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English Abstract

Purpose: 

First, we analyze qualitatively the detection and characterization of breast cancer on low 

dose mammographic images and find the acceptable low dose levels compared to the full 

dose image.  Second, we use the convolutional neural network (CNN) de-noising method to 

convert the acceptable low dose images and find the lowest dose to reconstruct the 

acceptable image quality compared to synthesized full dose image. 

Materials and methods: 

This prospective study was approved by institutional review board. The true full dose level 

was determined through AEC, and images were subsequently acquired at 5 different 

radiation dose levels (80% of AEC, 60%, 40%, 20%, and 10%) of breast cancer mastectomy

specimen with digital mammography. For the first purpose, five radiologists evaluated low 

dose images by comparison to the reference true full dose image and scaled as equivalent, 

acceptable or unacceptable for each dose level. For the second purpose, the same five 

radiologists blindly rated three images (low dose, synthesized full dose, and true full dose). 
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We analyzed the trend using Mantel-Haenszel statistic. In addition, we compared the 

quantitative assessment using McNemar’s or marginal homogeneity test.

Results:

Mass and calcification detection rate decreased substantially at 10% reduced dose. 

Regarding characterization, the ‘not acceptable’ rate of mass and calcification increased at 

10% (86.3%) and 20% (83.8%) respectively. The 80% and 60% images were equivalent to 

full dose images regarding both mass and calcification detection and characterization. The 

synthetized images showed high detection rate of 87.4-90.0% and 96.8-100.0% for 20% and 

40% respectively. There was significantly higher ‘equivalent’ image quality for both mass 

and calcification at synthesized 40% dose level (65.3% and 65.0% respectively) compared to 

synthesized 20% dose level (41.1% and 20.8% respectively) (p<0.001).  Compared to low 

dose images, synthesized image quality improved in 40% dose whereas at 20% dose, it did 

not increase in synthesized images (p<0.001).

Conclusion:

There is a potential for modest dose reduction retaining diagnostic information with de-
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noising algorithm in digital mammography. Our results provide a baseline for future studies 

on reducing the radiation dose with lesion preservation on mammography.
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Introduction

The goal of mammography is early detection of suspicious mass and calcification 

and is reliable method for screening breast cancer (1). One of the limitations of 

mammography screening is a radiation exposure (2). In particular, when a patient needs to be 

repeatedly monitored, it is important to minimize the radiation dose.  Indeed, 

mammography has automatic exposure control (AEC) system which chooses an appropriate 

current of X-ray to get an appropriate image. There have been many attempts to examine the 

relationship between reduced radiation doses and accuracy in detection of lesions on digital 

mammography (3-5). Indeed, it is hard to achieve optimal trade-off between lesion 

conspicuity and noise reduction in medical images. It is a challenge to reduce noise and 

artifact while maintaining important diagnostic information. 

The several decades of research into statistical learning methods, in particular, deep 

learning (6) with many Artificial Intelligence (AI) systems claim human or even superhuman 

performance in variety of tasks.  Machine learning and deep learning method have shown 

great potential in medical imaging applications such as reconstruction and de-noising (7, 8). 
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Recently, Liu et al (9) had investigated deep-learning based supervised image processing 

technique for radiation dose reduction in digital breast tomosynthesis (DBT).  They trained 

network with quarter dose images and corresponding high dose images of breast phantom 

acquired with a DBT system, demonstrating a 79.0% dose reduction with application of 

deep-learning technique. Another study using DBT, noise reduction techniques have been 

developed, but it smooth out image details and subtle patterns such as calcifications (10).

Our purposes were two-fold.  First, we analyzed qualitatively regarding detection 

and characterization of lesion on various low dose mammographic images and find the lower 

dose than AEC level with maintenance of equivalent image quality.  Second, we used a 

convolutional neural network (CNN) de-noising method based on unsupervised learning 

using cyclic consistency.  This method converts lower doses less than ‘equivalent dose level’

from the first step of our study and reconstructs to synthesized full dose image with 

equivalent quality to the true full dose, and finally investigate the lowest acceptable 

mammography dose level with this de-nosing method. To our knowledge, there has been no 

study applying deep learning technique to acquire synthesized full dose image while 
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maintaining the image quality and contrast information of full dose image with radiation 

dose reduction using digital mammography. 
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Materials and Methods

