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Abstract

Hepatocellular carcinoma (HCC) is prevalent worldwide and the third leading cause of 

cancer-related deaths. We used high-resolution transcriptomic and genomic analysis of 206 

resected HCC samples to identify biological alterations in tumors and immune systems 

influencing clinical outcomes. We identified five discrete subtypes of HCC: AMC-C1, well-

differentiated tumors; AMC-C2, tumors displaying high levels of epithelial-mesenchymal 

transition (EMT); AMC-C3, those harboring CTNNB1 mutations; AMC-C4, those with stem 

cell features; and AMC-C5, finally a subtype expressing cancer testis antigen (CTA). The 

subtype with stem cell features (AMC-C4) was associated with the worst prognosis both in 

our dataset and other datasets. An immunogenomic analysis showed that one third of the 

tumors had an immunogenic subtype characterized by enhanced cytolytic activity, higher 

levels of cytotoxic lymphocytes (CD8+ to Treg cell ratio) and higher expression of 

immunomodulatory genes, and patients with these tumors had a better prognosis than those 

with the alternative immune-desert subtype. Multiple control networks involving 

microRNAs and copy number alterations were implicated in tumor-immune interplay and the 

resultant outcomes. We also discovered and validated a promising trackable biomolecule and 

actionable target, S100P, associated with early recurrence after HCC resection. We conclude 

that the bioclinical phenotypes of HCC are based on collaboration between genetic and 

immunomolecular architectures.

Key words: Hepatocellular carcinoma; Molecular subgroup; Tumor immune response; 

Treatment outcome.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is now the third leading cause of cancer mortality 

worldwide.1) Exceedingly high rates of HCC have been consistently observed in East and 

South Asia, and furthermore its incidence is increasing in Western countries.2) In the United 

States, the incidence has nearly tripled since the early 1980s, making it the fastest-rising 

cause of cancer-related deaths. Mortality rates due to HCC have also increased in many 

European countries over recent decades, especially in Northern and Central Europe.2)

Unsatisfactory outcomes due to high rates of recurrence and progression despite curative 

treatment, and therapeutic resistance at later stages remain major concerns in HCC 

management.3, 4) Since the evolution of HCC is a multi-step process involving diverse 

genetic events,5) the precise factors contributing to HCC development are only partially 

understood. Due to the lack of preventive and therapeutic targets among the clinical 

phenotypes of HCC, understanding its pathogenic origin and molecular hallmarks is crucial 

to improving patient outcomes.

In this context, several microarray-based classifications of HCC tumors have been developed 

linking genomic information and clinico-histopathological factors.6-8) The recent 

identification of a distinct immune-specific group of HCC suggests that such a classification 

could be helpful in guiding patient selection for immunotherapeutic interventions.9) However, 

the individual properties of molecular pathways have provided limited insight into the 

biologic underpinnings of this disease, as they mostly focus on a single genetic structure.6, 7, 

10, 11) The bigger picture involving complex networks of biological and immunological 

systems remains elusive.

Here, we describe an integrated multi-platform analysis of mRNA and microRNA (miRNA) 

expression, copy number variation (CNVs), and mutational signatures, combined with 

identification of predefined genetic alterations by whole exome sequencing,12) in resectable 

HCC cases. We comprehensively characterized the mutational and transcriptional landscape 
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of HCC and identified functional cross-talk between genomic instabilities, miRNA-mediated 

regulation, and immune systems in the tumor microenvironment that could determine early 

and late outcomes after resection.

MATERIALS AND METHODS 

RNA sequencing

RNA was extracted from fresh-frozen hepatocellular carcinoma (HCC) tissue, and sequenced. 

Briefly, 1ug of total RNA was converted into an mRNA library using an Illumina mRNA 

TruSeq kit, and the library was sequenced using the HiSeq2000 platform (Illumina Inc., San 

Diego, CA). Total RNA containing microRNA was extracted using mirVana miRNA 

Isolation kit (Life Technologies). Total RNA integrity was checked using an Agilent 

Technologies 2100 Bioanalyzer with an RNA Integrity Number (RIN) value greater than 

8. Small RNA sequencing libraries were prepared according to the manufacturer’s 

instructions (Illumina Small RNA Prep kit). Total RNA (1μg per sample) was ligated with 

RNA3’ and RNA5’ RNA adapters. Reverse transcription followed by PCR is used to create 

cDNA constructs based on the small RNA ligated 3’ and 5’ adapters. This process selectively 

enriches those fragments that have adapter molecules on both ends. PCR is performed with 

two primers that anneal to the ends of the adapters. cDNA was purified with Sage Science’s 

the Pippin prep electrophoresis platform. The quality of the libraries was verified by 

capillary electrophoresis (Bioanalyzer, Agilent).

After qPCR using SYBR Green PCR Master Mix (Applied Biosystems), we combined 

libraries that index tagged in equimolar amounts in the pool. Cluster generation occurred in 

the flow cell on the cBot automated cluster generation system (Illumina). And then the flow 

cell loaded on HiSeq 2500 sequencing system (Illumina). RNA-seq and miRNA-seq data 

analyses were carried out with the Cancer Genome Atlas (TCGA) RNAseq version 2 

pipeline, with mapping by MapSplice v2.2.1.13) GRCh37 served as the human reference 
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genome. Gene expression was estimated using RSEM v1.3.014) and normalized within-

sample to a fixed upper quartile. Final normalized expression profiles were used for 

downstream analyses by direct log2-transformation.

Discovery of HCC clusters 

Unsupervised consensus clustering of log2-transformed RNA-seq expression data was 

carried out by the non-negative matrix factorization (NMF) algorithm implemented in R 

package NMF.15) Genes belonging to the top 10 percent of the variance were used as input. 

After 200 iterations, cophenetic statistics according to number of clusters were compared, to 

identify the optimal number of clusters. For the TCGA Liver Hepatocellular Carcinoma 

(TCGA-LIHC) extended dataset,5) the previously normalized RNA-seq expression data for 

360 pathologically-confirmed HCCs was downloaded from cBioPortal 

(http://www.cbioportal.org), and consensus clustering was performed in the same manner. 

Genes differentially expressed between clusters were identified using empirical Bayes-

moderated t-statistics in R package limma.16)

Calculation of single sample gene set scores

The list of MSigDB version 6.0 gene set collections was downloaded from the gene set 

enrichment analysis web site (http://software.broadinstitute.org/gsea). For the individual 

gene sets, single-sample scores for each gene set were calculated from the RNA-seq 

expression data by the gene set variation analysis method implemented in R package 

GSVA.17) Comparisons of the gene set scores between the patient groups were carried out 

using empirical Bayes-moderated t-statistics. 

Gene set enrichment analysis

Pathway enrichment in the postulated groups was evaluated by gene set enrichment analysis 
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(GSEA) with the java-based program available on the GSEA web site 

(http://software.broadinstitute.org/gsea). Like the single sample gene set score, MSigDB 

version 6.0 gene set collections were used for the analysis. 

Estimation of immune cell infiltration and immune-associated parameters

Stromal and immune scores for each HCC were calculated using R package ESTIMATE.18)

For the TCGA-LIHC dataset, pre-calculated stromal and immune scores were downloaded 

from the ESTIMATE website (http://bioinformatics.mdanderson.org/estimate/). The relative 

amounts of the immune cell subtypes were calculated using the absolute value mode of the 

CIBERSORT web-based tool (http://cibersort.stanford.edu) with the default settings.19)

Several parameters such as “CD8+ T-cell to regulatory T-cell (Treg) ratio”, “cytolytic 

signature” and “pro- to anti-inflammatory cytokine ratio” were calculated from the log2-

transformed AMC and TCGA-LIHC extended datasets following the methods of Davoli et 

al.20)

Immune classes and their subclasses (immune-exhausted and immune-activated), as defined 

by Sia et al,9) were also applied to the AMC dataset using NearestTemplatePrediction module 

version 3 implemented in the GenePattern website (https://genepattern.broadinstitute.org), by 

the author-defined method. The classifier genes defined in Sia et al. and Moffitt et al.,21) were 

used to classify immune subtypes.

