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ABSTRACT 

 

Under pressure of the rapid change engendered by the fast growth of information and 

communication technologies, organizations need to continuously enhance their business 

processes in order to defend their market position and maintain their competitive edge. 

To achieve this, process mining has emerged as a mean to analyze the behavior of 

companies. Business process mining is new methods that amalgamate business process 

modeling and analysis with data mining, artificial intelligence and machine learning 

techniques, whereby process-oriented knowledge from event logs stored in today’s 

information systems are extracted to automatically discover business process models, 

identify bottlenecks, and improve the business processes. Many powerful process 

discovery algorithms have recently been developed. However, users and businesses still 

cannot choose or decide the appropriate mining algorithm for their business processes. 

Each algorithm has a specific limitation regarding the mining of short loops, invisible 

tasks, duplicate tasks and non-free choice constructs. There is no algorithm which is 

capable of discovering the aforementioned characteristics in a restricted time if all of 

them are present in the event log. 

The goal of this research consists of first developing a process discovery 

algorithms recommendation framework capable of recommending to businesses the 

most suitable process discovery technique to their business processes based on the 

knowledge in the event logs of the processes in question; second developing a new 

process discovery algorithm capable of handling standard constructs, short loops, 

invisible tasks, duplicate tasks, and non-free choice constructs if all of them exist in the 

event log. 
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초록 

 

정보통신기술의 급속한 성장으로 인한 급속한 변화의 압력을 받고, 기업은 시장 

지위를 방어하고 경쟁 우위를 유지하기 위해 비즈니스 프로세스를 지속적으로 

향상시켜야 한다. 이를 달성하기 위해, 프로세스 마이닝은 기존 정보 시스템에 

기록된 이벤트 로그에서 프로세스 지향 지식을 추출하여 기업의 행동을 

분석하는 수단으로 떠올랐다. 

프로세스 마이닝은 비교적 새로운 연구 분야로, 인공 지능 및 데이터 마

이닝과 프로세스 모델링 및 분석의 중간에 위치한 연구 분야다. 프로세스 마이

닝의 기본적인 아이디어는 정보시스템에 기록되어 있는 이벤트 로그에서 지식

을 추 출함으로써, 사람들이 머리 속에서 추정하고 있는 프로세스가 아닌 실제 

업무 프로세스를 자동으로 도출하고, 모니터링하며, 개선하는 것이다. 이벤트 

로그는 세 가지 유형의 프로세스 마이닝 수행에 이용될 수 있다. 프로세스 마이

닝의 유형은 도출, 적합성, 또 향상이다. 프로세스 모델 도출은 가장 중요한 프

로세스 마이닝 기법이다.  

최근에는 많은 강력한 프로세스 모델 도출 알고리즘이 개발되었다. 

그러나 사용자와 비즈니스는 여전히 비즈니스 프로세스에 적절한 도출 

알고리즘을 선택하거나 결정할 수 없다. 각 알고리즘은 짧은 루프, 보이지 않는 

작업, 중복 작업 및 자유롭지 않은 선택 구조의 마이닝에 대한 특정 제한을 

가지고 있기 때문이다. 이 모든 특징을 제한된 시간에 도출할 수 있는 

알고리즘이 없다.  

이 연구의 첫 번째 목표는 해당 프로세스의 이벤트 로그에 있는 지식을 

기반으로 비즈니스 프로세스에 가장 적합한 프로세스 도출 기술을 비즈니스에 

추천할 수 있는 프로세스 도출 알고리즘 추천 프레임 워크를 개발하는 것이다. 

연구의 두 번째 목표는 표준 구조, 짧은 루프, 보이지 않는 작업, 중복 작업 및 

비자유 선택 구조와 같은 프로세스 모델 특징을 처리할 수 있는 새로운 

프로세스 도출 알고리즘을 개발하는 것이다. 
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Chapter 1 INTRODUCTION 

 

1.1. Process Aware Systems Limitations 

 

Under pressure of the rapid change engendered by the fast growth of information and 

communication technologies, organizations need to continuously enhance their business 

processes in order to defend their market position and maintain their competitive edge. Most 

of the organizations adopt Business Process Improvement (BPI) approaches, Business 

Intelligence (BI) tools, and/or Business Process Management (BPM) techniques to enhance 

their operational performance and gain a competitive advantage in the common market. The 

main focus of Business Process Improvement (BPI) is to increase the satisfaction of the 

customer by enhancing quality and service, reducing expenses, and boosting the productivity 

of a business process or activity. Business process improvement creates an incremental 

enhancement in business processes (Zellner, 2011) via multiple existing management 

techniques such as Six-Sigma, Total Quality Management (TQM), Lean Management, 

Continuous Process Improvement (CPI), Agile Management, etc. Business Intelligence (BI) 

is a set of tools and techniques that use business related event data to measure the 

performance of a process or organization, support decision making, and enhance the business 

in real time. Unfortunately, the focus of BI tools is tailored toward data and local decision 

making rather than end-to-end processes (Van der Alast et al., 2012). Business Process 

Management (BPM) is considered one of the most promising disciplines for the organization 

as it allows the definition, monitoring, configuration, analysis and optimization of business 

processes (Zaouali et al., 2016). The aim of BPM is to provide the organization with end-to-

end process understanding, visibility and control while ensuring efficient communication in 

an organization. In BPM systems, process models are used to analyze the “as-is” and “to-be” 

processes. Nevertheless, these models are absolutely disassociated from actual data as they 

are based on the idealized model of reality rather than real observations. 

 

1.2. Process Mining 

 

Process mining is a recent set of techniques which provides a strong bridge between BI 

and BPM by combining both process models and event data forming a novel form of process-

driven analytics. Moreover, Process mining enables and strengthen the BPI approaches such 

TQM, Six-sigma, CPI, and so on, where processes are diagnosed to explore possible 

https://centricconsulting.com/improve-operational-performance/business-process-improvement-lean-six-sigma/
https://centricconsulting.com/improve-operational-performance/business-process-management-bpm/
https://centricconsulting.com/improve-operational-performance/business-process-management-bpm/
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improvements. 

Current information systems such as workflow management systems (WFM), enterprise 

resource planning (ERP) systems, customer relationship management (CRM) systems, supply 

chain management (SCM) systems, and business to business (B2B) systems store business-

related events in so-called event logs (Van der Alast et al., 2007). These event logs usually 

contain information about the activities that have been executed in the enterprise (i.e., process 

instance), the time in which these activities were executed, the people, machines, or systems 

that handled those tasks and other data. Process mining extracts knowledge from these events 

logs to automatically build a representation of the current execution of business processes of 

an enterprise for the aim to identify incorrect executions, bottlenecks and other problems that 

prevent the organization from achieving its strategic goal and vision (Taylor et al., 2012). 

Process mining uses these event data to extract process related information and three 

major classes of process mining techniques can be conducted for different purposes as 

illustrated in Figure 1.1: process discovery, conformance checking, and process enhancement 

or performance analysis (Van der Alast et al., 2011). Process discovery is considered the most 

important process mining technique. This type takes only an event log as input and 

automatically constructs a process model. Conformance checking compares an existing 

process model with the event log of the same process model to investigate that what is 

actually happening in the organization is in conformance with the process model. Process 

enhancement tends to enhance or extend the existing process model based on the information 

obtained from the discovered process model, or based on the information in the log. In this 

thesis, we focus on the control-flow perspective of the first type of process mining, i.e., 

process discovery. 

In the process discovery category, 3 types of perspectives can be performed based on the 

information available in the event log. If the log contains information about activities 

executed to handle a particular case (i.e., process instance), the control-flow perspective 

could be discovered. This perspective is described to answer the question “How?”. If the 

event log provides information about the persons, systems, or machines that are involved in 

the execution of the activity, the organizational perspective can be derived; this allows to 

answer the question “Who?”, while the question “What?” is answered by mining the case 

perspective if the event log contains additional data associated with tasks.  

 



3 
 

 

 

Figure 1.1. Overview of process mining and its three types of techniques 

 

Table 1.1 illustrates an example of an event log of a purchasing process used for 

process mining. Each row in the table represents one event and each column represents an 

attribute of this event. Events are associated with cases, and in Table 1.1 the events are 

grouped by case and arranged chronologically. The first recorded event is related to case 

Q521-QZR and represents the execution of the activity Purchase Request performed by the 

employee Hind on May 15, 2014. Additional attributes related to this event can also be used 

by process mining such as data attributes entered, costs, etc. Each event is required to have a 

unique identifier. Each event should be related to a case and the events should be sorted. 

Basically, timestamps of execution are used to sort events chronologically. The timestamps 

shown in Table 1.1 represents the time when the execution of the corresponding activity was 

started. Timestamps which indicates the completion or the pause of the execution of an 

activity also can be recorded and used by process mining.  

This log contains information about three cases (i.e., workflow instances). The log 

shows that for the three cases (1,2, and 3) the tasks Request, Approve, Verify, Finalize, Order, 

and Receive & Verify have been executed. Each case starts with the execution of Purchase 
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Request and ends with the execution of Receive & Verify.  

 

Table 1.1. An example of an event log used for process mining 

Case id Event id Activity Timestamp Resource …. 

Q521-QZR 

N0060 Purchase Request 5/15/2014 16:35 Hind …. 

N0070 Purchase Approval 5/15/2014 16:40 Safae …. 

N0080 Approval Verification  5/16/2014 16:40 Soukaina …. 

N0090 Purchase Finalization 5/16/2014 17:42 Younes …. 

N0100 Purchase Order 5/16/2014 17:30 Zineb …. 

N0110 Purchase Reception & verification 6/13/2014 10:55 Mohamed …. 

Q523-B85 

N0060 Purchase Request 5/15/2014 16:36 Hind …. 

N0070 Purchase Approval 5/15/2014 16:41 Safae …. 

N0080 Approval Verification  5/15/2014 16:41 Soukaina …. 

N0080 Approval Verification  5/15/2014 16:42 Soukaina …. 

N0090 Purchase Finalization 5/15/2014 16:55 Younes …. 

N0100 Purchase Order 5/15/2014 18:00 Zineb …. 

N0110 Purchase Reception & verification 6/15/2014 16:44 Mohamed …. 

Q543-289 

N0060 Purchase Request 5/15/2014 10:38 Hind …. 

N0070 Purchase Approval 5/15/2014 11:41 Safae …. 

N0080 Approval Verification  5/15/2014 12:42 Soukaina …. 

N0060 Purchase Request 5/15/2014 13:42 Hind …. 

N0080 Approval Verification  5/15/2014 15:42 Soukaina …. 

N0090 Purchase Finalization 5/15/2014 16:43 Younes …. 

N0100 Purchase Order 5/15/2014 16:45 Zineb …. 

N0110 Purchase Reception & verification 6/15/2014 11:45 Mohamed …. 

. . . . . . 

. . . . . . 

     . 

 

The event data shown in Table 1.1 shows typical information present in an event log. 

The first class of process mining which is process discovery can use the case id and event id 

of the event log shown in Table 1.1 to discover a process model which will represent the real 

behavior of the purchasing process in this example. The basic idea is to construct the model 

shown in Figure 1.2 from the information given in Table 1.1. 