Study design

This prospective study from two institutions was approved by institutional review 

board. The true full dose level was determined through AEC, and images were subsequently 

acquired at 5 different radiation dose levels (80% of AEC, 60%, 40%, 20%, 10%) of breast 

cancer mastectomy specimen with mammography (Selenia Dimension, Hologic, Inc Bedford,

MA (n=8) or Senographe DS or Senographe Essential scanner; GE Healthcare, Milwaukee, 

WI (n=23)) from two institutions.  We used the mastectomy specimen to use AEC dose and 

to simulate the real clinical practice rather than using the breast phantom. The radiation 

doses were altered by changing tube-current-time product (mAs), while tube voltage was 

fixed (range, 26-30kVp for Selenia Dimension and 25-29kVp for Senograph DS/Essential). 

The reduced dose images were obtained by changing tube current-time product manually, 

while the tube voltage was maintained in each exam. Three cases were excluded due to poor 

image quality with unavoidable artifact at low radiation dose; finally 28 cases were included 

in analysis. 
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Image Interpretation

Five breast radiologists with 5-20 years of experience were involved in image 

interpretation regarding detection and characterization of mass (n=12), calcification (n=7), 

mass with calcification (n=9). For the first purpose of our study, to assess subjective quality, 

five radiologists separately evaluated low dose images (80%, 60%, 40%, 20%, and 10%) 

compared to the reference true full dose image blinded to the dose level, and scaled as 

equivalent, acceptable or unacceptable for each dose level. Each observer interpreted the 

images on DICOM and was allowed to alter the optimal window/level settings. For the 

second purpose, after deep learning method application to low dose images, the same five 

radiologists separately and blindly rated three images (low dose, synthesized full dose, and 

true full dose). Specifically, the readers were independently presented the full dose and 

randomized version of low dose and synthesized images and asked to rate their quality. 

Training, testing and validation of CNN de-noising method
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The network was trained with input low dose images and true full dose images. 

Since there is a mismatch between the input and the true full dose image due to the potential 

deformation of the specimen during multiple acquisitions, we proposed de-noising method 

based on unsupervised learning using cyclic consistency. The proposed framework is 

described in Fig.1.  We trained two generators (Network G and Network F) and two 

discriminators (Network Dx and Network Dy) (11, 12). We used three losses to train the 

networks. First, we employed adversarial loss with discriminator which distinguishes images 

are real or fake. The adversarial loss is that forces the generated images to be 

indistinguishable from real image. However, this adversarial loss alone cannot guarantee the 

learned function to map an individual input to a desired output. Thus, secondly we applied 

the cyclic loss to guarantee an inverse relation described in Fig. 1. Finally, identity loss was 

added to enforce the network does not generate any artificial components.

Loss functions are as follows:

ℒ�G, F,D� , ��� = ℒ�����������(�, �, �, �) + ℒ�����������(�, �, �, �) + ℒ������(�, �)

+ ℒ��������(�, �)

ℒ�����������(�, �, �, �) = ��~�� �log �1 − ����(�)��� + ��~��[log ��(�)]

ℒ������(�, �) = ||���(�)� − �||� + ||���(�)� − �||�

ℒ��������(�, �) = ||�(�) − �||� + ||�(�) − �||�
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Training was performed by minimizing the loss functions. We used the ADAN optimization 

method to train the all networks with β� = 0.5 and β� = 0.999. The number of epochs was 

300, which was divided into two phases to control the learning rate during training. In the 

first 100 epochs, we set the learning rate to 0.00002, and linearly decreased it to zero over 

the next 200 epochs. The size of patch was 56 × 56 and the size of mini-batch was 10. 

Kernels were initialized randomly from a Gaussian distribution. We updated the generator 

and discriminator with the ratio 3/1 in iterations. We normalized the intensity of the input 

low dose images and the target full dose images using the maximum intensity value of the 

input images. We trained the networks twice with one half of the dataset and the other half of 

the dataset. The proposed method was implemented in Python with the PyTorch (13) and 

NVIDIA GeForce GTX 1080 Ti GPU was used to train and the test the network. When we 

tested the network, we applied the trained generator G to reduce the noises and we did soft-

thresholding to the image differences between input and output. After that, we added it to the 

output images to remove the unrealistic components.

