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영문요약

Revised nomogram combining clinical parameters, genomics, and advanced MR 

imaging radiomics in patients with newly diagnosed glioblastoma

Author: Minjae Kim, MD. Department of Radiology and the Research Institute 

of Radiology, University of Ulsan College of Medicine, Asan Medical Center.

Background: To develop and validate a nomogram combining multiparametric 

MRI radiomic score and clinical predictors including treatment options for 

individualized prognostication in patients with IDH-wildtype glioblastoma.

Methods: The prognostication model was developed in 158 patients with 

IDH-wildtype glioblastoma from March 2012 to November 2016. A total of 

6472 radiomic features were extracted from contrast-enhanced T1-

weighted imaging, fluid-attenuated inversion recovery, diffusion-weighted 

imaging, and dynamic susceptibility contrast imaging. After radiomic feature 

selection using LASSO regression, individualized radiomic score was 

calculated. The nomogram was built incorporating radiomic score, O6-

methylguanine-DNA-methyltransferase (MGMT) gene methylation status, 

and clinical predictors. The model performance was assessed using the C-

index and integrated Brier score (IBS) and calibrated. The model was 

externally validation in 58 patients with different imaging scheme.
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Results: The significant clinical predictors were age, KPS, MGMT 

methylation status, extent of surgery, history of concurrent concurrent 

chemoradiation therapy, and history of adjuvant temozolomide use. A 

radiomic score using 6 selected MR features significantly discriminated 

overall survival in the training (C-index, 0.691; IBS, 0.169) and the validation 

set (C-index, 0.617; IBS, 0.196). The combined nomogram significantly 

improved prognostication compared to the radiomic score (P =.002), or 

baseline clinical predictors and MGMT (P = .035). The nomogram showed 

good discrimination in both training (C-index, 0.78; IBS, 0.149) and validation 

(C-index, 0.68; IBS, 0.158) sets with good calibration.

Conclusions: This glioblastoma nomogram including multiparametric MRI 

radiomics and treatment options enables individualized prognostication and 

improves prognostication compared to established clinical models.

Keywords: glioblastoma; radiomics; magnetic resonance imaging; nomogram
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서론

Glioblastoma, especially IDH-wildtype glioblastoma, is notorious for

its aggressiveness with a median survival period of only 14 – 16 months, and 

a 2-year survival rate of 26 – 33% 1, despite the standard treatment of 

surgery with concurrent chemoradiation (CCRT) following adjuvant 

temozolomide (TMZ) therapy. Immunohistochemistry and genomic 

sequencing analysis are regarded as gold standard methods for the 

identification of specific genetic mutations in patients with glioblastoma 

which aids to predict clinical outcome 2,3. However, they are obtained from 

an invasive procedure and a single biopsy may lead to an incorrect result due 

to intra-tumoral heterogeneity 4. This intra-tumoral genetic heterogeneity 

reduces the value of invasive tissue-based genomic analysis, but offers 

opportunities to medical imaging modalities that can depict the entire tumor 

in a noninvasive and repeatable way. Magnetic resonance imaging (MRI) is 

commonly used for the pre-operative work up of patients with glioblastoma 

for guidance of surgical resection and decisions regarding treatment 

strategies. A recently introduced radiomics approach extracts high-

dimensional features from MRI using an automated data-mining algorithm 5,6

and has shown great promise in surrogating the intra-tumoral heterogeneity 

of genetic features 3 and in predicting prognosis 7,8.

So far, most of radiomics studies have utilized standard of care 

imaging, so-called conventional MRI including T1- or T2-weighted imaging, 

fluid-attenuated inversion recovery (FLAIR), and T1- or FLAIR- contrast 

enhanced imaging. However, the MRI signal itself greatly varies according to 

imaging protocol used. As evidence, published radiomic research currently 

available is derived from single-center studies where internal validation and 

generalizability has been limited. On the other hand, advanced MRI 

techniques, including apparent diffusion coefficient (ADC) from diffusion-

weighted imaging or cerebral blood volume (CBV) from dynamic 

susceptibility contrast imaging are relatively underutilized for radiomic 
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analysis, even though they have demonstrated tumor aggressiveness 9-11 and 

regional heterogeneity and their associated prognostic relevance 12,13 in 

glioblastoma. Since quantitative maps obtained from advanced MRI represent 

normalized value, they would be suitable tools for radiomic analysis at a 

multicenter level. 

A nomogram is a tool that incorporates important variables to 

provide an easy-to-use application, centered on individualized prediction of 

risk. High-throughput features from radiomic analysis can be incorporated 

into a nomogram, using selected individualized variables derived from the 

pre-operative multiparametric MRI studies. Also, combining treatment 

options into a nomogram may become a useful tool to assess post-operative 

prognostication in patients who subsequently undergo standard treatment. 

Therefore, the aim of this study was to develop and validate a nomogram 

combining multiparametric MRI radiomic score and clinical predictors 

including treatment options for individualized prognostication in patients with 

IDH-wildtype glioblastoma.
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연구대상 및 연구방법

1. Patient cohort

Our institutional (Asan Medical Center, Seoul, Korea) review board 

approved this retrospective study, and the requirement for informed consent 

was waived. We searched the electronic database of the Department of 

Radiology at our tertiary hospital and retrospectively reviewed patient 

records between March 2012 and March 2016. We identified 248 consecutive 

patients with pathologically confirmed IDH-wildtype glioblastoma, according 

to the 2016 World Health Organization Classification of Tumors of the 

Central Nervous System.14 All patients underwent pretreatment 

multiparametric MRI including contrast-enhanced T1-weighted imaging (CE-

T1), fluid-attenuated inversion recovery (FLAIR), diffusion-weighted 

imaging (DWI), and dynamic susceptibility contrast (DSC) imaging. Patients 

were excluded if they had a prior history of surgical treatment (n = 20), had 

insufficient clinical information (n = 40), or any of multi-parametric imaging 

data was missing (n = 25) or unreadable (because of an artifact) (n = 5). 

These steps yielded 158 consecutive patients (mean age, 59.5 years old; 

male - female ratio, 96:62). This cohort was used as a training set to 

develop a radiomics model for prognostication in patients with glioblastoma. 