Conformance checking techniques will compare the process model discovered from 

the event data in Table 1.1 with a priori-model or the existing model. By comparing both 

models unconformities, deviations, etc. can easily be observed. Process enhancement can use 
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for instance the timestamps associated with the events to investigate the performance of the 

process. 

 

 

 

Figure 1.2. A process model corresponding to the event log of Table 1.1 

 

1.3. Process Mining Challenges 
 

Process mining became one of the hot topics in business process management and 

improvement. Therefore, the IEEE Task Force on Process Mining, under a group of more 

than 75 people and more than 50 organizations, created the Process Mining Manifesto to 

promote the topic of process mining. The Process Mining Manifesto define a set of guiding 

principles and list important challenges in order to offer a guide for software developers, 

scientists, consultants, business managers, and end users (IEEE Task Force, 2011). Although 

in this Manifesto a set of important challenges has been defined, none of the published 

research papers investigated whether the defined challenges of process mining have been 

solved or are still being encountered. Therefore, we conducted a comprehensive and critical 

review of the literature to identify the state of the art of process mining challenges. Through 

the literature review, this study aims to identify the most important issues of process mining 

that received considerable focus and those that still require attention, investigate whether 

these challenges are still encountering or have been solved, and summarize the technologies 

and approaches developed to deal with these issues and highlight their limitations if exist. We 

believe that the state of the art of process mining challenges will contribute to increasing the 

maturity of the field of process mining by underscoring the issues that have not been solved 
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yet as well as the problems newly appeared while dealing with the main challenges of 

process mining. Still unsolved challenges and the problem that appeared in the attempt of 

solving the challenges can serve as a starting point for further researches. The Process 

Mining Manifesto (IEEE Task Force, 2011), published by the IEEE Task Force on Process 

Mining, lists several challenges and guiding principles for process mining. Table 1.2 outlines 

the main issues encountered in the area of business process mining (see Figure 1.3).  

 

 

 

Figure 1.3. Process Mining Challenges 

 

Challenge C1: Finding, Merging, and Cleaning Event Data 

Events (the starting point of process mining activity) can be stored in various and 

different data sources. Moreover, they might occur in a particular context, could be object 

centric rather than process centric, can be incomplete and noisy, and might also be 

characterised by different levels of granularity. The quality of a process mining result depends 

heavily on the input. Therefore, extracting event data suitable for process mining require 

considerable effort. 

Challenge C2: Dealing with Complex Event Logs with Diverse Characteristics 

Event logs can have very different characteristics (IEEE Task Force, 2011). Large event 

logs are difficult to handle, whereas small event logs do not provide enough data to make 

reliable conclusions. 

Challenge C3: Creating Representative Benchmarks 
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A lot of process discovery techniques are available. However, a good benchmark to compare 

and evaluate different existing techniques and tools is missing. 

Challenge C4: Dealing with Concept Drift 

The concept drift means that the process might change over time while being analysed. 

Understanding concept drift is of prime importance for process management. Therefore, 

additional research and tool support are required to adequately analyse concept drift (IEEE 

Task Force, 2011). 

Challenge C5: Improving the Representational Bias Used for Process Discovery 

The representation bias used in the process discovery affect strongly the quality of 

process mining results. For this reason, it is necessary to be careful while selecting the 

appropriate representational bias. 

Challenge C6: Balancing among Quality Criteria 

It is challenging to judge the quality of a discovered process model while balancing the 

four quality criteria: fitness, simplicity, precision, and generalisation. 

Challenge C7: Cross-Organizational Mining 

Two types of cross-organizational process mining exist. The first type is when different 

organisations collaborate together to handle process instances. In the second one, different 

organisations follow the same process (IEEE Task Force, 2011). Existing process mining 

techniques deal only with a single organisation. 

Challenge C8: Providing Operational Support 

Process mining is not limited to analysis of historical data but could also be applied to 

online operational support (detect, predict, and recommend). The challenge is to handle 

computing power and data quality issues while applying process mining techniques in such 

online setting. 

Challenge C9: Combining Process Mining with Other Types of Analysis 

The challenge is to combine process mining approaches with other types of analysis 

techniques to better extract more information from event data. 

Challenge C10: Improving Usability for Non-Experts 

End users need to interact with the results of process mining. For this reason, hiding the 

sophisticated process mining algorithms behind user-friendly interfaces is necessary. 

Challenge C11: Improving Understandability for Non-Experts 
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The purpose of process mining is to produce process models that can be used for further 

analysis and not for documentation (Buijs, 2014a). Therefore, the understandability of the 

results for non-experts should be improved. 

1.4. The state of the art of process mining challenges  
 

In order to identify publications that address process mining challenges we 

investigated three platforms: SCOPUS database, Process Mining Wiki, and google scholar. 

SCOPUS is the largest database of peer-reviewed literature. Process Mining Wiki is a 

publication platform that promotes research on the topic of process mining and contains 

publications only on process mining field. It was created by Process Mining Group of 

Mathematics and Computer Science Department of the Eindhoven University of Technology 

in the Netherlands, chaired by Will van der Aalst. Moreover, to not miss any paper, we also 

explored Google Scholar which allows a wide range of academic literature. Since Process 

Mining Manifesto released at the end of 2011, we focused on the papers published from the 

beginning of 2012 till the beginning of 2017. Using the three databases, 105 publications 

dealing with process mining challenges have been identified. We conducted a comprehensive 

and critical review of these papers to identify the state of the art of the main issues of process 

mining, specifically to investigate whether the reported challenges are still encountering or 

have been solved, identify the challenges that received considerable focus and those that still 

require attention, and summarize the technologies and approaches developed to deal with 

these challenges and outline their limitations if exist. Figure 1.4 depicts the number of papers 

dealing with each problem of process mining that we identified from the three publication 

databases. The most commonly addressed problems were Finding, Merging, and Cleaning 

Event Data (19 papers) and Dealing with Complex Events (15 papers). These were followed 

by Combining Process Mining with Other Types of Analysis and Improving Usability for 

Non-Experts (13 papers each). A substantial number of papers also addressed the problem of 

Dealing with Concept Drift (11 papers). The challenge of Cross-Organizational Mining came 

at the 5th position with nine publications. A small number of papers focused on Balance 

among Quality Criteria and Providing Operational Support (6 papers each). Likewise, the 

problems of Creating Representative Benchmarks (5 papers), Improving the Representational 

Bias for Process Discovery (4 papers) and Improving Understandability for Non-Experts (4 

papers) have not been thoroughly researched.  
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Figure 1.4. Publications dealing with the main process mining challenges 
 

Based on the conducted review, we found that a number of challenges encountered by 

process mining researchers have been partly or fully addressed in the past five years. One of 

the most frequently addressed problems encountered in process mining is Finding, Merging, 

and Cleaning Event Data, closely followed by Dealing with Complex Events. Other well-

researched areas include Combining Process Mining with Other Types of Analysis and 

Improving Usability for Non-Experts, closely followed by Dealing with Concept Drift and 

Cross-Organizational Mining. However, the review highlighted a number of process mining 

challenges that still need to be addressed further. A small number of papers focused on 

Balance among Quality Criteria and Providing Operational Support. Likewise, the problems 

of Creating Representative Benchmarks, Improving the Representational Bias for Process 

Discovery and Improving Understandability for Non-Experts have not been thoroughly 

researched.  

 

1.4.1 Finding, Merging, and Cleaning Event Data 

Nooijen et al. (2012) presented an automatic technique of discovering the model of a 

data-centric process. For each data object in the process, a separate process model that 

describes the evolution of this object (also known as an artifact life-cycle model) is 

discovered. However, the user needs to choose the number of artifacts (k) to be discovered. 

Therefore, it is required to develop more automatic approaches to identify the right number 

of artifacts (k).  

Ly et al. (2012) proposed the concept of semantic log purging, i.e., cleaning logs 

based on domain-specific constraints using the knowledge that typically complements 
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processes for the purpose to enhance the quality of a mined process model. The approach 

actually cleans the log with respect to its expected properties which is our major focus in this 

challenge. 

Leemans, S et al. (2014b) presented a technique called inductive miner infrequent able 

to discover process models from event logs containing infrequent behavior. The technique 

filters infrequent behaviour using the eventually-follows graph. 

Mannhardt et al. (2014) presented a method to extend an incomplete main event log 

with events from supplementary data sources, even supposing references to the cases 

recorded in the main event log are missing. The method can be used to correlate a large 

portion of events and also could be used to connect supplementary events to traces of the 

main event log without violating the constraints on different perspectives.  

Leemans, S. et al. (2014a) introduced a robust process discovery algorithm based on 

the inductive miner and on probabilistic behavioural relations which are less sensitive to 

incompleteness. The algorithm is proven by experiment to be capable of rediscovering 

models from small incomplete event logs and requiring less information in the event log 

compared to other process discovery algorithms.  

Priyadharshini and Malathi (2014) proposed new methods for noise filtering problem. 

They used unsupervised noise filtering and frequent group-based noise filtering algorithms 

for this purpose. The performance of the proposed methods was better than other existing 

methods.  

Claes et al. (2014) proposed a rule-based technique to merge the data at a structured 

level of various partners involved in a cross-organisational process. The technique consists of 

an approach for configuring and executing the merge and an algorithm for discovering links 

between the data of the different partners. 

Van der Aalst (2014a) described the idea of extracting “flat event logs” from existing 

databases. Flat event logs are necessary for using traditional process mining techniques. 

Therefore, the author described an approach that scopes binds, and classifies data for this 

purpose. However, the author only conceptualised the idea; a development of support tools is 

required. 

Cheng and Kumar (2015) performed extensive experiments to evaluate how a rule-

based approach called log sanitisation could improve the performance of a process mining 

algorithm. The proposed technique for sanitising noisy logs consists first of building a 

classifier on a subset of the log data and then applying the rules of the classifier in order to 
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remove noisy traces. This general approach for log sanitisation performed good results and 

can work with any noise pattern. 

Leoni et al. (2015b) described the notion of log–model alignment and certain 

diagnostics that can be computed using alignments tailored towards declarative models. The 

alignment-based approach can be used for cleaning event logs to remove traces unnecessary 

for further analysis. 

Wang et al. (2015) presented a graph repair approach for cleaning event logs. The 

method repairs; based on a reference process model, an event log that contains events with 

inconsistent labels (labels which do not correspond to the labels of the reference model). 

Nevertheless, this approach necessitates the availability of a reference process model which is 

usually unavailable.  

De Murillas et al. (2015) proposed a generic method that uses so-called redo logs that 

several Data Base Management Systems (DBMSs) adopt for data integrity and recovery 

reasons. Since such logs contain a list of events but are not correlated in the form of traces, 

the proposed approach convert these logs into event logs by using the relations expressed in 

the data model of the DBMS. 

Calvanese et al. (2015) presented a methodology that aids domain experts to flexibly 

extract XES event logs from legacy relational databases. The extraction is based on a 

conceptual representation of the domain of interest in terms of ontology. This ontology is 

associated with the underlying legacy data leveraging the ontology-based data access (OBDA) 

paradigm. The framework allows one to enrich the ontology via user-oriented log extraction 

annotations, which can be flexibly exploited to provide different log-oriented views over the 

data. 