For subset of data, we validated the CNN de-noising method by measuring 
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structural similarity index (SSIM) (14), which is quantitative value to evaluate the image 

quality, by noise simulation to full dose and evaluate its value compared to full dose image. 

When we make simulated low dose image, we added Poisson noise to the routine dose image. 

The signal to noise ratio (SNR) of simulated low dose images was 17dB. SSIM is a widely 

accepted image quality measure that overcomes the limitation of conventional SNR which 

lack spatial information in evaluation.  The SSIM index is represented by 

����(�, �) =
�2���� + ����2��� + ���

���
� + ��

� + ������
� + ��

� + ���

where �� �� ��
� ��

� ��� are the average, the variance and the covariance of � and �. 

�� = (���)
�, �� = (���)

� are two  variables to stabilized the division with weak 

denominator;� is the dynamic range of the pixel-values, �� = 0.01 and �� = 0.03 by 

default.

Statistical Analysis

To assess the qualitative analysis from five radiologists, the mean percentage of 

each assessment scale was calculated for lesion type and each dose. We analyzed the trend 
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using Mantel-Haenszel statistic. In addition, after deep learning method application, we 

compared the quantitative assessment between true full dose, low dose versus synthesized 

image using McNemar’s or marginal homogeneity test. To show the quantitative

performance of the proposed deep learning method, we computed SSIM measurement and 

compared using Wilcoxon signed ranked test. Calculations for statistical analyses were 

performed using SPSS software (version 14.0, Statistical Package for the Social Sciences, 

Chicago, IL). P values less than .05 were considered to indicate statistically significance 

differences. 
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Results

Diagnostic quality evaluated from radiologists

Detailed qualitative metrics assessed by the five radiologists are shown in Table 1. 

Similar trend in assessment percentage regarding mass detection and characterization were 

observed, except for the mass characterization (p=0.173). Mass and calcification detection 

rate decreased substantially at 10% dose (76.8% and 60.8% respectively). Regarding 

characterization, the ‘not acceptable’ rate of mass and calcification notably increased at 10% 

(86.3%) and 20% (83.8%) respectively. The 80% and 60% showed equivalent image quality 

compare to the full dose regarding both mass and calcification detection and characterization. 

Since the lesion detection was maintained till 20% dose and the characterization of mass and 

calcification gradually decreased from 20% and 40% dose level respectively, the radiologists 

made consensus to apply de-noising method for the low dose level of 40% and 20%, the 

second purpose of our study.

Application of de-noising method

First, we trained and validated our de-noising method based on unsupervised 
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learning using cyclic consistency using simulated images with addition of Poisson noise for 

8 subsets of our data.  Table 2 shows the improvement of SSIM value (p=0.012). The 

higher SSIM value indicates that our technique can not only substantially reduce noise but 

also achieve better structure preservation performance of image details and subtle patterns 

such as calcifications. 

When we compared the synthetized images with true full dose images, the 

calcification and mass showed high detection rate of 87.4%, 90.0% and 96.8%, 100.0% for 

20% and 40% respectively. However, the ‘no detection’ rate for both lesion types was 

significantly higher at 20% synthetized image compared to 40% synthetized image (12.6%

vs 3.2%, p=0.003 for mass, 10.0% vs 0.0% p<0.001 for calcification) (Table 3, Fig. 2).  

Regarding lesion characterization, when we compared true full dose images to 

synthetized images, there was significantly higher ‘equivalent’ image quality for both mass 

and calcification at 40% dose level (65.3% and 65.0% respectively) compared to 20% dose 

level (41.1% and 20.8% respectively) (p<0.001).  Compared to low dose images, 

synthesized image quality improved in 40% dose (20.0% for mass and 18.3% for 
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calcification) whereas at 20% dose, it did not increase in synthesized images (25.3% for 

mass and 19.2% for calcification) (p<0.001) (Table 4, Fig. 3).
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Table 1. Detection and characterization according to lesion type on low dose images by five observers

Detection Dose Assessment Observer 1 Observer 2 Observer 3 Observer 4 Observer 5 Mean % P value*