Identical inclusion criteria were used to identify 58 novel patients with 

glioblastoma treated at another tertiary center (Seoul National University 

Hospital, Seoul, Korea) between October 2014 and November 2016 and was 

used for external validation of the model. The patient inclusion process is 

shown in Figure 1. 
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Figure 1. Flow chart of the inclusion criteria. (A) training set and (B) 

validation set. Abbreviations: AMC, Asan Medical Center; SNU, Seoul 

National University Hospital; MRI, magnetic resonance imaging.
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2. Outcome definition

The primary endpoint of the study was overall survival (OS). Patients 

who were alive at the time of analysis (n = 36, 22.8 % in the training set and 

n = 8, 13.9 % in the validation set) were right-censored data and included in 

the analysis. All patients were followed up every 3 – 6 months after surgical 

treatment. The minimum follow up time to ascertain survival was 1.8 year. 

3. Imaging data acquisition

In the training set, all MRI studies were performed on the same 3-T 

unit (Achieva; Philips Medical Systems, Best, The Netherlands), using an 

eight-channel head coil. The brain-tumor imaging protocol includes the 

following sequences: T2-weighted imaging, FLAIR imaging, T1-weighted 

imaging, DWI, CE-T1WI, and DSC perfusion MRI. DWI was acquired in three 

orthogonal directions, and the images were combined into a trace image. DWI 

was obtained using the following parameters: repetition time (TR)/echo time 

(TE), 3000/56 ms; diffusion gradient encoding, b = 0, 1000 s/mm2; field of 

view (FOV), 25 cm; slice thickness/gap, 5 mm/2 mm; matrix, 256 × 256; and 

acquisition time, 39 s. A contrast-enhanced high-resolution anatomical 

three-dimensional (3D) volume image was obtained using a gradient-echo 

T1-weighted sequence with the following parameters: TR/TE, 9.8/4.6 ms; 

flip angle, 10°; FOV, 256 mm; matrix, 512 × 512; and slice thickness, 1 mm 

with no gap. DSC perfusion MRI was performed using a gradient-echo, echo-

planar sequence during the administration of a standard dose of 0.1 mmol/kg 

gadoterate meglumine (Dotarem; Guerbet, Paris, France) at a rate of 4 mL/s 

using a MRI-compatible power injector (Spectris; Medrad, Pittsburgh, PA, 

USA). The bolus of contrast material was followed by a 20 mL bolus of saline 

administered at the same injection rate. The parameters for DSC MRI were 

as follows: TR/TE, 1808/40 msec; flip angle, 35°; FOV, 24 cm; slice 

thickness/gap, 5 mm/2 mm; and matrix, 128 × 128. The total acquisition time 

for DSC MRI was 1 min 54 s. 
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The brain tumor imaging protocol in the validation set was performed 

on the 3-T system scanner, included the sequences of T2WI, FLAIR, T1WI, 

DWI, CE-T1WI, and DSC perfusion imaging. The acquisition protocol used is 

shown in the Supplementary Information.

4. Imaging post-processing and segmentation

The apparent diffusion coefficient map was calculated using the b 

values of 0 and 1000 s/mm2, using a two-point estimate of signal decay: ADC 

= -ln (S[b]/S[0])/b, where b indicates the b value and S(0) and S(b) are the 

signal intensities of images with b values at 0 and 1000, respectively. The 

post-processing of DSC imaging was performed using commercial software 

(NordicICE; NordicNeuroLab, Bergen, Norway). After correction for contrast 

agent leakage, the whole-brain relative CBV was calculated using the 

numerical integration of the time concentration curve. Next, we normalized 

the relative CBV (nCBV) images with the mean intensity of the contralateral 

normal-appearing cerebral white matter at the centrum semiovale, which 

was manually selected by a researcher (Y.H.J., with 2 years’ experience in 

neuroimaging processing). The diameter of the selected region of interest 

(ROI) was 4 mm. The nCBV maps were created by dividing each CBV value 

by the contralateral ROI on a pixel-by-pixel basis. 

Calculated ADC and nCBV maps were then co-registered to the 3D contrast-

enhanced T1-weighted image using SPM software 

(www.fil.ion.ucl.ac.uk/spm/). The co-registration process includes the 

generation of a brain mask from a 3-dimensional (3D) CE-T1WI and 

transformation to ADC and nCBV maps for each patient. Images were 

registered on the brain-extracted 3D CE-T1WI volume using affine 

transformation with normalized mutual information as a cost function 15, with 

12 degrees of freedom and tri-linear interpolation.

For 3D CE-T1WI and FLAIR data, signal intensity normalization was used to 

remove noise and reduce variance of the T1-based signal intensity of the 

brain. We applied the hybrid white-stripe method 16 for intensity 
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normalization using the ANTsR and WhiteStripe packages 17,18 in the R 

software package (R Foundation for Statistical Computing, Vienna, Austria, 

URL: http://www.R-project.org, 2016). This incorporates processes of the 

statistical principles of image normalization, preserving ranks among tissue 

and matching the intensity of tissues without upsetting the natural balance of 

the tissue intensities 18. Before feature extraction, we excluded outliers from 

the image intensities of ADC and nCBV maps by excluding ± 3 standard 

deviation inside the ROI 19. 

Segmentation was performed in the enhancing tumor region by a 

neuroradiologist (with 4 years of experience in neuro-oncological imaging) 

who semi-automatically defined on the 3D CE-T1WI using a segmentation 

threshold and region-growing segmentation algorithm that was implemented 

using software (MITK, www.mitk.org, German Cancer Research Center, 

Heidelberg, Germany) 16. All segmented images were validated by an 

experienced neuroradiologist (with 18 years of experience in neuro-

oncologic imaging). Finally, we resampled the images into a uniform voxel 

size of 1 × 1 × 1 mm across all images. 

5. Radiomic feature extraction

The accrual process used for developing the model is summarized in 

the Supplementary Figure S1. Radiomic features were extracted using Matlab 

R2014b (The Mathworks, Natick, MA), in accordance with previous studies 

8,20. Briefly, the radiomic features consisted of four feature groups: 7 volume 

and shape features, 17 first-order features, 162 texture features, and 1432 

wavelet features. The volume and the shape features were obtained from the 

segmented mask and the first-order, texture, and wavelet features were 

estimated using signal intensity. Volume and shape features were used to 

describe the 3D geometric properties of the tumor, which included 

compactness, spherical disproportion, sphericity, surface area, and volume. 