Leemans, M et al. (2015) proposed a reverse engineering based methodology for 

extracting event logs from distributed software systems, crossing multiple system 

components. The approach is language independent and is restricted to single-threaded 

distributed software systems. 

As events which do not directly refer to the executions of activities recognizable for 

process operators are not appropriate for process mining, and the events recorded in an 

information system usually do not directly refer to recognizable activities, Mannhardt et al. 

(2016) proposed a supervised event abstraction method that provides a mapping from the 

recorded events to activities recognizable by process operators. The abstraction method is 

based on behavioural activity patterns that extract domain knowledge on the relation between 
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high-level activities and recorded low-level events. The approach results in an abstracted 

event log providing insights that cannot be obtained with an original event log when applying 

process discovery techniques. 

Lu et al. (2016a) introduced an integrated tool named Log to Model Explorer that 

allows users; in an interactive and iterative way, exploring and pre-processing a log by 

clustering, filtering infrequent events and renaming event label.  

Events granularity of event logs might be too low level. Thus, event logs with an 

appropriate level of event abstraction are required. Tax et al. (2016) described a supervised 

learning based method for abstracting events in an XES event log that is too low-level. The 

technique consists of producing a feature representation of events based on XES extensions, 

and of a Conditional Random Field based learning step to abstract events in an event log. The 

method enables process discovery algorithms to construct processes with high-level insights. 

Conforti et al. (2017) proposed an automated technique for removing infrequent 

behaviour (noise) from event logs. The approach consists first of constructing an abstraction 

of the event log as a directed graph that captures direct follows dependencies between event 

names. Then, infrequent transitions are erased from this directed graph. After that, the 

original log is replayed on the updated directed graph and finally, unfitting events are erased 

from the event log.  

Suriadi et al. (2017) described, in the context of cleaning event logs, a pattern-based 

approach that provides a repository of knowledge to handle data imperfections encountered 

when preparing event logs. The pattern-based approach offers a documentation that collects 

typical issues which can be faced in preparing event logs for the purpose of process mining 

use as well as associated remedial actions to repair them. 

Because the quality of any process mining technique result strongly depends on event 

logs, finding, merging and cleaning event logs was reported as the first challenge in Process 

Mining Manifesto and requires considerable efforts. In order to handle this challenge, 

researches have to deal with event log stored in various data sources, event data that had been 

executed in a certain context, event data that is object centric than process centric, 

incompleteness, noise (infrequent behaviour), and event data characterised with different 

levels of granularity. As can be seen, all these elements have been directly and indirectly 

examined in the publications cited above. And we can say that the first challenge of Process 

Mining Manifesto has received a significant focus from the research community. Table 1.2 

summarises the methods used in dealing with this challenge. 
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Table 1.2.  Summary of the approaches used to deal with finding, merging, and cleaning 

event data 

Paper Ref. Used methodology Outcome 

Nooijen et al. 

(2012) 

Automatic technique  Discover a data centric process 

model (artefact life-cycle model) 

Ly et al.       

(2012) 

Domain specific constraints based 

approach 

Clean the log with respect to 

expected properties 

Leemans, S. et al. 

(2014a) 

Inductive Miner and probabilistic 

behavioural relations based 

algorithm 

Rediscover process models from 

small incomplete event logs 

Leemans, S. et al. 

(2014b) 

Eventually-follows graph based 
technique 

Filter infrequent behaviour and 

return sound model 

Claes et al.     

(2014) 

Rule based technique Merge historical data of different 

partners in one event log 

Mannhardt et al. 

(2014) 

Alignment-based  method Ensure correlation between 

supplementary and main event logs  

Priyadharshini  et 

al. (2014) 

Unsupervised and frequent group-

based noise filtering approach 

Filter noise from event logs 

Van der Aalst 

 (2014a) 

Scope, bind and classify based 

approach 

Extract “flat event logs” from 

existing databases 

Cheng et al. 

 (2015) 

Noisy log sanitisation based 

approach 

Filter noise and improve the 

performance of a process mining 

algorithm 

Leoni et al. 

(2015b) 

Alignment based approach The approach removes traces that 

should not be used for further 

analysis 

de Murillas et al. 

(2015) 

Generic approach Convert redo logs of DBMSs into 

event logs 

Leemans, M et al.    

(2015) 

Reverse engineering based 

technique 

Extract event logs from distributed 

systems 

   

Calvanese et al.  

(2015) 

Ontology based framework Extract event logs from relational 

databases 

 Wang et al.         Structure-based graph repair Clean event logs by repairing 
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(2015) approach inconsistent event names 

Mannhardt et al. 

(2016) 

Supervised event abstraction 

method 

Generate an abstracted event log 

better than the original one 

Tax et al. (2016) Supervised learning based method Abstract events in an event log 

Lu et al. (2016a) Log to Model Explorer tool Filter infrequent events 

Conforti et al. 

(2017) 

Automated technique Remove infrequent behaviour from 

event logs 

Suriadi et al. 

(2017) 

Pattern-based approach Extract data imperfection and 

provide associated remedial 

solutions 

 

1.4.2 Dealing with complex event logs with diverse characteristics 

Van der Aalst (2013a) introduced a general decomposition technique for process 

discovery and conformance verification through which large process mining problems are 

decomposed into a set of smaller problems. However, in conformance checking 

decomposition, only fitness was considered, whereas other quality dimensions; such 

precision and generalisation; are also important and need to be investigated. Regarding 

process discovery decomposition which was based on splitting all activities into overlapping 

activity sets, large scale experimentation is required.  

Van der Aalst (2013b) proposed a general divide-and-conquer technique in which an 

event log is decomposed based on splitting activities without focusing on a specific 

representation. The approach allows for various decomposition strategies. Moreover, it 

provides new and interesting insights about the essential requirements for decomposing 

process discovery and conformance checking issues. This approach has been later extended 

and implemented by (Verbeek et al., 2016a) in a tool framework called Divide and Conquer. 

This tool allows (1) easy decomposed discovery using six discovery algorithms, and (2) the 

end user to select the classifier to use, the discovery algorithm to use, and a configuration to 

use. 

Van der Aalst (2013c) formalised the notion of process cubes that organises events 

and process models using different dimensions. Each cell in the process cube corresponds to 

a set of events which can be used to apply process mining techniques without any extraction 

of event logs beforehand. However, many challenges remain and need to be addressed in 
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further researches, such as comparing and visualizing different cells, computing sub-logs and 

models per cell, and addressing concept drift. 

Munoz-Gama et al. (2013) proposed a conformance checking technique that 

decomposes large processes into small processes using the so-called Refined Process 

Structure Tree (Polyvyanyy et al, 2010) which allow the construction of a hierarchy of 

Single-Entry Single-Exit. However, more real life case studies are required to prove the 

correctness of the approach.  

The work of Munoz-Gama et al. (2014) presented Single-Entry Single-Exit (SESE) 

decomposition technique for conformance checking where large process models and event 

logs are divided into smaller fragments that can be analysed independently. The event log is 

simply partitioned into sub-logs in a way that every trace appears exactly in one sub-log. The 

approach provides rapidly detailed and focused diagnosis of conformance checking. However, 

none of the quality dimensions was considered.  

Van der Aalst and Verbeek (2014b) proposed passages based approach where process 

mining problems are decomposed into smaller problems. Both process discovery and 

conformance checking can be partitioned using passages. The discovered fragments can be 

merged into an overall process model while the result of conformance checking per passage 

can be incorporated into overall conformance diagnostics. Using such decomposition the two 

types of process mining perform efficiently. However, the performance of the results strongly 

depends on the number of passages used and the size of the large passages. Large scale 

experiments are needed in further works. 

Hompes et al. (2014) proposed a process discovery decomposition approach based on 

clustering large event logs into sub events (activities). Moreover, three quality notions based 

on clustering properties have been defined: cohesion, coupling, and balance to assess a 

decomposition before it is used to discover a model or check conformance. The 

decomposition technique was based on these quality dimensions. However, it is challenging 

to choose the suitable discovery algorithm that can be applied to the decomposed event log.  

Kalenkova et al. (2014b) presented a process discovery decomposition approach that 

partitions transition system into parts based on the knowledge about the event log, and to 

each part, one of the regions based discovery algorithms are applied. The small discovered 

models are at the end merged into one process model well-structured and more readable. 

However, generalisation quality dimension has not been considered in this study.  
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Verbeek and Van der Aalst (2015) introduced a generic framework for decomposed 

discovery and replay that divides big event log containing many activities into a set of small 

event logs. Then the authors applied Integer Linear Programming (ILP)-based algorithms to 

the decomposed process discovery and conformance checking. The resulting ILP-based 

discovery algorithm was much faster than the regular discovery algorithm, but the resulting 

ILP-based replay algorithm was more complex. However, the framework supports only the 

α-algorithm and the ILP-based algorithms. Much more works are needed to extend this 

approach to include other algorithms. 

Leemans, S. et al. (2015a) introduced Inductive Miner - directly-follows based (IMD) 

framework that applies divide and-conquer strategy to discover a process model from event 

log containing billion of events. The approach consists in selecting the cut of process 

activities, using this cut to divide the event log into sub blogs, and recursing the sub logs on 

until a base case is confronted. Also, a new Projected Conformance Checking framework was 

developed to evaluate the quality of the mined model that is discovered from a very big event 

log but only fitness and precision metrics are considered. 

Users need to operate easily the decomposition techniques for process discovery and 

conformance checking, from splitting a large problem into small problems to merging the 

results into a single result. For this purpose, Verbeek (2014, 2016a) introduced the 

DivideAndConquer tool, and Vogelgesang and Appelrath (2015) presented the PMCube 

Explorer. 

Verbeek et al. (2016b) proposed an algorithm to merge decomposed alignments, 

resulting from replaying decomposed logs on associated decomposed nets, into an overall 

alignment. In case it is not possible, the algorithm returns a pseudo-alignment, i.e., a 

relaxation of the normal alignment. The algorithm consists of three alignment rules and two 

pseudo-alignment rules. 

Verbeek et al., (2017) showed that there are some cases where the decomposed replay 

requires much more time compared to the monolithic replay (without decomposition). To 

alleviate this problem, they proposed hide and reduce decomposed replay (hide transitions 

and reduce nets). Although in some other cases, this alternative abstraction also takes more 

time than the original decomposed reply and monolithic reply, it handles more situations than 

other replays do, and the replay cost estimate is better than the original decomposed replay. 

Traditional process mining techniques have difficulties to handle “big event data” 

properly. Fortunately, it is generally agreed that decomposed process mining is the best 
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solution to this question, as it decomposes the process mining problem into many smaller 

problems that can be solved in short time, and many ways to partition process mining 

problems exist. However, the approaches used for decomposition were not consistent among 

studies: some used the divide-and-conquer approach, some used the Single-Entry Single-Exit 

technique, some used the notion of process cubes, and others have based their decomposition 

on clustering. Hence, an evaluation of these approaches is needed for selecting the 

appropriate technique and identifying the conditions under which each approach should be 

used. Moreover, each study for process mining decomposition has some limitations and need 

to be investigated in further works. The most relevant problem was balancing the four 

conflicting quality dimensions, especially in conformance checking decomposition. Not all 

quality metrics have been considered in their studies. Furthermore, some studies still have 

issues related to computation and visualisation. Table 1.3 provides a summary of the 

frameworks that have been developed to deal with complex and large event logs. 