Lesion Type

Mass 80% No detection 0.0 (0/20) 0.0 (0/20) 0.0 (0/20) 0.0 (0/20) 0.0 (0/20) 0.0 0.010

Detection 100.0 (20/20) 100.0 (20/20) 100.0 (20/20) 100.0 (20/20) 100.0 (20/20) 100.0

60% No detection 0.0 (0/20) 0.0 (0/20) 0.0 (0/20) 0.0 (0/20) 5.0 (1/20) 1.0

Detection 100.0 (20/20) 100.0 (20/20) 100.0 (20/20) 100.0 (20/20) 95.0 (19/20) 99.0

40% No detection 5.0 (1/20) 0.0 (0/20) 0.0 (0/20) 0.0 (0/20) 5.0 (1/20) 2.0

Detection 95.0 (19/20) 100.0 (20/20) 100.0 (20/20) 100.0 (20/20) 95.0 (19/20) 98.0

20% No detection 5.0 (1/20) 5.0 (1/20) 5.0 (1/20) 0.0 (0/20) 5.0 (1/20) 4.0

Detection 95.0 (19/20) 95.0 (19/20) 95.0 (19/20) 100.0 (20/20) 95.0 (19/20) 96.0
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10% No detection 26.3(5/19) 15.8(3/19) 26.3(5/19) 26.3(5/19) 21.1(4/19) 23.2

Detection 73.7(14/19) 84.2(16/19) 73.7(14/19) 73.7(14/19) 78.9(15/19) 76.8

Calcification 80% No detection 0.0 (0/26) 0.0 (0/26) 0.0 (0/26) 0.0 (0/26) 0.0 (0/26) 0.0 0.001

Detection 100.0 (26/26) 100.0 (26/26) 100.0 (26/26) 100.0 (26/26) 100.0 (26/26) 100.0

60% No detection 3.9 (1/26) 0.0 (0/26) 0.0 (0/26) 3.9 (1/26) 0.0 (0/26) 1.5

Detection 96.1 (25/26) 100.0 (26/26) 100.0 (26/26) 96.1 (25/26) 100.0 (26/26) 98.5

40% No detection 7.7 (2/26) 0.0 (0/26) 0.0 (0/26) 3.9 (1/26) 0.0 (0/26) 2.3

Detection 92.3 (24/26) 100.0 (26/26) 100.0 (26/26) 96.1 (25/26) 100.0 (26/26) 97.7

20% No detection 19.2 (5/26) 15.4 (4/26) 0.0 (0/26) 11.5 (3/26) 7.7 (2/26) 10.8

Detection 80.8 (21/26) 84.6 (22/26) 100.0 (26/26) 88.5 (23/26) 92.3 (24/26) 89.2

10% No detection 44.0 (11/25) 36.0 (9/25) 28.0 (7/25) 44.0 (11/25) 44.0 (11/25) 39.2

Detection 56.0 (14/25) 64.0 (16/25) 72.0 (18/25) 56.0 (14/25) 56.0 (14/25) 60.8
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Characterization Dose Assessment Observer 1 Observer 2 Observer 3 Observer 4 Observer 5 Mean % P value*

Lesion Type

Mass 80% Not acceptable 0.0 (0/20) 0.0 (0/0) 0.0 (0/0) 0.0 (0/0) 0.0 (0/0) 0.0 0.173

Acceptable 25.0 (5/20) 5.0 (1/20) 0.0 (0/0) 10.0 (2/20) 5.0 (1/20) 9.0

Equivalent 75.0 (15/20) 95.0 (19/20) 100.0 (20/20) 90.0 (19/20) 95.0 (19/20) 91.0

60% Not acceptable 0.0 (0/0) 0.0 (0/0) 0.0 (0/0) 0.0 (0/0) 0.0 (0/0) 0.0

Acceptable 90.0 (18/20) 30.0 (6/20) 45.0 (9/20) 50.0 (10/20) 30.0 (6/20) 49.0

Equivalent 10.0 (2/20) 70.0 (14/20) 55.0 (11/20) 50.0 (10/20) 70.0 (14/20) 51.0

40% Not acceptable 20.0 (4/20) 0.0 (0/0) 15.0 (3/20) 20.0 (4/20) 5.0 (1/20) 12.0

Acceptable 80.0 (16/20) 90.0 (18/20) 70.0 (14/20) 75.0 (15/20) 60.0 (12/20) 75.0

Equivalent 0.0 (0/0) 10.0 (2/20) 15.0 (3/20) 5.0 (1/20) 35.0 (7/20) 13.0

20% Not acceptable 60.0 (12/20) 50.0 (10/20) 50.0 (10/20) 35.0 (7/20) 35.0 (7/20) 46.0
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Acceptable 40.0 (8/20) 45.0 (9/20) 45.0 (9/20) 65.0 (13/20) 50.0 (10/20) 49.0