Processing of somatic mutation data

Mutation annotation format (MAF) files for the somatic mutation statuses of HCCs in the 

AMC 12) and TCGA-LIHC datasets were downloaded from cBioPortal 

(http://www.cbioportal.org). The mutation data were visualized using R package maftools.22)

Mutational signatures previously defined in COSMIC23) were calculated from the MAF files 

using R package deconstructSigs.24)
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Processing of somatic copy number aberration data

Copy number variation (CNV) data based on CytoScan HD array (Affymetrix, Santa Clara, 

CA) were analyzed with GISTIC 2.0 software for each HCC in the AMC dataset12)

(Supplementary Fig. 1).25)  The thresholds for confidence levels and absolute log2 ratios

were defined as 0.99 and 0.4, respectively. Additionally, the germline CNV-corrected 

Genome-Wide SNP array 6.0 data file of the TCGA-LIHC dataset was downloaded from 

GDAC firehose (http://gdac.broadinstitute.org) and processed as above. We defined the CNV

fraction as the ratio between the length of genome segments more than 0.4 of the absolute 

log2 ratio value and the length of hg19 genome and it was calculated for the AMC dataset.

Identification of known HCC subgroups using gene expression data

The assignments of each HCC in the AMC dataset to the Hoshida6) and TCGA iCluster5)

subgroups were predicted using previously annotated gene expression data. The SOFT-

formatted family file of GSE10186 was downloaded and processed using R package 

GEOquery.26) After adjusting for the batch effect using the ComBat function in R package 

sva,27) a multinomial elastic net-regularized logistic regression model for the Hoshida 

subgroups was fitted by R package glmnet.28) The optimal statistical model was selected by 

leave-one-out cross validation. Using the optimized model, the probabilities of each Hoshida 

subclass were calculated from the AMC expression dataset. Likewise, the probabilities of 

each TCGA iCluster subclass were calculated from the AMC expression data using a 

multinomial logistic regression model established from the TCGA gene expression dataset. 

Conversely, AMC clusters defined by unsupervised NMF clustering were assigned to the 

various HCC gene expression datasets namely the TCGA-LIHC, RIKEN (downloaded from 

ICGC data portal: https://dcc.icgc.org) and GSE14520 datasets (downloaded from 

https://www.ncbi.nlm.nih.gov/geo/).
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Immunohistochemical staining and evaluation

Immunohistochemical staining was carried out for PD-1 (rabbit monoclonal ab137132 

1/1,000, AbCam, Cambridge, MA, USA) and for PD-L1 (rabbit monoclonal E1L3N, 1/100; 

Cell Signaling, Danvers, MA, USA) in serial 4-μm-thick whole slide sections from key 

formalin-fixed paraffin-embedded (FFPE) blocks, for CTLA-4 (mouse monoclonal 

ab134090, 1/500; Abcam, Cambridge, UK) antibody in tissue microarray (TMA) blocks, and 

for S100P (goat polyclonal AF2957, 1/200; R&D systems, Minneapolis, MN, USA) antibody 

in whole section sand TMAs. The slides were processed on a Bench Mark XT automatic 

immunostaining device with an OpticView DAB IHC Detection Kit (Ventana Medical 

Systems) according to the manufacturer’s instructions. The results of immunostaining were 

independently evaluated by two pathologists (E.Y and H.J.K) who were blinded to clinical 

outcomes. Membranous PD-L1 expression in tumor cells and tumor-infiltrating mononuclear 

cells (TIMCs), and membranous PD-1 expression in TIMCs, were scored by the 

Immunoreactivity Scoring System (IRS) based on the percentage of stained cells and 

staining intensities (Supplementary Table 1). TIMCs in each cellular fraction with IRS 

scores for PD-1 or PD-L1 ≥ 1, and tumor cells with IRS scores ≥ 3 for PD-L1, were defined 

as positive. The percentages of TIMCs with membranous CTLA-4 expression and tumor 

cells with cytoplasmic and/or nuclear S100P expression were determined, and cases in each 

fraction with ≥ 1% of CTLA-4-expressing TIMCs and with ≥ 1% of S100P-expressing tumor 

cells, respectively, were defined as positive ,.

Statistical analysis

Comparisons of continuous and categorical variables between pairs of independent groups 

were carried out using Student’s t-tests and chi-square tests, respectively. For comparisons of 

continuous variables between three or more groups, one-way analysis of variance was used. 
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Kruskal-Walls and Fisher’s exact tests were used for variables that deviated from a normal 

distribution and that were expected to occur too rarely (less than 5 occurrences), respectively. 

Receiver-operating characteristics (ROC) curves with area-under-curve (AUC) values were 

calculated using R package pROC.29) AUC values for the same response variables between 

AFP and S100P were compared using the DeLong test.30)

As we wished to estimate cumulative incidence rates of HCC-specific death, and to compare 

rates between clusters, we estimated the cumulative incidence rates nonparametrically after 

considering deaths from other causes as competing risks. We also carried out competing risks 

multivariable regression analyses to evaluate the prognostic effects of components of our 

molecular classification, adjusting for covariates. The competing risk analyses were 

performed using R packages cmprsk.31, 32)

Cell culture and reagents

Human HCC cell lines SNU182, SNU449, and SNU475 were purchased from the Korean 

Cell Line Bank (KCLB; Seoul, Korea) and grown in RPMI-1640 containing 10% fetal 

bovine serum (GIBCO, Waltham, MA). The cells were trypsinized and 3 × 105 cells/plate 

were seeded in 100 mm dishes and allowed to grow overnight at 37 °C in a humidified 

incubator with 5% CO2 for 24 h They were then transfected with S100P-specific siRNAs in 

Opti-MEM (Life Technologies, Gaithersburg, MD, USA). Transfection was carried out with 

Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, USA).

siRNA preparation

S100P siRNA and negative control siRNA were designed and synthesized by Bioneer (Seoul, 

Korea) and used to transfect SNU475 cells (S100P siRNA sense sequence: 

GGUGGGUCUGAAUCUAGCA dTdT, antisense sequence: UGCUAGAUU 

CAGACCCACC dTdT and negative control siRNA sense sequence: 
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GAUAUAGGAAGUCC AUACU dTdT, antisense sequence: 

AGUAUGGACUUCCUAUAUC dTdT). 

Cell viability assay

Cell viability was measured using the CellTiter-Glo luminescence assay (Promega, Madison, 

WI). Briefly, 3 × 103 cells in 100 µl were plated in triplicate wells in microtiter plates. After 

72 h, 100 μL of CellTiter-Glo reagent was added, and the cells were incubated for 10 min. at 

room temperature. Luminescence was measured with a Wallac 1420 (PerkinElmer, Boston, 

MA). 

Clonogenicity assay

After transfection for 72 hours, cells were seeded in six-well plates at 1000 cells per well and 

incubated in a 37 °C incubator for 7–10 days. Colonies were washed twice with PBS, fixed 

with 95% ethanol for 10 minutes, and stained with 0.1% crystal violet for 20 minutes. 