 

Table 1.3. Summary of the approaches used to deal with complex event logs with diverse 

characteristics 

Paper Ref. Used methodology Outcome   Limitation  

Van der 

Aalst 

 (2013a) 

Generic decomposition 

technique based on a set 

of activities 

Allow large process 

mining problems to be 

decomposed into set of 

smaller problems 

Only fitness metric 

has been considered 

in conformance 

checking 

Van der 

Aalst 

 (2013b) 

General divide-and-

conquer approach based 

on a partitioning of 

activities 

Allow for several 

decomposition strategies 

 

 

Van der 

Aalst  

(2013c) 

 

Process cubes based 

approach 

Enable users to analyse 

and explore processes 

interactively on the basis 

of a multidimensional 

view on event data 

Remaining issues:  

- Visualising cells. 

-Computing sub 

logs and models per 

cell.  

-Concept drift  

Munoz-

Gama et al. 

(2013) 

Conformance checking 

decomposition technique 

based on Refined Process 

Structure Tree 

Provide efficiency in 

computation and 

diagnosis when 

discovering conformance 

problems  

 

Munoz- Single-Entry Single-Exit Provide rapidly detailed Quality dimensions 
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Gama et al. 

(2014) 

decomposition technique 

for conformance 

checking  

and focused diagnosis of 

conformance checking 

was not considered 

Van der 

Aalst et al. 

 (2014b) 

Passages based 

decomposition approach 

Conformance checking 

and process discovery 

can be done much more 

efficiently  

The performance 

depends on the 

number of used 

passages 

Hompes et 

al. (2014) 

Discovery decomposition 

technique based on 

clustering 

Provide efficient 

decomposition  

Choosing the 

appropriate 

algorithm to mine 

the decomposed 

event logs is a 

challenge 

Kalenkova 

et al. 

(2014b) 

Process discovery 

decomposition from 

transition system 

Discover better 

structured and more 

readable process models 

from transition systems 

Generalisation 

metric has not been 

considered 

Verbeek  

(2014a) 

DivideAndConquer tool Enable users to operate 

easily decomposition 

techniques 

 

Leemans et 

al. (2015a) 

Inductive Miner - 

directly-follows 

framework & Projected 

Conformance Checking 

framework 

Enable users to discover 

sound model from an 

event log with billions of 

events 

Generalization 

metric has not been 

considered 

Verbeek et 

al. 

 (2015) 

Generic decomposition 

for discovery and reply 

 + Integer Linear 

Programming based 

algorithm 

The ILP-based 

decomposed algorithm  

is much faster than the 

regular discovery 

algorithm. ILP-based 

replay algorithm is more 

complex. 

Support only the 

α-algorithm  

and the ILP-

based algorithm  

 

Vogelgesang  

et al. (2015) 

PMCube Explorer Enable users to operate 

easily decomposition 

techniques 

 

Verbeek et 

al. (2016a) 

Divide and Conquer tool 

framework 

Enable users to operate 

easily the decomposed 

discovery and replay 
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Verbeek et 

al. (2016b) 

Decomposed alignments 

merging algorithm 

Merge decomposed 

alignments into an 

overall alignment or a 

pseudo-alignment 

Pseudo-

alignment may not 

better match than 

the overall 

alignment 

Verbeek et 

al. (2017) 

Hide-and reduce 

decomposition approach 

for replay 

Provide a better estimate 

of the replay cost and 

handle more situations 

than other replays 

The speed is 

slower than the 

original 

decomposed replay 

in some situations 

    

1.4.3 Creating representative benchmarks 

Rozinat, A., et al. (2007) have written an important and a good starting article on 

building process mining algorithms benchmark framework. They introduced two 

methodologies to evaluate process discovery techniques. The first strategy is based on 

evaluation using metrics and the second one is a machine learning strategy. Wang, J., et al. 

(2012) extended this work by empirically evaluating process discovery techniques using both 

artificial and real-life datasets, as well as different similarity measures. Moreover, Gupta 

(2014) provided a comparison of Heuristic miner, Fuzzy miner, and Genetic miner 

algorithms to identify in which case these algorithms can be used. Despite the fact that these 

frameworks allow users and businesses select the process mining algorithm suitable to a 

given event log, empirical evaluation is time-consuming. Only after performing experiments 

on all existing mining algorithms can be decided the best algorithm. Wang, J. et al. (2013) 

presents particularly remarkable work in which the problem of spending a long time in 

performing experiments to select the appropriate mining algorithm at the end is solved. Their 

proposed framework is based on learning step and recommendation step. In the first phase, a 

regression model is built based on features extracted from high quality selected reference 

models and on the similarities between the reference models and the mined models. Using 

this regression model as well as features extracted from the other models, similarities 

between reference models and mined models are predicted without performing experiments. 

While the authors’ results obtained by applying this framework are very accurate and 

attractive, there is a weakness in this concept. The presented methodology is strongly based 

on reference models. However, reference models usually are not available in the practical 

world. Ribeiro, J. et al. (2014) developed a framework and a tool for recommending control 
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flow algorithms. Based on features extracted from event logs and prediction models built 

from experiments, top-K control-flow miners are recommended. Although this work takes 

event logs as input rather than reference models considering the limitation in (Wang, J. et al., 

2013), the study can be criticised on the fact that in this framework, performing experiments 

to build prediction models are required before recommending top-k mining algorithm. Thus, 

again time-consuming. The proposed systems would have been more interesting if the 

authors had based their frameworks only on event logs as an input and at the same time had 

reduced the experiments required to decide the mining algorithm suitable for a given event 

log. Pérez-Alfonso et al, (2015) proposed an approach to recommend a process discovery 

algorithm based only the classification of event logs, but they just conceptualised the idea.  

 

1.4.4 Addressing Concept Drift  

 

Bose et al. (2014) introduced the topic of concept drift in process mining and 

proposed a generic framework and a set of features for adequately detecting changes in event 

logs and localising changes in a process. They have demonstrated that by using the concept 

drift system, heterogeneity among cases caused by process changes can be effectively 

detected.  

The work of Rekhadevi and Appini (2015) described an idea float based framework 

and specific strategies for identifying when procedure changes; and limiting the parts of the 

procedure that have changed. They demonstrated that process changes can be managed if the 

idea floats have been determined.  

Nithya et al. (2015) used the drift concept to determine agent guilt. They proposed a 

framework based on data strategies across the agent to upgrade the likelihood of determining 

if there is a leak of data. Dealing with concept drift system presented in this paper can be 

used to identify changes in real life event logs even with an insignificant number of cases.  

Raviteja Pochiraju and Kumar (2015) proposed a generic approach and particular 

strategies for identifying the parts of the process that have been changed once a method is 

modified. The framework is based on various area units that characterise relationship among 

activities to discover variations. 

Aruna and Laxmi Priya (2015) introduced the first online procedure to identify and 

handle the drift concept. The proposed system stands on using both abstract interpretation 

and sequential sampling with the new data stream approaches. Their results also 
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demonstrated that it is possible to efficiently handle non homogeneous cases generated by 

process changes.  

Li and Kang (2015) proposed new process mining procedure to rebuild the workflow 

process that faced deviations of workflow instances. The system consists of building 

MarKow transition matrix based on analysing the workflow log, and then in developing a 

multi-step workflow mining algorithm to discover structurally relationships between 

activities. The approach has been proved to be applicable. 

Hompes et al. (2015a) proposed a trace clustering approach based on the Markov 

cluster (MCL) algorithm for detecting common and deviating behaviour based on a set of 

selected perspectives. In this technique trace clustering and outlier detection are combined in 

order to find mainstream and deviating behaviour. The process context is considered by using 

both control-flow and case data in order to be able to find and explain both common and 

exceptional behaviour. However, MCL algorithm is non-parametric in the number of clusters. 

So, the expansion and inflation parameter is set manually. This work was extended in 

(Hompes et al., 2015b) by providing a comparative trace clustering method that is capable of 

detecting changing behaviour in a process by using both control-flow and case data. The 

approach consists of comparing clusterings constructed for two selected fragments of an 

event log to detect change point. The comparison includes differences in behaviour over time 

as well as for distinct case groups, i.e., cases handled by different resources. 

Lu et al, (2016b) proposed mappings between events based method to detect deviating 

events by identifying frequent similar behaviour and dissimilar behaviour among executed 

process instances, without discovering any normative model. 

Kakkad & Sheikh, (2016) proposed a generic framework to analyse process changes 

based on events logs. The framework consists of different features sets that characterize 

relationship among activities in the event log to detect the changes and identify the regions of 

change in a process.  

Sethi & Kantardzic (2017) presented the Margin Density Drift Detection (MD3) 

algorithm, which is able to accurately detect concept drift from unlabeled streaming data. 

This algorithm exploits the number of samples in a classifier’s region of uncertainty (margin), 

as a metric for detecting drift. It is robust to stray changes in data distribution, a reliable 

substitute to supervised drift detectors, and also can be used in a variety of data stream 

environments. 

The papers cited above proposed solutions for dealing with concept drift. 



22 
 

Nevertheless, most of the works considered changes only from the control-flow perspective 

except Hompes et al. (2015a, 2015b), whereas the data and resource perspectives are 

equitably essential to gain more insights. Hence, more methods which allow detection of 

changes from other perspectives need to be established. Moreover, drift detection was 

performed only in an offline setting, but it is also very important for online analysis. In 

addition, while working on drift concept, researchers faced some issues that need to be 

addressed. See Table 1.4.  

 

Table 1.4. Summary of the approaches used to deal with concept drift 

 

Paper Ref. Used methodology Outcome   Limitation  

Bose et al. 

(2014) 

Generic framework 

and  set of features 

Detect changes in event 

logs and localise changes 

in a process 

- Control-flow 

perspective only 

- Encountering 

challenges: 

1. Change-pattern 

specific features.   

2. Feature selection.  

3. Holistic approaches.  

4. Recurring drifts. 

5. Change process 

discovery. 

6. Sample complexity.  

7. Online(on-the-fly) 

drift detection. 

Rekhadevi   

et al. (2015) 

Idea float based 

framework 

Process changes can be 

managed with the 

identification of idea 

floats  

Raviteja et 

al. (2015) 

Generic approach and 

particular strategies 

Discover variations 

Aruna et al. 

(2015) 

Online procedure Handle efficiently non 

homogeneous cases 

generated by process 

changes 

Li et al. 

(2015) 

Process reconstruct 

approach based on the 

Markov transition 

matrix of event log 

Rebuild the workflow 

process that faced 

deviations of workflow 

instances 

Nithya et al. 

(2015) 

Agent guilt 

identification based 

framework 

Determine changes in 

real life event logs even 

with insignificant number 

of cases 

Control-flow 

perspective only  

Hompes et 

al. (2015a) 

Markov cluster 

algorithm based trace 

clustering approach 

Detect mainstream and 

deviating behaviour 

The expansion/inflation 

parameter of the MCL 

algorithm is set 

manually 

Hompes et Comparative trace Detect differences in Analysis process 
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al., (2015b) clustering approach behaviour automation and changes 

visualization are 

required 

Kakkad et 

al. (2016) 

Generic framework 

and set of features 

Detect and localize the 

changes in a process 

Control-flow 

perspective only 

Lu et al. 