Equivalent 0.0 (0/0) 5.0 (1/20) 5.0 (1/20) 0.0 (0/0) 15.0 (3/20) 5.0

10% Not acceptable 89.5 (17/19) 89.5 (17/19) 100.0 (19/19) 68.4 (13/19) 84.2 (16/19) 86.3

Acceptable 10.5 (2/19) 10.5 (2/19) 0.0 (0/0) 31.6 (6/19) 15.8 (3/19) 12.6

Equivalent 0.0 (0/0) 0.0 (0/0) 0.0 (0/0) 0.0 (0/0) 0.0 (0/0) 1.0

Calcification 80% Not acceptable 0.0 (0/0) 0.0 (0/0) 0.0 (0/0) 0.0 (0/0) 0.0 (0/0) 0.0 0.001

Acceptable 30.8 (8/26) 7.7 (2/26) 3.8 (1/26) 38.5 (10/26) 7.7 (2/26) 17.7

Equivalent 69.2 (18/26) 92.3 (24/26) 96.2 (25/26) 61.5 (16/26) 92.3 (24/26) 82.3

60% Not acceptable 26.9 (7/26) 0.0 (0.0) 0.0 (0.0) 7.7 (2/26) 0.0 (0.0) 7.0

Acceptable 61.5 (16/26) 50.0 (13/13) 65.4 (17/26) 73.1 (19/26) 57.7 (15/26) 61.5

Equivalent 11.5 (3/26) 50.0 (13/13) 34.6 (9/26) 19.2 (5/26) 42.3 (11/26) 31.5

40% Not acceptable 65.4 (17/26) 23.1 (6/26) 30.8 (8/26) 61.5 (16/26) 30.8 (8/26) 42.3



１７

Acceptable 34.6 (9/26) 69.2 (8/26) 61.5 (16/26) 38.5 (10/26) 61.5 (16/26) 53.1

Equivalent 0.0 (0/0) 7.7 (2/26) 7.7 (2/26) 0.0 (0/0) 7.7 (2/26) 4.6

20% Not acceptable 96.2 (25/26) 80.8 (21/26) 76.9 (20/26) 88.5 (23/26) 76.9 (20/26) 83.8

Acceptable 3.8 (1/26) 19.2 (5/26) 19.2 (5/26) 11.5 (3/26) 19.2 (5/26) 14.6

Equivalent 0.0 (0/0) 0.0 (0/0) 3.9 (1/26) 0.0 (0/0) 3.9 (1/26) 1.5

10% Not acceptable 96.0 (24/25) 92.0 (23/25) 100.0 (25/25) 96.4 (24/25) 100.0 (25/25) 96.8

Acceptable 4.0 (1/25) 8.0 (2/25) 0.0 (0/0) 4.0 (1/25) 0.0 (0/0) 3.2

Equivalent 0.0 (0/0) 0.0 (0/0) 0.0 (0/0) 0.0 (0/0) 0.0 (0/0) 0.0 (0/0)

*agreement trend test
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Table 2. Structural Similarity Index Measure (SSIM) values for de-noising algorithm validation

No. Input Output P value
1 0.55255 0.70162 0.012
2 0.5962 0.80514
3 0.66913 0.83729
4 0.68076 0.85729
5 0.69183 0.86143
6 0.66412 0.81149
7 0.59455 0.64519
8 0.60425 0.81822
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Table 3. Comparison of detection of lesion on full dose and synthesized full dose mammography

Lesion Type Assessment Mean % P value
Synthesized 20% Dose Synthesized 40% Dose

Mass No detection 12.6 3.2 0.003
Detection 87.4 96.8

Calcification No detection 10.0 0.0 <0.001
Detection 90.0 100.0

*Full dose as the reference standard
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Table 4. Comparison of lesion characterization of full dose, low dose and synthesized full dose 
mammography

