜙𝑤 =
𝜙𝑃+𝜙𝑊

2
, 𝜙𝑒 =

𝜙𝐸+𝜙𝑃

2
). Therefore upwind scheme can identify the 

flow direction that the central scheme can’t identify. In other words, tansportiveness is built. 

In addition to tansportiveness, the simplicity of upwind scheme is the reason why it has 

been wildly applied in CFD calculations. 

2.3.2 Implicit Discretization Scheme 

There are two methods of discretization for the rate of change term. One is the Explicit 

method and the other is the Implicit method. Each method has advantages and 

disadvantages.  

First of all, Explicit scheme has the advantage to write code easily because of the 

simplicity. But it has a stability problem. Therefore the time step size is limited. This 

limitation induces long computation time. The higher dimension is considered, the more 

strict stability criteria are needed to satisfy. In addition to the stability problems, the time 

lag occurs at boundary conditions. 
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On the other hand, the Implicit scheme is unconditionally stable. That’s why it solves 

the matrix equation at every time step. It takes more time to solve the one time step than 

the explicit scheme takes. However total computation time is shorter than the explicit 

scheme. Its solution converges with a large time step size. But if the time step size is too 

large, the truncation error contaminates the solution. Table.1 shows the advantages and 

disadvantages of the explicit scheme and implicit scheme. 

 

Table 1. The advantages and disadvantages of the explicit scheme and implicit scheme 

 Advantages Disadvantages 

Explicit 

Scheme 

• Easy to write code • Limitation of time step size due 

to stability problem 

• The higher dimension is 

considered, the more strict 

stability criteria are needed to 

satisfy 

• Time lag at boundary condition 

Implicit 

Scheme 

• Unconditionally stable • Difficult to write code 

• Taking more time than explicit 

scheme for one time step 
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Chapter 3. Theorical Background for Uncertainty Quantification 

 

3.1 The Definition of Uncertainty Quantification 

The uncertainty quantification is the mathematical method that deals with quantitative 

characterization and the reduction of uncertainties in applications. Uncertainty 

quantification is used for robust design/optimization, model validation, and certification 

for high-risk decisions.   

Uncertainty means that there is not certain value for a specific parameter. because of 

the physical variation of the value and the lack of accuracy in calculation and measurement. 

There are two categories to classify the type of uncertainty. One is aleatory uncertainty and 

the other is epistemic uncertainty. Aleatory uncertainty is induced by natural variabilities 

in the real system. therefore it is impossible to be reduced or eliminated. For examples of 

aleatory uncertainty are material properties, noise, etc. Epistemic uncertainty is induced by 

the lack of knowledge of physics. and it is caused by the modeling hypothesis. So it is 

possible to be reduced or eliminated. For examples of epistemic uncertainty are turbulence 

model, boundary conditions, etc. 

 

  

3.2 Polynomial Chaos Expansions 

The Polynomial chaos expansions (PCE) is non-intrusive method to determine 

propagation of uncertainty in dynamic system when there is probabilistic uncertainty in the 

system parameters. It allows one to represent a random output as a polynomial series in the 

input variables. The generic problem can be described like below : 

 

 𝑦 = 𝑓(𝑥) (3.1) 
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𝑓  is the computational model and in the present research, it is the Navier-Stokes 

equation. 𝑥 is the input parameter. 𝑦 is the output referred to Quantity of interest (QoI). As 

input parameter 𝑥 is a random variable, the equation is modified like below : 

 

 𝑌 = 𝑓(𝑋) (3.2) 

 

𝑌 and 𝑋 are expressed as random variables. If the assumption that the output random 

variable has finite variance is applied, the equation (3.2) is modified as follow : 

 

 𝑌 = ∑ 𝛼𝑛(𝑋)Ψ𝑛(𝜉𝑗)

∞

𝑛=0

   𝑗 = 0, 1, 2,⋯ , 𝑃 (3.3) 

 

Where 𝛼𝑛(𝑋)  are the polynomial chaos coefficients and Ψ𝑛  is an element of an 

orthogonal family. This correspondences between the random variable distribution and 

orthogonal polynomial family are shown in Table.2.  