The first-order features were derived from the intensity histogram using 

first-order statistics, including intensity range, energy, entropy, kurtosis, 
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maximum, mean, median, uniformity, and variance. Textural features were 

obtained from a gray-level co-occurrence matrix (GLCM) and gray-level 

run-length matrix (GLRLM) 21 using 3D analyses of the tumor ROI in 13 

directions of the 3D space. For GLCM analyses, texture features were 

computed for varying distances of 1, 2, 3 voxels in 13 directions. Wavelet 

transformation was applied with a single-level directional discrete wavelet 

transform of a high-pass and low-pass filter 22. In total, eight wavelet-

decomposition images were generated from each MRI imaging sequence 

input: HHH, HHL, HLH, HLL, LHH, LHL, LLH, and LLL images, where ‘H’ 

was designated as a high-pass filter and ‘L’ is a low-pass filter. The first-

order features and texture features were then applied to the wavelet-

transformed images, (17 first-order features + 162 texture features) and 

multiplied by 8 images, to yield 1432 wavelet features. Thus, for each patient, 

1618 radiomic features were extracted from the T1CE, FLAIR, ADC and CBV 

data, respectively, which resulted in a total 6472 extracted features. Finally, 

all radiomic features were z transformed for group comparison. The 

processing time to extract 6472 features was approximately 8 min per 

patient. Details of radiomic feature extraction are provided in the 

Supplementary Information.

6. Radiomoc feature selection

We used ��-penalized estimation for Cox regression and the least 

absolute shrinkage and selection operator (LASSO) method to select the 

radiomic features that are the most important for prognosis 23,24. Briefly, the 

LASSO is a data analysis method that selects features by fitting a Cox 

regression model via penalized maximum likelihood estimation. The 

regularization path is computed for the tuning parameter (λ), which is often 

chosen so as to minimize out-of-sample prediction errors. The non-zero 

coefficients of the covariates are selected by LASSO, while most of the 

covariates are reduced to zero. The radiomics features were selected based 

on the prediction-optimal penalty λ that contains the relevant features with 
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high probability. The R software and “glmnet” package were used for the 

LASSO Cox regression model analysis.

7. Imaging predictor using radiomic prognostic score

Using the non-zero coefficients of radiomic features, an 

individualized radiomic prognostic score was developed. The score is 

calculated as the sum of each radiomic feature multiplied by a non-zero 

coefficient from LASSO according to the equation below. 

Radiomic prognostic score = coefficient of the 1st feature × value of the 1st 

feature

+ coefficient of the 2nd feature × value of the 2nd feature 

+ coefficient of the 3rd feature × value of the 3rd feature 

+…+ coefficient of the nth feature × value of the nth feature

The radiomic prognostic score was calculated separately using both 

conventional radiomic and multiparametric radiomic features obtained from 

conventional MRI, ADC, and CBV. Next, the radiomic prognostic score was 

used as an imaging predictor for the prognostication model.

8. Clinical predictors

The clinical and molecular characteristics of all patients had been 

retrospectively assessed by a researcher (M.S.L.) who reviewed the medical 

records but was blinded to the patient outcome. Patient specific preoperative 

clinical variables included sex, age at diagnosis, KPS, tumor location, and 

tumor volume (cm³). Binary category was applied for KPS score; 1) patients 

with KPS score same or above 70 and 2) whose KPS score below 70. The 

treatment-related variables of surgical extent (gross total removal, subtotal 

removal, and biopsy), history of concurrent chemoradiation, and history of 

adjuvant TMZ were collected. Also, O6-methylguanine-DNA 

methyltransferase (MGMT) promoter methylation status was also collected. 
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9. Statistical analysis

Frequencies and proportions were reported for categorical variables, 

and the mean and standard deviation were calculated for continuous 

variables. Differences in categorical and continuous variables were assessed 

using the chi-square test and independent t-test, respectively. The median 

follow-up time was reported only for censored patients 25 and was 

determined by considering the time of surgery and time to last available 

contact. 

For clinical predictors, univariate Cox proportional hazard regression 

analysis was used to test the association between OS and clinical predictors 

including sex, age at diagnosis, KPS, tumor location, and tumor volume. A P 

value less than 0.05 was considered statistically significant.

The performance of the prognostic model combining imaging and clinical 

predictors was measured with Harrell’s concordance probability index (C-

index) and the Integrated Brier Score (IBS). Briefly, the IBS calculates

prediction errors over time; the predicted probability of a model can range 

from 0 (a perfect model) to 0.25 (a non-informative model). The prediction 

error curves were calculated using bootstrapping method (“pec” package in 

R used with the “Boot632plus” module) 26 to obtain relatively unbiased 

estimates of the model’s performance. The time for calculating prediction 

error was the median survival time of the cohort. To compare the C-index 

across different models, the “compareC” package in R was used. 

Finally, a nomogram was built with the significant associative features 

identified including the radiomic prognostic score and clinical predictors. The 

nomogram performance was quantified with respect to discrimination and 

calibration. To develop a well-calibrated and exportable nomogram for newly 

diagnosed glioblastoma, we built a model using a training cohort and 

validated it with external validation cohort from another institution. 

Calibration plots assessed the overall extent of over- or underestimation of 

OS compared with the nomogram-predicted probability of OS, and calibration 
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was tested using the D’Agostino-Nam version of the Hosmer-Lemeshow test 

27. 

The model development and validation methods in our study were 

adhered to the Transparent Reporting of a multivariable prediction model for

the Individual Prognosis or Diagnosis (TRIPOD) statement 28. Statistical 

analyses were performed using statistical software (R version 3.3.3, R Core 

Team, Vienna, Austria).
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연구결과

The clinical characteristics of the training and validation cohorts are 

summarized in Table 1. No differences were found between the training and 

validation cohorts in terms of sex, age at diagnosis, KPS, tumor location, or 

tumor volume. The MGMT promoter methylation status was positive in 32.4% 

and 59.6% of the training and validation sets, and was negative in 67.6% and 

40.4% of the training and validation sets among those patients with MGMT 

status available. The median follow up time was 2.86 years (median) in the 

training set and 4.47 years in the validation set, which was slightly longer in 

the validation set. The median survival was 646 days in the training set and 

700 days in the validation set.