Cell cycle analysis

Cell cycle distributions were analyzed by flow cytometer following PI staining. After 

transfection for 72 hours, cells were harvested, resuspended, centrifuged at 4 °C at 1,200 rpm 

for 10 minutes and washed three times with cold PBS. Ethanol (75%) was added dropwise, 

and the cells were fixed at 4 °C overnight. The ethanol was removed by centrifugation, and 

the cell pellets were resuspended in 100 μg/mL DNase-free RNase for 30 minutes at room 

temperature in the dark. Finally, PI solution (100 μg/mL) was added and the cells were 

analyzed by flow cytometer (FACS Calibur™, BD Biosciences). Each sample was measured 

in duplicate, and the results are presented as averages of three independent assays.

Invasion assays 
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Invasion assays were performed using an insert chamber (8 µm pore size; Falcon). 1 × 105

cells were collected and suspended in 750 µl of serum-free RPMI and transferred into the 

upper chamber coated with matrigel. In the lower chamber, 10% FBS-containing medium 

served as chemoattractant. After 72 h, the cells were fixed in 3.7% formaldehyde for 30 

minutes and methanol for 15 minutes, stained with 0.25% crystal violet, imaged, and counted 

under an inverted microscope.

RESULTS

Study samples and flow design

We used samples of 206 HCCs and paired non-tumors obtained with informed consent after 

surgical resection from the Bio-Resource Center at the Asan Medical Center (AMC), Seoul, 

Republic of Korea (http://brc.amc.seoul.kr). The Asan Medical Center Institutional Review 

Board approved the study protocol. All the cases were estimated by two pathologists (H.J.K 

and E.Y) to have a tumor cellularity of more than 70%, and complete baseline and long-term 

follow-up data were available for them. We generated mRNA and miRNA deep sequencing 

data for all 206 samples and also used the raw whole exome and copy number dataset from 

our published study currently contained in the cBio Cancer Genomics Portal 

(http://www.cbioportal.org/),12) in which all samples analyzed in this study are included 

(Materials and Methods).  This cohort contained 203 early stage (98.5%: American Joint 

Committee on Cancer [AJCC] stage IA, IB, or II) and 3 more advanced stage HCC cases 

(1.5%: AJCC stage IIIA).33) Their clinical backgrounds are shown in Supplementary Table 

2. Based on these data, systematic molecular and immunogenomic profiling was performed 

using computational genomic tools; in addition, transcriptome markers for early recurrence 

of HCC were discovered and confirmed.

Five distinct subgroups of HCC revealed by transcriptome profiling
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To determine the extent of heterogeneity in mRNA expression across our cohort, we 

performed non-negative matrix factorization (NMF) clustering15) with the mRNA expression 

profiles of the 206 primary samples (Supplementary Fig. 2). This identified five robust 

subgroups [referred as to as AMC-C1 (n = 59), C2 (n = 19), C3 (n = 39), C4 (n = 53), and C5 

(n = 36)] that were characterized by distinct mRNA expression patterns, enriched for 

different cytogenetic and molecular alterations, and correlated with different clinical features 

and outcomes (Fig. 1 and Supplementary Fig. 3). The subgroups were also integrated with 

data on differences in miRNA expression, somatic mutations and CNV (Fig. 1a, Fig. 2, 

Supplementary Fig. 4, and Supplementary Fig. 5).12)

AMC-C1 consists mostly of “well-differentiated HCC”, with strong expression of liver-

specific metabolic enzymes and low levels of mitosis-related genes. miR-10b, miR-34c, and 

miR-200b (which act as tumor suppressors in several cancers) are also down-regulated in 

AMC-C1 tumors.34, 35) Using gene expression and gene-set-enrichment analysis (GSEA), 

AMC-C2 was characterized by up-regulation of the TGF-β, NOTCH, and VEGF signaling 

pathways and of gene sets involved in epithelial-mesenchymal transition (EMT) (“high 

EMT” group) (Supplementary Fig. 6). The molecular associations in AMC-C2 are 

supported by prior experimental findings: 1) TGF-β is a key element of EMT leading to 

HCC progression,36) and 2) EMT is associated with the production of pro-angiogenic factors 

such as VEGF.37) Elevation of miR-10a, which promotes EMT in glioma,38) and down-

regulation of miR-194-1 (TGF-β inhibitor), were also observed in AMC-C2.39) Interestingly, 

AMC-C2 had the lowest fraction of CNVs among the subtypes (P = 2.5 x 10-5). AMC-C3 

(“CTNNB1-mutated HCC”) had the highest frequency of CTNNB1 mutations (82%; P < 2.2 

× 10-16), with elevation of Wnt/β-catenin-related signals including miR-34a.40) Like those of 

subtype 1, subtype 3 tumors exhibited hepatocyte-associated gene expression. Intriguingly, 

miR-122, which is liver-specific and the most abundant miRNA in liver,41) was significantly 

upregulated in the AMC-C3 samples. In contrast to the other subtypes, AMC-C4 and AMC-
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C5 were comprised mostly of tumors in which cell-proliferation- related genes were up 

regulated, accompanied by tumors exhibiting poor differentiation and microvascular invasion.

Fig 1. Delineation of the five molecular classes (AMC subgroups) in resectable HCCs

(a) Unsupervised clustering of RNA-seq identifies 5 HCC subgroups. Subgroups 

significantly enriched for biological functions by gene ontology (GO) analysis are shown to 

the right. From top to bottom, rows are comparisons of gene expression data, and selected 

genetic alterations in the pre-defined classes of HCC (b) Clinico-pathological; and (c) 

prognostic associations of the molecular subtypes. The results of the competing risks 

analysis indicate that the AMC-C4 group is significantly linked to high AFP in serum and 

has a worse prognosis than the other subgroups. The poorer outcomes of subgroup 4 were 

confirmed in the RIKEN (Japanese samples) and GSE 14520 cohorts (Chinese samples). 

CNA, copy number alteration; AFP, alpha-fetoprotein; E-S grade, Edmonson-Steiner grade; 

MVI, microvascular invasion; HBV, hepatitis B virus; HCV, hepatitis C virus; NBNC, non-

hepatitis B non-hepatitis C hepatocellular carcinoma.
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Fig 2. GISTIC analysis of foci of recurrent amplification and deletion across the 5 AMC 

subgroups of HCC. (a) CNV in focal regions detected by GISTIC 2.0. Regions of recurrent 

focal amplification (red) and focal deletion (blue) are shown. (b) Distributions of frequencies 

of somatic copy number alterations in complete genomes in the subgroups. The statistical 

significances of pairwise comparisons are shown. AMC-C2 tumors had significantly less 

CNV than the other clusters. CNV, copy number variation.
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AMC-C4 (the “stem cell feature” subgroup) exhibited enrichment of oncofetal genes (GPC3, 

SALL4, and AFP) and frequent multiple losses of copies of chromosomal regions including 

chromosome regions 1p, 4q, 13q and 16q, which encompass ARID1A, CXCL13, RB1, AXIN1

and TSC2, respectively. Interestingly, decreased expression of ARID1A, RB1, and TSC2 has 

been found to be associated with poor prognoses in several next-generation sequencing-

based studies.12, 42-44) The miRNA analysis also revealed over-expression of miR-675, which 

has been associated with down-regulation of RB1 in AFP-secreting HCC.45) The GSVA 

score17) for stem cell maintenance (GO:2000036) is high in the AMC-C4 subgroup, which 

also contains many AFP-expressing (≥ 100 ng/ml) tumors with more aggressive clinical 

phenotypes (83%; P = 6.69 × 10-14). AMC-C5 (the “CTA” group) is distinguished by over-

expression of cancer-testis antigen (CTA) genes, has been never documented in predefined 

classifications, up-regulation of miR-9-1 (a well-known cancer-related miRNA)46), and 

frequent TP53 gene alterations (56%). In terms of mutational signature, AMC-C2 was the 

subgroup most highly correlated with COSMIC signature 24, which suggests exposure to 

aflatoxin (Supplementary Fig. 8).23, 47) The smoking-related signature (signature 4) was 

least common in the AMC-C2 group.23)  

We next sought to find interrelationships between our subgroups and previously reported 

HCC molecular classifications. When we assigned each of our patients to the subclasses of 

Hoshida (S1-S3)6) and TCGA (iCluster 1-3)5), there was good correspondence between our 

AMC subgroups and these classification systems (Supplementary Fig. 8 and 

Supplementary Fig. 9). Tumors considered to belong to the Hoshida S3 subclass were 

present across the AMC-C1 and C3 subgroups, and representatives of the Hoshida S1 

subclass were found in AMC-C2, C4, and C5. Similarly, in terms of the RT-PCR-based 

classification described by Boyault et al.,7) G1 and G3 tumor signatures were enriched

exclusively as AMC-C4 and C5, respectively (Fig. 1a), the G5 and G6 signatures were 

enriched in AMC-C3, and G2 and G4 were not represented in our series of mainly early 
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cancers.