 

Table 2. Classical families of orthogonal polynomials 

 

Type of variable Distribution 
Orthogonal 

polynomials 
Hilbertian basis Ψ𝑛(𝜉) 

Uniform 

𝑈(−1,1) 

1(𝜉)

2
 Legendre 𝑃𝑛(𝜉) 𝑃𝑛(𝜉) / √

1

2𝑛+1
 

Gaussian 

𝐺(0,1) 

1

√2𝜋
𝑒−𝜉2 2⁄  Hermite 𝐻𝑛(𝜉) 𝐻𝑛(𝜉) / √𝑛! 

Gamma 

Γ(𝑎, 𝜆 = 1) 
𝑥𝑎𝑒−𝜉 Laguerre 𝐿𝑛

𝑎 (𝜉) 𝐿𝑛
𝑎 (𝜉) / √

Γ(𝑛+𝑎+1)

𝑛!
 

Beta 

𝐵(𝑎, 𝑏) 
1(𝜉)

(1 − 𝜉)𝑎(1 + 𝜉)𝑏

𝐵(𝑎)𝐵(𝑏)
 Jacobi  𝐽𝑛

𝑎,𝑏(𝜉) 𝐽𝑛
𝑎,𝑏(𝜉) / 𝔍𝑎,𝑏,𝑛 
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𝜉 are a vector of random variables representing the system’s uncertainties. the random 

variable 𝜉  is randomly sampled in accordance with its statistical distribution equation 

above represents a system of 𝑃 + 1 equations in 𝑃 + 1 unknowns. As a system of linear 

equations, the equation (3.3) can be solved for the 𝛼𝑛. A linear system can be obtained as 

follow : 

 

 

[
 
 
 
 

Ψ0(𝜉0) Ψ0(𝜉0)

Ψ0(𝜉1) Ψ0(𝜉1)

…
…

Ψ𝑃(𝜉0)

Ψ𝑃(𝜉1)
⋮              ⋮ ⋱ ⋮

Ψ0(𝜉𝑃−1)

Ψ0(𝜉𝑃)
Ψ1(𝜉𝑃−1)

Ψ1(𝜉𝑃)

…
…

Ψ𝑃(𝜉𝑃−1)

Ψ𝑃(𝜉𝑃) ]
 
 
 
 

[
 
 
 
 

𝛼0

𝛼1

⋮
𝛼𝑃−1
𝛼𝑃 ]

 
 
 
 

=

[
 
 
 
 

𝑌1

𝑌2

⋮
𝑌𝑃−1

𝑌𝑃 ]
 
 
 
 

 (3.4) 

 

If the more than 𝑃 + 1  samples are chosen, then the over-determined system of 

equations should be solved using the least square method. 

The maximum number of terms, 𝑃 + 1, may be computed from the formula 

 

 𝑃 + 1 =
(𝑝 + 𝑛)!

𝑝! 𝑛!
 (3.5) 

 

𝑝 is the order of the polynomial set used for the chaos. 

 

3.3 Sampling Method 

Latin Hypercube Sampling (LHS) method is the one of the sampling method and it is 

proposed by McKay et al. [24] LHS is developed to improve the computational efficiency 

and the global accuracy of approximation. The key to this method is stratification of the 

input probability distribution. Stratification divides the cumulative curve into equal interval. 

A sample is then randomly taken from each interval or “stratification”.  

Hosder et al. [25] investigated the effects on the results by the number of collocation 

points in a systematic way through the introduction of a parameter, the oversampling rate 
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𝑛𝑝 defined below. 

 

 𝑛𝑝 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑃 + 1
 (3.5) 

 

Oversampling rate 𝑛𝑝 = 2  yields a better approximation to the statistic at each 

polynomial degree.  
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Chapter 4. Deterministic Simulations for Staggered Pin-Fin Arrays 

 

4.1 Geometry 

The geometry in the present work is adopted from the experiments of Ames et al. [1, 

2, 3], which consists of multiple pins attached at the plane. The cylindrical pins with 

diameter D = 0.0254 m are located in a staggered array with a distance of 2.5D between 

each pin and each row of pins. The channel height is set to 2D. For efficient simulation, 

the periodic segment geometry is considered, which is the same as in simulations by 

Delibra et al. [4, 5, 6] The spanwise length of the channel is 2.5D and the first row of pins 

is set to 7.5D away from the inlet for development of boundary layers on end-walls. The 

distance between the last row of pins and the outlet is also 7.5D to retain a fully developed 

exit flow for better numerical convergence. The total length in the streamwise direction is 

32.5D. Details of the geometry and computational domain are shown in Fig. 3. 