1. Significant clinical predictors

Among the clinical predictors, older age (P = .039), KPS at treatment 

initiation (P = .043), less surgical extent (P = .0004), no treatment with 

standard CCRT (P < .0001), and no treatment with adjuvant TMZ (P <.0001) 

were significant clinical predictors for shorter survival (Table 2). The 

performance of baseline clinical predictors before any treatment including 

age, KPS, volume had a C-index of 0.61 (95% CI, 0.58–0.64) and an IBS of 

0.220 in the training set and 0.631 (95% CI, 0.59–0.65) and 0.160, 

respectively in the validation set..

2. Significant radiomic features and individualized radiomic score

A total of 6472 features extracted from multi-parametric MRI data 

(each 1618 features from T1CE, FLAIR, ADC, and CBV, respectively) were 

analyzed to identify significant radiomic features. The 6 significant 

multiparametric MRI radiomic features were selected using LASSO 

penalization in the training set (Supplementary Figure S2). From conventional 
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Table 1. Clinical characteristics of the study patients

Parameter Training set 

(n = 158)

External validation

set 

(n = 58)

P 

value

Sex, n

    Male/Female 96/62 38/20

0.52

Age, years

    Median (range) 59.5 (31–83) 57.6 (20–80)

0.27

Primary treatment, n [%]

Extent of resection 0.12

Gross-total resection 72 (45.6%) 34 (58.6%)

Subtotal resection 57 (36.1%) 19 (32.8%)

Biopsy 29 (18.4%) 5 (8.6%)

Adjuvant treatment

RT + TMZ 141 (89.2%) 58 (100%) 0.07

    Other

     RT only 1 (0.6%) 0

  TMZ only 4 (2.5%) 0

  No RT or TMZ 12 (7.6%) 0

Location 0.62

Frontal or temporal 73 (46.2%) 29 (50%)

Others 85 (53.8%) 29 (50%)

KPS at treatment initiation, n 

(%)

    ≥ 70

138 (87.3%) 52 (89.7%)

0.64

< 70 20 (12.6%) 6 (10.3%) 

MGMT promoter status, n (%)

Methylated 12 (7.6%) 28 (48.3%) .13

Unmethylated 25 (15.8%) 19 (32.7%)

NA 120 (75.9%) 11 (19.0 %) NA

Median follow-up time, years

range)

2.86

(1.06–5.67)

4.47  

(3.44–6.18)

.047

Abbreviation: KPS, Karnofsky performance score; CCRT, concurrent 

chemoradiation therapy; RT, radiation therapy; TMZ, temozolomide; MGMT, 

O6-methylguanine-DNA-methyltransferase gene methylation status ;NA, 

information not available
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Table 2. Selection of clinical predictors from the training set using a 

univariate Cox hazard regression model. 

Predictors Hazard ratio 95% Confidence interval P-value

Age 1.02 1.01–1.04 0.039

Sex 0.88 0.61–1.30 0.543

KPS at treatment initiation 1.70 1.02–2.86 0.043

Location 0.77 0.52–1.12 0.167

Volume 1.00 0.99–1.00 0.767

Surgical extent 0.67 0.53–0.84 0.0004

Treated with CCRT 0.23 0.13–0.40 <0.0001

Adjuvant TMZ 0.12 0.07–0.21 <0.0001

Abbreviation: KPS, Karnofsky performance score; CCRT, concurrent 

chemoradiation therapy; TMZ, temozolomide. KPS score was binary with 1) 

score same or above 70 and 2) below 70. 
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MRI, 1 first order feature (mean absolute deviation), 1 GLCM feature (mean 

of sum entropy), and 1 GLRLM feature (standard deviation of run emphasis) 

were selected. From DWI imaging, 1 first order feature (skewness) was 

selected. From perfusion MRI, 1 GLCM (standard deviation of entropy) and 1 

GLRLM (mean of long run emphasis) were selected. Subsequently, the 

individualized radiomic prognostic score was calculated using the 

corresponding coefficients of each feature according to the equation 

described below. 

Radiomic prognostic score = -0.07896580× [T1CE_ Sum entropy (mean) 

LLH GLCM dist=3]  

-0.06340327 ×[FLAIR_ Mean absolute deviation LHH first order] 

-0.09125977×[FLAIR_ High gray-level run emphasis (std)]

- 0.05745977× [ADC_Skewness HHH first order ]

+ 0.03145506 × [CBV_Entropy (std) HHL GLCM dist = 1] 

-0.08185888 × [CBV_ Long run high gray-level emphasis (mean) HHH 

GLRLM] 

The individualized, radiomic prognostic score in the training set is 

shown in Fig. 2. The performance of the radiomic prognostic score was 

assessed using the C-index and IBS in both the training and validation sets. 

The performance of the prognostic score was calculated as having a C-index 

of 0.69 (95% confidence interval [CI], 0.66–0.72) and an IBS of 0.169 in the 

training set and a C-index of 0.62 (95% CI, 0.57–0.66) and IBS of 0.186 in 

the validation set, respectively. 

As a comparison, the radiomic prognostic score was calculated using 

conventional MRI only. The performance of the individual radiomic 

prognostic score using conventional MRI had a C-index of 0.65 (95% CI, 

0.60–0.69), which was lower than that of multiparametric MRI. In separate 

analysis according to each MRI, the conventional MR radiomic features 
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Figure 2. Radiomics prognostication score for each patient in the training set 

(n = 158). Green bars show scores for patients who survived and were right

censored, while red bars show scores of those who died.
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showed the highest performance in the training set (C-index 0.65), while the 

CBV radiomic features showed the highest performance in the validation set 

(C-index 0.61). The separate performance according to each MRI method is 

summarized in the Supplementary Information.

3. Building individualized prognostication model

On the basis of the radiomic prognostication score and significant 

clinical predictors, we constructed a nomogram to predict 1-year and 2-year 

survival (Fig. 3). The 2-year survival probability was chosen to calculate 

prediction error and calibration based on the median survival of the study 

cohort. The performance of our nomogram in the training set had a C-index 

of 0.78 (95% CI, 0.75–0.81) and an IBS of 0.149 and showed good calibration 

(Supplementary Figure S3A). The performance of nomogram was 

significantly better at predicting OS compared to the radiomic prognostic 

score (C-index, 0.69 [95% CI, 0.66–0.72]; P <.0001) alone, or to baseline 

clinical predictors alone (C-index, 0.62 [95% CI, 0.60-0.65]; P < .0001), or 

to even when compared to all clinical predictors included (C-index, 0.72 [95% 

CI, 0.69–0.75]; P = .007). Table 3 summarizes the performance of our 

individualized prognostication model in the training and validation set. 