Survival patterns and actionable targets according to the AMC clusters

Clinically, competing risks analysis, which can correctly estimate cancer deaths of interest in 

the presence of preceding competing events, indicated that patients in AMC-C4 had a 

significantly higher proportion of cancer-related deaths than the other patients (P = 0.02, log-

rank test; Fig. 1c and Supplementary Fig. 10). We also showed that this cluster-associated 

survival difference persisted, together with liver cirrhosis, after competing risks 

multivariable regression analysis (Supplementary Table 3). To determine whether our 

expression-based clusters could be reproduced, we took advantage of other public datasets 

with disease stage distributions different from ours. These consisted of the extended TCGA-

LIHC (AJCC stage I, 46.4%; stage II, 22.5%; stage III, 23.3%; stage IV, 1.1%; and others 

without information on tumor stage, 6.7%),5) the RIKEN (Liver Cancer Study Group of 

Japan [LCSGJ] stage I, 16.2%; stage II, 48.2%; stage III, 29.3%; and stage IV, 6.3%),48) and 

GSE14520 cohorts (Barcelona Clinic Liver Cancer [BCLC] stage 0, 9.0%; stage A, 67.0%; 

stage B, 10.0%; stage C, 13.1%; and others without information on tumor stage, 0.9%)49)

from the U.S., Japan, and China, respectively. When we classified them with the elastic net-

regularized logistic regression model, all five AMC subgroups were identified in these three 

external cohorts (Supplementary Fig. 3 and Supplementary Fig. 8). Similar survival trends 

were also observed in the RIKEN and GSE14520 cohorts (Fig. 1c and Supplementary Fig. 

10). 

To investigate the clinical relevance of the molecular characterization of HCC, we matched 

subgroup-specific pathways with potential standard or investigative treatments. TGF-β 

signaling-enriched AMC-C2 tumors may benefit from Galunisertib (a TGF-βR1 inhibitor), 

which was recently reported to have favorable treatment efficacy in advanced HCC 

(NCT01246986).50, 51) Galunisertib also reversed EMT and stemness-derived aggressiveness 
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in multiple preclinical experiments.52, 53) A NOTCH inhibitor (LY3039478) whose, anti-

tumor activity was proven in a murine HCC model, could be of potential use in the AMC-C2 

subgroup in which NOTCH pathways are activated.54) The upregulation of Wnt/β-catenin 

signaling characteristic of AMC-C3 patients may perhaps also be treatable since the specific 

alteration involved corresponds to the target for a treatment (PRI-724) that showed clinical 

efficacy in pancreatic cancer in a phase-I trial.55) Lastly, CTA-expressing AMC-C5 tumors 

are good candidates for immunotherapy, since CTA genes are exclusively expressed in 

cancer cells and thus can be selectively surveilled by the host immune system.56, 57) Taken 

together, our observations suggest that the AMC-subtypes of HCC provide unique targets 

treatable by targeted therapy or immunotherapy.

Comprehensive assessment of the immunologic microenvironments of HCC

We next focused on immune gene expression and infiltration of specific immune gene 

subsets into the HCC. Nearest template prediction classification using exemplar genes (a 112 

gene expression-based immune classifier) described by Sia et al.,9) identified “immunogenic” 

(80 of 206, 38.8%) and “immune-desert” (126 of 206, 61.2%) subgroups in the AMC cohorts 

(Fig. 3a). Similarly, 160 of 360 HCC samples (44.4%) from the extended TCGA-LIHC 

cohorts were predicted to belong to the immunogenic group.5) The subjects in the 

immunogenic group were enriched relative to the immune-desert group in IFN-α and IFN-γ 

responses, in inflammatory responses, TGF-β signaling pathways and immune scores, as 

well as in up-regulation of immunomodulatory genes (PDCD1, CD274, and CTLA4), 

adaptive immune response genes (GZMB, CD8A, CD3E, and CD3G), NK cell activators 

(GZMB, TBX21) and CXCL13 genes. CTNNB1-mutated HCCs, which have reduced immune 

cell infiltration in melanomas and HCC, were also discovered to be significantly related to 

the immune-desert group (P = 0.0009), with similar trends to the AMC-C3 subgroup (P = 

0.0004) (Fig 3a).8, 9, 58)
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Fig 3. Mutational, histomolecular, and clinical characteristics according to immune 

HCC subtype. (a) Heatmaps identify an immunogenic subtype enriched in immune cells and 

immunophenotypic gene signatures. CNV and microRNA profiles matched with immune-

related signatures are also shown in this expression heatmap. (b) Boxplot of the number of 

focal segments with CNV and immune-related signatures stratified by immune subtype. (c) 

Representative images of PD-L1 IHC staining of tumor cells and TIMC from a patient in the 

immunogenic group. (d) Kaplan-Meier analysis of overall survival of patients with 

immunogenic versus immune-desert tumors in our series and in an external validation cohort. 

TIMC, tumor infiltrating mononuclear cells; IHC, immunohistochemistry.
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Recent experiments have demonstrated that inhibition of the Wnt/β-catenin pathways can 

enhance intratumoral T-cell infiltration.58) As treatments against immune checkpoint 

inhibitors are showing promise in liver cancer,59) further studies investigating combination 

treatments of HCC with Wnt/β-catenin inhibitors and immune checkpoint inhibitors are to be 

expected. 

When we estimated immune cell compositions using CIBERSORT deconvolution 

approaches,60) immune cell types, except for eosinophils, neutrophils, and γδ-type T-cells, 

were more frequent in the immunogenic group (Fig. 3b and Supplementary Fig. 11). As 

expected, overexpression of immune regulatory molecules such as PD-L1 in both tumor cells 

and tumor-infiltrating mononuclear cells revealed by immunohistochemical (IHC) methods 

was also observed in the immunogenic group (Fig. 3c). It has been proposed that tumor 

aneuploidy influences local immune infiltrates in several types of cancers.20, 61) In agreement 

with this view, tumors of the immunogenic group had a lower burden of segments showing 

CNV (mean fraction in whole genome, 11.1% vs. 21.9%; P = 4.07 × 10-12). Thus AMC-C2 

tumors, which have the lowest fraction of CNVs among the subgroups, are characterized by 

increased immune cell infiltration (Supplementary Fig. 12). We found that the ratios of 

mean mRNA levels of CD8+ T-cell–specific genes to Treg cell-specific genes, and pro-

inflammatory molecules to immunosuppressive (anti-inflammatory) molecules, were 

significantly reduced in immune-desert tumors (P < 2.2 × 10-16 and P = 1.36 × 10-7, 

respectively, Fig. 3b). However, the tumor mutation burdens of the two groups were similar, 

with median numbers of mutations per tumor of 71 and 61.5 in the immunogenic and 

immune-desert samples, respectively (P = 0.914), which is not in agreement with previous 

observations.62, 63) In terms of expression of miRNAs as modulators of tumor immune 

responses, the immune-related subtype is characterized by activation of the miR-150, miR-