 

 
Fig. 3. Computational domain of geometry 
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4.2 Grid 

The grid is generated with hexahedral mesh in multi-blocks using ANSYS ICEM CFD. 

[15] To resolve the turbulent boundary layer near the wall at the bottom and the cylinder 

pins, 10 layers of mesh are inserted off the wall. The first grid height off the wall is set to 

satisfy the wall unit within 1.0, which is averaged in the computational domain. The total 

number of cells corresponds to 14,043,965. The grid system adopted in the present 

simulation is shown in Fig. 4.  

 

 
 

Fig. 4 The structured mesh and the lines used to display the results.  

Line A (red) : end-wall normal line; line B (yellow) : pin normal line; line C (green) : line along the pin. 

 

 

4.3 Boundary Conditions 

The Reynolds number, which is based on the diameter D and the averaged velocity 

Vmax at the minimum passage, is 10,000. The turbulent intensity of the inflow is set to 1.5%, 
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the same as in the experimental conditions of Ames et al. [1, 2, 3] and the numerical 

simulations of Hao and Gorle. [7] The periodic boundary conditions are applied on both 

side surfaces, and the pressure outlet conditions are at the outlet. At the end wall and pin 

wall, the same constant temperature condition is applied as in Delibra et al. [4, 5, 6]. The 

temperature difference ΔT (ΔT = Twall-Tin ) between the inlet temperature Tin and the wall 

temperature Twall  is set to 25 K. The boundary conditions are considered in this research 

are shown in Fig. 5. 

 

 

Fig. 5. Boundary Conditions 

 

4.4 Results 

4.4.1 Grid test 

The grid test is achieved using coarse (10 million cells), medium (14 million cells), and 

fine mesh (20 million cells), which is shown in Table. 3, based on the adopted hybrid 

RANS/LES models, IDDES and SBES. To resolve the turbulent boundary layer, the first 

off-wall point is set to less than the wall unit, 1.0 in all meshes. The averaged Nusselt 

number, which is calculated through averaging from inlet to outlet, is compared for the grid 

test. In both models the averaged Nusselt number decreases as the number of elements 
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increases, but the result of SBES is closer to the reference value and LESs other than the 

IDDES model. Further, the differences between the coarse mesh and fine mesh are about 

8.2% and 7.2% in the IDDES and SBES model, respectively, which means the dependency 

of the mesh is higher in IDDES than in SBES. Thus, the medium grid with 14 million cells 

is selected as appropriate given the associated computational time and cost. 

 

Table 3. Grid independence test 

 

𝑵𝒖𝒂𝒗𝒆 Coarse Medium Fine 

Number of cells 10,165,687 14,043,965 20,564,381 

IDDES 45.11 43.46 41.54 

SBES 46.74 44.61 43.47 

 

 

4.4.2 Velocity profiles 

Fig.6 shows the mean velocity profiles normalized by Vmax along the line between a 

certain row of pins (at 90º) at the middle height plane (z/D = 1.0). The velocitys profiles 

are averaged in enough time (~6,000 time steps) to obtain statistically steady solutions in 

every model. The experimental data by Ames et al. [1, 2, 3] are denoted by the diamond 

symbol; the two CFD results by Delibra et al. [4, 5, 6] are the LES data (solid black line) 

and the  URANS data (black dashed line) for comparison with the present results. The other 

three lines (green, blue, and red) correspond to the present results: k- SSTLM, IDDES, 

and SBES, respectively. In the first row all of the simulation results are good agreement 

with the experimental data. In the other rows the two hybrid RANS/LES models agree well 

with the LES results (row 5) and the experimental data (rows 1, 2, and 3), but the -f 
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URANS [5] and k- SSTLM models predict different velocity profiles with large 

discrepancies, specially near the center between the pins.  