4. External validation of the prognostication model

In the validation set, the discrimination was good, with a C-index of 0.675 

(95% CI, 0.64–0.71) and IBS 0.158, taking into consideration the 

heterogeneous MRI protocols present in the external validation set. The 

model was better able to predict OS when compared to the radiomic 

prognostic score alone, or to baseline clinical predictors alone, or to all 

clinical predictors combined, though the differences were not statistically 

significant. The calibration was good with the average difference and 

maximal difference in the predicted and calibrated probabilities of 2-year 

survival being 12.4% and 15%, respectively (Supplementary Figure S3B). 

These results demonstrated that prognostication in an independent data set 

were excellent and therefore confirmed the exportability of the model.
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Figure 3. A nomogram predicting the probability of overall survival in 

patients with glioblastoma. (A) A baseline nomogram including radiomics 

score, age, and Karnofsky performance score. (B) A post-treatment 

nomogram after adding treatment including extent of surgery, concurrent 

chemotherapy, and adjuvant temozolomide treatment.
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Table 3. Comparison of prognostic models combining multiparameteric 

radiomics features for predicting overall survival in the training and the 

validation set

Model 

comparison

Combined

(nomogram)

Single Model

Radiomic 

score + all 

clinical 

predictors

Radiomic 

score

Conventional

radiomic 

score

Baseline 

clinical 

predictors

All 

clinical

predictor

s

Training 

set

C-

index

0.780 0.691 0.648 0.614 0.716

Difference 0.089 0.132 0.166 0.064

P-value <0.0001 <0.0001 <0.0001 0.007

IBS 0.149 0.169 0.207 0.220 0.160

Validation 

set

C-

index

0.676 0.617 0.559 0.631 0.638

IBS 0.158 0.186 0.197 0.170 0.162

Note: baseline clinical predictors are age and Karnofsky performance score. 

All clinical predictors are age, Karnofsky performance score, extent of 

surgery, history of concurrent chemotherapy, and history of adjuvant 

temozolomide treatment. p-value refers to the significance in the difference 

of C indices between the combined model and the single model using 

“CompareC” in R statistical package. 

Abbreviation: MR = magnetic resonance IBS = integrated brier score
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5. Individual prognostication model considering MGMT methylation status

Missing data for MGMT promoter status was 75.9% (n = 120) in the 

training set and 19 % (n = 11) in the validation set; complete cases were 

performed as a subsequent subgroup analysis. The model’s performance was 

tested in the 84 patients with available MGMT methylation status (Table 4). 

The nomogram showed the highest performance with a C-index of 0.73 (95% 

CI, 0.69–0.77) and an IBS of 0.142, compared to the performance of the 

radiomic prognostic score alone (C-index, 0.61 [95% CI, 0.58–0.63]; IBS 

0.178, P =.002) or to the baseline clinical predictors alone including the 

MGMT promoter methylation status (C-index, 0.65 [95% CI, 0.62-0.68]; IBS 

0.155, P = .035). Fig. 4 demonstrates the prediction error and calibration of 

our model. The model showed a higher performance than the model 

containing all the clinical predictors including TMZ treatment (C-index 0.719 

[95% CI, 0.68–0.75]; IBS, 0.147), though the difference was not statistically 

significant. Thus, the performance of our model was robust in the presence 

of MGMT promoter methylation status.
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Table 4. Radiomics nomogram considering MGMT-gene methylation status (n = 84).

Model 

comparison

Combined 

(nomogram)

Single Model

Radiomic 

score + all 

clinical 

predictors

Radiomic 

score

Conventional 

radiomic 

score

Baseline 

clinical 

predictors

+ MGMT

All

clinical 

predictors

C-index 0.729 0.613 0.556 0.649 0.719

Difference 0.116 0.173 0.08 0.01

p-value 0.002 <0.0001 0.035 0.62

IBS 0.142 0.178 0.184 0.155 0.147

Note: baseline clinical predictors are age and Karnofsky performance score. 

All clinical predictors are age, Karnofsky performance score, extent of 

surgery, history of concurrent chemotherapy, and history of adjuvant 

temozolomide treatment. p-value refers to the significance in the difference 

of C indices between the combined model and the single model using 

“CompareC” in R statistical package. 

Abbreviation: IBS = integrated brier score; MR = magnetic resonance.
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Figure 4. Discrimination and calibration of our nomogram in patients with 

glioblastoma with available MGMT promoter methylation status. (A) 

Prediction error curves of the nomogram (blue), clinical predictors (green), 

and MRI radiomic score (red) are shown. Lower prediction errors indicate 

higher model accuracy. (B) Calibration curve of the nomogram for prediction 

of 2-year survival.
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고찰

In this study, we developed and validated a nomogram for 

individualized prognostication in patients with IDH-wildtype glioblastoma. 

The nomogram incorporates multiparametric MR radiomic score, MGMT 

methylation status, and important clinical predictors including age, KPS, 

extent of surgery, concurrent CCRT, and adjuvant TMZ use. The 

multiparametric MRI radiomic features provided the best performance 

compared to conventional MRI or single imaging of ADC or CBV alone. 

Incorporating this radiomic score into the nomogram improved the prognostic 

value over established clinical models, either when combined with baseline 

age and KPS as well as with MGMT status and treatment options for 

glioblastoma. This nomogram provides an easy-to-use prognostication 

model and facilitates the preoperative and postoperative personalized 

prediction of outcome in patients with glioblastoma validated in multi-

institutional setting.