214 and miR-199 families and attenuation of miR-466 expression (Fig. 3a). miR-150 is 

expressed selectively in mature B- and T-cells, and its expression in the immune-related 



18

subtype is perhaps indicative of a role in shaping the tumor micro-environment.64, 65) In 

addition, numbers of NK cells, which are another key component of the innate immune 

response, have been reported to be determined by the miR-150 expression level.66) miR-199a 

is thought to be a negative regulator of tumorigenesis and progression in epithelial ovarian 

cancer,67) and miR-214 secretion from tumor cells is thought to result in the expansion of 

Treg.68)  This observation prompted us to examine the effect of the immune landscape of 

HCC on outcomes (Fig. 3d). Immunogenic clusters showed a clinical tendency toward 

longer recurrence-free survival in the AMC cohort (P = 0.062), as well as in the TCGA-

LIHC extended cohorts (44.4% of patients with the immune phenotype, P = 0.028), and the 

same was true for overall survival among the RIKEN patients (38.7% patients belonging to 

the immunogenic group, P = 0.031). However, patient outcomes were not related to the prior 

defined subclassification9) within our immunogenic group (i.e., adaptive vs. exhausted) in the 

AMC and extended TCGA-LIHC cohorts, which thus did not parallel the favorable 

outcomes of patients with an adaptive immune response in the Heptromic and core TCGA 

cohorts (Supplementary Fig. 13).9) This inconsistency may be explained by the dynamic 

nature of the immunologic makeup of tumor microenvironments, with heterogeneous T-cell 

populations retaining the ability to mount potent effector responses.69)  

We then compared the immune landscapes of patients with [61 (29.6%)] and without 

recurrence of HCC [145 (70.4%)] within 2 years of resection. Signature ratios including pro-

to anti-inflammatory cytokines, and M1 to M2 macrophages, were significantly lower in the 

subjects with early recurrence (P = 0.049 and P = 0.034 respectively, Supplementary Fig. 

14). This suggests that the immune microenvironment of the tumors with early recurrence is 

more pro-tumorigenic and immunosuppressive, as also seen in other cancers.70, 71)

CIBERSORT60) deconvolution analysis suggested that patients who did not experience early 

recurrence were enriched in follicular T helper cells, which is a CD4+ T-cell subset believed 

to participate in the co-operative interplay between B-cells and T-cells that maintains 
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effective and sustainable antitumor immunity,72) and in M1 macrophages, which are 

considered ‘good’ macrophages as they produce pro-inflammatory cytokines and reactive 

oxygen/nitrogen species crucial for host defense and tumor cell killing (Supplementary Fig. 

14).60, 73)

Identification of traceable genomarkers associated with early recurrence of HCC

Differential expression analysis using Wilcoxon tests identified the following genes that 

were differentially expressed in patients with and without early recurrence after HCC 

resection: S100P, GLP1D1, OSTBETA, CPN1, and CXCL13 (Fig. 4a). Of note, S100P was 

the most overexpressed gene in patients with early recurrence, and this result was robustly 

validated in the GSE14520 cohort (Fig. 4b), whereas CXCL13, which is known to be mainly 

secreted by follicular helper T-cells and is dominant in our immunogenic subtype,72) was the 

least expressed in those patients (Fig. 4a and Supplementary Fig. 15). S100P is a protein 

belong to the S100 protein family member implicated in several malignancies including 

pancreatic, breast, colorectal, prostate, lung and bile duct cancers and has important roles in 

tumorigenesis and cancer progression by affecting proliferation, apoptosis and metastasis.74, 

75) The area under the ROC curve (AUC) of the S100P mRNA for predicting early recurrence 

confirmed that it had prognostic utility comparable to that of serum AFP, which is used in 

clinical practice (0.675 vs. 0.638, P = 0.435, Fig. 4c). Multivariable competing risks analysis 

also confirmed an independent effect of S100P on cancer mortality (adjusted P = 0.042; 

Supplementary Table 4), which makes it likely to be an appealing drug target for HCC. To 

strengthen the potential of this marker in clinical practice, we performed an IHC analysis of 

S100P using our RNA-seq samples and found a significant correlation between its 

histological and transcriptomic values (Fig. 4d and Fig. 4e). By IHC, 87 patients (42.2%) 

were positive for S100P, which was significantly associated with early recurrence of HCC (P 

= 0.037) as was S100P mRNA (Fig. 4e and Supplementary Fig. 16). S100P was up-regulated
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Fig 4. Molecular alterations related to early recurrence of HCC, and experimental 

validation of the S100P gene. (a) The volcano plot shows the differentially expressed genes 

associated with early recurrence, S100P, CXCL13, GLT1D1, OSTBETA, and CPN1 (b) 

Tumors recurring early after resection are associated with a significantly higher expression 

of S100P. The GSE14520 cohort (n = 221) showed similar trend. (c) Receiver-operating 

characteristics plot of the predictive ability of S100P gene expression value for 2-year 

recurrence, compared to thoseof serum AFP level and tumoral AFP mRNA expressions. (d) 

Representative photos of positive and negative S100P IHC staining in the AMC dataset. 
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Scale bars, 400 μm. (e) Positive cases of S100P immunostaining have significantly higher 

levels of S100P mRNA expression and give rise to more early recurrence than negative cases. 

(f) Tumors with elevated S100P mRNA levels have elevated cell cycle-related signaling 

levels as evaluated by gene set enrichment analysis (GSEA). Cell cycle-related genes were 

also correlated with tumoral S100P expression. (g) In cell proliferation assays using 

cellTiter-Glo and the Crystal violet staining, SNU475 cells transfected with siRNAs against 

S100P grew more slowly than controls transfected with scrambled siRNA (siCtrl) or 

receiving no treatment (mock). (h) HCC cells transfected with S100P siRNA were less 

invasive than the others in invasion assays using matrigel-Boyden chambers. The 

quantification below shows that the siS100P-transfected HCC cells generate significantly 

fewer invasive cells than control cells. (i) Cell cycle analysis by flow cytometry 

demonstrates G1 arrest in SNU475 cells 72 h post-transfection with S100P siRNA. *P-value  

< 0.05. 
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mainly in the AMC-C4 subgroup, which has poor outcomes (P = 0.0002, Supplementary Fig. 

17). The association between histological S100P expression (49 out of 171, 28.7%) and post-

surgical early recurrence (82 out of 171, 48.0%) was reproduced in an AMC validation 

cohort consisting of 88.3% early (AJCC stage IA, IB or II) and 11.7% later stage (AJCC 

stage IIIA, IIIB or IV) tumors (P = 0.042; Supplementary Fig. 18 and Supplementary 

Table 5).   

Biological significance of S100P expression in HCC

We next explored whether the S100P expression in HCC has biological significance. To gain 

insight into the action of S100P, we investigated the potential consequence of S100P 

expression on regulatory pathways by enrichment analyses. The results showed that the 

samples with S100P transcriptional upregulation had well-regulated cell cycle-related 

pathways (Fig. 4f). S100P over-expressing tumors also had increased levels of cell cycle-

related genes including MKI67, E2F1, E2F3, CDK1, PLK1, and CDC25A. To examine the 

potential function of S100P expression, we performed an in vitro knockdown experiments 

with a small interfering RNA (siRNA), siS100P, in cells of the cell line SNU475, which 

expresses S100P more highly than other SNU HCC cell lines (Supplementary Fig. 19). 

