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Abstract

Technical advancement in biology has led to the generation of an enormous amount

of multi-omics datasets. Integration of these multi-omics datasets with biological

databases is essential for biologists since it allows them to uncover hidden connec-

tions between biological entities. However, the process of integrating these datasets is

challenging because of their diverse and heterogeneous nature. Since each biological

database and omics dataset is developed and generated independently to cover specific

biological and omics domain, therefore, their structure – how data is organized – differs

from each other. Because of their heterogeneous nature, integration of omics databases

has been one of the challenging tasks for omics data scientists.

Resource Description Framework (RDF) is de-facto stranded that enables linking

heterogeneous resources by providing a unified mechanism to publish data in the form

of triples. Databases containing triples is known as a triple store. EBI-RDF platform

enabled interpretable and integrated access to six independent biological databases by

publishing their triple stores using RDF technology. However, querying these triple

stores requires in-depth knowledge about their schema and SPARQL query language.

To overcome this limitation in the first part of this dissertation presents cMapper, a

gene-centric platform to visualize integrated biological databases in biologist-friendly
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fashion. cMapper allows biologists to query six biological databases – (1) UniProt, (2)

Expression Atlas, (3) REACTOME, (4) ChEMBL, (5) BioModels and (6) Biosamples

– in an integrated fashion without technical knowledge of RDF and SPARQL query

language.

The second part of the dissertation presents IPCT – an extended version of cMapper

–, a framework that integrates pharmacogenomics data with other biological databases.

IPCT integrates genomic aberrations of cancer cell lines from CCLE, drug response

data from CTRP, genomic aberrations of cancer tissues from cBioPortal experimental

conditions of differentially expressed genes from Expression Atlas, and biological path-

ways from REACTOME. IPCT allows biologists to search for genomic aberrations of

cancer cell lines sensitive to a drug of interest. Conversely, they can search for drugs

sensitive to cell lines of interest. Furthermore, IPCT allows users to compare genomic

aberrations in cancer cell lines and tissues by integrating

cMapper and IPCT allow users to apply filters on entities of interest. If users enter

more than one genes, small molecule or cell lines, they can select options to find common

biological objects connected with input. Furthermore, both platforms allow users to

visualize their graph on screen or download them in as PNG or GraphML format.

IPCT additionally also allows users to download data in CSV and JSON format to

perform further analysis. Conclusively the research done in this dissertation addresses

the problem of data integration in biology and demonstrates how modern-day data

computational methods can be used to present integrated biological data in biologists’

friendly way so that biologists can use them to uncover to build their hypothesis by

identifying potential hidden relationships between biological entities.
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“Data is a precious thing and will last longer than the systems themselves”

Sir. Tim Berners-Lee

“You can have data without information, but you cannot have information

without data”

Daniel Keys Moran
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Chapter 1

Introduction

1.1 Genomics in Cancer Research

Omics is derived from Greek suffix ome that means collection or body. The term

omics, in biological science, is used to study the molecular activities at the different

levels in a biological system such as genes, proteins, transcripts, and their functional

interactions in an integrated fashion39). This integrated analysis facilitates researchers

in understanding connections between multiple complex biological systems. The recent

development in technology has transformed the way of data collection that has resulted

in the availability of massive omics data. This data has served as a building block for

the development of large biomedical data repositories.

The term genomics was coined by Thomas H. Roderick in 1986 by melting prefix of

word genetics and suffix of omics that merged as a branch of omics technologies which

studies genomes of different organism84). In cancer, genomics studies are undertaken to

identify unique biomarkers such as discovering novel oncogenes, tumor suppressor genes

and driver mutations70) and identifying deregulated pathways to understand tumori-
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genic mechanisms in tumor cells18). Once these biomarkers are identified, researchers

then try to find their clinical relevance to identify target candidates of anticancer drugs.

Cancer drugs can be classified into two different categories, (1) cytotoxic drugs and (2)

targeted therapeutic drugs. The main tasks of cytotoxic drugs are to control cancer

cell proliferation and prevent their replication and growth, whereas targeted therapeu-

tic drugs are used to block specific pathway by controlling the activities of particular

gene(s) products76,28). Research has shown that cancer cells require specific kinases

such as HER2, mTOR for proliferation and cell growth28) and targeting these specific

kinases can result in promising outcomes to control cancer cells proliferation.

Figure 1.1: Figure adapted from Manzoni at. al.48) represents methods developed to

study omics data during past 50 years. This paradise shift has revolutionized the way

that biologists used to study science to understand biology of human body and make

scientific discoveries related to human diseases.

The human genome project79) had made the paradigm shift in Genomics research

and has revisited the methods of understanding complex diseases like cancer27). Prior to

Human Genes Project, researchers used to study individual genes or a small set of genes
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and their functions that are assumed to have a role in cancer or other genetic diseases.

Figure 1.1 presents the landscape of cancer research for the past five decades. However,

after the Human Genome Project, thousands of cancer genomes have been sequenced

to study causes of different types of cancers by identifying genomic level changes like

Single Nucleotide Polymorphism (single Point mutations) and Copy Number Variants.

These efforts have provided an enormous amount of genomic data to study the role of

genomic variations in different cancer types in the context of developing new targeted

therapeutic drugs.

1.2 Pharmacogenomics data in Target Identification

Pharmacogenomics is an interdisciplinary domain which studies the association be-

tween genomic aberrations of an individuals and drug response. Studies have shown

that some drugs response was better to the patients with specific genomic aberrations

than patients without those genomic aberrations. Similarly, individuals having partic-

ular genomic aberrations can respond better to some drugs than others. For example,

researchers have found a relationship between patients with HER2 overexpression and

their response to the Lapatinib64). This is also true for many other drugs. Therefore,

researchers in the domain of Pharmacogenomics are trying to find novel associations be-

tween drugs and genomic aberrations to aid clinicians in finding appropriate individual

treatment to their patients based on their genotype. Conversely, Pharmacogenomics is

also being used to identify new drug targets by performing integrated analysis on drug

response and genomic datasets.

As mentioned above, cancer is a genetic disease and is studied using genomic aberra-
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tions which includes gene expression, somatic mutations, and copy number alterations.

Most cancer treatments rely on cytotoxic agents that disrupt the process of cell pro-

liferation in cancer tissues or sites and do not take genomic changes into account.

However, researchers are now trying to develop targeted therapeutic drugs since they

have improved the survival rate in the past. Trastuzumab, for example, a therapeutic

agent that is used to treat metastatic HER2 overexpressed breast cancer patients have

demonstrated promising results54). Pharmacogenomics databases in cancer research

are used to identify clinically relevant new subclasses and associate them targeted ther-

apies by identifying a correlation between genomic profiles and drug response. These

databases provide aid to researchers in developing new targeted agents and reposition-

ing or repurposing existing drugs against new targets.

1.3 Role of Cancer Cell Lines in Cancer Drug Discovery

The role of cell lines to understand diseases and drug mechanism can be tracked backed

to 1950s69). Since then, researchers have been using cell lines to understand the reasons

for complex diseases, and the mechanism of action for multiple drugs. In cancer re-

search, BT-20, a breast cancer cell line was the first Cultivated in-vivo model that was

established in 195841) and has led cancer research towards a new orientation. Since

then, researchers and research groups started using cell lines cultivated from cancer

tissues to study genomic aberrations and molecular activities of diseases and treat-

ments. These cell lines are now being used to understand the molecular mechanism of

different complex diseases like cancer and Alzheimer. This resulted in the development

of cell line panels containing cell lines cultivated from different tumor and organs to

study tumor heterogeneity and homogeneity along with the mechanism of action for a
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particular drug or set of drugs in different organs and tumors.

In the 1990s, for the first time, researchers at the National Cancer Institute de-

rived cell lines from 59 human tumor samples known as NCI60 panel that provided

opportunities to researchers to study genomic characteristics and molecular properties

of tumors. Experiments performed by employing NCI60 have resulted in large-scale

datasets that have been used to identify driver mutations and design gene signatures.

Moreover, NCI60 has been used to test the response of more than seventy thousands

of compounds20).

Besides the NCI60 panel, cancer-specific cell lines panels are being widely used

by researchers to study the biology of specific cancer, and discover clinically relevant

sub-types based on genomic aberrations. Liu et al. analyzed a panel 56 colorectal

cancer (CRC) cell line to uncover the impact of TP53 mutation and on its expres-

sion44) in Colorectal cancer. Ovarian cancer cell line panel (OCCP) is another cell

lines panel which profiles 39 Ovarian cancer cell lines cultivated at European collection

of cell cultures, University of Innsbruck, and Utrecht University. OCCP covers four

morphological (molecular) subtypes of Ovarian cancer4).

These studies have been presented as an example, dozens of other cell line panels

have been profiled to study a different type of cancers and other diseases. However, all

these studies were limited in term of breadth and depth, therefore, In order to over-

come this problem Cancer Cell Encyclopedia was developed which provides genomic

characteristics of 947 Cancer cell lines of 17 organs, that had been tested against 24

anticancer drugs. Because of its unique nature, from its development, CCLE has widely

being used in cancer research since it can present near to all types of known cancers.

Cancer Therapeutic Response Portal (CTRP) developed by Broad Institute of MIT
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profiled 841 drugs response against 860 CCLE cancer cell lines. CCLE and CTRP pro-

vide substantial information to design in-silico and in-vivo experiments in the domain

of cancer research and drug development. The objective to develop CCLE and CTRP

databases was to enable researchers to characterized genomic features against drug sen-

sitivity and resistance. For example, by integrating data from CCLE and CTRP one

can explain how cell lines resistant to a certain drug differ from those that are sensitive

to that drug at the genomic level.

For the first time, the relevance between in-Vetro models of cancers and cancer cell

line was questioned by Kummar et.al. in 1970s40). Since then this discussion is ongoing

and it is believed by a group of scientific communality that with the passage of time cell

lines start differing from the original tissues because of missing micro-environment from

which they were cultivated83). Lack of the tumor microenvironment allows cell lines

to lose the tumor heterogeneity which was originally present in the tissue. Since then

researchers are studying coherence between cancer cell lines and tissues using different

methodologies. This dissertation presents a data-centric method to compare cancer cell

lines and tissues in the perspective of drug repurposing and repositioning.

1.4 Data Integration to identify cancer Bio-markers

Data integration in biology has always been an essential challenge in biomedical re-

search. Data integration is essential because it allows biologists to examine available

information in multiple contexts. However, it possesses an equal challenge for data

scientists because of its diversity and heterogeneity. Since data is being generated

independently and without considering other data generation systems into account
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therefore, each dataset is unique in its nature. Common vocabulary plays a key role

in data integration, therefore, researchers have been trying to develop common vocab-

ularies. Chapter 2 of this desecration provides a detailed overview of efforts taken by

researchers to develop common vocabularies using ontologies.

In cancer research, biomarkers are quantitative characteristics of tumors that are

measured using different techniques. These biomarkers are used in disease prognosis

and drug response prediction. Genomic aberrations are one of those quantitative char-

acteristics that can be measured in the form of genes expression, single nucleotide poly-

merases (SNPs) and copy number variants (CNVs) using different techniques. With

the development of NGS technologies, measuring these genomic aberrations has be-

come very easy and an effective way of identifying cancer biomarkers. Therefore re-

search in cancer drug discovery is about trying to associate genomic aberrations with

drug response. Figure 1.2 presents an example of drug-protein interaction network and

demonstrates a relationship between drugs and genomic entities.

Developments in the domain of genomics have resulted in a paradigm shift in cancer

research and treatment. Technology has allowed the generation of an enormous amount

of data at a very low cost. A very simple example of this advancement and its effect on

science and social welfare is the cost of sequencing a human genome which is approxi-

mately 1000 USD today. This cost is far low then the cost of the first human genomic

project and technologists are aiming to reduce it to 100 USD in the near future. This

advancement has led us to generate an enormous amount of data for genetic diseases

like cancer. An example of this is The Cancer Genome Atlas (TCGA) that provides

genomic data for nearly 11,000 patients from 36 different cancer types.

On the other hand, advancement in computational technology has allowed the de-
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Figure 1.2: Drug Protein intersection Network, an example to demonstrate relationship

between drugs and genomic entities

velopment of large scale biological databases to store an enormous amount of biological

data, analyze it to understand cancer mechanism and drug actions. Researches have

proven that integrated data analysis is an effective tool for understanding cancer mech-

anism, classifying it into subtypes and designing targeted treatments based on patients’

profiles51). For example, Michaut et.al has used integrative analysis for subtyping of

invasive lobular breast cancer53). Similarly, Verhaak at.al. used integrative genomic

analysis to study the association between of Glioblastoma multiform subtypes and dif-

ferent neural lineages80). Another study conducted by Chitale et.al. has demonstrated

the association between expression of DUSP4 and EGFR mutations in lung cancer and

showed that DUSP4 has lost functions in EGFR mutated samples in lung cancer10).
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Rampal at. al. at Memorial Sloan Kettering Cancer Center, New York used integra-

tive analysis to identify the role of JAK-STAT pathway in myeloproliferative neoplasm

pathogenesis63). These are not only four examples from different cancer types, but a

number of examples can be found that have used integrated analysis to find cancer

biomarkers and their clinical associations with different drugs.

Beside all efforts made by biomedical and omics data scientists in the domain inte-

gration, it is still one of the major limitations in the domain of biological data analysis

because it is an essential component of large scale analysis.

1.5 Data Integration to identify anticancer drug targets

Approvals of new drugs by Federal Drug Administration (FDA) has decreased by 50%

in last decade despite the fact that pharmaceutical industry is investing more in re-

search and development (R&D) to develop new drugs60). Failure of a new drug is not

lost of money but also time since average drug development duration span over 9-12

years. These challenges have led the concept of drug repositioning, finding new tar-

gets for existing drugs or that are already in the development or production pipeline.

Governments are encouraging the concept of drug repositioning by making curated

databases of approved drugs cubically available. Drug repositioning and repurposing

have been of prominent interest in cancer research where researchers are trying to

identify new targets for existing anticancer drugs and developing novel therapies using

existing anticancer drug42,34).