Lesion type Assessment Mean % P value

Mass Synthesized 20% Dose Synthesized 40% Dose <0.001
Decrease 54.7 14.7

Equivalent 41.1 65.3
Improve 4.2 20.0

<0.001

Decrease+ 25.3 4.2
Equivalent+ 62.1 75.8
Improve+ 12.6 20.0

Calcification <0.001
Decrease 78.3 26.7

Equivalent 20.8 65.0
Improve 0.8 8.3

<0.001
Decrease+ 19.2 5.8

Equivalent+ 70.8 75.8
Improve+ 10.0 18.3

+Reference standard is low dose (20%, 40%) images. 



21

Figure 1. Our network contains two functions G: XàY, and F: YàX, We trained two 

generators (Network G and Network F) and two discriminators (Network Dx and Network Dy). 

We used three losses to train the networks. First, we employed adversarial loss with 

discriminator which distinguishes images are real or fake. Secondly we applied the cyclic loss to 

guarantee an inverse relation. Finally, identity loss was added to enforce the network does not 

generate any artificial components.
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Figure 2. Comparison of five radiologist’s average ratings of lesion detection on synthesized 

images compared to full dose images.  The synthesized 40% image shows highest detection rate 

for mass (96.8%) and calcification (100.0%).  
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Figure 3. Bar graph shows the effect of synthesized images on the characterization of mass (a) 

and calcification (b) with reference to true full dose and corresponding low dose (20% and 40%) 

images.    Synthesized 40% images show significantly higher proportion of ‘equivalent’ and 

‘improved’ quality for mass and calcification.  Synthesized 20% images show significantly

higher proportion of ‘decreased’ quality for mass and calcification. 

a
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b
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Discussion

With application of de-noising method based on unsupervised learning using cyclic 

consistency, we demonstrated that it can successfully improve the reduced dose image 

quality. To be clear, the synthesized image quality was mostly equivalent to true full dose 

images and showed improvement   at 40% dose. Our network for reconstruction of low 

dose image was revealed in terms of increased SSIM values. If this method can be applicable 

in patients, the cumulative radiation hazard by digital mammography, especially in high risk, 

young patients who are exposed to more frequent mammographic examinations can be 

avoided.

Screening mammography has been shown to reduce mortality through earlier 

detection (15). Its radiation dose should be regarded together with image quality, thus dose 

optimization is required. This refers to the determination of the lowest average glandular 

dose that yields a sufficient level of clinical image quality.  Earlier study using clinical 

images from a screening program (16) with a Senographe 2000D (GE Healthcare, 

Milwaukee, WI) have indicated that doses down to 50% reference average glandular dose 
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level are adequate for maintaining clinically acceptable image quality. Another study also 

revealed that there is no statistically significant difference between the 100% and the 50% 

dose levels, suggesting possibility of reducing the dose to half of the dose level of AEC (3).  

Similarly, we found that there is minimal effect on lesion conspicuity up to 60% dose 

reduction.  However, lower doses with threshold of 40% level, there was gradual 

degradation in image quality, with fewer details clearly visualized. The characterization of 

calcification was more dose dependent at the level below 40% level, while the effect of dose 

reduction on mass became evident at the 20% level, concordant with previous study with 

phantom study (3). It revealed the there was a significant degradation in image quality at the 

30% dose level.  Regarding calcification, Yakabet et al (4) demonstrated that calcification 

was not affected by a dose reduction of 50% and Samei et al (5) reported a dose reduction to 

50% did not have statistically significant effect on ability of the screening to detect 

calcification while 25% dose did have a significant effect. With regard to ability to detect 

masses, 30-50% dose reductions are reported to be possible (5, 17, 18). Another study also 

revealed that calcification detection and mass discrimination decreased from full dose to 
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quarter dose significantly, however detection of malignant mass did not appear to be affected 

by dose reduction (5).  