SiRNA-mediated targeting of S100P was associated with inhibition of cell proliferation, as 

reported in other gastrointestinal cancer cell lines (Fig. 4g).74, 76) siS100P also attenuated the 

invasive properties of SNU475 cells (Fig. 4h). Moreover, examination of the cell cycle 

distribution by flow cytometry revealed that G0/G1 cells increased in response to S100P

siRNA (68.1% for siS100P 50 nM, and 71.1% for siS100P 100 nM) vs. mock (55.0%: Ps < 

0.05) and scrambled siRNA (57.4%: Ps < 0.05). (Fig. 4i). Taken together, our results indicate 

that S100P expression contributes to HCC tumor growth, and that inhibiting it can suppress 

HCC cell growth, invasion, and tumorigenesis; this may explain its prognostic value in our 

clinical cohort and others.
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DISCUSSION  

In the present study we applied multi-omic approaches to a large set of early HCC surgical 

samples to generate an immunomolecular classification scheme. The combinatorial interplay 

of genomic, transcriptomic, and immunomic architectures revealed by our results may 

underlie the observed biological and clinical differences between patients with HCC. It also 

provides signposts for identifying actionable targets, as well as reliable biomarkers for 

predicting early recurrence and related mortality. Subsequently, histomolecular and 

functional validation of the relevant transcriptomic characterization was achieved using both 

internal and external tumor sources.

Although previous initiatives have yielded genomic landscapes of driver events,12, 44, 47)

histopathologic or molecular gene expression-based stratification systems for HCC are not 

yet being taken into account in clinical management of the disease. Our new taxonomy of the 

HCC, based on profound molecular and clinicopathologic features, comprises five subgroups, 

as follows: C1 (well-differentiated HCC), C2 (high EMT with immune predominance), C3 

(CTNNB1-mutated HCC), C4 (stem cell features with poor prognosis), and C5 (CTA group) 

(Fig. 5). The genomic alterations and biological differences between these subtypes could be 

used in clinical decision-making based on prognostic factors and rational therapeutic 

opportunities. We emphasize that our findings require further validation.

Recent genomic and transcriptomic analyses have revealed that subtypes characterized by 

extensive immune infiltration are present in several types of cancer.9, 77-79) Approximately 

one third of our HCC were assigned to the “immunogenic” subtype, and we showed that this 

immune infiltration was correlated with a more favorable prognosis, preferentially in AMC-

C4 tumors. In addition, the presence of specific immune cell types (i.e., follicular helper T-

cell and M1 macrophages) was associated with reduced recurrence, potentially reflecting the 

survival advantage of immune activation.60, 70) It is of note that our combined CNV and 

miRNA analysis suggests that chromosomal instability and regulatory factors, not mutational 
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Fig 5. Proposed taxonomy of HCC reflecting significant differences in biological, 

immunological, and clinical patterns in the gene expression-based molecular 

classification.  

S100P upregulation
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load, shape anti-cancer immune environments. Indeed, recent pan-cancer data indicate that 

major somatic CNV correlates with poor immune infiltration and poor response to immune-

checkpoint inhibition.20) A growing body of literature has demonstrated the importance of 

immune controls involving epigenetic and miRNA mechanisms in the tumor 

microenvironment,80, 81) as do our findings. Although we have identified broad aspects of 

these controls, the nature of the specific functional networks acting in tumor, immune, and 

stromal cell compartments requires further investigation.

There are few clinically useful cancer biomarkers for predicting early recurrence after 

hepatectomy in patients with HCC. Based on our RNA-seq and immunohistochemical results 

we showed that S100P, which is preferentially expressed in the AMC-C4 subgroup with a 

poor prognosis, may be a predictor of unfavorable events, comparable to the traditional 

serum oncomarker, AFP. Aberrant expression of S100P has been found in various types of 

cancer, and its overexpression is thought to be associated with a poor clinical outcome.74, 75)

There is also evidence that S100 proteins contribute to tumorigenic processes such as cell 

proliferation, disturbance of cell cycle control, and metastasis.74, 75, 82) In addition, a small 

peptide antagonist of receptor for advanced glycation end products (RAGE) appears to 

disrupt the S100P–RAGE interaction, which activates key signaling pathways such as the 

ERK, NF-kB, and the JAK/STAT pathways, eventually reducing tumor growth and inhibiting 

metastasis.76, 83) Our nosological catalog of molecular alterations in HCC provides an 

opportunity to identify novel prognostic and therapeutic candidates such as S100P for future 

functional and mechanistic investigations.
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CONCLUSION

This study provides a comprehensive overview of the global orchestration of 

immunomolecular and mutational events that influence tumor behavior and patient outcomes 

in HCC. This pathobiologic insight may serve as the basis for more targeted treatment of 

HCC.
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SUPPLEMENTARY FIGURES

Supplementary Figure 1. GISTIC2 analysis results for the copy number alterations of AMC 

dataset (n=206). Plots for raw copy number heatmap, amplification and deletion peaks are 

presented. Confidence interval of 0.99 and absolute log2 ratio of 0.4 were used as cutoffs 

during analysis.
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Supplementary Figure 2. Results of unsupervised consensus clustering of the RNA-seq 

gene expression datasets of the AMC (n = 206) and TCGA-LIHC extended (n = 360) cohorts. 

Blue/red heatmaps for the consensus matrix of each rank (k = 2 to 7) and the corresponding 

cophenetic values are shown. In the AMC dataset, the cophenetic values in ranks 2, 3 and 5 

are higher than in the other ranks. In the TCGA-LIHC dataset, the cophenetic value in 

rank=5 is higher than in the other ranks. These results suggest that rank 5 is the optimal 

number for both cohorts.
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Supplementary Figure 3. Clustering analysis of the AMC and public validation cohorts. 

Heatmaps of differentially expressed genes (DEGs) with a false discovery rate < 0.05 in the 

five AMC clusters in the three different gene expression datasets. DEGs with an absolute 

log2-fold change (logFC) > 1.5 were retrieved for the heatmaps of the AMC dataset. For the 

other datasets, AMC clusters were predicted using a multinomial logistic regression model 

with elastic net regularization (see Methods), and DEGs with an absolute logFC > 2 were 

selected for the heat maps. AMC-C1 and C3 exhibit significant upregulation of genes for 

hepatocyte enzymes, AMC-C2 exhibits a significant enrichment of epithelial-mesenchymal 

transition (EMT)-related genes, and AMC-C3 shows increased expression of β-catenin 

signaling regulators (AXIN2, FGF2). AMC-C4 exhibits upregulation of oncofetal genes and 

EPCAM, and AMC-C5 has elevated expression of cancer-testis antigen genes. These 

characteristic features of the AMC clusters were also evident in separate gene expression 

validation datasets including the RIKEN HCC and GSE14520 cohorts. 
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Supplementary Figure 4. Pie charts of (a) somatic mutations and (b) focal copy number 

deletions in the AMC subgroups.
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Supplementary Figure 5. Heatmap of differentially expressed microRNAs (miRNAs) with 

an absolute logFC > 1 in the five AMC subgroups. MicroRNAs associated with EMT 

regulation (miR-10a, miR-214, miR-125, miR-145, and miR-223), Wnt/β-catenin regulator 

miR-122 and oncofetal miRNAs miR-98 and miR-675 are elevated in subsets of the patients 

in AMC-C2, C4, and C5, respectively.
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Supplementary Figure 6. Gene set enrichment analysis (GSEA) in AMC-C2 HCCs versus 

the others. Gene sets associated with EMT, NOTCH, VEGF, and TGF-β signaling pathways 

are enriched in the AMC-C2 tumors. The genes listed are the top 10 highly enriched genes in 

the corresponding gene sets.