Data integration is an integral component of drug repositioning and repurposing

processes. Recalling from the genetic era, researchers have been using integrated data
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analysis for drug profiling based on the relationship between their chemical structures

and mode of action in a particular molecular context30). These efforts rocketed after ad-

vancement in the domain of genomics technologies that have resulted in the generation

of an enormous amount of genomic and transcriptomic data for cancer cell lines and

tissues. The Cancer Genome Atlas (TCGA) project, for example, provides genomic and

transcriptomic data for about 11,000 cancer tissues. Similarly, Cancer Therapeutic Re-

source Portal (CTRP) provides with drug response of 450 drugs tested on 800 cancer

cell lines of 17 organs. Integration of genomic and transcriptomic databases with drug

response databases provides a unique opportunity to understand disease mechanism,

mode of actions and identify new use of existing drugs using computational approaches

like machine learning, network-based analysis, and text mining42,85). Therefore, apply-

ing data integration in drug targets identification to integrate homogeneous genomic

and transcriptomic databases with drug response data is very common.

Integrating genomic, transcriptomic, and pathway databases with drug response al-

lows researchers to identify prospective drug targets and their mode of actions for any

particular drugs32). Therefore, researchers have been trying to develop databases by in-

tegrating genomic aberrations with drug response. Mutations and Drug Portal (MDP)

developed by Cristian at al integrates mutation and pharmacological information from

CCLE and NCI60 databases to find pharmacogenomics associations between cancer

cell lines and drugs74). Liu at al developed a database by integrating microRNA and

mRNA data with drug activities for NCBI cell lines to study the correlation between

transcriptomic and drug activities43). Pharmacogenomic Knowledge Base PharmGKB

is a curated database containing associations between 5000 variants, 900 genes and 600

drugs extracted by mining biomedical literature77). The PharmacoGenomic Mutation
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Database (PGMD) is a curated database of 117,000 Pharmacogenomic variants ex-

tracted manually from biomedical literature along with their study design, statistical

significance, and disease contexts. Data contained in PGMD covers 24 diseases, 1400

drugs and variants from 2800 genes37). Developed in 2013, DGIdb is another curated

database of 14,144 drug-genes interactions covering 6,307 drugs and 2,611 known tar-

get genes and 7,668 potential targets genes. Drugs in DGIdb are classified into two

categories; drugs with targeted genes or proteins have been characterized and drugs

whose targeted proteins are not characterized13). Takarabe at.al. also developed a tool

based on data integration approach to identify drug-targets and integrated Drug-target

introspection and chemical structure of compounds from KEGG Drugs with adverse

event keywords database for drug-target prediction75).

These are limited examples of integrating genomic data to find drug targets. How-

ever, all these databases to integrate genomics and pharmacology datasets to iden-

tify new drug targets limits in term of breadth and depth. Moreover, most of these

databases are based on biomedical literature and does not utilize biomedical data. Fur-

thermore, these databases also do not address the problem of integration impotent

component of analyzing cell lines and tissues together. In addition, these techniques

are also limited to either genomic or transcriptomic approaches while finding potential

drug targets whereas combining genomic and transcriptomic data provides a piece of

stronger evidence then using only one them. These limitations can be addressed by

providing an integrated platform of genomic, transcriptomic and pathway databases

of cancer cell lines and tissues. This dissertation has tried to address the challenge

of integrating genomic and transcriptomic data of cancer cell lines, and tissues with

anti-cancer drug response datasets in a biologist’s friendly fashion to facilitate them in
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generating new hypothesis based on available data.

1.6 Methods for Omics Data Integration

Previous sections of this chapter laid down the foundation of the fundamental need

for omics data integration in biomarker discovery and drug-target indentations. Ex-

amples presented in previous sections demonstrate the importance and need for data

integration for biologists in general and omics scientist in particular. Conclusively, data

integration is an integral component in omics data science because it allows biologists

and omics scientists to put information in multiple contexts while generating new hy-

pothesis68). This has encouraged omics data scientists and researchers to design and

develop methods for omics data integration. This section presents the state of the art

methods and techniques that have been used for the purpose of omics data integration.

Data integration in omics is a challenging task because of heterogeneous nature.

Data warehouses, databases constructed using mediated schema and federated databases

are three well-known database architectures that are being used for omics data inte-

gration46). Data warehouses store all data in a single large-scale database. Querying

data from a Data warehouse is fast however it is impossible to create a global Data

warehouse because of individual requirements and needs of each research group or con-

sortium. These constraints make it a good choice for curated data where that database

schema is already agreed upon55). On the other hand, Federated Databases enable

users to query over multiple databases that are created and maintained separately

using common schema(s). Querying these databases is similar to querying web us-

ing Google or other search engines where each database represents a website and is
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queried individually with the ability of aggregating outputs from all databases82). To

eliminate the problem of common schema, researchers developed the concept of the

mediated schema(s) that acts as middleware between different databases. In general,

the mediated schema is a graph containing nodes that represent objects in all database

and edges representing the relationship between nodes. Each database implements an

additional layer to translate entities and relationship of the mediated schema into exe-

cutable queries. Mediated schema(s) enables users to ask query from the Federation of

databases without understanding the type of each database and their local schema46).

Techniques used to integrate omics data coming from multiple sources mainly rely

on a common vocabulary. Therefore, researchers in the domain of omics data science

have tried to build common vocabularies. Development of common vocabulary is also a

major limitation of mediated schemas based federated databases as mediated schema(s)

should be developed using in a standard way to enable access to the data in integrated

fashion46). Thanks to Semantic Web Technologies that has proliferated the role of on-

tologies in the process of data integration because of their ability to represent and share

complex domain information in a systematic way and to provide methods for formal

representation of domain knowledge. In addition to these, ontologies are also being

used to design and develop information models that enable storing data in an orga-

nized structure65). Resource Description Framework (RDF) has provided a framework

to represent ontologies in a machine-readable format and to allow users to query multi-

ple data sources in a standardized method. Ontologies developed using RDF not only

be used for data integration but they also enable users to query data in an integrated

fashion using SPARQL query language8).

Like other domains, ontologies have been successfully employed in the domain of
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biomedical informatics to build common vocabularies. Gene Ontology, for example, is

one of the old biomedical Ontologies that were developed to the conceptualization of

knowledge about genes and their products12). Experimental factor Ontology is another

biomedical ontology that provides an information model to enables them to publish ex-

perimental data in a structured fashion47). These efforts have also played a key role in

the development of integrated biomedical databases because they have been used as a

core component in the process of data standardization. However, the major limitation

of ontology-driven data integration is that it does not allow biologist-friendly access

to data as users need to have in-depth knowledge of ontologies and SPARQL query

language to get their query answered. To overcome the problem of biologist-friendly

data integration, this dissertation has proposed networked based data integration that

deals with the limitation of ontology-based data integration by converting ontological

vocabulary to networks and graphs. In addition to this, the dissertation has also demon-

strated how domain knowledge can be used with experimental data in an integrated

fashion while developing a new hypothesis.

1.7 Research Questions

based on the limitations and challenges explained in section 1.6, work presented in this

dissertation was carried out to address the following research questions

1. How integrated biological data can be presented in a biologist-friendly way

2. How integrated pharmacogenomics data can be used to identify hidden links

between drugs and genomic aberrations

3. How cancer cell lines and tissues data can be integrated to carry out comparative
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investigations

1.8 Contribution

The main objective of this dissertation was to study that how data science methods and

techniques can be applied to put biological data in a biologist-friendly way. The research

presented in this dissertation was undertaken to address the challenge of investigating

cancer pharmacogenomics data in an integrated fashion by integrating genomic data

of cancer cell lines and tissues with drug response data. Research in this dissertation

has been carried out in two phases. The first phase studied the need for genomic data

integration, methods developed for applied and adapted integration of genomic data

and their limitations to biologists. This research resulted as a framework cMapper,

which integrated six different biological databases and presents their contents to users

in a biologist-friendly fashion. The second phase studied the methods to integrate

pharmacogenomics data of cancer cell lines and tissues in a biologist-friendly way.

cMapper framework developed as the result of research performed in the first phase

was adopted in the second phase. Frameworks presented in this research allow biologics

to (1) search connected objects with genes or small molecules (2) filter objects based

on multiple filtering objects (3) observe hidden connections between genes and objects

and (4) search for objects that are connected with multiple genes or small molecules.

This dissertation is partially based on the following academic publications

• Muhammad Shoaib, Adnan Ahmad Ansari, Farhan Haq, and Sung Min Ahn.

”IPCT: Integrated Pharmacogenomic Platform of Human Cancer Cell Lines and

Tissues.” Genes 10, no. 2 (2019): 171.
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• Muhammad Shoaib, Adnan Ahmad Ansari, and Sung-Min Ahn. ”cMapper:

gene-centric connectivity mapper for EBI-RDF platform.” Bioinformatics 33, no.

2 (2016): 266-271.

1.9 Structure of Desertion

This dissertation is organized as following:

• Chapter 2: presents literature review about data integration in biology, in-

troduces semantic web technologies and presents a summarized version of their

application in the domain of biology and genomics

• Chapter 3: presents the first phase of research in the form of cMapper frame-

work. It concludes the challenges in the domain of biomedical data integration

• Chapter 4: presents the second phase of research in the form of IPCT database

• Chapter 5: concludes this dissertation by presenting an overview of the disser-

tation along with possible future extension and directions that could be taken in

the near future

17





Chapter 2

Semantic Web based Data

Integration in Life Sciences

Advances in computational technology have enabled humans to records the massive

amount of data and preserve it whereas the computational algorithms are providing

methods of new frameworks for analyzing this recorded data52). Data-intensive com-

puting has converted biological science into a quantitative science. The emergence

of data-driven approaches in biological science is changing the way we thought about

diseases and their treatments. Medical records help us in understanding the nature,

type, frequency, and patterns of any particular diseases57) 21). Proteins relationship

help us in understanding the way any particular protein affect any specific organism

of the human body. The truth is that while doing the treatment we do not know the

original relationship between disease and treatment. This is why the most treatments

and neediness does not work for patients and we do not know which treatment is work-

ing fine and which is failing in depth with real causes. Collecting real-time data from
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treatment, integrating them with the literature and making some analytical work can

help us in solving this problem of uncertainty about treatments. Furthermore, this

can help clinicians and physicians in making scientific reasoning upon their decisions,

treatments, and prescriptions.

2.1 Data Integration in Life Sciences

The focus of life science research is to discover and identify the components, represent

them as data objects (data points) that make life, understand their function and know

the relationship among those data points with that they interact with each other to

form a biological system.25) The collection of these data objects can be done using

biological data however knowing their intersection with each other requires integration

between different databases. Therefore the process of understanding biological systems

using data-driven techniques can be explained in two different steps (1) collection of

biological data objects and their properties and (2) identifying the relationship among

these data points (biological system’s components).

Fortunately, the biomedical community is full of data what the missing is cre-

ating values from the available data and extract more meaningful relations from it.

From modern instruments that record the data to literature, biomedical community

has published the enormous amount of data during the previous decade in form of

open databases, text files, reports, and web pages to help the medical practitioners,

scientists, professional, clinicians and researchers in accessing the recent findings. This

data can be for discovering the relationship between different medical entities, For ex-

ample, common reactions of two genes, experiments performed on two or more than
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two specific genes. Finding this kind of relationships are not only helpful for researchers

but also helps clinicians and medical professionals to understand the in-depths of their

decisions.

Although data integration provides a way to look inside data from many different

angles, However, the task of biological data integration is not straightforward and

creates many challenges for the data scientists33) The major problems in the life science

data integration include heterogeneity and inconsistency. Efforts have been made in

integrating life sciences data however these are limited to integration of three datasets.

The issue of data integration in life sciences and biomedical informatics and its

challenges has been discussed among data scientists and biologist from a quiet time24).

NCBI2RDF1), BIO2RDF7) and EBI-RDF platform35) are examples of well known ef-

forts that have been taken to develop frameworks for data integration and sharing.

However, the focus of these frameworks was to provide a baseline for Semantic Data

sharing for the biological community. Among this issue of data integration, creation of

association among genes, their platform and diseases remain very common.

2.2 Semantic Web a tool for Data Integration

Semantic vision is to provide conceptual organization to available data. The core aim

of Semantic Web also known as Web 3.0 is (1) to provide formal semantics to describe

different entities (2) providing frameworks for publishing data on the web in uniform

format and (3) integrating heterogeneous data sources with each other and (4) provide

a global overview of information by logically connecting data points present in those

data sources. To fulfill objectives the concept of Ontology development has gained
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huge attention among the research community. Ontologies in any domain provide a

way to add formal semantics and describe things using them, provide a unified way

to identify the objects and allow integration of heterogeneous data points by adding

unified references to their identifiers which help linking objects of different domains with

each. Resource Description Framework (RDF and) Web Ontology Language (OWL) is

being widely used for the development of Ontologies.

From the emergence of Semantic Web, open linked data projects gained huge at-

tention not only in computing society but in other societies to link information present

on different sources with each other using the Uniform Resource Identifiers (URIs).

DBPedia project and freebase project and DBLP project is some well-known examples

of publishing data in the open linked format.

Semantic Web Ontologies have been accepted widely by the scientific community.

The scientific experiment Ontology SEO73) was developed to provide a formal descrip-

tion for scientific experiments by describing them using their characteristics and fea-

tures. Like other domains, Semantic Web technologies have also affected the research

of biomedical informatics59). Efforts have been made from a decade to create biological

ontologies to provide clear semantics and representations for biological entities. One of

the very first projects that were undertaken by the biomedical community for publish-

ing biological data using Semantic web was Gene Ontology (GO)12). Gene Ontology

has now been accepted as conman vocabulary for working genetic datasets and is help-

ing in integrating functional genomes data. It provides annotations about molecule

functions, biological processes and cellular components in the graphical structure. GO

has been used in many integration and data publishing projects including EBI-RDF

platform and integration of molecule data network23). Another ontology for biomedical
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investigation (OBI) was developed to describe biological experiments, their experimen-

tal processes, and their components required for biological investigations72). It was

developed to address the vocabulary challenge in the cross-disciplinary investigation by

providing the descriptions about biological and chemical investigations. Additionally,

it also defines roles and functions that are used in different biological investigations.