The mean velocity profiles along the perpendicular line on the end-wall are plotted in 

Fig. 7. The turbulent boundary layer profile, which was obtained from other simulations in 

the corresponding channel geometry with up-and-down walls, was fed at the inlet of the 

computational domain, the three present results show discrepancies with other reference 

data in the first row. However, the boundary layer of the two hybrid RANS/LES models 

was developed appropriately and follows the tendency of the experimental data. In the 

second row, IDDES and SBES show magnitudes of velocity similar to the experimental 

data, but the URANS and LES models show less velocity. In the third row the SBES result 

is closer to the LES results and the experiment data than are the IDDES and other URANS 

models. Finally, the velocity profiles of IDDES and SBES agree well with the LES profile. 

In every row the two URANS models produced large discrepancies with the reference data 
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Fig. 6. Time-averaged streamwise velocity profiles normalized by Vmax along the line B at rows 1, 2, 3, and 5. 

 

 

 
 

Fig. 7. Time-averaged streamwise velocity profiles normalized by Vmax along the line A at rows 1, 2, 3, and 5.
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4.4.3 Pressure coefficient around the cylinder 

The averaged pressure coefficients around the pins for rows 1, 2, 3, and 5 are plotted 

in Fig. 8. Every model shows consistent predictions of the pressure coefficient at the first 

and second row, but there are some discrepancies in the other two rows. At the third row, 

the difference between each model is largest and the predictions of the two LES models by 

Delibra et al. [4] and Hao and Gorle [7] are closest to the experimental data. In the present 

work the SBES model shows predictions closest to the reference data, and the two LES 

models and the k- SSTLM model have patterns similar to the -f model by Delibra et al. 

[5] At the fifth row, even though each model shows a similar prediction in the region of 

the attached flow and after the separation point, there is large discrepancy between  = 50º 

and 100º in the prediction of each model. Delibra et al. [5] showed that the -f model’s 

pressure coefficient prediction at the fifth row was better than the LES model’s, which is 

shown in Fig. 8. They mentioned that this was not in conflict with the excellent LES 

predictions of the mean velocity in the cross section, since this agreement did not guarantee 

the accurate prediction in the pin wakes. The LES model by Hao and Gorle [7] best 

predicted this coefficient in the fifth row, even though that model had a slower pressure 

recovery (with a maximum difference of 13%) among all the models considered in the 

present work. The predictions of the two hybrid RANS/LES models in the present work 

are between the results of the two LES models 
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Fig. 8. Pressure coefficient distributions along the line C in rows 1, 2, 3, and 5. 

 

4.4.4 Nusselt number distribution around the cylinder 

Fig. 9 shows the distributions of the Nusselt numbers around the pins for rows 1, 3, 

and 5. The Nusselt number is calculated using the expression 

 

 𝑁𝑢 = 𝑞𝐷/𝑘(𝑇𝑏 − 𝑇𝑖𝑛) (4.1) 

 

where 𝑞 and k are the wall normal heat flux and thermal conductivity, respectively, and 𝑇𝑏 

is the bulk-flow temperature. The Nusselt number distribution shows the highest value at 

the leading edge of each pin and decreases along the pin surface; after separation the value 

plateaus or increases gradually. The results of IDDES and SBES agree well with the 

experimental data and the LES results of Hao and Gorle [7] in the whole region. The 

IDDES and SBES models overestimate the Nusselt number at the leading edge, the same 
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as with LES model. The difference from the experimental data is about 10% at row 1 and 

about 10% and 15% for SBES and IDDES, respectively, at row 3. All the numerical models 

fail to predict the minimum Nusselt number just upstream of the separation points. Hao 

and Gorle explain that this difference is due to a non-uniformity of the pin surface 

temperature in the experiment (rows 1, 2, and 3). However, there is a somewhat large 

discrepancy in the prediction of the k- SSTLM model, especially in the region after the 

separation. 

 
(A) Row 1 

 
(B) Row 3 

 
(C) Row 5 

 

Fig. 9. Nusselt number distributions along line C in rows 1, 3, and 5. 
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4.4.5 Pin Nusselt number distribution 

In Fig. 10 the predicted Nusselt number around each pin is averaged over the surface 

and plotted for a total of eight pins. Experimental data and LES results by Hao and Gorle 

[7] are presented for comparison with the present results. The averaged Nusselt number for 

each pin increases until the fourth row and then stays constant after a small decrease. The 

results of IDDES and SBES are fairly consistent with each other and agree well with other 

reference data until the third row. The predicted Nusselt number decreases after third row 

and then stays constant with a maximum difference of 9% from the experimental data. 