(2016b) 

Mappings between 

events based approach 

Detect deviating events 

without discovering a 

normative model 

The approach accuracy 

is slightly lower when 

deviations are frequent 

and more structured. 

Control-flow only 

Sethi et al. 

(2017) 

Margin Density Drift 

Detection (MD3) 

algorithm 

Accurately detect concept 

drift from unlabeled 

streaming data 

Detect drifts with 

significantly fewer false 

alarms. Control-flow 

only. 

1.4.5 Improving the Representational Bias Used for Process Discovery 

Buijs et al. (2012a) presented a genetic process discovery through which process trees 

are mined. The proposed technique assures the model’s soundness and is the first to 

guarantee the correctness of the model while including all four quality criteria.  

Mokhov and Carmona (2014) described the first try to use Parameterized Graphs 

(PGs) in process mining field. Although they showed the potential benefits of using 

Parameterised Graphs, there are still encountering issues such as handling cyclic behaviour, 

reaching scalability, and producing BPMN diagram that requires being addressed.  

Kalenkova et al. (2015) developed various and powerful control flow transformation 

techniques to mine BPMN diagram (preferred by businesses) from famous control flow 

modelling representations such Petri nets, causal nets, and process trees while taking into 

account the representational bias.  

Swapnali and Ravi (2015) focused on resolving the current issues related to process 

discovery techniques, such as the incapacity to mine precise and understandable process 

models. Hence, they proposed ActiTraC algorithm based framework through which mined 

models can be produced automatically from systematic event logs.  

Most research papers have focused on understandability, correctness, and quality of 

the representation and also on transformations techniques that convert control flow modelling 

representations to the desired language visualisation. However, the focus in this challenge 
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should be toward the implicit search space implied by the representational bias (Van der 

Aalst, 2011b). For instance, BPMN notation does not support non-free-choice-constructs. 

Thus, for an event log containing non-free choice constructs, choosing BPMN notation is not 

the suitable representation of the process model discovered from this event log. From this 

latter, we can conclude that the characteristics of event log strongly impact representational 

bias. Therefore, in our opinion, if we know beforehand the characteristics of a given event 

log, selecting the right representation bias would be very clear from the beginning. Thus, 

frameworks that identify event log characteristics (i.e. non-free-choice construct, duplicate 

tasks, invisible tasks…) without using mining algorithms are required.  

1.4.6 Balancing between quality criteria of fitness, simplicity, precision, and 

generalization 

Buijs et al (2012a) proposed a new genetic process mining algorithm that discovers 

process trees from event logs. They demonstrated that it is possible to balance the four 

quality criteria. The presented technique is the first to guarantee correctness while including 

the different quality dimensions.  

Fahland and Van der Aalst (2012) presented a post-processing method through which 

mined process models are simplified while adjusting overfitting and underfitting. The 

technique presented in this paper can be associated with any process discovery algorithm that 

generates a Petri net able to reproduce the event log.  

Buijs et al. (2013a) described the Evolutionary Tree Miner (ETM), a genetic process 

discovery algorithm through which users can control, according to their preferences, the 

process discovery with respect to the four quality criteria. It has been proven that all criteria 

are essential for process discovery. However, precision, generalisation, and simplicity depend 

heavily on the state of the fitness. 

Müller et al. (2013) presented a genetic mining technique that discovers service 

model from a given service and the event log containing the execution of the given service. 

Moreover, the proposed algorithm balanced the four quality dimensions. Nonetheless, the 

obtained service model has the highest quality but not the optimal quality. Thus, an extension 

of this framework in further research to select the service model with optimal quality is 

required. 

Van Eck et al. (2014) extended the work of Buijs et al. (2013a) by exploring a 

technique that enhances the performance of the ETM algorithm. The approach consists first 
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of creating an initial population of the process model with acceptable quality and then in 

detecting and handling the quality problems in the model using guided mutation operations. 

This method allows generating models with high quality in fewer generations than the 

original ETM. However, the used mutation operations are not excellent. Using random 

mutation operations in further research is needed. 

Van Zelst et al. (2015) introduced a sequence-encoding filtering framework where 

irregular behaviours are filtered while applying ILP-based process discovery algorithm. The 

proposed method allows generating less overfitted, and more comprehensible process models, 

and also is able to catch the frequent behaviour in the event log.  

Whereas some works were not able to balance the four conflicting quality dimensions, 

others demonstrated that balancing the quality dimensions is possible. For instance, it has 

been proven that process discovery algorithms that generate process trees are able to balance 

the four quality dimensions. However, not all existing process discovery techniques can 

actually produce process trees. Therefore, it is recommended to develop techniques that allow 

the balance of the four quality criteria for the algorithms that discover other representations 

such as Petri net, causal net, and BPMN; or design a method like the one Fahland and Van 

der Aalst (2012) proposed, but it should not be restricted to algorithms discovering one 

specific notation. Table 1.5 provides a summary of the methods conducted for balancing 

between quality criteria. 

 

Table 1.5. Approaches used to balance the quality dimensions of discovered process model. 

 

Paper 

Ref. 

Used methodology Outcome Limitation  

Buijs et 

al. 

 (2012a) 

Genetic process mining 

algorithm to discover 

process trees 

Ensure correctness while 

incorporating all four quality 

dimensions. 

Process tree only 

Fahland 

 et al. 

(2012) 

Post-processing 

approach 

Simplify discovered process 

models while controlling the 

balance between overfitting and 

underfitting 

Support only Petri 

net 

Buijs et 

al.  

(2013a) 

Genetic process 

discovery algorithm: 

Evolutionary Tree 

Miner 

Allow users to control the 

process discovery with respect to 

the four quality criteria 

Precision, 

generalisation, and 

simplicity depend 

on fitness  

Müller et Genetic service Produce service models with The high quality 
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al. 

(2013) 

discovery algorithm  high balanced quality of the mined 

service model 

might not be 

optimal 

Van Eck 

et al. 

(2014) 

ETM algorithm 

enhancing technique 

Produce process models with 

high quality in fewer generations 

than the original ETM 

The used mutation 

operations are not 

perfect 

Van 

Zelst   et 

al. 

(2015) 

Sequence encoding 

filtering technique 

Produce process models less 

over-fitting, more 

understandable, and more 

adequate in capturing the 

dominant behaviour in the event 

log 

Only precision, 

simplicity, and 

fitness are 

balanced 

1.4.7 Cross-Organizational mining 

Buijs et al. (2012b) explored an original framework in which collections of process 

models can be compared with their events logs across organisations. The method is based on 

three types of metrics: metrics related to process models, metrics related to process 

executions, and metrics to compare process models and/or process executions. The authors 

demonstrated that even simple metrics offer useful insights regarding how to enhance 

processes. However, this method approach is generic and any metric can be used.  

Buijs et al. (2013b) presented and compared four approaches to discover a 

configurable process model from a collection of event logs by extending the ETM genetic 

algorithm. They demonstrated that mining one configurable process model with 

commonalities and differences among variants is better than discovering one process model 

per organisation. This was the first paper in which a configurable process model was 

constructed based on a collection of event logs. 

Zeng et al. (2013) introduced a process mining approach to discover the coordination 

patterns between various organisations and the process model of each organisation for cross-

organizational workflow from the distributed running log. Since this log contains information 

about resource allocation, an RM-WE-Net model is proposed to represent the process model 

mined. Based on the model discovered for each organisation and the coordination patterns, a 

process integration approach is then proposed to obtain the model for a cross-organizational 

workflow. Nonetheless, the approach cannot handle some special structures such as choices 

or invisible tasks for one single organization. 
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Buijs and Reijers (2014b) proposed a comparison procedure of similar business 

processes across multiple organisations based on the alignment between registered behaviour 

and modelled behaviour. Their analytical procedure provides the possibility to analyse the 

actual execution of a process within a particular organisation with its intended model, and 

also with the variants of the same model used by other organisations.  

Schunselaar et al. (2015a) offered an implementation of YAWL into the cloud. Their 

implementation allows multiple non-competitive organisations to help each other, and 

provide through configurable process models the opportunity to support different variants of 

the same process.  

Sebu and Ciocarlie (2015) provided, after deep analysis of multiple inter-

organisational cooperation modes, a process-based approach for determining compatibility 

between organisations. The method stands on using process mining algorithms and graph 

comparison methods to determine the most suitable organisations for profitable 

collaborations.  

Yilmaz & Karagoz (2015) developed an environment where cross-organizational 

process mining is applied with the unsupervised learning in which predictor variables related 

to performances of organisations are used. The proposed approach consists of (1) mining the 

process models of organisations, (2) computing performance indicators, (3) clustering 

organisations based on performance indicators, and finally (4) underlining discrepancies 

between process models to make recommendations. But, Analyzers can fail in case there are 

loops in the process models. 

Burattin et al. (2015) proposed a possible approach toward a complete solution to 

support the Cross-Organizational process mining while preventing the confidentiality of the 

dataset and processes. The framework uses AES as a symmetric cryptosystem for strings, and 

Paillier for the homomorphic encryption of numerical values. Unfortunately, the available 

analysis plugins in ProM do not involve numerical data attributes except conformance 

checking plugin to support the proposed framework. 

Aksu et al. (2016) proposed a generic Cross-Organizational Process Mining 

Framework to accurately comparing organisations based on the usage of a software product 

such as Enterprise Resource Planning (ERP). The framework considers as input an event log, 

semantics, i.e., the meaning of terms in an organisation, and organisational context, i.e., the 

characteristics of an organisation. Through these inputs, the methodology is able to identify 

what to compare between organisations and how.  
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We can clearly observe that several techniques have been applied in many papers to 

deal with the challenge of cross-organizational mining. Most of them focused on 

commonality and collaboration between organisations, specifically on similarities between 

the process models and behaviou of organisations. However, although these approaches 

provide the way to successful cooperation, organisations might refuse such collaborations to 

avoid leakage of private information.  Burattin et al. (2015) proposed a possible approach for 

outsourcing process mining, which is capable of preventing the confidentiality of data when 

operating cross-organizational mining by the encryption of strings and numerical attributes. 

Nonetheless, this approach was implemented in ProM and most of the analysis plugins do not 

involve numerical data. So, each plugin needs to be appropriately modified and adopt a full 

encryption of numerical values. Concerning the other presented approaches, the 

confidentiality of data has not been considered. Thus, besides comparative approaches, 

concentrating the focus toward privacy and security problems related to cross organisational 

cooperation is necessary. Table 1.6 summarises the techniques applied to handle cross-

organizational mining. 

 

Table 1.6. Techniques applied for cross-organizational mining. 

Paper Ref. Used methodology Outcome 

Buijs et al. 

(2012b) 

Generic approach  Compare collections of process models 

and their events logs across organisations 

Buijs et al. 

(2013b) 

ETM genetic algorithm based 

approach 

Discover configurable process model 

based on a collection of event logs 

Zeng et al. 

(2013) 

Coordination patterns and 

RM_WF_Net based approach 

Discover a model for a cross-

organizational workflow 

Buijs et al. 