43

Supplementary Figure 7. Patterns of mutational signatures in the AMC dataset. (a) 

Distributions of mutational signatures according to the AMC subgroups. The normalized 

weight of signature 24, known to be related to aflatoxin-associated liver cancer, is 

significantly elevated in AMC-C2 (P = 0.0007). (B) Stacked bar plots showing the mean 

proportions of single nucleotide transitions and transversions in the AMC clusters. There is 

no significant difference in the proportions across the AMC clusters. SNV, single nucleotide 

variations.



44



45

Supplementary Figure 8. Identification of the five molecular tumor classes (AMC 

subgroups) in the TCGA-LIHC extended cohorts (n = 360). (a) Heatmap showing the gene 

set scores of the HCC subgroups and the relevant signaling pathways. The cluster labeling 

located most upper portion denotes unsupervised consensus clustering using NMF algorithm. 

The strip plots below the cluster labeling show the AMC clusters predicted by a multinomial 

penalized logistic regression model based on the gene expression data. The clusters separated 

by unsupervised consensus clustering are closely correlated with the predicted AMC 

subgroups and exhibit similar characteristics to those of the AMC subgroups in terms of gene 

set enrichment, gene mutations, copy number reductions and miRNA expression. (b) 

Heatmap depicting the DEGs between the five-tiered consensus clusters in the TCGA LIHC 

dataset. DEGs with an absolute logFC value > 1.5 and a false discovery rate (FDR) < 0.05 

were used for the heatmaps. 
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Supplementary Figure 9. Bar plots depicting the estimated probabilities of the Hoshida6)

and TCGA iCluster5) assignments of the AMC dataset. The lower table presents the 

relationships between the AMC subgroups, and the Hoshida and TCGA iCluster classes in 

the AMC (n = 206) and TCGA-LIHC core cohorts (n = 191).
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Supplementary Figure 10. Outcome analyses based on the AMC clustering in the AMC and 

validation datasets. Recurrence-free survival by the Kaplan-Meier method and cancer-

specific mortality by competing risks analysis of the AMC datasets. The trends revealed by 

the competing risks analysis were also observed in the RIKEN HCC and GSE 14520 cohorts.
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Supplementary Figure 11. Comparisons of the absolute numbers of immune cell types in 

the immunogenic and immune-desert groups in the AMC dataset. The absolute values of the 

individual immune cell types were calculated using CIBERSORT, and statistical significance 

was evaluated by the Wilcoxon rank-sum test. The absolute numbers of most of the immune 

cell types were significantly increased, the exceptions being eosinophils, neutrophils, and γδ-

type T-cells. 



49

Supplementary Figure 12. Absolute immune cell infiltration numbers and levels of 

expression of immune-related genes according to the AMC subgroups. Overall immune cell 

infiltration and levels of expression of PDCD1LG2, PDCD1 and CTLA4 were highest in 

AMC-C2 tumors, as estimated by CIBERSORT.
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Supplementary Figure 13. Classification and characteristics based on prior-defined immune 

subtypes (i.e., immune-active vs. immune-exhausted vs. immune-desert) in the AMC and 

extended TCGA LIHC cohorts. (a) Heatmaps showing the differences of CNV profile, 

immune signatures, and immune-associated genes between the immune-exhausted, -active, 

and -desert groups. There were no significant differences in either CNV burden or most of 

the immune-related signatures and genes between the immune-exhausted and active tumors 

in the AMC cohort (left). However, the immune-active group in the TCGA LIHC extended 

cohort showed over-expression of adaptive immune response genes (e.g., CD8A, Granzyme 

B) and down-regulation of stromal scores and TGF-β signals (right). (b) Boxplots 

representing the CNV and immune-related signatures across the prior-defined immune 

subtypes. The immune-active group had a higher pro-inflammatory /anti-inflammatory ratio 

and higher cytolytic activities than the immune exhausted group in both the AMC (left) and 

TCGA LIHC extended cohorts (right). However, there were no significant differences in 

outcomes including overall survival, recurrence-free survival, and rates of early recurrence 

between the three immune subclasses. (c) Stacked bar plots displaying mean immune cell 

type-specific absolute values obtained by CIBERSORT according to the prior defined 

immune subtypes. (d) Numbers of CD8+ T-cells (left) and follicular helper T-cells (right) 

were significantly higher in the immune-active tumors than in those displaying immune 

exhaustion.
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Supplementary Figure 14. Plots of the distributions of immune cell type-specific absolute 

values in patients with early recurrence (within 2 years) and those without recurrence, in the 

AMC cohorts. Absolute values of individual immune cell types were calculated using 

CIBERSORT. P-values given by Wilcoxon rank-sum tests are also shown. Numbers of 

follicular helper T-cells and M1 macrophages were significantly decreased in the early 

recurrence group. Differences in gene expression signature ratios between pro- and anti-

inflammatory cytokines and between M1 and M2 macrophages were also statistically 

significant.
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Supplementary Figure 15. Comparison of the expression levels of S100P and CXCL13 in 

the immunogenic and immune-desert group. While the levels of S100P mRNA were not 

significantly different as a function of immune status, CXCL13 mRNA was clearly elevated 

in the immunogenic group.

Supplementary Figure 16. The association between immunohistochemical S100P 

expression and outcomes in original AMC cohort (n = 206). S100P IHC-positive patients 

were associated with a (a) worse recurrence-free survival by Kaplan-Meier methods and (b) 

HCC specific mortality by competing risks analysis.
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Supplementary Figure 17. Comparisons of S100P mRNA expression across the AMC 

subgroups in the AMC cohorts. Mean S100P expression was significantly higher in AMC-C4 

than in the other subgroups.

Supplementary Figure 18. Association between histologic S100P expression and outcomes 

in the independent AMC validation cohort (n = 171). (a) Positive S100P IHC staining was 

more frequent in the patients with early recurrence. (b) S100P IHC-positivity was associated 

with poorer recurrence-free survival.
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Supplementary Figure 19. (a) Electrophoretic analysis of RT-PCR products reveals S100P

mRNA expression in the indicated HCC cell lines. (b) Silencing of endogenous S100P

mRNA in SNU475 cells by transfection with the indicated concentration of siRNA against 

S100P but not by scrambled siRNA (siCtrl). 



56

SUPPLEMENTARY TABLES

Supplementary Table 1. The scoring systems for PD-L1 and PD-1 

immunohistochemistry 

PD-L1 PD-1

Tumor cells

TIMC TIMCImmunoreactivity Scoring System 

(IRS): A+B

PD-L1 quantity 

score (A)

PD-L1 intensity 

score (B)

Percentage of PD-L1 

positive cells

Percentage of PD-1 

positive cells

0: 0% 0: negative 0: 0% 0: 0%

1: ≤1% 1: weak 1: 1–5% 1: 1–5%

2: 2–10% 2: moderate 2: 6–20% 2: 6–20%

3: 11–50% 3: strong 3: > 20% 3: > 20%

4: > 50%

TIMC, tumor-infiltrating mononuclear cells.
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Supplementary Table 2. Patient and tumor characteristics of the main AMC cohort

Variable Main AMC cohort (n = 206)

Age at surgery (years)

< 60 years

≥ 60 years

55 (48-61)

139 (67.5%)

67 (32.5%)

Gender

Male

Female

154 (74.8%)

52 (25.2%)

Etiology of the liver disease

Hepatitis B virus infection

Hepatitis C virus infection

Others

149 (72.3%)

20 (9.7%) 

37 (18.0%)

Serum AFP level (ng/ml)

< 100 ng/ml

≥ 100 ng/ml

40.2 (4.9-371.1)

120 (58.3%)

86 (41.7%)

Tumor numbers

Single

Multiple

194 (94.2%)

12 (5.8%)

Tumor size (cm)

< 5 cm

≥ 5 cm

3.8 (2.9-5.5)

143 (69.4%)

63 (30.6%)

Microvascular invasion

Yes

No

57 (27.7%)

149 (72.3%)

Edmondson-Steiner grade 
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I-II

III-IV

132 (64.1%)

74 (35.9%)  

AJCC stage

Stage IA

Stage IB

Stage II

Stage IIIA

18 (8.7%)

176 (85.4%)

9 (4.4%)

3 (1.5%)

Data are presented as median (interquartile range) or number (%). 