A use case of OBI has been presented in6) where authors have explains how biological

experiments can be modeled using OBI. OBI has also been used in EBI-RDF platform

as well. Applications like SPARQLGraph67) was also developed to enable semantic and

graphical queries over the semantically enriched biological databases. These applica-

tions help biologists to search for resources with semantic annotations without having

deep technical knowledge. A detailed literature review on the usage of semantic web

tool in biological data integration can be found in31).

Efforts have also been made in publishing the biological data in the form of open-

linked data on the web to make it accessible for other researchers. EMBL-EBI project

is one of the major project undertaken by the European Biomedical Celebratory to

publish biological data on the web. To the best of our knowledge, EBI has made the

more datasets in open access format then any other organization.

Since Ontologies provide an excellent way of linking entities with each other even in

different databases by recognizing the (1) common identifiers and (2) semantics of the

entities, they have been widely used in data integration8). Although Ontologies have

been widely in practice for integration of structural and non-structural data how-ever

integrating semantically enriched data and its aggregation in particular in biomedical

domains have not been studied yet. One possible reason is the lack of semantically

enriched data in the biomedical domain. However, with the development of EBI-RDF

22



platforms, RDF dumps provide a sufficient of the amount of data for integrating and

aggregating semantically enriched heterogeneous data.

2.3 Semantic Web based tools for Life Sciences

Semantic Web Tools have gained huge attention in the biomedical research community.

The well known and most widely used ontology tool protege was also developed in the

biomedical community. One reason is that SW Technologies allows modeling of complex

information in an easy well-defined way and allow the representation of captured domain

knowledge as well as in a standardized way.

As briefed in Introduction that enormous amount of data is being published in the

biomedical domain. Manual access to all this data is not possible for humans. Therefore

efforts have been made in to provide access to all information in a uniform way. Here

we in-depth review the work is done to publish biomedical data to linked-open data

cloud.

Following subsections presents a brief overview of well-known semantic web based

data integration tools developed for making biological data part of linked open data.

2.3.1 RDF based Bioinformatics Knowledge System (BIO2RDF)

BIO2RDF 5) is an open source project that addresses the problem of biological data

integration by published life science data into semantic web complaint linked open

data format. Two major contributions of BIO2RDF initial version was the creation

of stranded URIs for biological objects and make them accessible using REST and

converting non-structured biological data into structured (RDF) format. Its focus was
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on conversion of documents published life science domain and available on the NCBI

website in RDF format. BIO2RDF framework consists of two modules (1) ontology

generation and (2) RDFizer program. The process of ontology generation was man-

ual and was accomplished using protege – a widely used tool for ontology creation –

whereas RDFizer is a computer program written in Java to convert already existed

non RDF documents into RDF format. Rdfizer consists of two different components

(1) XML to RDF that convert XML documents of NCBI into RDF using XPath and

(2) SQL to RDF for Ensemble databases that fetches the relational data required and

translate it into RDF documents and (3) Text to RDF that convert textual documents

like proteins information in the text format using regular expression. The three steps

process of BIO2RDF framework includes (1) creation and normalization of URIs, (2)

data cleansing and pre-processing to make it suitable for RDF representation and (3)

development of RDFizer to convert structured and non-strutted data into RDF format.

Finally, the access to the information was given through Use a REST like an interface.

REpresentational State Transfer (REST) URI System and SerQL – a previous version

of SPARQL – query language. REST-Like URI architecture allows accessing of objects

using HTTP in a normalized and standardized way using rewrite rules.

BIO2RDF group made several remarkable changes to their framework from URI

standardization to SPARQL queries originally released in 20087). According to the

latest reporting in 2013. Now BIO2RDF framework is complaint with SIO ontology

and uses stranded URI http://www.bio2rdf.org/ and for the recourses. Furthermore,

additional new format tools have been added to the framework to convert TSV, CSV

and semi-strutted data into RDF format. Additionally, federated SPARQL queries

have also been allowed on different data sources.
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Figure 2.1: Overall Architecture of Bio2RDF Platform. Figure demonstrates the system

level flow of information. It shows which data point is connected from which database.

Figure adapted from5)

2.3.2 RDF-based access to NCBI databases (NCBI2RDF)

NCBI2RDF 1) was a project undertaken to integrate various NCBI resources using RDF

and provide SPARQL based access to NCBI recourses. It provides access to entire

NCBI databases using SPARQL queries that can be run using their developer API.

Meta-data Generation and Query Resolution are two basic functions of NCBI2RDF

API that it performs. Meta-data Generation module keeps collecting metadata from

NCBI about its databases using her E-utilities services that provides databases schema

in XML format. This meta-data explains the fields in databases their attributes and

their relationships with other databases. Once the meta-data files are fetched RDF is

created using these files to allow correct generation of SPARQL queries by the users

and to allow mapping of SPARQL variables to databases fields. Each database is

defined as a class and its fields are defined as object or data type properties depending
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upon the type of field. If it contains only literal value and is not linked with other

field NCBI2RDF API marks it as a data type property otherwise it marks it as an

object property. In the beginning, this work was done manually however because of

frequent updates in NCBI databases the process was automated. Once the meta-data is

generated NCBI2RDF API is ready to translate the SPARQL queries into an equivalent

set of NCBI service requests that are accepted by the NCBI service endpoints. Queries

with the one database are translated into services straightforwardly however queries

with the join between databases are translated into more than one service requests

that are pipelined then and executed sequentially. Results gathered at the end of each

service request are used to create the next request. This makes the process query

execution slow. Once all the translated service requests are executed the API combines

the results into SPARQL compliment result-set and return back to end the process

cycle.

The major limitation of NCBI2RDF database is that in order to utilize the API users

must have good knowledge of SPARQL and NCBI2RDF RDF schema and queries must

be aligned with it. This may be an easy task for semantic web programmer however it

is not for biologist even with a competent knowledge of programming.

2.3.3 EBI-RDF Platform for Life Science Data Integration

EBI-RDF 35) platform is one of the recent development in bringing biological data to

linked open data cloud. The core focus of the project was identifying the points of

integration between diverse datasets to answer the question required integration of var-

ious datasets. The rationale behind using the Graph-based approach was to build a

road map for the development of tools that can easily identify the relationship between
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Figure 2.2: Overall Architecture of NCBI2RDF Platform. Figure demonstrates the

system level flow of information. Figure adapted from1)

cross-database data points. Instead of creating new URI schemas like NCBI2RDF

and BIO2RDF, EBI-RDF platform has made extensive used of already existing on-

tologies for creation of identifiers of resources and adapted existing vocabularies. Six

most widely used databases (1) UniProt, (2) Expression Atlas, (3) Bio-Samples (4) Bio

models (5) Reactome and (6) ChEMBL has been made available to the linked open

data cloud and are accessible through a SPARQL endpoint. Each database has its

own SPARQL endpoint that can be used to query the database. These SPARQL end-

points have the capability of executing simple to complex queries. The key advantage

of EBI-RDF datasets is that these datasets use one synchronized URI that has not

been ensured in NCBI2RDF and BIO2RDF frameworks. Common URI scheme and

ontology-based semantic annotation of data are helpful in data integration to allow the
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creation of explicit links between different databases. (we will discuss this aspect of

EBI-RDF while discussing our framework in detail in section 3) However, the limitation

of EBI-RDF platform is it has not designed the phase of federated queries. EBI-RDF

dumps can be downloaded from EBI’s website free of cost.

One must have good knowledge of SPARQL, RDF and EBI-RDF schema to compose

the SPARQL queries for EBI-RDF platform. this is the same problem that NCBI2RDF

and BIO2RDF platforms are suffering from. An effort has been reported in [] to over-

come the issue of SPARQL query generation by providing a GUI tool for creation of

SPARQL queries automatically. One can make an output graph and the tool will au-

tomatically create the SPARQL query that can be passed to EBI-RDF platform. This

tool has also implemented the option of federated queries over EBI-RDF platform.

2.3.4 The Semantic Enrichment of the Scientific Literature (SESL)

The Semantic Enrichment of the Scientific Literature SESL’s29) pilot project aimed to

use Semantic Web Technology for adding a meaningful annotation to scientific literature

and integrating them using linked open technologies. The major difference between pre-

viously explained frameworks and SESL is that SESL deals has used the unstructured

and strutted data collectively to create gene-disease relationships and provide the cre-

ated relationship semantic annotations using already developed biomedical ontologies.

In the first phase gene and diseases, identification was performed using LexEBI and

UMLS repositories. These repositories acted as the baseline in the identification pro-

cess. Once the basic identification process was completed sentences having gene-disease

pair were identified and the relationship between gene-diseases was marked. Finally,

the pair along with the reference information were loaded into the triple store. Once
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Figure 2.3: SESL architecture for integration of scientific literature. Figure demon-

strates the system level flow of information and process of federated query execration

at database federation of complex schemes. Figure adapted from29)

the pairs are identified and annotated they are linked with UniProtKB and Gene Ex-

pression. For this purpose 20,272 proteins, 100,723 functional annotations and 13,897

protein interactions were used in the pilot release of SESL.

2.3.5 Text mining for Disease-Gene associations

Text mining and data integration of disease–gene associations62) is another project that

was initiated for the creation of links between diseases and their respective genes from

biological literature. The core focus of this project was the relationship discovery be-

tween genes and disease using text mining. Four step process of gene-disease annotation

includes, (1) construction disease dictionary using Ontology, (2) identification of genes

and diseases names from text, (3) Extraction of association between genes and diseases

and (4) the integration of computationally extracted data with humanly created liter-

29



ature. Natural Language based approach for extracting gene-disease relationship with

genes from biological literature has been used whereas genes and diseases are extracted

using named entity-relationship (NER) and are marked as a paired entity using based

on confidence value. The focus of this work was on textual mining, understanding of

medical language using NLP. In the first step, DISEASES extracts the list of diseases

and their synonyms from disease Ontology and creates a dictionary. In the next step,

it identifies the variants of the disease terms which were used interchangeably in the

literature. As the next step from textual documents names of genes and diseases are

extracted and mapped against the document in which they were found. Data created

as the result of gene-disease extraction are then used to create an association between

diseases and proteins using co-occurrence based scoring system. To compute the score

of co-occurrence authors have used a well-known cosine similarity measure. UniProtKB

was used to extract the proteins of the given genes and vice versa. Finally, diseases

were linked with the data available on Genetics Home Reference (GHR)56). For this

purpose, the authors used a crawler to download information about each disease on its

web page. Using this way authors were able to map 390 diseases from diseases they

extracted using text mining and disease Ontology to the with the GHR database.

Other Life science Data Integration projects include50) that explains the ontology-

based approach for integrating clinical data. In49) authors have presented different

case studies of the projects that published there data to open linked data cloud using

RDF technologies. This project includes publishing (1) CheEMBL, (2) neurosciences

micro-array experiment results and (3) DrugBank as RDF triple store. Notice that

these projects were undertaken by different groups and were developed independently,

therefore, one can not extract relationships between objects using these three RDF
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datasets.

2.4 Limitations and Challenges

The scope of all existing data integration and open linked data publishing tool uses

simple Semantic Web Technologies (RDF/OWL) for integration purposes. This is not

reasonable for bioscientists, engineers and physicians to ask federated questions using

SPARQL queries. It is because of the reason that many few of biological-scientists

understand SPARQL, and know how to query using SPARQL endpoint. Because of

this technology gap, the fruits of the efforts have not given to the real users.

Chapter 3 of this dissertation has tried to overcome the issue and minimizing the

gap by providing a graphical tool based on EBI-RDF datasets to the users. Properties

of the developed tools are (1) it allows users to search all entities related to a specific

gene along with their relationship with the given gene (2) Limit the output by reducing

the number of databases, level of information details, (3) it has capability of finding

relationships between two are more than two genes.
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Chapter 3

cMapper: gene-centric

connectivity mapper for

EBI-RDF platform

3.1 Abstract

Motivation: Motivation: In this era of biological big data, data integration has be-

come a common task and a challenge for biologists. The Resource Description Frame-

work (RDF) was developed to enable interoperability of heterogeneous datasets. The

EBI-RDF platform enables an efficient data integration of six independent biological

databases using RDF technologies and shared ontologies. However, to take advantage of

this platform, biologists need to be familiar with RDF technologies and SPARQL query

language. To overcome this practical limitation of the EBI-RDF platform, we developed

cMapper, a web-based tool that enables biologists to search the EBI-RDF databases in
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a gene-centric manner without a thorough knowledge of RDF and SPARQL.

Results: cMapper allows biologists to search data entities in the EBI-RDF plat-

form that are connected to genes or small molecules of interest in multiple biological

contexts. The input to cMapper consists of a set of genes or small molecules, and the

output are data entities in six independent EBI-RDF databases connected with the

given genes or small molecules in the user’s query. cMapper provides output to users

in the form of a graph in which nodes represent data entities and the edges represent

connections between data entities and inputted set of genes or small molecules. Fur-

thermore, users can apply filters based on database, taxonomy, organ and pathways in

order to focus on a core connectivity graph of their interest. Data entities from multiple

databases are differentiated based on background colors. cMapper also enables users to

investigate shared connections between genes or small molecules of interest. Users can

view the output graph on a web browser or download it in either GraphML or JSON

formats.

Availability and Implementations: cMapper is available as a web appli-

cation with an integrated MySQL database. The web application was developed

using Java and deployed on Tomcat server. We developed the user interface us-

ing HTML5, JQuery and the Cytoscape Graph API. cMapper can be accessed at

http://cmapper.ewostech.net Readers can download the development manual from the

website
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3.2 Introduction

Data integration has become both a common task and a challenge in biological re-

search. High throughput profiling technologies have led to large-scale data-rich bio-

logical research, facilitating the development of various-omics: genomics, epigenomics,

transcriptomics, lipidomics, metabolomics, etc.25). In this era of biological big data, it

is both an opportunity and a challenge to analyze the vast and various collections of

data to discover the underlying biology26).