Image de-noising is essential to address image quality degradation caused by 

minimizing radiation dose (19). It is to maximize the restoration of the original image details 

by noise reduction as well as contrast enhancement (20). Recently, image de-noising based 

on deep learning has been shown to outperform. An effective de-noising could allow further 

dose reduction (21). Our CNN based de-noising method was employed to convert lower-

dose to higher-dose mammographic images. We used cyclic consistency in unsupervised 

framework to eliminate the need for perfectly paired images (11). Originally, CNNs have 

been used for microcalcification and mass classifications in computer aided detection (CAD) 

for mammography (22).  Samala et al (23) have demonstrated that mammography images

can be useful for training of CNN for mass detection in DBT. 

There are several limitations in our study. We analyzed relatively small number of 

cases and were all breast cancer patients.  Second, observer variability is generally the 

largest source of variability.  Previously Bernhardt et al (24) studied signal difference to 
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noise ratios normalized to AEC and showed that the W/Rh node/filter combination is 

superior.  However, we did not evaluate the impact of these combinations. Lastly, most 

diagnostic performance experiments involve rating images for the presence of one type of 

abnormality and assign each image a grade ranging from absent to present, with multiple 

grades in between.  The number of gradations range from four to 100 (25, 26).  However, 

this approach is limited for many of the diagnostic tasks performed in clinical setting. In our 

study, we used categorical approach to emulate the clinical paradigm by rating images for the 

detection and characterization of abnormalities. A clinical study involving adequate number 

of patient images should be performed to investigate the preliminary conclusions of our 

study further. 

We were able to convert low dose images to synthesized full dose images in the 

evaluation of mastectomy specimens of breast cancer patients. Our results suggest that there 

is a potential for modest dose reduction retaining diagnostic information with de-noising 

algorithm in digital mammography. Our results provide a baseline for future studies on 

reducing the radiation dose with lesion preservation on mammography. Our future work 
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includes extending the approach to clinical practices with breast cancer patients using 

reduced dose mammography together with de-noising deep learning algorithm. 
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국문요약

목적:

본 연구는 딥러닝을 이용하여 저선량 디지털 유방촬영술 영상의 화질 개선을

위한 알고리즘을 개발하고, 저선량 디지털 유방촬영술로 얻은 이미지를 개발한

딥러닝 알고리즘을 이용하여 복원하여 이미지의 판독에 영향을 주지 않는 범위

내에서 얼마의 선량을 감소시킬 수 있는지 알아보고자 하였다.

연구 대상 및 방법:

본 연구는 전향적 연구로 본원 임상연구심의위원회의 심의를 통과하였다. 

유방암 수술 과정 중 얻은 유방 전 절제 조직에 방사선 조사량을 여러 단계

(Automatic exposure control, 이로부터 10%, 20%, 40%, 60%, 80% 감소한

선량)로 달리하여 저선량 디지털 유방촬영술을 시행하고 평가하였다. Full 

dose 영상과 비교하여  acceptable radiation dose level 을 찾았다. 이 dose 

이하의 영상에 대해 딥러닝 알고리즘을 통해 복원한 후 정보를 모르는 상태에서

화질을 평가하여 판독에 영향을 주지 않는 최소의 선량치를 구하였다. 
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결과:

True full dose 영상과 비교하였을 때 유방 병변의 발견은 10% 선량 영상에서 약

60.8%-76.8%로 감소하였고, 병변의 질은 mass 는 10% 선량에서 86.3%로, 석회화

는 20% 선량에서 83.8%로 저하되었다.  딥러닝 알고리즘을 적용하여 20%선량과

40%선량 영상을 복원하였고 True full 영상과 비교하였을 때 복원된 영상에서 병

변의 발견은 두 선량에서 87.4%-100.0%로 유지되었으나 병변의 질이 복원된 40% 

선량 영상에서 향상된 것에 반해 복원된 20% 영상에서는 병변의 질 향상은 보이

지 않았다 (p<0.001)

결론:

본 연구에서 딥러닝 알고리즘을 이용하여 약 40%까지 유방촬영술의 선량을 감소

하면서 영상의 질을 유지하고 향상시킬 수 있음을 확인하였다. 본 예비연구의 결

과는 딥러닝 알고리즘을 이용한 유방촬영술의 선량 감소의 기초 연구로 추후 이

를 임상 적용 가능성이 있음을 시사한다.
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중심단어

유방촬영술

딥러닝

유방암

방산선량
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