Our model was designed to use an individualized radiomic score to 

improve prognostication in patients with IDH-wildtype glioblastoma who will 

be treated with standard CCRT therapy and adjuvant chemotherapy with 

TMZ. Despite studies demonstrating MRI data can predict survival in patients 

with glioblastoma 29,30, the use of MRI in determining prognostication in the 

clinic is still very limited. One possible explanation is that the existing

prediction model based on imaging has not demonstrated its efficacy 

according to treatment modality in patients who actually undergo surgery, 

followed by standard CCRT treatment and adjuvant TMZ therapy31. In this 

study, we combined the radiomic score and clinical predictors to identify the 

best outcome for IDH-wildtype glioblastoma patients. Also, this model was 

useful for survival prediction when tested in patients having MGMT promotor 

methylation status, which is a strong predictor for benefit from TMZ therapy 

32,33.
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The 6 multiparametric MRI radiomic features selected in this study 

clearly demonstrated discrimination of outcome in the both the training set 

and validation set. Also, the application of multiparametric MRI radiomic 

features showed the highest performance compared to standard care of 

imaging, conventional MRI. Nonetheless, the discrimination ability of the 

radiomic features varied depending on the imaging modality. A previous CT 

study 34 showed that radiomic features are reproducible over a wide range of 

imaging settings, unless smooth and sharp reconstruction algorithms are 

used. MRI based radiomic features may be more vulnerable to changes in

acquisition parameters, wherein margin and signal-to-noise ratio can be 

easily varied across imaging protocols. Parametric maps such as ADC or 

normalized cerebral blood volume may be potentially robust across the 

different acquisition schemes from the application of the same pre-

processing method, but this issue needs to be further studied. 

To date, radiomic studies have rarely been validated by an external 

cohort and the generalizability of studies has been limited. Our model is 

strengthened by its validation with an external cohort having heterogeneous 

MR acquisition protocols and vendors. Also, the survival prediction extends 

to the individual patient using a radiomic prognostication score, which is 

fitting with the current trend of personalized medicine. Also, the nomogram 

method could act as a decision-making support tool before treatment using 

the variables age, KPS, and the radiomic prognostication score, and after 

treatment by adding treatment options of extent of surgery, CCRT, and 

adjuvant TMZ therapy. 

Study limitations include the small number of patients, especially in 

the validation set since acquisition of DWI and DSC imaging in a single 

session is still not widely available. Second, important molecular changes 

were not considered in this analysis even though radiomic features hold 

promise in representing genetic heterogeneity. Third, although we tested the 

influence of MRI radiomics using different scanning parameters on 3.0T, 
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testing with the 1.5T system must be completed before radiomics can be 

interchangeably used as a multicenter imaging biomarker. Finally, the 

radiomics approach consists of a data-driven analysis, and thus the biologic 

meaning of the radiomic data is often unclear. This can become an obstacle 

in clinical practice, along with the necessary labor-intensive image 

processing and data analysis procedures involved. Although the averaged 

feature extraction time required for each patient was 8 minutes in our study, 

further effort to reduce time and simplify analysis will be valuable in order to 

be incorporated in clinic.
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결론

In conclusion, a glioblastoma nomogram including multiparametric

MRI radiomics and treatment options enables individualized prognostication 

and improves prognostication compared to established clinical models. This 

nomogram was validated externally, and further prospective validation of the 

nomogram will be required to confirm its value.
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부록

Supplementary Table 1. Comparison of MR imaging parameters of patients in 

training set and in external validation set of another tertiary center using the 

3-T system.

Pulse Sequence Training cohort External validation cohort

Post-contrast T1

Repetition Time (ms) 9.8 ± 0.2 (9.0–10.1) 9.6 ± 1 (8.6–10.4)

Echo Time (ms) 4.6 ± 0.2 (4.4–4.8) 4.2 ± 0.7 (3.5–4.7)

Pixel size (mm) 0.5 0.45 ± 0.02 (0.43–0.47)

Section thickness (mm) 0.5 1

FLAIR

Repetition Time (ms)
9250 ± 433 (9000-

10000)

8962.9 ± 77.3 (8802-

9000)

Echo Time (ms) 128.8 ± 4.8 (125–135) 102.1 ± 10.5 (97-124)

Pixel size (mm)
0.76 ± 0.14 (0.65–

0.94)
0.

Section thickness (mm) 4.5 ± 0.3 (4–5) 5

DWI

Repetition Time (ms)
3750 ± 433 (3000–

4000)
8430 (6900–12,000)

Echo Time (ms) 59.4 ± 2.1 (56–61.7) 66.8 ± 14.2 (55–81)

Pixel size (mm) 1.9 ± 0.04 (1.88–1.97) 0.83 ± 0.11 (0.75–0.94)

Section thickness (mm) 4.4 ± 0.5 (4–5) 3.3 ± 1.3 (3–5)

DSC

Repetition Time (ms)
1781 ± 32.6 (1726–

1800)
1500

Echo Time (ms) 40 33 ± 7 (30–40)

Pixel size (mm) 1.98 ± 0.0 (1.96–2) 1.81 ± 0.09 (1.72–1.88)

Section thickness (mm) 5 5.6 ± 0.6 (5–6)
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Abbreviation: Data are expressed as mean ± standard deviation. Numbers in 

parenthesis are range. FLAIR = fluid-attenuated inversion recovery, DWI = 

diffusion weighted imaging, DSC = dynamic susceptibility contrast imaging
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Supplementary Table 2. Selection of clinical predictors from the training set 

using a univariate Cox hazard regression model. 

Predictors Hazard ratio 95% Confidence interval P-value

Age 1.02 1.01–1.04 0.039

Sex 0.88 0.61–1.30 0.543

KPS at treatment initiation 1.70 1.02–2.86 0.043

Location 0.77 0.52–1.12 0.167

Volume 1.00 0.99–1.00 0.767

Surgical extent 0.67 0.53–0.84 0.0004

Treated with CCRT 0.23 0.13–0.40 <0.0001

Adjuvant TMZ 0.12 0.07–0.21 <0.0001

Abbreviation: KPS, Karnofsky performance score; CCRT, concurrent 

chemoradiation therapy; TMZ, temozolomide. KPS score was binary with 1) 

score same or above 70 and 2) below 70. 
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Supplementary Table 3. Performance of radiomic features assessed 

separately using MR imaging data to predict overall survival in the training 

and validation sets

Note: C indices and IBS were calculated separately for each imaging 

modality with selected features using LASSO. 