(2014b) 

Alignment based method Compare procedure of similar processes 

across organisations 

Schunselaar et 

al. (2015a) 

Implementation of YAWL 

into the cloud 

Support different variants of the same 

process across non-competitive 

organisations 

Sebu et al. 

(2015) 

Process mining algorithms 

and graph comparison 

methods based approach 

Determine the most suitable organisations 

for profitable collaborations 

Yilmaz et al. 

(2015) 

Unsupervised learning based 

cross-organizational mining 

Generating recommendations using cross-

organizational process mining for process 
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framework performance improvement 

Burattin et al. 

(2015) 

AES and Paillier cryptography 

based approach 

Prevent the confidentiality of data when 

operating cross-organizational mining 

Aksu et al. 

(2016) 

Generic Cross-Organizational 

Process Mining Framework 

Accurately compare organisations based 

on their event logs and semantic and 

organisational context 

1.4.8 Providing operational support 

Nakatumba et al. (2012b) suggested a concrete implementation of operational support 

meta-model using the workflow system Declare and the process mining framework ProM. 

The meta-model includes four types of queries of increasing complexity and power: simple 

queries, compare queries, predict queries, and recommend queries. However, research papers 

that use process mining algorithms under this framework for dealing with operational support 

are needed.  

Bose and Van der Aalst (2013) explored the feasibility of a global approach for 

signatures discovery that can be used to explain or predict the classes of visible and invisible 

traces. The discovered signature patterns allow the distinction between various classes of 

behavioor.  

Conforti et al. (2013a) offered a method that predicts process risks by applying 

decision trees to the logs of previous process executions taking into account process data, 

used resources, task durations, and contextual information. The proposed method helps the 

process participants to make risk-informed decisions. However, evaluation of the approach is 

still required.   

Leoni and Van der Aalst (2014) explored an approach that forecasts the remaining 

processing time, and recommend activities to reduce risks. They offered also a general 

approach to correlate process characteristics.  

Hompes et al. (2015) explored a new trace clustering approach based on the Markov 

cluster (MCL) algorithm with the ability to detect changes of a process according to the 

selected perspectives. Both positively and negatively deviating cases can be used to enhance 

the process and/or to prevent the undesirable behaviour from occurring in the future.  

Leoni et al. (2016a) proposed a generic framework for predicting dynamic behaviour 

from event logs. Besides, it is capable of correlating and clustering dynamic behaviour. The 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Bose,%20R.P.J.C..QT.&newsearch=true
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framework allows the prediction of the executor of a certain activity, the remaining time to 

the end of the process instance, the next activities to work on, and the outcome of the 

executions of process instances. 

All of the cited papers reported on the successful application of process mining for 

operational support, especially in terms of prediction and recommendation. However, the 

main challenge of providing operational support by process mining techniques has not been 

addressed. When applying process mining methods to detection, prediction, and 

recommendation, the problem of handling computing power and data quality issues arise but 

have not been well considered. Therefore, next researches are called to focus on the 

mentioned problems besides the applicability of process mining techniques for operational 

support. Table 1.7 summarised the reported publications. 

 

Table 1.7. Main techniques for providing operational support 

Paper 

Ref. 

Used methodology Outcome 

Nakatum

ba  et al. 

(2012b) 

A meta-model for 

operational support 

Provide statistics about the current 

execution, compare the current execution, 

predict the outcome of the current execution, 

and recommend what to do  

Bose et 

al. (2013) 

A comprehensive 

framework for discovering 

signatures  

Help to explain or predict the class of 

seen or unseen traces 

Conforti 

et al. (2013) 

Decision trees based 

approach  

Aid process participants to make risk-

informed decisions 

Leoni et 

al. (2014) 

Feature prediction 

framework 

Forecast remaining processing time, and 

recommend activities to reduce risks 

Hompes 

et al. 

(2015a) 

Clustering approach based 

on Markov cluster algorithm  

Detect process changes and prevent 

unwanted behaviour from occurring in the 

future 

Leoni et 

al. (2016a) 

Generic framework for 

predicting dynamic behaviour  

Predict the executor of a certain activity, 

the remaining time to the end of the case, 

the next activities to work on, and the 

outcome of the executions of cases 

 

1.4.9 Combining process mining with other types of analysis  
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The challenge of combining process mining techniques with other types of analysis 

has received significant focus from researchers by providing frameworks of mapping 

successfully process mining with simulation, big data, data mining, analytic workflow 

systems, visual analytics, patterns mining, and Indoor location systems. We mined in Table 

1.8 these combinations from research papers addressing the present challenge. Amalgamating 

process mining approaches with such techniques engenders many benefits. For instance, 

combining process mining methods with data mining techniques such as association rule 

learning offers solutions for fraud detection (Sarno et al., 2015), with visual analytics 

produces innovative process-centric visualizations, such as “process movies” proposed by 

Leoni, M. et al. (2015a), with simulation leads to better understanding, modelling, and 

improving real-life business processes (Nakatumba et al., 2012a), with big data 

characteristics generates all the applicable benefits of Big Data in business process mining: 

Adequacy for discovery, adequacy for prediction, visibility, flexibility for efficiency, and 

flexibility for conformance (Omair and Emam, 2015), and with analytic workflow systems 

helps design, compose, execute, archive, and share workflows that constitutes the image of 

some type of analysis (Bolt et al., 2015). 

  

Table 1.8. Combinations achieved between process mining and other types of analysis 

 

Reference of papers Type of combinations 

Nakatumba et al. (2012a) Process mining ↔ Simulation 

Aguirre et al. (2013) Process mining ↔ Simulation ↔ Data mining ↔ Tools of 

the understanding phase of the BPTA 

Leoni, M. et al. (2014) Process mining ↔ Data mining (Decision Tree) 

Leemans, M. et al. (2014) Process mining ↔ Pattern mining 

Bolt et al. (2015) Process mining ↔ Analytic workflow systems 

Leoni, M. et al. (2015a) Process mining ↔ Visual analytics 

Sarno et al. (2015) Process mining ↔ Data mining (Association Rule Learning) 

Omair and Emam (2015)  Process mining ↔ Big Data 

Evermann et al. (2015) Process mining ↔ Data mining (Clustering) 

Fernandez -Llatas et al. Process mining ↔ Indoor location systems 
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(2015) 

Pileggi et al. (2015) Process mining ↔ Simulation 

Leoni et al. (2016a) Process mining ↔ Data mining (Clustering + Regression 

Tree) 

Leoni et al. (2016b) Process mining ↔ Visual analytics 

 

1.4.10 Improving usability for non-experts 

 

Table 1.9 provides researchers with the state of art of what has been done for 

improving the usability of process mining techniques for non-experts. This will help them 

identify where they can orient their research focus regarding this challenge. Many process 

mining tools and frameworks have been developed, and their usability has been improved for 

the sake of end users who are not necessarily experts in process mining. However, the current 

tools need to be enhanced to enable researchers and business users to use process mining 

tools for different purposes. For instance, sophisticated tools for process discovery that 

allows users to modify the variables that impact all perspectives of a process need to be 

developed.  

 

Table 1.9. Recently developed tools and approaches for improving usability for non-experts 

Reference of 

papers 

Tool/Approach Purpose/function 

Adriansyah et al. 

(2012) 

YAWL based event log 

replayer tool  

Allow users to replay, analyse, and 

visualise a variety of performance metrics 

of an AS-IS or TO-BE process models 

Gunther et al. 

(2012) 

Disco tool Allow users to easily and quickly generate 

visual and actionable insight about 

processes from raw data 

Ramezani et al.  

(2013) 

Framework for creating 

and understanding formal 

compliance requirements 

Allow compliance specification for end 

users without extensive knowledge 

Shershakov  

(2013) 

DPMine tool Enable users to build a model of multistage 

process mining from individual processing 

units connected to each other in a 

processing graph 
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Mans et al.  

(2014) 

RapidMiner 5 Aid users to define and execute analysis of 

workflows connected to the process mining 

framework ProM 6 

Kalenkova et al. 

(2014a) 

BPMN support in ProM Support ProM users to bridge the gap 

between formal models (such as Petri 

nets…) and process models used by 

practitioners 

Van Zelst et al.  

(2014) 

Single-Node stream 

extension of ProM 

Provide users with the possibility to handle 

effectively data stream (Real-time data) 

Leemans, S. et al. 

(2015b) 

Inductive visual Miner 

(IvM) (process 

exploration tool) 

Bridge the gap between academic and 

commercial process exploration tools by 

considering zoomability, evaluation, 

semantics, and speed 

Shugurov and 

Mitsyuk (2015) 

Iskra: tool for process 

enhancement 

(Decomposed model 

repair)  

Allow flexible repair configuration. 

The tool can be easily used by both 

researchers and developers within ProM 

community 

Schunselaar et al. 

(2015b) 

Automatic framework to 

an easy configuration of 

configurable process 

model 

Allow end users to configure easily a 

configurable process model  

Leoni et al. 

(2016a) 

Generic environment for 

predicting, correlating and 

clustering dynamic 

behaviour from event logs 

Allow process analysts without a solid 

technical background to conduct quickly 

multiple process centric analyses 

Lu et al. (2016a) Log to Model Explorer 

tool 

Aid users to interactively and iteratively 

explore and preprocess a log, and discover 

suitable models from it 

Leoni et al. 

(2016b) 

Log On Map Replayer 

tool indexed in ProM 

Enable process analysts to dynamically 

visualize the replay of the behaviour of 

executed process instances as recorded in 

the event log 

 

1.4.11 Improving understandability for non-experts 

 

Maggi et al. (2012b) offered a method to simply determine comprehensible Declare 

models (which is composed of temporal constraints) using Apriori algorithm. The distinctive 
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feature of their approach is that it produces only the candidate constraints. Moreover, they 

used association rule mining based criteria to assess the pertinence of a discovered constraint. 

This approach generates understandable process models. 

Zhao et al. (2014) incorporate genetic algorithm with the role complexity of process 

models and presented the role-based process mining technique to discover the simplified 

process model. Based on a new role metric of role based process complexity, the approach 

results in process models easy to understand.  

Fuzzy models are well known and easy to understand compared to other existing 

models. Therefore, Shershakov (2015) introduced a new approach for mining fuzzy models 

which is based on relational database management technique that provides various data views 

for different types of analysis.  

Leoni et al (2016b) developed an approach named Log On Map Replayer 

implemented in ProM that is capable of visualizing the replay process histories as recorded in 

the event log in a dynamic way. This framework has been developed such that the user can 

understand easily what has happened with executed processes and can draw meaningful 

conclusions regarding the behaviours and/or performance of their processes. 

It seems that improving understandability for non-experts didn’t receive a 

considerable focus as few works have been done in this area.  Although fuzzy models, 

comprehensible declare models, and role based process models by genetic algorithm are easy 

to understand, if the four quality dimensions are not specified in the result, users might end 

up by drawing wrongs conclusions and thus making wrong decisions. Therefore, further 

researches that produce understandable process model with the value of the four quality 

criteria are required.  

 

The aim of this section is to increase the maturity of the field of process mining by 

providing researchers with the state-of-the-art of process mining challenges.  