There is still a large discrepancy in the k- SSTLM model even though the unsteady 

temperature and velocity field are averaged in time over enough time. This discrepancy 

comes from the failure of the correct thermal boundary layer on the pin surface wall. 

 

Fig. 10 Averaged pin Nusselt numbers of pins along the line C. 
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4.4.6 Local Nusselt number distribution 

Fig. 11 shows the local Nusselt numbers normalized by averaged Nusselt numbers 

along the middle line (A) and the side line (B) on the end-wall. For clear recognition of the 

calculated local Nusselt numbers, the results of the present work are plotted in the same 

colors as in the other figures. In previous research, most of the URANS models failed to 

predict the local Nusselt number distributions similarly with experimental results (rows 1, 

2, and 3), whereas some LES models were able to follow the shape of the distribution of 

the local Nusselt numbers (row 5). The two hybrid RANS/LES results show superior 

prediction similar to the previous LES results and experiment data. The Nusselt number 

shows an abrupt increase near the upstream wall of each pin, and a gradual decrease after 

the downstream wall of a pin. IDDES and SBES were able to predict these behaviors well 

and agreed well with the LES results. However, the values predicted by the two hybrid 

RANS/LES models are underestimated compared to the reference values as the flow goes 

downstream. This underestimation comes from the lack of resolving the vortex shedding 

after the pins. On the other hand, the LES model resolves enough vortex structures by 

having enough mesh and inherent model characteristics.  

The k- SSTLM model is not able to follow the variation of local Nusselt numbers in 

most of the regions, which is consistent with the results of k- SSTLM modeling by 

Carnevale et al. [8] Benhamadouche et al. [22] investigated the assessment of three 

URANS models (EB-RSM, k- SST, and -model) and a LES model in the present 

geometry, and determined that the k- SST and the -model (a stabilized version of the v2-

f model) underestimated Nusselt numbers after the first few pins where the turbulence was 

not yet fully developed and mixing was dominant. Since the k- SSTLM model is a 

transitional model rather than a fully developed turbulent one, its prediction of Nusselt 
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numbers after the first pin is slightly better than the other two fully developed turbulent 

models investigated by Benhamadouche et al. [22] However, there are still large 

discrepancies in the other pins, which show behavior similar to the results of the -

model.[22]
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Fig. 11. Local Nusselt number distributions normalized by surface average Nusselt numbers.  (A) Middle line, (B) Side line
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4.4.7 Average Nusselt number 

 

Table. 4 summarizes the averaged end-wall Nusselt numbers of the considered models 

and the reference data. The predicted Nusselt numbers on the end-wall are 44.6, 43.5, and 

41.3 by SBES, IDDES, and k- SSTLM, respectively. Even though these values are about 

20% discrepant from the experimental data [3], they are similar to the values predicted by 

other numerical simulations, LES [4] and hybrid RANS/LES. Delibra et al. [4, 5, 6] 

mentioned that deviations between experimental data and numerical simulation are caused 

by heat escape by radiation and/or heat sink in the experiment. Although numerical 

simulations do not consider this effect, an LES model with about 11 million mesh cells by 

Hao and Gorle [7] predicted the averaged end-wall Nusselt number as 53.5, within 1% of 

the experimental data result. 

 
Table 4. Surface average Nusselt number 

 

 k-ω SSTLM IDDES SBES 

𝑵𝒖𝒂𝒗𝒆 41.3 43.5 44.6 

 

 Experiment 

[Ames] 

ζ - f 

[Delibra] 

LES 

[Delibra] 

Hybrid 

URANS/LES 

[Delibra] 

LES 

[Zengrong Hao] 

𝑵𝒖𝒂𝒗𝒆 54.1 46.2 44.3 45.3 53.5 

 

 

4.4.8 Nusselt number Contour 

Fig. 12 shows contours of Nusselt numbers normalized by averaged Nusselt numbers 

on the end-wall in the upstream region (A) and downstream region (B) of the experimental 
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data and the present results. The upstream min, max = 0.2, 1.8 and the downstream min, 

max = 0.9, 1.9 of the Nusselt numbers in all the models are the same as in the experimental 

data presented by Ames. [3] The Nusselt number is relatively low near the inlet and high 

in the region of the leading edge.  