For biologists, data integration is essential because of the need to put biological

questions in various contexts to find unknown connections or new hypotheses. As

biologists are the main users of biological data and databases, the traditional approach

of data integration has been biologist-friendly. This approach does not require much

knowledge or experience in information technology. ENSEMBL is a good example, as it

is an integrated platform of multiple genomic databases with a variety of bioinformatics

pipelines for data analysis15)

The problem of data integration is not intrinsic to biological big data. This issue has

been more thoroughly investigated through studies of the Web Science66). Each website

is a database containing heterogeneous, but potentially related, data entries. Searching

the Web for a piece of information is similar to searching a set of biological big data

for a useful biological connection. A data integration approach, such as ENSEMBL,

will not work for Web searchers, as it is both large-scale and heterogeneous16). In

other words, it is impossible to create a super-website integrating all data entities

from all websites. Instead of creating integrated data repositories, Web scientists have

developed a framework called Resource Description Framework (RDF) that enables
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linking resources (data entities) from multiple websites based on their Uniform Resource

Identifiers (URIs)16). RDF provides a unified common mechanism to create data models

for describing information in the form of subjects, predicates, and objects which are

collectively called triples. Each RDF document contains multiple triples. Databases

that store RDF documents are called triple stores58). Each resource in a RDF database

has a URI. These URIs are used to find identical resources (identical data entities) in

multiple databases and connect resources from databases with different data models38).

Beyond providing a standard framework for publishing data and data models, RDF is

flexible, extendable, adaptable, evolvable, and incremental. In summary, RDF provides

an easy method of data integration without creating an integrated platform, such as

ENSEMBL.

Given the advantages of integrating large-scale heterogeneous datasets, researchers

have tried to adopt RDF for biological databases. For example, NCBI2RDF was cre-

ated to provide integrated access to NCBI databases using the SPARQL query language

(Anguita et al., 2013). BIO2RDF was developed to provide integrated access to pub-

lically available biomedical databases such as KEGG, PDB, MGI, HGNC, and a few

NCBI databases (Callahan et al., 2013). The EBI-RDF platform is the most recent and

systematic effort to apply RDF to biological databases to allow users to ask complex

biological questions using SPARQL36).

Technically, the EBI-RDF platform as illustrated in 3.1 is a common RDF triple

store of six independent RDF triple stores: 1) Expression Atlas, 2) BioModels, 3)

BioSamples, 4) ChEMBL, 5) REACTOME, and 6) UniProt. These triple stores are

interconnected through common URIs and shared ontologies. The EBI-RDF platform

enables users to ask questions that require integrating data from multiple triple stores
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Figure 3.1: Graph illustrating how data points are linked in EBI-RDF platform uisng

ontologies and shared vocabularies. Figure taken from36)

using a single SPARQL query. A practical limitation of the EBI-RDF platform is the

need for advanced knowledge of SPARQL and data models of six RDF triple stores in

order to ask queries across different biological databases.

We have developed cMapper, a gene-centric connectivity mapper for the EBI-RDF

platform, starting with the assumption that biologists are most likely to search the

EBI-RDF platform in a gene-centric manner. cMapper displays data entities connected

with the given genes or small molecules of interest and visualizes them using a graphical

interface. Users can easily identify whether their gene of interest has a connected entity

in six biological databases in the EBI-RDF platform. Furthermore, they can identify

a connected entity and its relationship with the original query. In addition, users can

filter output based on (1) shared pathways (i.e., shared data entities between inputted

genes or small molecules), (2) taxonomy, (3) organs, (4) metabolic pathways, and (5)

signaling pathways. In summary, cMapper enables biologists with limited knowledge

of RDF and SPARQL to utilize the EBI-RDF platform in a biologist-friendly way.
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3.3 cMapper Overview

The EBI-RDF platform provides a new way of exploiting data in different contexts, such

as understanding gene expression in the context of pathways or small molecules36). Our

tool allows for investigating connectivity between data entities in a graphical manner.

Biologists can start an investigation with a small number of genes or small molecules

and then expand the context of the genes or small molecules in order to generate new

hypotheses. The distinctive features of cMapper are:

1. Users can construct a graph of data entities in the EBI-RDF platform that are

connected to the input (a set of genes or small molecules).

2. Users can select databases. For example, a user may select the databases Expres-

sion Atlas and ChEMBL to investigate connectivity of data entities to genes or

small molecules of interest.

3. Users can input up to five genes or small molecules to find potential connectivity

with other data entities.

4. Users can view the output directly at the cMapper site. Alternatively, users can

download and view the file using Cytoscape or other graphing tools.

5. Users can download output graph in GraphML, JSON and Image formats.

6. Upon entering a small molecule, users can obtain a list of genes affected by the

small molecule and its relationship with the genes.

cMapper was implemented in two phases: 1) creation of the connectivity database

using the EBI-RDF platform containing data from six independent databases; 2) de-

velopment of the web application with an interactive interface which enables users to
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investigate the connectivity map of genes or small molecules of interest in six different

databases.

The cMapper database was developed using the MySQL database management

system. We used MySQL RDBMS since RDF stores are not suitable for storing and fast

processing of large datasets. In other words, on-the-fly queries on RDF stores require a

lot of computational resource and time, whereas RDBMSs can efficiently handle queries

over large-scale databases. The web application of cMapper was developed using a

Java servlet and deployed using the Tomcat web application server. The cMapper

database contains two types of tables: 1) connectivity tables that store information

about connections between different data entities, and 2) data tables that store basic

information about data entities.

3.3.1 cMapper Connectivity Tables

We created connectivity tables by identifying identical data entities across databases

using string matching and the owl:sameas property in the EBI-RDF platform. In RDF,

the owl:sameas property is used to connect two data entities that are semantically the

same but have different URIs. String matching was used to identify data entities with

identical URIs across databases, while the property owl:sameas was used to identify

similar data entities.

To create connectivity tables, we first extracted gene-protein relationships from

UniProt. Second, we connected proteins to REACTOME using UniProt accessions that

are common in both databases. Third, we connected the gene-protein-REACTOME

connectivity map to Expression Atlas. Expression Atlas contains connections with both

genes and proteins. The connections between proteins were directly mapped from RDF
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triples using dbXRef property, and connections between genes were mapped by extract-

ing gene names from rdfs:label property. Gene names were identified from rdfs:label

objects using Named Entity Resolution (NER). Fourth, we connected ChEMBL to the

gene-protein-REACTOME-expression connectivity map. Small molecules in ChEMBL

were connected to proteins in the gene-protein-REACTOME-expression connectivity

map based on their therapeutic targets. We identified therapeutic targets of small

molecules using the combination of RDF properties hasAssay and hasTarget. Iden-

tified targets were linked with the proteins in the connectivity map using the RDF

property targetCmptXref.

Next, we connected BioSamples and BioModels databases to the gene-protein-

REACTOME-expression-chemical connectivity map. Data entities in these two databases

do not have direct connections with either genes or proteins. In other words, we were

not able to connect them to genes or proteins using the RDF property. To solve this

problem, we developed an algorithm that identifies connections between data entities of

BioSamples and BioModels and those of UniProt and Expression Atlas. The algorithm

(1) filters RDF triples with objects identical to data entities in UniProt or Expression

Atlas, (2) marks the predicates of the filtered triples obtained in the first step as bridge

properties, and (3) adds triples with bridged properties to mapping tables.

We used pav:derivedFrom properties in BioSamples as a bridging property. BioSam-

ples have two types of sample data: samples used in Expression Atlas experiments,

and samples derived from PubMed documents. Samples used in Expression Atlas ex-

periments were linked to the connectivity map using the pav:derivedFrom property.

Samples derived from PubMed documents were linked using gene names in the sample

description. We extracted genes names from sample descriptions using NER. Finally,
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we connected BioModels to the gene-protein-REACTOME-expression-chemical-sample

connectivity map using the model’s annotations. First, we identified the necessary an-

notations using the RDF property sbmlrdf:versionOf, a sub property of the annotation

property sbmlrdf:sbmlAnnotation. Next, we connected UniProt data entities using ob-

jects of those triples that have the predicate sbmlrdf:versionOf and objects identical to

the database references of UniProt data entities. Models having UniProt accessions in

data references were connected to the connectivity map directly using the UniProt ac-

cessions. However, not all models in BioModels have UniProt accessions; some models

have accession IDs from other databases, such as ENSEMBL and Interpro. In these

cases, we converted their IDs to UniProt accessions using UniProt DR annotations and

NER.

3.3.2 cMapper Data Tables

cMapper data tables contain basic information about data entities in the EBI-RDF

platform, summarized in Table 3.1. Since our objective is not to duplicate the infor-

mation in the EBI-RDF platform but to enable user-friendly, gene-centric, quick access

to the EBI-RDF platform to users who do not have essential knowledge of RDF and

SPARQL, we have added only basic information about data entities in the data ta-

bles. The remaining information can be retrieved using URIs. For example, biological

processes and functions can be retrieved from UniProt, while experimental conditions

and details, as well as chemical formulae of small molecules; can be retrieved from

Expression Atlas and ChEMBL.
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Table 3.1: Basic information in cMapper data tables

Database Basic information about data entities in each database

UniProt UniProt accessions for protein identification, gene IDs and

names for gene identification, organism, and data entities

references for cross database connections.

Expression Atlas Probes, gene names, UniProt accessions, experiment iden-

tifiers, assays, organ, up- or down-regulation, organism,

assays’ short description, and P-value.

ChEMBL Small molecule registration identifier, assays and respec-

tive UniProt accessions to identify connections between

protein and small molecules.

REACTOME Pathway identifiers, upstream and downstream genes, and

pathway hierarchy.

BioModels Experimental assays used to link BioModels with Expres-

sion Atlas, gene names, and organism.

BioSamples Sample title, brief summary, sample identifier, species,

gene names, and sample group.
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3.3.3 Web Portal

Our web portal provides users with a biologist-friendly interface. When a user inputs

a single or multiple genes or a small molecule and selects certain databases, a graph is

presented with data entities as nodes, with links between those nodes shown as edges.

Using this graph, a user can intuitively investigate the connectivity map of genes or

small molecules of interest in six different biological databases in the EBI-RDF platform.

We used Cytoscape’s web API to create graphs45).

When a user enters a list of genes or small molecules, cMapper creates separate

output graphs for each element in the list. In the second step, cMapper randomly takes

two output graphs and merges them into a single graph using shared data entities

between the two graphs. This step is repeated until all output graphs are merged into

a single graph.

3.4 Results

The cMapper web portal provides an easy way to investigate the connectivity map of

genes or small molecules in six independent databases in the EBI-RDF platform. The

present size of cMapper database is 50 GB and it provides the following functionality

to its users.

3.4.1 Browsing, Searching and Filtering

Input to cMapper is a set of genes or small molecules. Users can enter genes or small

molecules directly or select them from the autocomplete list. The output of cMapper

in response to a user query is a connectivity graph comprised of data entities connected
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with inputted genes or small molecules. Data entities from different databases are

differentiated by color.

Users can apply filters on the output graph. Table 3.2 summarizes the database

filters and their functions in cMapper. Database filters help users to focus on the core

connectivity map of their interest. For example, using the combination of database,

organism, and organ filters a user may focus on changes in FGF19 gene expression in

the liver of Homo sapiens. The Use case in the supplementary information provides a

compact working example of a filter combination.

Figure 3.2: cMapper output for the user query FGF19, CTNNB1, and STAT3 with

the shared connection filter disabled. The figure shows all data entities connected to

FGF19, CTNNB1, and STAT3 in the EBI-RDF platform. Green, red, and silver nodes

represent organs in which any of these genes are differentially expressed. Olive green

nodes represent data entities from BioModels; orange nodes, those from REACTOME;

yellow nodes, those from ChEMBL; and dark blue nodes, those from BioSamples.
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Table 3.3: User Input query for Figure 3.3

Input Type Input

Genes CTNNB1; STAT3; FGF19

Databases Included Associated Genes, UniProt, Expression Atlas, REAC-

TOME, ChEMBL, BioModels, BioSamples

Databases Excluded None

Organism Filter Homo Sapiens

Organ Filter All Organs

Pathway Filter All Pathways

Graph Type All Connections

3.4.2 Finding shared connections

Finding shared connections is one of the most useful functions of cMapper for biologists.

In general, biologists search databases for hidden connections, such as a hidden direct

or an indirect connection between two genes and between a gene expression change and

a disease state.

Shared connection filter in cMapper enables users to investigate unknown or indi-

rect connections between data entities of six independent databases in the EBI-RDF

platform without possessing any programming skills. For example, when users input

two genes, cMapper generates the connectivity map of these two genes in the EBI-RDF

platform. Using the shared connection option, users can identify shared connections

or pathways between these two genes. Using this functionality, researchers can iden-

tify unknown relationships between data entities in the EBI-RDF platform, thereby
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Figure 3.3: cMapper output for the user query FGF19, CTNNB1, and STAT3 with

the filter for shared connections enabled. This connectivity map highlights shared data

entities between inputted genes. Green and red nodes represent organs in which any

two genes are co-expressed. Silver nodes represent organs in which any two genes are

differentially expressed. Olive green nodes represent data entities from BioModels;

orange nodes, those from REACTOME; yellow nodes, those from ChEMBL; and dark

blue nodes, those from BioSamples.

proposing new hypotheses.

Figure 3.2 presents the output graph generated by cMapper as result of the user’s

query FGF19, CTNNB1, and STAT3 with an organism filter. Tables 3.3, 3.4, and

3.5 provide compact filter details applied for figures creation. The connectivity map

consists of all data entities connected with any of the input genes in Homo sapiens

(humans). Figure 3.3 presents the graph showing connectivity map for the same genes

but with the organism filter disabled and the shared connections filter enabled. The

connectivity map in Figure 3.3 consists of data entities that are shared between more

46



Table 3.4: User Input query for Figure 3.3

Input Type Input

Genes CTNNB1; STAT3; FGF19

Databases Included UniProt, Expression Atlas, REACTOME, ChEMBL,

BioModels, BioSamples

Databases Excluded Associated Genes

Organism Filter All Organisms

Organ Filter All Organs

Pathway Filter All Pathways

Graph Type Shared Connections

than two genes in all organisms. Using the shared connection filter, users can highlight

potential connections between genes of interest and can potentially put forward new

hypotheses.