The first challenge of finding, merging and cleaning event logs has received a 

significant focus from research community by dealing with event log stored in various data 

sources, event data that had been executed in a certain context, event data that is object 

centric than process centric, incompleteness, noise (infrequent behavior), and event data 

characterized with different levels of granularity.  

To deal with complex event logs a considerable number of researches agreed that 

process mining decomposition is the best solution. However, the approaches used for 
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decomposition were not consistent among studies: some used the divide-and-conquer 

approach, some used the Single-Entry Single-Exit technique, some used the notion of process 

cubes, and others have based their decomposition on clustering. Therefore, a benchmark of 

these decomposition strategies is required for selecting the appropriate technique. Moreover, 

each study for process mining decomposition has some limitations and need to be 

investigated in further works. For instance, the conflicting quality dimensions have not been 

fully considered in their studies.  

The challenge of combining process mining techniques with other types of analysis is 

receiving significant focus from researchers by providing frameworks of mapping 

successfully process mining with simulation, big data, data mining, analytic workflow 

systems, visual analytics, patterns mining, etc.  

Regarding improving usability for non-experts, although many process mining tools 

and frameworks have been developed for users who are not necessary experts in process 

mining, the current tools need to be enhanced to enable researchers and business users to use 

process mining tools for different purposes.  

Although a substantial number of solutions for dealing with concept drift have been 

proposed, only changes from the control-flow perspective were considered, whereas data and 

resource perspectives are equitably important.  

To handle the challenge of cross-organizational mining several analytical techniques 

have been developed in many papers and focused on commonality and collaboration between 

organisations. However, most of the publications didn’t consider the big issue of 

confidentiality of event logs and processes. 

Concerning the challenge of balancing the conflicting quality criteria, it has been 

proven that some process discovery algorithms are able to balance the four quality 

dimensions producing representation such as process trees. However, not all existing process 

discovery techniques can actually produce process trees. The balance framework should not 

be restricted to algorithms discovering one specific notation.  

Regarding the challenge of providing operational support, all published papers 

demonstrated the successful application of process mining for detection, prediction, and 

recommendation. Nevertheless, when applying process mining methods to this online setting, 

the problem of handling computing power and data quality issues arise and have not been 

considered yet.  

To create representative benchmarks, different frameworks have been developed. But, 
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each framework has limitations. A good benchmark platform should not take reference 

models as input since they are not usually available. Moreover, the framework should not be 

time-consuming. 

Whereas the focus; to improve the representational bias used for process discovery; 

should be toward the implicit search space implied by the representational bias, most 

publications focused on understandability, correctness, and quality of the representation and 

also on transformations techniques that convert control flow modelling representations to the 

desired language visualisation. In our opinion, since the characteristics of event logs strongly 

influence representational bias, if frameworks that determine the features of event logs 

without using control-flow algorithm exist, selecting the right representation bias would be 

very clear.  

Very few works were performed to improve the understandability for the non-expert. 

Further researches that produce understandable process model by specifying the quality 

metrics are required.  

This paper underlined limitations of the reviewed publications regarding process 

mining challenges. The highlighted limitations tend to be a starting point for other researches 

in the field of process mining, specifically concerning process mining challenges.  

 

1.5. Process discovery techniques limitations overview 

One of the major process discovery techniques is the α −algorithm (Van der Aalst et 

al., 2004). This algorithm produces a workflow net based on the causal relationships observed 

between tasks, but without short loops, invisible tasks, non-free choice constructs, duplicate 

tasks, or noise. Therefore, several extensions have been presented so far to tackle these 

limitations. The Alpha + algorithm was first introduced to extend the Alpha algorithm to 

short loop mining (De Medeiros et al., 2004), while Alpha ++ was developed to extend the 

Alpha algorithm to non-free choice constructs (Wen et al., 2007a), Alpha # was developed to 

mine invisible tasks (Wen, 2007b; 2010), and Alpha $ was developed to handle invisible 

tasks involved in non-free choice constructs (Guo et al., 2015). However, none of these 

extensions can detect all types of characteristics that can exist in an event log. 

HeuristicsMiner (Weijters et al., 2006) derives ordering relations on the basis of their 

frequencies and returns a net. The HeuristicsMiner algorithm is robust for noisy logs and 

invisible tasks, but cannot handle duplicate tasks and non-free choice constructs. The 

Inductive Miner returns a process tree and guarantees sound models that other algorithms 
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cannot guarantee (Leemans et al., 2013). It is robust for noisy logs and capable of mining 

invisible tasks, but cannot discover duplicate tasks or non-free choice constructs. The Region-

based algorithm can mine non-free choice constructs, but cannot handle invisible tasks and 

duplicate tasks (Bergenthum et al., 2007). The Genetic Mining algorithm is the only existing 

algorithm that can deal with most of the common constructs and noisy logs (Van der Aalst et 

al., 2005). Nevertheless, it requires many parameters and does not provide the correct output 

in a restricted time. The aforementioned characteristics will be explained in Chapter 4. 

1.6. Contributions and Structure of the Thesis 

The first contribution of this thesis is to provide the state-of the art of the most 

important challenges of process mining by conducting a critical and comprehensive review 

on 105 publications identified dealing with process mining challenges and published from the 

beginning of 2012 till the beginning of 2017. 

The contribution of the present work is to demonstrate the importance of process 

mining in the practical world specifically in the industrial field by applying process mining 

techniques to a real customer order fulfillment process of a heavy manufacturing industry to 

analyze the behavior and performance of this process. 

The critical review we conducted on the most important challenges of process mining 

specified in the Process Mining Manifesto shows that the challenge “creating a representative 

benchmark” or “a recommendation framework of process discovery algorithms” is one of the 

important challenges that received less focus from researcher community among the other 

challenges. A lot of process discovery techniques are available. However, users and 

businesses still cannot choose or decide the appropriate mining algorithm for their business 

processes. Each algorithm has a specific limitation regarding mining the constructs of a 

process model. Therefore, the third contribution of this thesis is the development of a 

framework that recommends the process discovery algorithm suitable for a given process. 

Each process discovery technique has a specific restriction in terms of mining certain 

constructs of a process model such as short loops, invisible tasks, duplicate tasks and non-free 

choice constructs. There is no algorithm which is capable of discovering the aforementioned 

characteristics in a restricted time if all of them are present in the event log. The fourth 

contribution of the present study is the development of a new process discovery technique 

capable of handling the aforementioned constructs. 

The first part of this thesis provides an introduction to limitations of process-aware 
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systems, process mining, and a critical review on the most important challenges of process 

mining by providing the state-of-the art, and finally an overview of process discovery 

techniques limitations. The second Chapter presents an industrial application of process 

mining to show its importance in the practical world. Furthermore, preliminaries are provided 

in Chapter 3. The standard and complex constructs of a process model are introduced in 

Chapter 4. The first major part of this thesis is presented in Chapter 5 which introduces our 

recommendation framework for process discovery techniques and an evaluation of the 

framework based on artificial and real-life datasets. The second major part of the present 

study which is about developing a new process discovery approach capable of dealing with 

the standard and complex constructs of a process model is presented in Chapter 6. This 

process discovery technique is evaluated using both artificial and real-life data in Chapter 7. 

Last Chapter provides limitations and future works of the two introduced framework. Finally, 

the thesis is concluded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

Chapter 2 INDUSTRIAL APPLICATION OF PROCESS MINING 

 

Process mining has been widely applied in multiple domains through several cases 

studies. The most commonly tackled field is the healthcare as 74 case studies applied to this 

domain have been identified according to (Rojas et al., 2016). This considerable number 

illustrates the huge interest of hospitals in process mining. An example of healthcare related 

case study can be found in (Cho et al., 2015). Although process mining has been applied 

successfully to other domains such as education (Vazquez Barreiros et al., 2014), IT services 

(Vazquez Barreiros et al., 2016), industry (Park et al., 2015), etc., it has not been applied as 

much as the healthcare area. Therefore, with the aim to contribute to increasing the 

applicability of process mining in other fields, specifically in the industry field, we present an 

application of process mining in a real customer order fulfillment process of ship parts 

manufacturing company. This process is characterized by a very long lead time as it takes 34 

weeks in average to fulfill a customer order. This company adopts a customized BPM system 

to manage and control their processes. The datasets used in this case study is extracted from 

this system and consists of a total of 1653 different customer orders and 63812 events 

generated between February 2012 and March 2016. Although this organization uses a BPM 

system, they have no clear idea about what is really happening in the customer order 

fulfillment process and how this process is handled. The first contribution of this case study is 

to identify, understand, and analyze the as-is process of the customer order fulfillment, 

determine deviations as well as what makes this process spending too much time based on the 

three types of process mining (i.e., process discovery, conformance checking and 

performance analysis). By identifying the factors that affect negatively the performance of the 

whole process, the company can tailor their focus on these factors to improve and optimize 

this process. The second contribution is to demonstrate the applicability of process mining 

technique in the customer order fulfillment process of a ship and naval manufacturing 

company, while the third contribution is to increase the number of applications of process 

mining in the industry field especially in manufacturing to provide businesses with the 

importance of process mining in understanding the as-is process and encourage them to refer 

to process mining to optimize their processes.   

 

 

 



40 
 

2.1. Literature review on process mining case studies 

 

Real-life applications are indispensable to demonstrate the utility and the importance 

of process mining in the practical word. The more we apply process mining to various fields 

via multiple case studies, the more we can understand the potential of process mining to 

handle real problems and the more we can identify the process mining scopes that can or need 

to be improved to make process mining techniques suitable to the real practice. The industry 

field is one of the main areas that can largely benefit from process mining techniques. 

However, the number of existing case studies on industrial applications remains insufficient. 

This chapter listed eight relevant case studies in Table 2.1 which reported on industrial 

applications of process mining. The first industrial application was described in (Van der 

Aalst et al., 2007). This case study was applied on a process of handling invoices in a 

provincial office responsible for the construction and maintenance of the road and water 

infrastructure. The goal of this study was to prove the applicability of process mining 

according to the three perspectives of process discovery: control-flow, organizational and 

case perspectives. In our case study, an application of process mining techniques to customer 

order fulfillment process in a ship and naval parts manufacturing company is presented, and 

not only the process discovery type is applied but also the conformance checking and process 

enhancement. Based on the data collected from the BPM system of the company only 

control-flow perspective can be applied regarding the process discovery type. The second 

industrial application was conducted by (Rozinat et al, 2009) on a test process of a wafer 

scanner manufacturing company. The main focus of this case study was on the conformance 

verification type of process mining. In (Goedertier et al., 2011), a process mining case study 

was described on a customer invoice handling process of a telecom industry. Unlike our 

process mining application, the purpose of this study was an empirical evaluation of three 

process discovery algorithms: Genetic Miner, AGNEs and HeuristicsMiner. Another case 

study in the telecom industry was described in (Era et al., 2015). In this application, process 

mining is applied to customer fulfillment process. The main focus of this study was 

identifying bottlenecks in the process. The name of the process analyzed in this case study 

and the process analyzed in our study is similar. However, the type of the industry, the type of 

the algorithm applied to discover the as-is process and the approaches used to analyze the 

customer fulfillment process are distinct. Moreover, the process under our case study is more 

complicated. In (Taylor et al. 2012), a case study was performed on a set of multinational 

enterprises with the aim to underline the issues related to process data encountered while 

http://www.sciencedirect.com/science/article/pii/S0306437906000305
http://www.sciencedirect.com/science/article/pii/S0306437906000305
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conducting process mining analysis. The author stressed on the fact that most of the literature 

studies don’t describe in detail how the process data is handled. In our case study, the pre-

processing of the collected data is explained in detail. In (Aruna et al., 2012), the applicability 

of process mining was described through a case study in a corrugated boxes manufacturing 

process according to the organizational perspective. In (Son et al., 2014), the authors 

conducted a case study on the production process of an Electro-Mechanic manufacturing 

company. In this case study, process mining techniques were applied according to the control-

flow and machine perspectives with the purpose of proving the applicability of process 

mining techniques in production processes in manufacturing company. Finally, in (Park et al., 

2015), the authors presented a method to analyze a case study manufacturing processes in 

make-to-order production with process mining. The major focus of the authors was the 

performance analysis including workload and delay analysis.  