The SBES results show the best agreement with the experimental data, in particular 

the high Nusselt number in the passage between the second row pins, and the pattern of 

this Nusselt number distribution in the wake region after the fifth and seventh rows. The 

discontinuous regions between the first row and the second row are shown  in IDDES and 

k- SSTLM. The IDDES model is able to predict a similar distribution overall but there 

are small differences in the regions as mentioned above. The k- SSTLM model shows 

different patterns in the high-velocity passage between two symmetric rows, and the 

contours don’t look symmetric even with enough time-averaging. Benhamadouche et al. 

[22] suspected the presence of very low frequencies that are not physical during solving 

the governing equations pertaining to non-symmetric flow patterns in the k- SST model. 

In the IDDES and k- SSTLM models, the Nusselt number near the leading edge of the 

first row increases, then slightly decreases, and then increases again, whereas the SBES 

model shows a gradual increase without any decreases. This can be confirmed by the local 

Nusselt number distributions in Fig. 12. This abnormal behavior is related to the prediction 

of horseshoe vortex structures near the leading edge of obstacles attached to the wall. 
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(A)                                                                                  (B) 

 

Fig. 12. Nusselt number distributions normalized by surface average Nusselt numbers. (A) Upstream region, (B) Downstream region. 
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4.4.9 Q-criterion 

The vortical structures of instantaneous flow fields are investigated with a Q-criteria 

value of 10 [23] in Fig. 13. These iso-surfaces are colored by temperatures from 290 K to 

315 K, and the flow field is heated gradually as the flow moves downstream. Horseshoe 

vortices, which are also shown in Fig. 14, can be recognized in front of the pins but it is 

difficult to identify them in the downstream pins. A vortex tube in the spanwise direction 

from each pin is generated after separation from the first pin and breaks down into 3-D 

vortices in the streamwise direction interacting with downstream pins. The two hybrid 

RANS/LES models, IDDES and SBES, are better able to resolve smaller vortex structures 

than the k- SSTLM model, as shown in Fig. 13, and they show similar structures when 

compared with other LES results.[4, 7] In the k- SSTLM model, 2-D vortices are 

sustained until the sixth pin, and then break into 3-D flow features that are larger than in 

the other models. Of particular note is that SBES is able to capture the distorted spanwise 

vortex tube after separation from the first pin, whereas the IDDES and k- SSTLM models 

fail to predict it even with the same grid numbers and Q-criteria value. 

4.4.10 Turbulence structure 

Fig. 14 shows time-averaged streamline patterns and temperature contours in the front 

cylinder part at the mid-line of the xz-plane. As mentioned above, the three models are able 

to capture the horseshoe vortex system, including HV (horseshoe vortex), SV (secondary 

vortex), and TV (tertiary vortex). The SBES model predicts this vortex system slightly 

closer to the first cylinder wall than the other two models do, and the CV (corner vortex) 

is shown clearly in the SBES model. It is interesting that the region where the horseshoe 

vortex systems are predicted is coincident with the region where the LES mode is active in 

the SBES model. 
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Fig. 13. Vortical structures around pin fin array, Q iso-surface (Q=10) colored by Tave  for each turbulence model.
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Fig. 14. Time-averaged streamlines colored by Tave in front of the first row of pins.  

HV, horseshoe vortex; SV, secondary vortex; TV, tertiary vortex; CV, corner vortex. 
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4.4.11 Blending function 

To investigate the effects of the blending function which changes the turbulence model 

between RANS and LES, the contours of the blending function are plotted in Figs. 16 and 

17 with respect to two planes: the xz-plane at the mid-line of the y-axis and the xy-plane 

at the center height of the z-axis. The value 1 means the RANS method is adopted and 0 is 

for the LES method. Since the k- SSTLM model is not a hybrid RANS/LES method but, 

rather, a transitional model, the intermittency () which reflects laminar flow with a 0 value 

and turbulent flow with 1 is contoured at the same planes. As can be seen in the two figures, 

the SBES model adopts the LES calculation in a larger region than that of the IDDES model, 

and shows a sharp transition from RANS to LES; in contrast, the IDDES model changes 

the two methodologies smoothly. In front of the first pin the LES calculation is changed 

more rapidly in the SBES model than in IDDES. This is why the results of the SBES model 

more closely resemble LES results than do the other models.  