Figure 3.4 displays the output of the previous query including an additional pathway

filter. The connectivity map in Figure 3.4 consists of data entities (genes) connected

with the metabolic pathways of multiple inputted genes.

sing the filter for shared data entities, users can select a minimum number of genes

or small molecules as a threshold for shared connections. For example, a user can filter

data entities shared by two or three genes using the threshold. The default threshold

value is two.

47



Figure 3.4: cMapper output for the user query FGF19, CTNNB1, and STAT3 with the

filter for shared connections and the associated genes database filter enabled. In this

map, connected data entities represent genes connected with multiple inputted genes

through metabolic pathways

3.4.3 Downloading GraphML

Using the web interface of cMapper, users can navigate the connectivity map of selected

genes or small molecules. Users can also save the connectivity map as an image or

PDF document. The connectivity map can be downloaded in GraphML, JSON or

CSV formats for further analysis or for generating high quality graphics. GraphML,

JSON, and CSV files from cMapper contain information about nodes (representing

data entities) and edges (representing connections between data entities). Each node
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Table 3.5: User Input query for Figure 3.4

Input Type Input

Genes CTNNB1; STAT3; FGF19

Databases Included Associated Genes

Databases Excluded UniProt, Expression Atlas, REACTOME, ChEMBL,

BioModels, BioSamples

Organism Filter All Organisms

Organ Filter All Organs

Pathway Filter Metabolic Pathways

Graph Type Shared Connections

contains information regarding data entities in the form of its label, database identifier,

and URL. Labels are used to store display information and database identifiers for color-

coding of nodes. Users can download GraphML or JSON files and then use them with

any graph making software, e.g. Cytoscape.

3.5 cMapper Updater

cMapper updater is a Java Program with a set of SQL queries that is used to keep cMap-

per database up-to-date. Because cMapper database has been derived from databases

in EBI-RDF platform, It was required to update cMapper database to keep it synchro-

nize with its parent databases. As explained in section 2.1 and 2.2 of the manuscript,

we have developed six different modules to create connectivity and data tables from six

independent EBI-RDF databases because of schema diversity. This exercise of devel-

oping separate module also helped us in development of cMapper updater. Currently
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for each EBI database, we manually check whether it has been updated. Once we know

that a database has been updated, we download the new dump of respective database

from the EBI-RDF website and run the corresponding module of cMapper updater.

Each module of cMapper updater completes its process in following three steps. First

of all it creates a new temporary database using the pre-defined schema. Temporary

cMapper database only contains tables associated with the updated databases in EBI-

RDF platform. For example when REACTOME database in EBI-RDF platform is

updated, tables that store REACTOME data entities and their relationship with data

entities of other databases are only created in the temporary database. cMapper up-

dater creates new connectivity and data tables from updates dumps instead updating

existing tables because finding updated entities in data dumps is more time intensive

task then loading all entities into new tables. Second, it copies the tables from current

cMpapper database to backup database. We only preserve two most recent copies of

each data and connectivity table because of the space limitation. Backup copies are

used to restore cMapper database to its previous version when updater fails to complete

update process because of any error. Finally, it deletes the respective tables from cur-

rent database and move tables from temporary database to current cMapper database.

In short cMapper updater (1) creates new connectivity tables and data tables, (2) cre-

ates backup of existing tables, and (3) replaces respective current cMapper database

tables with new tables. Figures explaining cMapper updater workflow are available in

the supplementary.
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3.6 Case Study

In this section we expalin how cMapper can be used to generate new hypothesis. We

have been working on liver cancer genomics. We found a new potential role of FGF19

amplification in hepatocarcinogenesis (Ahn et al., Hepatology 2014). These days, PDL1

(CD274) is a hot issue because PDL1 is the target of immune checkpoint inhibitors, a

new promising category of anti-cancer drug because tumor cells can express PDL1 to

evade immunosurveillance.

Figure 3.5: cMapper showing data entities connected with FGF19, and CD274, without

applying any filter
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We used cMapper to ask a simple question that FGF19 is involved in hepatocar-

cinogenesis, but can it have anything to do with PDL1? To answer this question we

crated graph of all data entities connected with FGF19 and PDL1(CD274) Figure 3.5

shows the network created by cMapper and shows general landscape of all data points

connected with CD274 or FGF19.

The network showed in figure 3.5 is complex therefore we decided to focus on path-

ways. From the database menu, we select Pathway filters. The result of the query has

been shown in figure 3.6

However this network shown in figure 3.6 is also complex and needs to be prune

further therefore, we selected pathway database with shared connection filter enabled

with the objective that cMapper will return the pathways that are common between

CD274-network-Pathways.png

Figure 3.6: cMapper showing all FGF19, and CD274 pathways
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Figure 3.7: cMapper output showing common associated genes between PDL1 and

FGF19 using shared connection filter.

PDL1(CD274) and FGF19.

Figure 3.8: cMapper showing common pathways and associated genes between PDL1

and FGF19 and PIK3CA.
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We was intrested in knowing if FGF19 and PDL1 (CD274) has any associated

pathways in common. Figure 3.6 gives the positive answer by finding two pathways

that are associated with both PDL1 and FGF19. From figure we knew that both genes

have some connection at pathway level and both genes are associated with Immune

Systems and Adaptive Immune Systems. 4. Once we knew Once we knew that both

genes have common pathways, we wanted to know whether the two genes have any

associated genes in common. So, we selected associated genes database and selected

”shared connections”.

We found that PIK3CA is related to both FGF19 and PDL1(CD274). Through

some more literature search, we have come to a hypothesis that in our liver cancer

model system, activation of FGF19-FGFR4 pathway may lead to PDL1 overexpression

through PIK3CA pathway. In the next step we performed a another search to find com-

mon pathways and associated genes between FGF19, CD274, and PIK3CA. From the

result that is shown in figure 3.8 we noticed that FGF19 and PIK3CA has a lot of com-

mon pathways and associated genes however CD274 is connected with PIK3CA in only

one pathways ”Costimulation by the CD28 family” which leads towards a prospective

hypothesis of investigating role of PIK3CA gene in CD28 Costimulation pathway.

3.7 Discussion

Semantic web technologies, such as RDF and SPARQL, allow for interoperability among

heterogeneous databases. The EBI-RDF platform allows users to query six independent

databases in an integrated fashion. In other words, users can query six independent

databases to identify connections between data entities given an existing understanding
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of RDF and SPARQL. Using the EBI-RDF platform, researchers can construct a query

similar to that shown in Figure 4, which aims to find gene expression of CTNNB1 in

all organs by connecting searches from the UniProt and Expression Atlas databases.

Though this query is relatively simple, it still requires extensive knowledge of each

database schema and the SPARQL query language. Schweiger and colleagues67) devel-

oped SPARGRAPH, a graphical SPARQL query builder for the EBI-RDF platform. It

helps users to build a SPARQL query; however, users still need command over RDF

and SPARQL.

cMapper enables data integration and interoperability at the EBI-RDF platform,

allowing users to investigate the connectivity map of genes or small molecules of interest

without in-depth knowledge of RDF and SPARQL.

In order to provide users with updated connections, we have developed a computa-

tional pipeline to update cMapper database. Currently, our plan is to update cMapper

every three months, which seems sufficient to keep up with the update schedule of the

EBI-RDF platform (refer to Table S4 for the latest update schedule of the EBI-RDF

platform).
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Chapter 4

Integrated Pharmacogenomic

Platform of Human Cancer Cell

Lines and Tissues

4.1 Abstract

Motivation: The exponential increase in multilayered data, including omics, path-

ways, chemicals, and experimental models, requires innovative strategies to identify

new linkages between drug response information and omics features. Despite the avail-

ability of databases such as the Cancer Cell Line Encyclopedia (CCLE), the Cancer

Therapeutics Response Portal (CTRP), and The Cancer Genome Atlas (TCGA), it is

still challenging for biologists to explore the relationship between drug response and

underlying genomic features due to the heterogeneity of the data. In light of this, the

Integrated Pharmacogenomic Database of Cancer Cell Lines and Tissues (IPCT) has
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been developed as a user-friendly way to identify new linkages between drug responses

and genomic features, as these findings can lead not only to new biological discoveries

but also to new clinical trials.

Results: The IPCT allows biologists to compare the genomic features of sensitive

cell lines or small molecules with the genomic features of tumor tissues by integrating

the CTRP and CCLE databases with the REACTOME, cBioPortal, and Expression

Atlas databases. The input consists of a list of small molecules, cell lines, or genes,

and the output is a graph containing data entities connected with the queried input.

Users can apply filters to the databases, pathways, and genes as well as select computed

sensitivity values and mutation frequency scores to generate a relevant graph. Different

objects are differentiated based on the background color of the nodes. Moreover, when

multiple small molecules, cell lines, or genes are input, users can see their shared con-

nections to explore the data entities common between them. Finally, users can view the

resulting graphs in the online interface or download them in multiple image or graph

formats.

Availability and Implementation: The IPCT is available as a web application

with an integrated MySQL database. The web application was developed using Java

and deployed on the Tomcat server. The user interface was developed using HTML5,

JQuery 3.1.0 , and the Cytoscape Graph API 1.0.4. The IPCT can be accessed at

http://ipct.ewostech.net. The source code is available at

https://github.com/muhammadshoaib/ipct.
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4.2 Introduction

Advancements in pharmacogenomics through comprehensive next-generation sequenc-

ing studies have paved the way for developing effective therapeutics against cancer. The

omics data of cancer cell lines and cancer tissues are now readily used for categorizing

genomic diversity and identifying anti-cancer drug responses22). However, in the era of

big data, biologists face new challenges in dealing with the large amount of segregated

data available in different cancer genomic repositories71,11)

In the past decade, data scientists have made efforts to facilitate biologists by de-

veloping numerous biological databases, which to some extent have helped biologists to

analyze the underlying genetic mechanisms in cancer. NCI-60, the first cancer cell line

database, remained a unique resource of in vitro drug discovery for many years81). Re-

cently, large pharmacogenomic databases including the Cancer Cell Lines Encyclopedia

(CCLE), Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Therapeutics

Response Portal (CTRP) have also emerged. The CCLE database provides genomic

and transcriptomic information for 947 human cancer cell lines with drug response data

of 24 compounds2). GDSC and CTRP provide drug response information for more than

1000 cancer cell lines against 260 and 460 compounds, respectively3). In addition to cell

line data, omics data of thousands of cancer patients were also generated by The Cancer

Genome Atlas (TCGA) and European Molecular Biology Laboratory (EMBL)78).

Unfortunately, the volume and heterogeneity of the data has prevented biologists

from making effective use of these databases19). Therefore, an efficient and biologist-

friendly integration of these omics and pharmacogenomics databases is needed. This

integration would help biologists generate accurate and practical hypotheses for iden-
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tifying anti-cancer drug responses. The prime objective of this study was to provide

a uniquely user-friendly platform for cancer biologists that they can use to investigate

interlinked pharmacogenomics and cancer genomics data.

In this study, we have developed the Integrated Pharmacogenomics Platform of

Cancer Cell Lines and Tissues (IPCT), which integrates major drug response informa-

tion from the CTRP with omics data from the CCLE, cBioPortal19), REACTOME14),

and Expression Atlas61) databases. The IPCT is a biologist-friendly platform with

numerous novel features, highlighting:

• the genomic features sensitive to specific drugs;

• the percentage of affected cancer patients sensitive to a drug;

• the pathways associated with the drug response;

• cancer cell lines that are true representatives of cancer tissues;

• user-friendly single-click access to multiple datasets, which facilitates the genera-

tion of new and practical hypotheses.

4.3 Materials and Methods

The CTRP portal contains quantitatively measured sensitivity for 461 small molecules

in 860 deeply characterized cancer cell lines. Our tool (1) integrates the CTRP database

with external biological databases and (2) allows biologists to query CTRP data in a

graphical and integrated fashion. Biologists can start querying by entering a list of cell

lines or small molecules and utilize the context of results of their search to generate

new hypotheses.
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The IPCT has been developed in three different steps: (1) construction of the

database, (2) development of the database update pipeline and (3) web application.

The database is an essential component of the IPCT, which stores all data points and

connections among those data points in the CTRP, CCLE, cBioPortal, REACTOME

Pathways and Expression Atlas. The update pipeline is a script written in Python

that is used to update the database in real time. The web application is a GUI-based

application that will be used by the end users to explore data points and connections.

The IPCT is a biological database that integrates data about cancer cell lines,

small molecules, human pathways, experimental results, and cancer somatic mutations.

Figure 4.1 and 4.2 show architecture of IPCT database and demonstrates how multiple

databases have been integrated in IPCT database. We collected the cell line data from

the CCLE dataset, the small molecule features from the CTRP dataset, the pathway

data from REACTOME, the expression data from the Expression Atlas, the list of

cancer genes from cancer genes census17) and OncoKB9), and the genomic features of

cancer studies from cBioPortal. Our objective was to create an integrated database by

connecting the data points in the above databases.

In the second step, we added genes to our network. To do this, a list of genes and

their relationships to cell lines was required. We extracted genetic metadata from the

NCBI website and connected the genes and cell lines based on genomic changes, which

were present in the CCLE dataset in the form of mutations, copy number alterations,

and gene expression. We extracted these for each cell line from the CCLE dataset and

used this information to construct a small molecule–cell line–gene graph. A gene was

included in the small molecule–cell line–gene network if it had mutations, copy number

amplification, copy number deletion, high expression, or low expression in at least 10%
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Figure 4.1: Overall Architecture of IPCT Platform. Figure demonstrates the system

level flow of information. It shows which data point is connected from which database.
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Figure 4.2: Entities connected in the IPCT Database. Figure explains how different

objects can be linked with each other.

of the cell lines sensitive to an input small molecule. The IPCT, by default, connects

only genes with genomic aberration in 20% of the cell lines sensitive to an input small

molecule. However, users can relax or tighten these criteria as needed. Having already

constructed a small molecule–cell line network, in this step we only had to connect

the cell lines with the genes. To do this, we connected cell lines with the genes that

had mutations or copy number alterations in the given cell lines. This process was

repeated for all cell lines in the CCLE, which resulted in a cell line–gene network with

genes and cell lines as nodes and mutations or copy number alterations as edges. The

cell line–gene graph was then merged with the small molecule–cell line graph, which

resulted in a small molecule–cell line–gene network. After this step, we could identify

genes with mutations or copy number alterations in the cell lines that are sensitive to
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a given set of small molecules.