Abbreviations: MR = magnetic resonance; ADC = apparent diffusion 

coefficient; CBV = cerebral blood volume; IBS = integrated brier score

Multiparametric 

MR radiomic 

features

Conventional 

MR radiomic 

features

ADC 

radiomic 

features

CBV 

radiomic 

features

Number of 

selected 

features

6 3 4 8

C-index

Training 0.691 0.654 0.641 0.643

Validation 0.617 0.544 0.568 0.609

IBS

Training 0.169 0.189 0.194 0.190

Validation 0.186 0.204 0.197 0.192
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Supplementary Figure 1. Analysis pipeline of this study. Imaging analysis 

includes acquisition, co-registration, signal intensity normalization for 

conventional magnetic resonance imaging data, and segmentation. The least 

absolute shrinkage and selection operator method (LASSO) for Cox 

regression was applied to select significant radiomic features. The

individualized radiomic score is calculated as the sum of each radiomic 

variable multiplied by a non-zero coefficient from LASSO. Subsequently, a 

nomogram was built with the significant associative features identified 

including the individual radiomic prognostic score and clinical predictors.
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S2A

S2B
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Supplementary Figure 2. Multiparametric magnetic resonance radiomics

feature selection using the least absolute shrinkage and selection operator 

(LASSO) Cox regression model. 

(A) Identification of the optimal regularization parameter (λ) in the LASSO 

model used 10-fold cross-validation. As a result, a λ value between the 

minimum criterion of 0.159 and one standard error of 0.292 was selected. 

The dotted vertical line was plotted at the value selected using 10-fold 

cross-validation, for which the optimal λ resulted in 6 significant non-zero 

coefficients.

(B) LASSO coefficient profiles using the 6472 derived multiparametric 

radiomics features.
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S3A

S3B
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Supplementary Figure 3. Calibration curves comparing the radiomics 

nomogram in the validation sets. The calibration curve for 2-year survival 

prediction shows good calibration.
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Supplementary information: extraction of radiomic features

The imaging features that were calculated were divided into three 

groups: 17 first-order statistics, 7 volume and shape-based features, and 

162 texture features. Wavelet transformation was applied to the ADC and 

post-contrast T1-weighted images, and eight wavelet-decomposition images 

were generated from each MRI image that was input. Then first-order

features and texture features were calculated from the eight wavelet 

decomposition images, which further resulted in 1432 wavelet features ([17 

+ 162] × 8). In total, 1618 features (17 first-order statistics, 7 volume and 

shape-based features, 162 texture features, and 1432 wavelet features) 

were obtained from ADC images and post-contrast T1 weighted images. 

1. Volume and shape features

These features compute the three-dimensional size and shape of 

volume of interest �(�, �, �). Let ��� and � denote the volume and surface 

area, respectively.

Surface area � Compactness 2
36�

��

����

Volume � ∗ ������ ∗ ������

∗ ������

Spherical 

disproportion

�

�6√� ∗ ����
�
�

Surface to volume 

ratio

�

���
Sphericity (6�� ∗ ���)

�
�

�

Compactness 1 ���

√� ∗ �
�
�
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2. First-order statistics 

First-order statistics were calculated from the histogram of voxel 

intensities, which represents the distribution of gray values within an image. 

Let P denote the first-order histogram of a volume of interest V(x,y,z) with 

isotropic voxel size and Pi describe the number of voxels with gray level i. 

The number of gray-level bins set for P is represented as Ng. The ith

probability vector of the first-order histogram is then defined as follows:

�(�) =
�(�)

∑ �(�)
��
���

Let ���� and � denote the intensity values of all voxels within �(�, �, �)

with � voxels and the whole image, respectively. The mean and center gray 

values within �(�, �, �) are � and �, respectively.

Number of 

voxels 

|����| Sum of 

intensities

�����(�)

�

�

Range max(����) −min(����) Energy

����(�)�

��

�

Covered 

imageintensity 

range

max���� −min����
(max� −min� + ���)

Entropy

−�[�(�) ∗ log�(�(�) + ���)]

��

�

Maximum max(����) Kurtosis ∑ ��(�) ∗ ��(�) − ��
�
�

��
�

�∑ ��(�) ∗ ��(�) − ���
��
�

+ ����
�
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intensity value

Mean intensity 

value

1

�
�����(�)

�

�

Skewness ∑ ��(�) ∗ ��(�) − ��
�
�

��
�

�∑ ��(�) ∗ ��(�) − ��
�
�

��
�

+ ����

�
�

Median 

intensity value

med(����) Root 

means 

square

�[�(�) ∗ �(�)�]

��

�

Minimum 

intensity value

min(����) Variance 1

� − 1
������(�) − ��

�
�

�

Mean absolute 

deviation

���(�) ∗ (�(�) − �)�

��

�

Standard 

deviation
�

1

� − 1
������(�) − ��

�
�

�

Uniformity

��(�)�

��

�

3. Texture features

Although first-order features provide information on the gray-level 

distribution of the volume of interest, they do not describe information 

related to the relative positions of the various gray levels of the volume of 

interest. The methods most often used for texture analysis are the gray level 

co-occurrence matrix (GLCM) and the gray level run length matrix (GLRLM). 

In the use of GLCM, various textural features are extracted, and GLRLM 

characterizes coarse textures as having many pixels in a constant gray level 
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run and fine textures as having few pixels in such a run. Both GLCM and 

GLRLM are matrix-based features as well as being constructed from 3D 

analysis of a volume of interest with 26-voxel connectivity, which are 

considered neighbors in all 13 directions in 3D. 

3-1. GLCM features

Let � denote the GLCM of a quantized volume �(�, �, �) with isotropic voxel 

size and let ��,�(�, �) represent the number of times that voxels of gray level i 

were neighbors with voxels of gray level � in �(�, �, �) in one of 13 directions 

of � and at a distance � = 1,2,3. GLCM is the size of �� × �� where ��

describes a pre-defined number of quantized gray level sets in �(�, �, �). For 

each direction � and distance �, the normalized GLCM is obtained as follows:

��,�(�, �) = �(�, �) =
�(�,�)

∑ ∑ �(�,�)
��
���

��
���

.