In the k- SSTLM model, as expected, flows near the inlet are predicted in laminar 

flow and then develop into the turbulent flow which is sustained until the outlet of the 

computational domain. Menter [10] mentioned that the shielding function in SBES can 

cover the boundary layer, including the rapid growth area by the adverse pressure gradient, 

while the shielding function of DDES impairs this region. In the computation domain of 

the present work, a total of 12 cylinders (4 cylinders at the mid-line and 8 half-cylinders at 

the periodic plane) experience adverse pressure gradients in the back part (approximately 

θ > 90º) of each cylinder. As seen in Figs. 16 and 17, the SBES model implies a clear and 

sharp RANS mode near the cylinder walls, but the IDDES model does not show a 

continuous and smooth transition between RANS mode and LES mode near the wall. 
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Fig. 15. Intermittency and blending function distributions on the xz-plane at the mid-line of the y-axis 

 

 

Fig. 16. Intermittency and blending function distributions on the xy-plane at the center height of the z-axis 
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Chapter 5. Uncertainty Quantification for Staggered Pin-Fin Arrays 
 

5.1 gPCE results 

The uncertainty quantification is conducted for staggered pin-fin arrays. The single 

random variable is considered in the present work. The input random variable is the inlet 

velocity. The probability distribution of inlet velocity is assumed as a uniform distribution 

and a normal distribution. The mean value 𝜇 is 3.45 m/s, and the standard deviation 𝜎 is 

±0.1𝜇. The quantity of interest (QoI) is Nusselt number on the endwall. Turbulence model 

used in uncertainty quantification is IDDES. Because IDDES has generally been used in 

CFD research and its source code is already opened. 

For uncertainty quantification, the sample points are obtained by using Latin 

Hypercube sampling (LHS) method. To approximate the output probability distribution 

with polynomial chaos, the order of polynomial chaos 𝑝 is assumed as 2nd order. Therefore, 

the minimum sampling points to approximate probability distribution with 2nd order are 3. 

Oversampling rate is set as 2. [25] Total 6 sample points are used in uncertainty 

quantification. The table 5 shows the value of each sample points and QoI. From the sample 

points, the polynomial chaos coefficients are calculated and shown in Table 6. 

 

Table 5. The sampling points and output values 

 

 Point1 Point2 Poinit3 Point4 Point5 Point6 

Inlet velocity 

[m/s] 
3.21650 3.28000 3.44088 3.50785 3.59867 3.76215 

Nuave 41.62 42.15 43.07 43.68 44.05 45.16 
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Table 6. the polynomial chaos coefficients depending on probability distribution of input parameter 

 

coefficient 𝒂𝟎 𝒂𝟏 𝒂𝟐 

Uniform distribution 43.1715 1.2790 -0.0227 

Normal distribution 43.1208 2.2153 -0.1075 

 

 

 

Fig. 17 shows the probability density function (PDF) of average Nusselt number. These 

PDFs are generated from the surrogate model based on 30,000 random sampling points. 

The probability distribution of input parameter affects the probability density function 

(PDF) of average Nusselt number. (A) shows PDF of average Nusselt number when the 

input PDF is the uniform distribution. Its mean 𝜇 is 43.1714 and the standard deviation 𝜎 

is 1.2792. (B) shows the PDF of average Nusselt number when the input PDF is normal 

distribution. Its mean 𝜇 is 43.1208 and the standard deviation 𝜎 2.2179. These results show 

that only the assumption about the input variable’s probability distribution induces totally 

different result distribution. 

 

 

 
Fig. 3. Histogram of the average Nusselt number depending on the input random distribution. 