Once we identified the mutated genes, in the third step, we added pathways of the

mutated genes to our small-molecule-cell line-gene network. We collected pathway data

from the REACTOME database. REACTOME pathways were connected using Entrez

GeneIDs that were present in both databases.

The next step was to identify if the mutated genes had been reported as up-regulated

or down-regulated in previous experiments. The Expression Atlas contains differential

expression data from approximately 2500 experiments performed in different experi-

mental conditions. However, the Expression Atlas uses Ensembl IDs instead of gene

names or Entrez GeneIDs in its analyzed files. In the first step, we filtered only those

experiments that were related to cancer, loaded them into the database, and removed

insignificant records with p-value ≥ 0.05 and log fold change ≤ -1 and ≥ 1. Records

with log fold change ≥ 1 or ≤ -1 and p-value ≤ 0.05 were used for further processing.

Next, we connected all Ensembl IDs with their Entrez GeneIDs using the R package

”org.Hs.eg.db”. We used this database to construct a gene–experiment network with

genes and experiments as nodes and up-regulation or down-regulation as edges. This

graph was then merged with the small molecule–cell line–gene network constructed in

the previous step.

After construction of the small molecule-cell line-gene pathway graph, our next task

was to identify if the mutated genes had any potential relationship with any cancer type

in published cancer studies. To do this, we extracted data from cBioPortal. For each

gene, we computed what percentage of samples were mutated, altered, up-regulated,

and down-regulated in each study. In this way, we identified mutation and alteration

frequencies for 30,000 genes in 151 cancer studies and 33 cancer types. Data from
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cBioPortal were not used in network construction but are available as a separate entity

for further investigation.

The IPCT can be accessed via the web application, which allows users to explore

the connections between the data points of five biological databases in an integrated

graphical fashion. When a user enters a small molecule, cell line, or gene, a graph is

displayed with the data points as nodes and the relationships between the data points

as edges. Using this graph, the user can intuitively investigate the connectivity of the

given small molecules, cell lines, and genes. When a user enters multiple cell lines, small

molecules, or genes, the IPCT first independently constructs a graph for each element

in the list. Next, it takes two random graphs from among those and merges them using

the common data points. This step is repeated until all the graphs are merged into one

graph, which is ultimately displayed to the user.

4.4 Results

The IPCT comprises two major components: (1) the IPCT database and (2) the IPCT

web portal. The IPCT web portal provides an easy way to investigate the connections

between the data points available in the CTRP, CCLE, Expression Atlas, REACTOME,

and cBioPortal databases in an integrated fashion. The IPCT database currently con-

tains 860 cell lines, 481 small molecules, 2,500 differential expression studies, 2000

human pathways, and 151 cancer studies. Moreover, the IPCT contains 8,214,573

unique connections between the different data points (Table 4.2). The overall database

size is 20 GB. The distinctive functionality and features of the IPCT are as follows:

1. Users can input up to ten cell lines, small molecules, or genes to find potential
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connectivity with other data points.

2. Users can filter small molecules and cell lines sensitive to each other according to

a minimum sensitivity score.

3. Users can apply a filter on genes if they want to view only cancer genes, exclude

commonly mutated genes, or view all genes.

4. Users can apply filters if they want to see only mutated, copy number altered, or

high- or low-expressed genes.

5. Users can check the mutation frequencies and differential expression frequencies

in different cancer studies.

6. Users can highlight genes of their interest by applying a gene filter to the network.

7. Users can select if they want to show all connections or only shared connections

when multiple cell lines, small molecules, or genes are entered.

8. Users can view the output in the web browser as a graph or table. Alternatively,

users can download the graph and view it with Cytoscape version 1.0.4 or graph

viewing tools that show JSON and CSV files.

9. Users can save the graphs in JSON, PNG, or PDF formats and table in CSV

format.

4.4.1 Data Exploration

Users can start exploring the IPCT by entering small molecules, cell lines, or genes. If

users enter a list of cell lines, the IPCT outputs graphs with small molecules that are

sensitive to the queried cell lines and genes that are mutated or altered in the given
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cell lines. If users enter a small molecule, the IPCT outputs a graph containing the

cell lines sensitive to the given small molecule and genes mutated in the sensitive cell

lines. If users enter genes, the IPCT outputs a graph of cell lines with mutations or

copy number alterations in the given genes and the small molecules sensitive to those

cell lines. Users can then expand their search by expanding the graph to include data

points from the Expression Atlas or REACTOME. User can apply filters as explained

in Table 4.1 and reduce number of entities in graph. Figure 4.3 illustrates the output

generated by the IPCT for lapatinib with the shared pathway filter. By default, the

IPCT shows the pathways associated with more than 20% of genes connected with the

input drug, but users can modify this option to show all pathways if they want to see

the pathways of connected genes. Supplementary Figure 4.4 shows the result of same

query with all pathways. The IPCT also allows users to apply different filters to define

the context of their search.

4.4.2 Comparison Between Cell Lines and Real Tissues

Since all cancer cell lines do not have equal values to the tumor models, comparison

between genetic profiles of cell lines and real tumors is of importance. For example,

when a mutation is found in a cell line, a first question can be if the specific mutation

has also been reported in any of the cancer studies or not, and second, if the given

gene has any reported differential expression or not. The IPCT, by integrating data

from cBioPortal and Expression Atlas, provides answers to both question. When a user

clicks on a mutated gene’s node, he can explore cancer studies in which the given node

is up-regulated or down-regulated and observe the mutation or alteration percentage

in all cBioProtal cancer studies. With this exploration, a user can identify the cancer
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Table 4.1: Database filters that can be applied to searches in the IPCT

Database filter Applicable

databases

Function

Compound Sensitivity Small molecules Allow users to set thresholds for small

molecule sensitivity

Mutation Frequency Genes Allow users to set mutation frequency

Gene Filter Genes Allow user to select if he or she wants

to see only cancer genes, exclude com-

monly mutated genes or see all genes

Pathway filter REACTOME Allows users to select metabolic and

signaling pathways

Genomic aberration Genes Allow users to filter gene relationships

based on mutations, copy number alter-

ations, and gene expression
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Figure 4.3: IPCT output for small molecule user query lapatinib with shared pathways.

The graph shows all data points connected with lapatinib. Yellow nodes represent small

molecules; blue nodes show cell lines sensitive to lapatinib; sky-blue nodes represent sig-

nificant genes (those with multiple genomic aberrations); green and red nodes represent

genes that are up-regulated and down-regulated in the sensitive cell lines, respectively;

light green and light red represent the amplified and deleted genes in the sensitive cell

lines, respectively; white nodes represent mutated genes; and orange nodes represent

the REACTOME pathways of mutated genes.
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Figure 4.4: IPCT output for small molecule user query lapatinib with all pathways.

The graph shows all data points connected with lapatinib. Yellow nodes represent small

molecules; blue nodes show cell lines sensitive to lapatinib; sky-blue nodes represent sig-

nificant genes (those with multiple genomic aberrations); green and red nodes represent

genes that are up-regulated and down-regulated in the sensitive cell lines, respectively;

light green and light red represent the amplified and deleted genes in the sensitive cell

lines, respectively; white nodes represent mutated genes; and orange nodes represent

the REACTOME pathways of mutated genes.
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Table 4.2: User Input query for Figure 4.3

Input Type Input

Small Molecule LAPATINIB

Databases Included Associated Genes, Cell LInes, Expression Atlas, REAC-

TOME

Databases Excluded None

Genes Filter Cancer Genes Only

Drug Sensitivity -1.50

Mutation Frequency 20%

Pathway Filter Shared Pathways for figure 4.3

and All Pathways for figure 4.4

Graph Type All Connections

type in which the selected gene has up-regulation and in which the selected gene has

down-regulation. For example, in the previously illustrated (Figure 4.8) query, by

investigating LAPATINIB, SORAFENIB, GEFITINIB and SUNITINIB together, we

identified that FAT4 has mutations in 50% of cell lines sensitive to SORAFENIB, 24%

of cell lines sensitive to GEFITINIB, 30% of cell lines sensitive to SUNITINIB and 27%

of cell lines sensitive to LAPATINIB. A user can further investigate its frequency in real

tumors. Figure 4.6 illustrates the results for mutations and the differential expression

frequency of FAT4 in different cancer studies.
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Figure 4.5: IPCT output for small molecule user query Lapatinib, Sorafenib, Gefitinib

and Sunitinib to identify commonly mutated genes in cell lines sensitive to input small

molecules. Yellow nodes represent small molecules; blue nodes show cell lines sensitive

to inputed small molecules; white nodes represent commonly mutated genes in multiple

cell lines and sea-green nodes represent genes mutated in single cell line.

71



(a
)
F
A
T
4
M
u
ta
ti
on

s
(b
)
F
A
T
4
E
x
p
re
ss
io
n

F
ig
u
re

4
.6
:
F
A
T
4
’s

ge
n
et
ic

p
ro
fi
le

in
re
a
l
tu
m
or
s
ex
tr
ac
te
d
fr
om

cB
io
P
or
ta
l.

(A
)
F
A
T
4’
s
m
u
ta
ti
on

an
d
al
te
ra
ti
on

fr
eq
u
en

cy
in

d
iff
er
en
t

ca
n
ce
r
st
u
d
ie
s
(B

)
F
A
T
4’
s
D
iff
er
en
ti
al

ex
p
re
ss
io
n
in

d
iff
er
en
t
ca
n
ce
r
st
u
d
ie
s.

72



4.4.3 Filtering Genes

Cell lines have mutations in many genes; however, all mutated genes are not of interest

for biologists. Biologists – most of the time – give high importance to mutations in

oncogenes or tumor suppressor genes since their role in cancer is well-defined. To

facilitate biologists, we have created a gene filter in the following three ways:

1. Cancer genes: Construct graphs in the context of only oncogenes or tumor sup-

pressor genes.

2. Exclude commonly mutated genes: Construct graphs in the context of all genes

but exclude genes that have mutations in more than 90% of cell lines.

3. All genes: Disable the filter and construct graphs in the context of all genes.

This filter facilitates the users when they only want to focus on cancer genes’ mu-

tations and are interested in further exploration of only cancer genes. This filter also

helps users when they want to focus on rarely mutated genes by allowing them to ex-

clude genes that are mutated in more than 90% of cell lines. Figure 4.7 illustrates the

effect of applying a gene filter. Figure 4.7A shows only cancer genes that are mutated

in sensitive cell lines, and Figure 4.7B shows the network with all genes excluding fre-

quently mutated genes, i.e., genes that are mutated in fewer than 90% of overall cell

lines.

4.4.4 Finding Shared Connections

Another important feature of the IPCT for biologists is to find shared connections

between data entities. In general, biologists explore databases to find hidden connec-
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Figure 4.7: IPCT output for small molecule user query Lapatinib, Sorafenib, Gefi-

tinib and Sunitinib after disabling REACTOME and Expression Atlas Databases and

enabling Cell Lines and Mutated Genes only. (A) illustrates the results with gene fil-

ter = cancer genes, and (B) illustrates the value with gene filter = exclude common

mutations.

tions between data entities such as hidden direct or indirect relationships between two

cell lines and small molecule sensitivity or between small molecule sensitivity and gene

mutations.

The shared connection filter in the IPCT allows users to investigate unknown or

hidden relationships between data entities in five connected databases by simple clicks.

For example, when a user inputs more than two small molecules, the IPCT constructs

a graph with cell lines sensitive to the input small molecules, their mutated genes

and data entities connected with mutated genes. By enabling the shared connection

filter, the user can restrict the results to cell lines sensitive to both small molecules.

Similarly, he can restrict the graph to genes mutated in more than one cell line and to

pathways that are common between mutated genes. Using the shared connection filter,
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Table 4.3: User Input query for Figure 4.7

Input Type Input

Small Molecule LAPATINIB, SORAFENIB, GEFITINIB and SUNI-

TINIB

Databases Included Associated Genes, Cell LInes

Databases Excluded Expression Atlas, REACTOME

Genes Filter (a) a) Cancer Genes Only, (b) All Genes

Drug Sensitivity -1.50

Mutation Frequency 20%

Pathway Filter All Pathways

Graph Type All Connections

researchers can identify the unknown or hidden relationships between small molecules

and genes.

Figures 4.5 and 4.8 and illustrates the output generated by the IPCT for LAPA-

TINIB, SORAFENIB, GEFITINIB or SUNITINIB with the shared connection filter

enabled. Since the shared connection filter was enabled, Figures 4.5 and 4.8 contains

genes that are connected in more than two cell lines and pathways that are common

between two or more than two genes.