Frequently used feature quantities for each direction and distance are also 

defined as follows:

- � is the mean of �(�, �)

- σ is the standard deviation of �(�, �)

- ��(�) is the marginal row probability of �(�, �): ��(�) = ∑ �(�, �)
��
�

, 

- �� is the mean of ��(�)

- �� is the standard deviation of ��(�)
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Mean and standard deviation of the followings for 13 directions and 3 

distances 

autocorrelation

��� ∗ � ∗ �(�, �)

��

�

��

�

Haralick 

correlation
1

��
���� ∗ �

��

�

��

�

∗ �(�, �)� − ��
cluster 

prominence ��(� + � − 2�)�

��

�

��

�

∗ �(�, �)

inverse 

difference ��
�(�, �)

1 + |� − �|

��

�

��

�

cluster shade

��(� + � − 2�)�

��

�

��

�

∗ �(�, �)

inverse 

difference 

normalized

1

��
��

�(�, �)

1 + |� − �|

��

�

��

�

cluster tendency

��(� + � − 2�)�

��

�

��

�

∗ �(�, �)

inverse 

difference 

moment
��

�(�, �)

1 + (� − �)�

��

�

��

�

contrast

��(� − �)�

��

�

��

�

∗ �(�, �)

inverse 

difference 

moment 

normalized

1

��
���

�(�, �)

1 + (� − �)�

��

�

��

�

correlation
1

�
��(� − �)(�

��

�

��

�

− �) ∗ �(�, �)

inverse 

variance ��
�(�, �)

(� − �)�

��

�

��

�

difference 

average �� ∗ ����(�)

��

�

maximum 

probability

�����(�, �)�

difference 

entropy −�����(�)

��

�

∗ ���� �����(�)

+ ����

sum average

�� ∗ ����(�)

���

�

difference 

variance ��� − �����������
�

��

�

∗ ����(�)

sum entropy

−�����(�)

���

�

∗ ���������(�) + ����

dissimilarity

��|� − �|

��

�

��

�

∗ �(�, �)

sum variance

��� − �����������
�

���

�

∗ ����(�)

energy

���(�, �)�

��

�

��

�

variance

��(� − �)��(�, �)

��

�

��

�
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entropy

−���(�, �)

��

�

��

�

∗ ����(�(�, �)

+ ���)

3-2. GLRLM features

Let � denote the GLRLM of a quantized volume �(�, �, �) with isotropic voxel 

size and �(�, �) represent the number of runs of gray level i with �

consecutive voxels in 1 of the 13 directions of �. GLRLM is the size of �� ×

�� where �� describes the pre-defined number and �� represents the length 

of the longest run of quantized gray level sets in �(�, �, �). �� is the number 

of voxels in �(�, �, �).

Mean and standard deviation of the followings for 13 directions and 3 

distances

number of runs ���� low gray level 

run emphasis
1

����
��

1

��
∗ �(�, �)

��

�

��

�

gray level 

nonuniformity
1

����
����(�, �)

��

�

�

���

�

run length 

nonuniformity 1

����
����(�, �)

��

�

�

���

�

high gray level 

run emphasis
1

����
���� ∗ �(�, �)

��

�

��

�

run percentage ����
��

long run 

emphasis
1

����
���� ∗ �(�, �)

��

�

��

�

short run 

emphasis
1

����
��

1

��
∗ �(�, �)

��

�

��

�

long run high 

gray level 

emphasis

1

����
���� ∗ ��

��

�

��

�

∗ �(�, �)

short run high 

gray level 

emphasis

1

����
��

��

��
∗ �(�, �)

��

�

��

�

long run low 

gray level 

emphasis

1

����
��

��

��
∗ �(�, �)

��

�

��

�

short run low 

gray level 

emphasis

1

����
��

1

�� ∗ ��

��

�

��

�

∗ �(�, �)

국문요약
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연구제목: 교모세포종으로 새롭게 진단받은 환자에서 임상적 요인, 유전체학 정보

및 자기공명영상의학적 소견의 라디오믹스 조합을 이용한 노모그램

연구배경: IDH-wildtype 교포세포종으로 새롭게 진단받은 환자에서 환자의 개인

예후 예측을 위하여 임상적 요인, 유전체학 정보 및 자기공명영상의학적 소견의

라디오믹스 조합을 이용한 노모그램을 개발하고 검증하고자 한다.

연구방법: 2012년 3월부터 2016년 11월까지 IDH-wildtype 교모세포종으로

새롭게 진단받은 158명의 환자에서 예후 예측 모델을 개발하였다. 조영증강 T1 

강조 영상, 액체감쇠역전회복 영상, 확산강조 영상 및 관류 영상에서 총 6472개의

라디오믹스 인자들이 추출되었다. Lasso 회귀분석을 통해 인자를 뽑아낸 후 환자

개개인의 라이오믹스 점수를 계산하였다. 환자의 라디오믹스 점수와 O6-

methylguanine-DNA-methyltransferase (MGMT) 메틸화 여부 및 임상적 요인을

조합한 노모그램을 만들었다. 모델의 성능은 C-index와 integrated Brier score 

(IBS)를 통해 측정하였고 이후 보정하였다. 모델은 다른 영상 환경에서 촬영된

58명의 환자를 이용하여 외적 타당도 검증을 거쳤다.

연구결과: 임상적으로 중요한 인자는 환자의 나이, KPS, MGMT 메틸화 여부, 

수술의 범위, 동시항암방사선치료 여부 및 추가 temozolomide 치료 여부로

확인되었다. 6개의 자기공명영상 인자를 이용한 라디오믹스 점수는 훈련 집합 (C-

index, 0.691; IBS, 0.169)과 검증 집합 (C-index, 0.617; IBS, 0.196) 모두에서

전체 생존율을 유의하게 예측하는 것으로 나타났다. 통합노모그램은 라디오믹스

점수 혹은 임상적인 요인의 이용한 모델보다 환자 예후 관련 유의하게 더 높은

예측력을 보였다. 통합노모그램은 훈련 집합 (C-index, 0.78; IBS, 0.149) 및 검증

집합 (C-index, 0.68; IBS, 0.158) 모두에서 좋은 성능 및 보정도를 보였다.

결론: 교모세포종으로 새롭게 진단받은 환자에서 임상적 요인, 유전체학 정보 및

자기공명영상의학적 소견의 라디오믹스 조합을 이용한 노모그램은 환자의 예후와

관련하여 기존 임상적인 요인을 이용한 모델보다 높은 예측력을 보였다.
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