(A) Uniform distribution,  (B) Normal distribution. 
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Fig.18 shows that the box and whisker plot of the local Nusselt number along the middle 

line on the endwall depending on the input variable’s probability distribution. (A) is the 

result of the uniform distribution and (B) is the result of the normal distribution. The mean 

value and standard distribution of each input probability distribution are the same with the 

average Nusselt number results. The 10 points are considered to quantify the uncertainty 

between each pin. Therefore, 40 points are considered totally. The mean value results of 

the uniform distribution and the normal distribution show similar with the deterministic 

results of Nusselt number distribution shown in Fig.11. Both results show that the 

propagation of the uncertainty decrease in moving downstream. This tendency is 

significant in the results of uniform distribution especially. In addition, the uncertainty is 

high near the pin. However, the results of normal distribution show larger uncertainty than 

the results of uniform distribution.  
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Fig. 4. Histogram of the local Nusselt number along the middle line depending on the input random distribution. 

(A) Uniform distribution, (B) Normal distribution. 
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Chapter 6. Conclusion 

 
6.1 Conclusions 

 
In the present work, two hybrid RANS/LES modes, IDDES and SBES, and one 

transitional URANS model, k-ω SSTLM, are adopted to investigate their ability to predict 

heat and fluid flow phenomena around staggered pin-fin arrays. The corresponding 

Reynolds number based on the pin diameter and the maximum velocity between the pins 

is 10,000, and the periodic segment geometry with a total of eight pins is considered. The 

simulated results, including mean velocity, pressure, local and global Nusselt numbers, and 

coherent structures, are compared with experimental data [1, 2, 3] and other LES [4] and 

URANS [5] results. 

Mean velocity profiles predicted by IDDES and SBES agree well with the reference 

data, but the k-ω SSTLM model shows large discrepancies near the centers between the 

pins. In averaged pressure coefficients around the pins, the SBES model gives the closest 

prediction in the region of the attached flow and after the separation point, compared to all 

the other models in the present work. The results of the k-ω SSTLM model are similar with 

those of the other URANS model, the ζ-f model [5], with large discrepancies in the 

separated region.  

The two hybrid RANS/LES models show superior predictions of the nonlinear behavior 

of local Nusselt numbers, with abrupt increases near the upstream of each pin and gradual 

decreases after the downstream wall. However, in the region downstream of the pins they 

slightly underestimate the local Nusselt number because they do not resolve the vortex 

shedding after the pins fully. In the k-ω SSTLM model the transitional behavior around the 

first pin is predicted well but there are large discrepancies around the other pins, the same 

as with the other URANS model. Similarly, the two hybrid RANS/LES models predict the 
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distributions of Nusselt numbers around the pins and the averaged Nusselt number in each 

section of pins, very similar to the other LES results.  

Vortical structures, including horseshoe vortex systems in front of the first pin and 

wakes after each pin, are fully resolved in the two hybrid RANS/LES models, very similar 

to the LES model. In particular, the SBES model is able to capture the distorted spanwise 

vortex tube after separation from the first fin, whereas IDDES and k-ω SSTLM fail based 

on the same grid system.  

In our investigation of the effects of the blending function of the two hybrid RANS/LES 

models, the SBES model adopts the LES calculation in a larger region with a sharp 

transition from RANS to LES, compared to the IDDES model. Therefore, the SBES 

prediction more closely resembles the LES results. 

Uncertainty Quantification is conducted by varying the PDF of the inlet velocity. The 

average Nusselt number PDF shows the similar distribution with input parameter PDF. 

When the input PDF is uniform distribution, the mean 𝜇 of the output PDF is 43.1714 and 

standard deviation 𝜎 is 1.2792. When the input PDF is normal distribution, the mean 𝜇 of 

the output PDF is 43.1208 and standard deviation 𝜎 is 2.2179. The local Nusselt number 

also investigated by using uncertainty quantification. It’s median value distribution is 

similar with the deterministic solution of local Nusselt number. However, the uncertainty 

distribution is different. Especially normal distribution show high uncertainty. from the 

results, aleatory uncertainty is quantified. The input probability distribution induces 

different the output probability distribution.  
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6.2 Future works 

From the results of the uncertainty quantification, we can conclude that the credible 

results can be obtained by applying the exact input probability distribution. The future 

works are needed to identify the input probability distribution with Bayesian inference.  

For Bayesian inference, the observation data is needed. the experimental data or LES 

simulation results can be observation data. Therefore, LES simulation will be conducted 

for comparing the results of other turbulence model and the results of LES simulation also 

can be used with observation data in Bayesian inference.  
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