4.5 Download Graph

The web interface of the IPCT allows users to navigate data entities connected with

CTRP small molecules or CCLE cell lines. In addition to this, users can also download
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Figure 4.8: IPCT output for small molecule user query LAPATINIB, SORAFENIB,

GEFITINIB and SUNITINIB with shared connection filter enabled. The graph shows

only shared data points connected with LAPATINIB, SORAFENIB, GEFITINIB and

SUNITINIB. Yellow nodes represent small molecules; blue nodes show cell lines sensitive

to lapatinib; sky-blue nodes represent significant genes (those with multiple genomic

aberrations); green and red nodes represent genes that are up-regulated and down-

regulated in the sensitive cell lines, respectively; light green and light red represent

the amplified and deleted genes in the sensitive cell lines, respectively; white nodes

represent mutated genes; and orange nodes represent the REACTOME pathways of

mutated genes
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Table 4.4: User Input query for Figure 4.8

Input Type Input

Small Molecule LAPATINIB, SORAFENIB, GEFITINIB and SUNI-

TINIB

Databases Included Associated Genes, Cell LInes, Expression Atlas, REAC-

TOME

Databases Excluded None

Genes Filter Cancer Genes Only

Drug Sensitivity -1.50

Mutation Frequency 20%

Pathway Filter All Pathways

Graph Type Common Connections

output connectivity maps for future reference. The IPCT allows users to download

an output connectivity maps in GraphML, JSON or CSV formats for further analy-

sis and generation of high-quality graphs using external graph making tools such as

Cytoscape. GraphML, CSV or JSON downloaded from the IPCT contain informa-

tion about nodes representing data entities, and edges representing connection between

nodes (data entities). Each edge is identified using its unique identifier and contains

information in the form of its label, database identifier and URL. Labels store display

information, and database identifiers are used to store color coding. Nodes representing

small molecules contain additional information about their sensitivity to the connected

cell lines. Similarly, nodes representing genes contain additional information about

mutation frequency in sensitive cell lines.
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4.6 Case Study

Lapatinib and Afatinib are two tyrosine kinase inhibitors that are effective in breast

cancer. These drugs are usually effective in HER2 (ERBB2) mutation-positive pa-

tients64), (Rimawi et al. 2015; Li et al. 2008). In this section, we demonstrate how the

IPCT can be used to identify the mechanism of action of these two kinase inhibitors.

For this purpose, in the first stage, we query lapatinib and afatinib in the IPCT. Fig-

ure 4.9 shows the graph containing the sensitive cell lines, associated genes, and their

pathways generated by the IPCT as result of the query, without applying any filter.

Genes associated with these drugs are colored and shaped based on their relationship;

each color and shape represent a unique relationship between the genes and the cell

lines sensitive to the input drug. As such, genes with certain colors and shapes can be

classified as more important than other genes.

Next, we apply a filter to shortlist our gene set. We first apply the shared connection

filter to see if any genes are associated with both drugs. Genes can have different

associations with each drug, and the more important genes will be those that have the

same association with both drugs. Figure 4.10 shows the resulting graph. The sky-blue

genes are the most important ones, whereas those with a white background are the

least important. The circled genes can be classified as the most relevant gene set due

to the pathway clusters. Figure 4.10 shows that EGFR is amplified, NRG1 and FGFR1

are deleted, and AKAP9 and TP53 have mutations in cell lines sensitive to both drugs.

These genes have been found to be relevant to lapatinib and afatinib in the literature

(Forster et al. 2011; Leech et al. 2018; Li et al. 2008). ERBB2 is amplified and

highly expressed in 95% of afatinib-sensitive cell lines and 100% of lapatinib-sensitive

cell lines. Finally, we apply relationship filters to identify the most relevant results.
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These filters are designed to filter genes that have multiple genomic aberrations with

the queried drugs. Finally, Figure 4.11 demonstrates the relationship of ERBB2 with

lapatinib and afatinib.

An other example of IPCT usage is identifying Dabrafenib and trametinib target

gene. Dabrafenib and trametinib are BFAF inhibitors that are effective in melanoma

skin cancer. These drugs are usually effective in BFAF mutation-positive patients. In

Supplementary figure 4.12, we demonstrate how the IPCT can be used to identify the

important gene i.e. BRAF that is associated with dabrafenib and trametinib. We

have applied shared connection filter that gave us graph containing all genes that has

some genomic association with cell lines sensitive to dabrafenib and trametinib. and

highlight gene using gene find function.

4.7 Discussion and Conclusions

The recent advancements in pharmacogenomics through high-throughput sequencing

have suggested that big data scientists develop innovative strategies to address the

rapidly expanding biological data. However, the two major limitations to make effective

use of this huge amount of information are extensive data heterogeneity and a lack of

integration. To overcome these limitations, data scientists have been working on the

development of integrated and biologist-friendly databases. For instance, EBI-RDF is

a state of the art example that has enabled the integration of six different biological

databases including UniProt, Expression Atlas, REACTOME, ChEMBL, BioModels

and BioSamples. However, to the best of our knowledge, no large-scale efforts have been

made to integrate pharmacogenomic features of cancer cell lines with cancer genomic
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Figure 4.9: IPCT output for small molecule user query lapatinib and afatinib. The

graph shows all data points connected with lapatinib and afatinib. Yellow nodes rep-

resent small molecules; blue nodes show cell lines sensitive to lapatinib and afatinib;

sky-blue nodes represent significant genes (those with multiple genomic aberrations);

green and red nodes represent genes that are up-regulated and down-regulated in the

sensitive cell lines, respectively; light green and light red represent the amplified and

deleted genes in the sensitive cell lines, respectively; white nodes represent mutated

genes; and orange nodes represent the REACTOME pathways of mutated genes.
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Figure 4.10: IPCT output for small molecule user query lapatinib and afatinib with the

shared connection filter enabled. The graph shows all data points connected with lap-

atinib and afatinib. Yellow nodes represent small molecules; blue nodes show cell lines

sensitive to lapatinib and afatinib; sky-blue nodes represent significant genes (those

with multiple genomic aberrations); green and red nodes represent genes that are up-

regulated and down-regulated in the sensitive cell lines, respectively; light green and

light red represent the amplified and deleted genes in the sensitive cell lines, respec-

tively; white nodes represent mutated genes; and orange nodes represent the REAC-

TOME pathways of mutated genes.
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Figure 4.11: IPCT output for small molecule user query lapatinib and afatinib with the

shared connection filter and the relationship filter enabled. The graph shows all data

points connected with lapatinib and afatinib. Yellow nodes represent small molecules;

blue nodes show cell lines sensitive to lapatinib and afatinib; and sky-blue nodes rep-

resent significant genes (those with multiple genomic aberrations).
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Table 4.7: Genes association score with Lapatinib and Afatinib

Gene ID Gene Symbol Lapatinib Score Afatinib Score

1 2064 ERBB2 128 92

2 7157 TP53 104 77

3 1956 EGFR 78 46

4 6389 SDHA 59 49

5 3084 NRG1 51 50

6 5395 PMS2 51 48

7 2886 GRB7 51 47

8 84433 CARD11 51 48

9 2272 FHIT 51 50

10 10320 IKZF1 51 45

11 780 DDR1 51 39

12 6424 SFRP4 51 44

13 2115 ETV1 51 44

14 1029 CDKN2A 51 51

15 7486 WRN 51 51

16 5879 RAC1 51 47

17 8493 PPM1D 51 24

18 4609 MYC 41 50

19 2260 FGFR1 41 37

20 10397 NDRG1 39 49

21 2131 EXT1 39 49
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Table 4.11: Genes association score with Dabrafenib and Tramentinib

Gene ID Gene Symbol Dabrafenib Score Tramentinib Score

1 673 BRAF 139 26

2 1029 CDKN2A 75 50

3 2272 FHIT 51 51

4 25825 BACE2 51 34

5 692099 FAM86DP 51 22

6 283652 SLC24A5 51 20

7 23500 DAAM2 51 31

8 4359 MPZ 51 23

9 4644 MYO5A 51 19

10 3717 JAK2 51 47

11 2115 ETV1 51 48

12 4781 NFIB 51 45

13 5354 PLP1 51 27

14 4300 MLLT3 51 47

15 11168 PSIP1 51 47

16 29126 CD274 51 47

17 80380 PDCD1LG2 51 47

18 399694 SHC4 51 16

19 22876 INPP5F 44 27

20 100190799 LDHAP2 43 34

21 475 ATOX1 43 38

89



T
a
b
le

4.
12

:
P
a
th
w
ay
s
as
so
ci
at
ed

w
it
h
ge
n
es

h
av

in
g
ge
n
om

ic
ch
an

ge
s
in

ce
ll
li
n
es

se
n
si
ti
ve

to
D
ab

ra
fe
n
ib

an
d
T
ra
m
en
ti
n
ib

R
ea
ct
om

e
ID

P
at
h
w
ay

N
am

e
N
o
of

G
en

es

1
R
-H

S
A
-6
80

2
95

2
S
ig
n
al
in
g
b
y
B
R
A
F
an

d
R
A
F
fu
si
on

s
7

2
R
-H

S
A
-5
68

9
88

0
U
b
-s
p
ec
ifi
c
p
ro
ce
ss
in
g
p
ro
te
as
es

5

3
R
-H

S
A
-1
44

2
49

0
C
ol
la
ge
n
d
eg
ra
d
at
io
n

4

4
R
-H

S
A
-1
65

0
81

4
C
ol
la
ge
n
b
io
sy
n
th
es
is

an
d
m
o
d
if
y
in
g
en

zy
m
es

4

5
R
-H

S
A
-6
78

5
80

7
In
te
rl
eu

k
in
-4

an
d
13

si
gn

al
in
g

4

6
R
-H

S
A
-6
79

8
69

5
N
eu

tr
op

h
il
d
eg
ra
n
u
la
ti
on

4

7
R
-H

S
A
-6
80

2
94

6
S
ig
n
al
in
g
b
y
m
o
d
er
at
e
k
in
as
e
ac
ti
v
it
y
B
R
A
F
m
u
t.
..

4

8
R
-H

S
A
-6
80

2
94

9
S
ig
n
al
in
g
b
y
R
A
S
m
u
ta
n
ts

4

9
R
-H

S
A
-6
80

2
95

5
P
ar
ad

ox
ic
al

ac
ti
va
ti
on

of
R
A
F
si
gn

al
in
g
b
y
k
in
..
.

4

10
R
-H

S
A
-9
83

2
31

F
ac
to
rs

in
vo
lv
ed

in
m
eg
ak
ar
y
o
cy
te

d
ev
el
op

m
en
t
..
.

4

11
R
-H

S
A
-2
16

0
83

In
te
gr
in

ce
ll
su
rf
ac
e
in
te
ra
ct
io
n
s

3

12
R
-H

S
A
-3
00

0
17

8
E
C
M

p
ro
te
og

ly
ca
n
s

3

13
R
-H

S
A
-2
17

3
79

5
D
ow

n
re
gu

la
ti
on

of
S
M
A
D
2/

3:
S
M
A
D
4
tr
an

sc
ri
p
ti
on

a.
..

2

14
R
-H

S
A
-3
00

0
17

0
S
y
n
d
ec
an

in
te
ra
ct
io
n
s

2

90



Figure 4.12: IPCT output for small molecule user query dabrafenib and tramentinib

with the shared connection filter and the relationship filter enabled. The graph shows

all data points connected with dabrafenib and tramentinib.

features of real cancer patients.

One of the key questions for any biologist is whether genomic features of cancer cell

lines that are sensitive to drugs are also present in real cancer tissues. Earlier biologists

had to search through multiple heterogeneous databases, which is a challenging job

for researchers with limited computational skills. Recently, Elena Piñeiro-Yáñez et al.

(Piñeiro-Yáñez, et al., 2018) developed PanDrugs to prioritize anticancer drug treat-

ments depending on patients’ genomic profiles. PanDrugs majorly focuses on clinical

aspects of cancer genomics, in contrast to IPCT which is designed to help researchers

in generation and in-silico testing of hypothesis on pharmacogenomics data of human
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cell lines and genomic data of human tumor samples. IPCT enables data integration

and interoperability at CTRP, CCLE, Expression Atlas, REACTOME and cBioPortal,

allowing users to investigate the connectivity map of cell lines, small molecules and

genes of interest in a user-friendly fashion.

In conclusion, IPCT enables biologists to investigate the connectivity map of small

molecules and genomics features in relationship with cancer cell lines and real cancer

tissues. It also highlights the genomic features sensitive to a specific drug and the

percentage of cancer patients affected by that drug. Of note, IPCT can also identify

cancer cell lines that are truly representative of real cancer tissues. In conclusion, the

integration of these five major databases in a biologist-friendly manner will facilitate

researchers in the generation of new and tangible hypotheses, leading to new clinical

trials.
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Chapter 5

Discussion

The origin of science starts with experimental science where scientists used to perform

experiments to study natural phenomena. Experimental science also existed centuries

ago which was then superseded by theoretical science in the 18th century. The era of

theoretical science starts with Kepler’s Laws and Newton’s Laws of Motion. The basis

of theoretical science was developing theoretic models and proving them analytically.

However with the passage of time, because of complexity in nature, these models grew

too complex that it became really difficult to solve and prove this model analytically.

This leads the science to its third paradigm known as computational science in which

computational simulations were designed for those problems which are too complex and

it was not possible to solve them analytically.

In recent years, experimental side also progressed and now with the help of latest

technology it has become possible to generate a massive amount of experimental data.

In molecular biology, for example, mass spectrometry, microarray, and next-generation

sequencing technologies have been producing a large amount of Genomics and Pro-
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teomics data on a daily basis. The latest development in information technology has

also made literature sharing faster than it was in fast. This has led to the problem of

extracting knowledge from the scientific literature. These developments lead towards

the creation of biological data repositories for experimental data, theoretical data, and

scientific data to store these data in a more structured and organized fashion. Since

these repositories contain overlapping information, therefore, more scientific insights

can be explored by integrating these data repositories using common data entities

among them.

Integrating biological databases has been a challenge because of heterogeneity and

diversity in the structure of biological databases. At the same time integration of

biological databases is essential because biologists have to ask questions in different

contexts. Techniques that have been used previously – creating one large integrated

database – are not realistic in the current era of biological big data because of growing

data volume. On the other side researchers in Web Science solved the same problem

by using Linked Open Data in which each resource is assigned an Internationalized

Resource Identifier (IRI). They developed the Resource Description Framework (RDF)

which allows the representation of data entities using a pre-defined schema and linked

them with each other using URIs. In RDF each data entity is represented as a resource

and its attributes are known as properties of those resources. RDF has been accepted as

the standard for Linked Open Data by World Wide Consortium (W3C). It has been in

practice from a decade to facilitate the process of data integration and ontology devel-

opment. Like the other domains, in the domain of bioinformatics and computational

biology, ontologies have been used to express biological knowledge. Since biological

data is networked, therefore, Ontologies can represent the biological knowledge in a
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more natural way with minimum loss of information.