AFP, alpha-fetoprotein; AJCC, American Joint Committee on Cancer.
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Supplementary Table 3. Unadjusted and adjusted hazard ratios from a competing risks 

regression model representing the risk of cancer-specific mortality in the AMC cohort 

(n = 206)

Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

AMC-C4 vs. the others 1.49 1.06-2.09 0.021 1.47 1.05-2.05 0.025

Age 0.99 0.95-1.02 0.460

Male Sex 1.63 0.81-3.28 0.170

HBV infection 0.99 0.48-2.04 0.980

Cirrhosis 1.79 0.91-3.54 0.091 1.73 0.87-3.44 0.120

Edmondson-Steiner grade, 

III or IV
1.14 0.81-1.59 0.460

Microvascular invasion 1.27 0.61-2.64 0.520

Capsular invasion 1.02 0.47-2.25 0.950

Serum AFP > 20 ng/ml 1.49 0.76-2.94 0.250

Tumor size > 5 cm 1.72 0.88-3.38 0.110

Multiple tumors 1.65 0.50-5.51 0.410

AFP, alpha-fetoprotein; HBV, hepatitis B virus.
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Supplementary Table 4. Factors related to early recurrence (within 2 years) and 

cancer-specific mortality in the AMC cohort (n = 206) 

Early recurrence (within 2 years)

Univariate analysis Multivariate analysis

OR 95% CI P value HR 95% CI P value

S100P mRNA expression 1.17 1.08-1.28 0.0002 1.15 1.05-1.25 0.002

Age 1.02 0.99-1.05 0.239

Male Sex 1.05 0.53-2.14 0.889

HBV infection 0.88 0.46-1.73 0.702

Cirrhosis 1.49 0.82-2.73 0.192

Edmondson-Steiner 

grade, III or IV
1.11 0.81-1.51 0.507

Microvascular invasion 1.27 0.65-2.44 0.470

Capsular invasion 1.30 0.62-2.67 0.478

Serum AFP > 20 ng/ml 2.43 1.31-4.66 0.006 1.76 0.90-3.48 0.100

Tumor size > 5 cm 1.96 1.04-3.67 0.037 1.73 0.89-3.37 0.104

Multiple tumors 1.20 0.31-3.98 0.771

Cancer-specific mortality by competing risks analysis

Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

S100P mRNA expression 1.09 1.00-1.19 0.053 1.09 1.00-1.19 0.042

Age 0.99 0.95-1.02 0.460

Male Sex 1.63 0.81-3.28 0.170

HBV infection 1.01 0.49-2.09 0.980

Cirrhosis 1.79 0.91-3.54 0.091 1.86 0.94-3.68 0.074
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Edmondson-Steiner 

grade, III or IV
1.14 0.81-1.59 0.460

Microvascular invasion 1.27 0.61-2.64 0.520

Capsular invasion 1.02 0.47-2.25 0.950

Serum AFP > 20 ng/ml 1.49 0.75-2.94 0.250

Tumor size > 5 cm 1.72 0.88-3.38 0.110

Multiple tumors 1.65 0.50-5.51 0.410

AFP, alpha-fetoprotein; HBV, hepatitis B virus.



62

Supplementary Table 5. Patient and tumor characteristics of the independent AMC 

validation cohort (n = 171)

Variable independent AMC validation cohort (n=171)

Age at surgery (years)

< 60 years

≥ 60 years

55 (48-63)

109 (63.7%) 

62 (36.3%)

Gender

Male

Female

135 (78.9%)

36 (21.1%)

Etiology of the liver disease

HBV infection

Others

102 (59.6%)

69 (40.4%)

Liver cirrhosis 96 (56.1%)

Serum AFP level (ng/ml)

< 100 ng/ml

≥ 100 ng/ml

27.6 (4.2-624.0)

105 (61.4%)

66 (38.6%)

Tumor numbers

Single

Multiple

144 (84.2%)

27 (15.8%)

Tumor size (cm)

< 5 cm

≥ 5 cm

4.0 (2.5-8.0)

104 (60.8%)

67 (39.2%)

Microvascular invasion

Yes

No

32 (18.7%)

139 (81.3%)
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Edmondson-Steiner grade 

I-II

III-IV

107 (62.6%)

64 (37.4%)  

AJCC stage

Stage IA

Stage IB

Stage II

Stage IIIA

Stage IIIB

Stage IVA

21 (12.3%)

106 (62.0%)

24 (14.0%)

9 (5.3%)

10 (5.8%)

1 (0.6%)

Data are presented as median (interquartile range) or number (%). 

AFP, alpha-fetoprotein; AJCC, American Joint Committee on Cancer; HBV, hepatitis B virus.
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국문요약

간세포암은 암으로 인한 사망의 세 번째 순위를 차지하는 암종으로, 최근 이에

대한 분자유전학적 특성이 연구되고 있으나 실제 진료에 적용하기에는 아직

요원한 실정이다. 본 연구는 206례의 수술적으로 절제된 간세포암 조직에 대해

전사체 및 유전체 분석을 실시하였고, 이를 통해 임상 예후에 영향을 미치는

암종 및 면역반응의 생물학적 변이를 확인하고자 하였다. 유전자 발현량 분석

결과 간세포암은 다섯 가지의 소분류로 구분할 수 있었다. AMC-C1 군은 고분화

암종으로 생각되었고, AMC-C2 군은 높은 수준의 상피-중간엽 전이를 보였으며, 

AMC-C3 군은 CTNNB1 유전자의 변이를 특징으로 보였고, AMC-C4 군은

줄기세포와 유사한 특징을 보였으며, AMC-C5 군은 암종-정소 항원의 발현을

특징으로 보였다. 이들 중 AMC-C4 군은 다른 군에 비해 좋지 않은 예후를

보였고, 다른 유전자 발현 공개 데이터에서도 유사한 결과를 보였다. 또한

면역유전체 분석을 거쳐 간세포암의 약 1/3이 세포융해 작용 및 세포독성 T 

세포의 양이 증가되어 있는 면역유발성 소분류에 속해 있는 것을 확인할 수

있었고, 이 분류와 유전자 복제수 변이 및 microRNA 발현 사이의 유의미한

상관관계를 확인할 수 있었다. 또한 면역유발성 소분류에 속한 증례는 그렇지

않은 증례에 비해 더 좋은 예후를 보이는 것을 알 수 있었다. 마지막으로 수술

후 조기 재발과 연관을 보이는 생체 표지자로 S100P를 발견할 수 있었고, 이

생체 표지자는 독립적인 검증 군에서도 유의미한 결과를 보였다. 이 연구를 통해

간세포암의 생물학적, 임상적 특성이 실제 환자 진료에서도 확인 가능한 유전체

및 면역분자적 특성의 차이와 관련이 있음을 확인할 수 있었다.

Key words: Hepatocellular carcinoma; Molecular subgroup; Tumor immune response; 

Treatment outcome.
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