In addition to this ontology also help in integrating data which more challenging

for bioinformatics because of its growth and diversity. EBI-RDF is an example of Se-

mantic Web (Ontology) based biological data integration, which integrates six biologi-

cal databases namely UniProt, Expression Atlas, REACTOME, ChEMBL, BioModels,

and BioSamples. However, one practical problem is that in order to extract real value

from these databases one must have good knowledge of SPARQL query language and

underlying ontological schema. The main goals of this dissertation are (1) to overcome

this practical limitation by providing a gene-centric user-friendly interface which will

allow users to explore EBI-RDF platform in a gene-centric fashion and (2) to extend

EBI-RDF platform by including CCLE Cell lines and CTRP Drugs to allow biologists

exploration of CTRP experiments in the context of EBI-RDF databases. Our research

will provide biologist with a user-friendly way of exploring integrated biological data

in a networked fashion.

To overcome this problem of understanding baseline technologies and schemas in

this research we have designed and developed a framework for integration and visual-

ization of biological databases and had shown how EBI-RDF platform can be extended

to fulfill customized needs of biologists. The contributions of this dissertation are (that

(1) it has enabled biologists friendly gene-centric access to EBI-RDF platform which

allow biologist to search among six EBI-RDF databases in a gene-centric fashion using

user friendly web interface and (2) it has shown how EBI-RDF platform can be ex-

tended and customized by connecting its four databases with The Cancer Therapeutics

Response Portal (CTRP), Cancer Cell Line Encyclopedia (CCLE) and cBioPortal. The

resultant framework will allow biologists to search EBI-RDF platform, CTRP drugs,
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and CCLE cell lines and data entities connected with them in EBI-RDF platform, cBio-

Protal, CCLE, and CTRP. In addition to this, it will also allow users to apply filters on

data entities while searching to facilitate biologists for asking questions in their specific

context.

This research has been carried out in two phases, in the first phase we designed

and develop the framework which allows biologist query EBI-RDF database in a gene-

centric way. Users can start exploring EBI-RDF platform by entering a set of genes or

small molecules and then expand their context by adding filters. In the second phase,

we extended our framework by adding three more databases to it (1) the Cancer Ther-

apeutics Response Portal (CTRP), (2) Cancer Cell Line Encyclopedia (CCLE) and (3)

cBioPortal. This allows biologist to explore CTRP and CCLE database in an integrated

way with EBI databases. The framework connects CTRP, CCLE, and cBioPortal with

UniProt, REACTOME pathways, Expression Atlas and ChEMBL (database of small

molecules and drugs).

cMapper and IPCT frameworks have two components (1) database and (2) web

application. cMapper and IPCT databases were developed using MySQL database.

We used RDMS because RDF triple stores are not suitable for efficient querying of

large databases. This means users cannot get answers of on-the-fly queries in real

time. Databases contain two types of tables (1) connectivity tables and (2) data tables.

Connectivity tables store connections between all databases in database and data tables

store basic information about each data entities used in connectivity tables. We created

connectivity tables by identifying identical data entities across databases using string

matching, owl-same as RDF property and named entity recognition (NER). In cMapper

database, UniProtKB identifiers were used as a central identifier to identify entities from
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other databases, and connect them with each other using UniProtKB identifiers. In

IPCT database CTRP Drug ID, CCLE cell lines IDs and Entrez Gene IDs was used as

bridged properties to connect data entities across databases.

cMapper and IPCT have been developed as a web application with an integrated

MySQL database. The web application was developed using Java and deployed on

Wildfly Web Application Server. We developed the user interface using HTML5,

JQuery, and the Cytoscape Graph API. By using cMapper users can construct a graph

of data entities connected with Genes or Small molecules. Similarly by using IPCT

users can construct a graph of data entities connected with small molecules, or cell

lines. Both frameworks allow users to (1) create connected graph of data entities, (2)

view graph on browsers, (3) download graph as GraphML, image or PDF for further

analysis, (4) apply filter on graph to perform a context-specific search (5) identify com-

mon connections between data entities in the graph by enabling shared connection

filter.
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Satu Koskinen, et al. Expression atlas update—an integrated database of gene

and protein expression in humans, animals and plants. Nucleic acids research,

44(D1):D746–D752, 2015.

[62] Sune Pletscher-Frankild, Albert Pallejà, Kalliopi Tsafou, Janos X Binder, and
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cer genome atlas (tcga): an immeasurable source of knowledge. Contemporary

oncology, 19(1A):A68, 2015.

[79] J Craig Venter, Mark D Adams, Eugene W Myers, Peter W Li, Richard J Mural,

Granger G Sutton, Hamilton O Smith, Mark Yandell, Cheryl A Evans, Robert A

Holt, et al. The sequence of the human genome. science, 291(5507):1304–1351,

2001.

[80] Roel GW Verhaak, Katherine A Hoadley, Elizabeth Purdom, Victoria Wang, Yuan

Qi, Matthew D Wilkerson, C Ryan Miller, Li Ding, Todd Golub, Jill P Mesirov,

et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblas-

109



toma characterized by abnormalities in pdgfra, idh1, egfr, and nf1. Cancer cell,

17(1):98–110, 2010.

[81] John N Weinstein. Spotlight on molecular profiling:“integromic” analysis of the

nci-60 cancer cell lines. Molecular cancer therapeutics, 5(11):2601–2605, 2006.

[82] Gio Wiederhold. Mediators in the architecture of future information systems.

Computer, 25(3):38–49, 1992.

[83] Jennifer L Wilding and Walter F Bodmer. Cancer cell lines for drug discovery and

development. Cancer research, 74(9):2377–2384, 2014.

[84] Satya P Yadav. The wholeness in suffix-omics,-omes, and the word om. Journal

of biomolecular techniques: JBT, 18(5):277, 2007.

[85] Yoshihiro Yamanishi, Michihiro Araki, Alex Gutteridge, Wataru Honda, and Mi-

noru Kanehisa. Prediction of drug–target interaction networks from the integration

of chemical and genomic spaces. Bioinformatics, 24(13):i232–i240, 2008.

110





국내 요약

생물학의 기술적 진보는 엄청난 양의 다중 오믹스 데이터 집합들을 양산하였다. 생물학적

데이터베이스와 다중 오믹스 데이터 집합 간의 통합은 생물학적 개체 간의 숨겨진 연결을

밝힐수있기때문에생물학자에게는필수적이다. 그러나데이터집합들간의통합프로세

스는다양하고이질적인특성으로인해매우복잡하고각생물학적데이터베이스와오믹스

데이터 세트는 특정 생물학적 영역 및 오믹스 영역을 다루기 위해 독립적으로 개발되고

생성되므로 그 구조 (데이터 구성 방법)는 서로 다른 형태를 취하고 있다. 이러한 이질적

특성으로 인해 오믹스 데이터베이스의 통합은 과학자들에게 어려운 과제 중 하나였다.

RDF (Resource Description Framework)는 트리플 형태로 데이터를 게시할 수 있는

통일된 메커니즘을 제공하여 서로 이질적인 리소스들을 연결할 수 있게 해준다. 트리플

데이터가 포함된 데이터베이스를 트리플 스토어라고 하는데 EBI-RDF 플랫폼은 RDF

기술을 사용하여 트리플 스토어를 게시함으로써 6개의 독립된 생물학적 데이터베이스를

해석하고 통합된 액세스를 가능하게 했다. 그러나 이러한 트리플 스토어를 쿼리하려면

스키마와 SPARQL 쿼리 언어에 대한 심층적인 지식이 필요하다. 이러한 한계를 극복하기

위해 이 논문의 첫번째 부분에서는 생물 학자들에게 친화적인 방식으로 통합된 생물학적

데이터베이스를 시각화하는 유전자 중심 플랫폼인 cMapper를 제시하고 있다. cMapper

는 생물 학자가 RDF 및 SPARQL 쿼리 언어에 대한 기술적 지식없이 통합 방식으로 (1)

UniProt, (2) Expression Atlas, (3) REACTOME, (4) ChEMBL, (5) BioModels 및 (6)



Biosamples 등 6 개의 생물학적 데이터베이스를 쿼리 할 수 있게 해준다.

논문의 두 번째 부분은 pharmacogenomics 데이터를 다른 생물학적 데이터베이스와

통합하는 프레임 워크인 cMapper의 확장 버전인 IPCT에 대한 것이다. IPCT는 CCLE와

cBioPortal 에서의 암 세포주 및 암 조직 유전적 이상, CTRP에서의 약물 반응 데이터,

Expression Atlas에서의 차별발현유전자의 실험 조건 그리고 REACTOME의 생물학적

경로들를 통합한다. IPCT는 생물학자들이 관심있는 약물에 민감한 암 세포주의 유전적

이상을 탐색할 수 있도록 해줄 뿐만 아니라 관심있는 세포주에 민감한 약물을 검색하는

기능도 제공한다. 또한 IPCT는 데이터 통합에 의해 사용자들에게 암세포주와 조직에서의

유전적 이상을 비교하는 기능도 제공한다.

cMapper와 IPCT는 사용자들에게 관심있는 항목에 필터를 적용할 수 있도록 해준다.

사용자가 하나 이상의 유전자 및 작은 분자 또는 세포주들을 입력하면 이와 연결된 일

반적인 생물학적 항목을 찾는 옵션을 선택할 수 있다. 또한 두 플랫폼 모두 사용자에게

화면에서 그래프를 시각화 하거나 PNG 또는 GraphML 형식으로 다운로드 할 수 있는

기능을 제공하고 IPCT를 통해 사용자는 CSV 및 JSON 형식의 데이터를 다운로드하여

추가 분석을 수행할 수 있다. 결론적으로 이 논문에서 수행된 연구는 생물학에서의 데이터

통합 문제를 다루며, 생물 학자들에게 친숙한 방식으로 통합된 생물학적 데이터 제시를

위해 사용할 수 있는 현대 데이터 계산 방법을 보여줌으로써 생물 학자들로 하여금 각

개체간의잠재성있는숨겨진관계확인하고이를이용하여자신의가설을세울수있도록

해준다.




	1 Introduction
	1.1 Genomics in Cancer Research
	1.2 Pharmacogenomics data in Target Identification
	1.3 Role of Cancer Cell Lines in Cancer Drug Discovery 
	1.4 Data Integration to identify cancer Bio-markers 
	1.5 Data Integration to identify anticancer drug targets
	1.6 Methods for Omics Data Integration 
	1.7 Research Questions 
	1.8 Contribution
	1.9 Structure of Desertion

	2 Semantic Web based Data Integration in Life Sciences
	2.1 Data Integration in Life Sciences
	2.2 Semantic Web a tool for Data Integration
	2.3 Semantic Web based tools for Life Sciences
	2.3.1 RDF based Bioinformatics Knowledge System (BIO2RDF)
	2.3.2 RDF-based access to NCBI databases (NCBI2RDF)
	2.3.3 EBI-RDF Platform for Life Science Data Integration
	2.3.4 The Semantic Enrichment of the Scientific Literature (SESL)
	2.3.5 Text mining for Disease-Gene associations

	2.4 Limitations and Challenges 

	3 cMapper: gene-centric connectivity mapper for EBI-RDF platform
	3.1 Abstract 
	3.2 Introduction
	3.3 cMapper Overview 
	3.3.1 cMapper Connectivity Tables 
	3.3.2 cMapper Data Tables
	3.3.3 Web Portal

	3.4 Results
	3.4.1 Browsing, Searching and Filtering
	3.4.2 Finding shared connections 
	3.4.3 Downloading GraphML

	3.5 cMapper Updater
	3.6 Case Study
	3.7 Discussion 

	4 Integrated Pharmacogenomic Platform of Human Cancer Cell Lines and Tissues
	4.1 Abstract
	4.2 Introduction 
	4.3 Materials and Methods
	4.4 Results
	4.4.1 Data Exploration
	4.4.2 Comparison Between Cell Lines and Real Tissues 
	4.4.3 Filtering Genes
	4.4.4 Finding Shared Connections

	4.5 Download Graph
	4.6 Case Study
	4.7 Discussion and Conclusions 

	5 Discussion
	Bibliography


<startpage>22
1 Introduction 2
 1.1 Genomics in Cancer Research 2
 1.2 Pharmacogenomics data in Target Identification 4
 1.3 Role of Cancer Cell Lines in Cancer Drug Discovery  5
 1.4 Data Integration to identify cancer Bio-markers  7
 1.5 Data Integration to identify anticancer drug targets 10
 1.6 Methods for Omics Data Integration  13
 1.7 Research Questions  15
 1.8 Contribution 16
 1.9 Structure of Desertion 17
2 Semantic Web based Data Integration in Life Sciences 19
 2.1 Data Integration in Life Sciences 20
 2.2 Semantic Web a tool for Data Integration 21
 2.3 Semantic Web based tools for Life Sciences 24
  2.3.1 RDF based Bioinformatics Knowledge System (BIO2RDF) 24
  2.3.2 RDF-based access to NCBI databases (NCBI2RDF) 26
  2.3.3 EBI-RDF Platform for Life Science Data Integration 27
  2.3.4 The Semantic Enrichment of the Scientific Literature (SESL) 29
  2.3.5 Text mining for Disease-Gene associations 30
 2.4 Limitations and Challenges  32
3 cMapper: gene-centric connectivity mapper for EBI-RDF platform 34
 3.1 Abstract  34
 3.2 Introduction 36
 3.3 cMapper Overview  39
  3.3.1 cMapper Connectivity Tables  40
  3.3.2 cMapper Data Tables 42
  3.3.3 Web Portal 44
 3.4 Results 44
  3.4.1 Browsing, Searching and Filtering 44
  3.4.2 Finding shared connections  47
  3.4.3 Downloading GraphML 50
 3.5 cMapper Updater 51
 3.6 Case Study 53
 3.7 Discussion  56
4 Integrated Pharmacogenomic Platform of Human Cancer Cell Lines and Tissues 59
 4.1 Abstract 59
 4.2 Introduction  61
 4.3 Materials and Methods 62
 4.4 Results 67
  4.4.1 Data Exploration 68
  4.4.2 Comparison Between Cell Lines and Real Tissues  69
  4.4.3 Filtering Genes 76
  4.4.4 Finding Shared Connections 76
 4.5 Download Graph 78
 4.6 Case Study 81
 4.7 Discussion and Conclusions  82
5 Discussion 97
Bibliography 103
</body>