These case studies show the applicability of process mining in the industrial sector 

based on different types and perspectives of process mining techniques. However, this is not 

sufficient. More real-life case studies are required to prove the important role that process 

mining plays in analyzing the as-is process and thus encourage businesses to adopt process 

mining to optimize their processes. 

 

Table 2.1. An overview of industrial applications of process mining in the practical world 

 

Author Industry type Analyzed 

process 

Process mining types 

Type 1 Type 

2 

Type 

3 
A B C 

Van der Aalst 

et al., 2007 

Provincial office of road and 

water infrastructure construction 

and maintenance 

Invoice 

handling  

√ √ √   

Rozinat et al., 

2009 

Wafer Scanner manufacturing Test process    √  

Goedertier et 

al., 2011 

Telecom industry Invoice 

handling 

√     

Taylor et al., 

2012 

Multinational corporation - √    √ 

Aruna et al., 

2012 

Corrugated Boxes 

manufacturing 

Production  √    
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Son et al., 

2014 

Electro Mechanic 

Manufacturing 

Production √ √  √ √ 

Era et al. 2015 Telecom industry Customer 

fulfillment 

√    √ 

Park et al., 

2015 

Shipbuilding manufacturing Production     √ 

Type 1: Process discovery, Type 2: Conformance verification, Type 3: Performance Analysis, 

A: Control-flow perspective, B: Organizational perspective and C: Case perspective. 

 

2.2. Case study 

 

With the aim to demonstrate and boost the usefulness of process mining analysis in 

the real word, in this study, we describe a real-life case study in a ship and naval parts 

manufacturing company in Korea that is producing steel structures, engine tools, cell guides 

and peripheral apparatuses for shipbuilding and marine industries.  

In order to execute, monitor and control its operational business processes, the 

company adopts a customized BPM system named Shipbuilding Processing Plan 

Management (SPPM) System. This system provides a lot of information related to process 

execution. However, since BPM systems are completely disconnected from actual data as 

they are based on the idealized model of reality, the company has no clear idea of what is 

really happening in the customer order fulfillment process and how this process is handled. 

Thus in this research, we applied process mining techniques to analyze the customer order 

fulfillment process, identify the actual as-is process (what is actually happening) and compare 

it with the supposed as-is process (what the company think is happening) and finally 

determine the parts that affect the performance of the whole process. 

 

2.2.1. Case Description 

 

The case study described in this paper is the analysis of the customer order fulfillment 

process in a heavy manufacturing industry. Customer order fulfillment process refers to the 

entire process from the point a customer makes an order to the delivery of the product to this 

customer. This process is handled on 7 successive phases: (1) order handling, (2) required 

material purchasing, (3) production, (4) quality inspection, (5) post-processing, (6) packing 

and delivery, and (7) customer order fulfillment verification. In the first phase, once the 

company receives an order from a particular customer to manufacture its desired products, 
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purchase department defines a construction ledger to determine the amount of expenses 

associated with the fulfillment of the order received from the customer. A construction ledger 

is a record that includes details about the contracts being concluded between the customer 

and the manufacturing company including all charges associated with a construction 

(manufacturing) project. The order is then approved by the business department and then by 

the production department. As soon as the order is approved, a verification of the order 

approval is executed and then the order approval is finalized. In the second phase, required 

materials for manufacturing the customer’s need are purchased and stored in the warehouse 

as they arrive. In the third phase, the production process is conducted. As soon as the 

production line finishes, two types of quality inspection are performed in the fourth phase to 

validate the quality requirement: self-inspection and then external inspection. After this, a 

post-processing is carried out by performing painting and plating operations. The final 

product is then packed and delivered to the customer in the sixth phase. Finally, in the last 

phase, the completion of the order is approved and then the approval is verified by production 

and business departments. If the manufactured products satisfy the customer, the order 

completion is finalized and the process is closed. The overall process of customer order 

fulfillment is described in Figure 2.1. 

 

 

Figure 2.1. Customer order fulfillment standard process description 
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2.2.2. Application Methodology 

 

The framework of the Analysis consists of four steps: data extraction, data pre-

processing, customer order fulfillment process analysis, and interpretation of results as shown 

in Figure 2.2. 

 

 

 

Figure 2.2. Customer order fulfillment process analysis framework 

 

 

2.2.3. Event log construction 

 

The starting point of any process mining analysis is the preparation of the available 

process data. This step consists of the identification of activities and their attributes such as 

Case ID and timestamps related to the customer order fulfillment process to build an event 

log and then the conversion of the constructed event log into a standard log format supported 

by process mining tools. In this phase, the process related data from February 2012 to March 

2016 are extracted from the SPPM system of the company. Because the obtained data 

contained a lot of unnecessary information, we sorted the collected data based on case id, 

activity, and timestamps. The case id in this process is a customer order. The activities and 

their attributes are shown in Table 2.2. But before transforming the log into the standard event 

log format, i.e., XES (Van Dongen et al., 2015) using ProM tool (Van Dongen et al. 2005), 

we performed the following pre-processing steps: 

- Identification of start timestamps and end timestamp of all activities in each trace: 

Raw data contained information about tasks executed in order and associated with a case ID 
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and with the status of the execution of these tasks. The status of each activity was specified 

by one of the following flags: (S, F), (S, X), and (S, R). ‘S’ shows that the execution of a 

particular task is started; ‘F’ indicates that the execution of the task is finished; ‘X’ refers to 

the situation when the completion of a task is forced, and finally ‘R’ shows that the outcome 

of the task is returned to be executed or recertified by the previous task. To each of these five 

statuses, a timestamp is assigned. However, in process mining analysis only start timestamps 

(i.e., in this case start timestamps is the timestamp associated with ‘S’) and end timestamps 

(i.e., the timestamp associated with ‘F’) are needed. All activities have the start timestamp 

associated with them but not all activities own the end timestamp (i.e., ‘F’, ‘X’, and ‘R’). But 

if we look at the definition of the attributes ‘X’ and ‘R’ we realize that the timestamps 

associated with ‘X’ and ‘R’ are actually end timestamps. For instance, a task with an X status 

refers to a forced termination. This implicitly indicates the completion of the task. 

Accordingly, we have converted ‘X’ and ‘R’ flags into ‘F’ flag such that to all tasks, the pair 

(S, F) is assigned. A captured screen of the result obtained in this pre-processing is depicted 

in Figure 2.3(a). 

- Transformation of the format of the table containing the sorted events attributes: 

After converting the ‘X’ and ‘R’ attribute into ‘F’ status, the status of each activity is 

represented by ‘S’ status (start timestamp) and ‘F’ status (end timestamp). However, the 

obtained data were sorted in a way such that each task appears two times in two successive 

rows. The start timestamps (and ‘S’ status) are indicated in the first raw and the end 

timestamps (and ‘F’ status) are indicated in the second row of each activity. In order to be 

able to convert the event log into XES format, we have transformed the table shown in Figure 

2.3(a) into the event log shown in Figure 2.3(b) such that the start timestamp and end 

timestamp of each activity are depicted in two columns rather than two successive rows. 

- Construction of a structured event log: in the obtained data, the End activity of all 

process instances contained only the end timestamp attribute, while N0060 activity contained 

only the start timestamp attribute. In order to obtain a structured event log, we set the start 

timestamp of End activity of each process instance equal to the end timestamp. Furthermore, 

we found that the end timestamp of N0060 activity was actually recorded in the execution file 

of a different process, i.e., a sub-process connected to the customer order fulfillment process. 

Hence, the data related to the end timestamps of N0060 activity is collected and included in 

the constructed event log. 
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After the pre-processing steps are conducted, the constructed event log is converted 

into the standard format of event logs, i.e., XES, forming the input of our process mining 

analysis. 

 

Table 2.2. The attribute of activities of customer order fulfillment process 

 

Activity Attribute 

Start (Receive a customer order) S 

Order (Construction Ledger) N0010 

Order (Business) Approval N0020 

Order (production) Approval N0021 

Order Approval Verification N0030 

Order Approval Finalization N0040 

Material Purchase Request N0050 

Waiting for Requested Material Purchase N0060 

Production  N0130 

Self-inspection N0140 

External inspection N0150 

Post-processing (painting/plating) N0160 

Packing  N0170 

Delivery  N0180 

Completion Approval  N0190 

Completion (production) verification N0200 

Completion (business) verification N0210 

Completion finalization N0220 

End (order received by the customer) E 

 

 

 

Figure 2.3. Event log pre-processing, (a) before and (b) after transforming the format of the 

table containing the sorted events attributes 
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2.2.4. Event log filtering 

 

The data retrieved for this study is from February 2012 to March 2016. Therefore, 

certainly there exist cases in the extracted data that may have actually started before February 

2012 and also cases that have not finished yet and might be finished after March 2016. This 

refers to the situation of incomplete cases. As process mining techniques can only operate on 

complete process instances, it is necessary to filter the incomplete events.  

To process the filtering, we imported the event log in ProM tool and visualize it. We 

found that it consists of 19 different activities, 1695 cases with 64988 events, 2 start activities 

(S and N0010), and 7 end activities (E, N0130, N0021, N0060, N0020, N0010, and N0180). 

After filtering the event log by running the action “Filter Log using Simple Heuristics”, we 

found that it contains 19 different activities, 1653 cases which is 97% of the original event 

log, one start activity (S), and one end activity (E). The result of log filtering is depicted in 

Table 2.3. 

 

Table 2.3. Event log information before and after filtering 

Event log characteristics Before Filtering After Filtering 

Total number of cases 1695 1653 

Total number of events 64988 63812 

Total number of activities 19 19 

Total number of start activities 2 1 

Total number of end activities 7 1 

 

2.2.5. Customer Order Fulfillment Process Discovery 

 

Process discovery techniques take an event log as input and automatically construct a 

process model. The main idea behind the process discovery is to find the as-is process model 

or in other words to find what is really happening in the company. Using process discovery, 

many business questions can be answered. In the first place, process discovery allows 

businesses to confirm or correct their idea regarding what they think is happening in the 

business process. Furthermore, the presence of a process model that exactly represents the 

real behavior of a business process enables forward analysis such as performance analysis, 

bottleneck analysis, or identification of path that are not in conformance with business rules 

(Goedertier et al., 2011). Until now, plenty of process discovery algorithms have been 
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developed such as α_algorithms (van der Aalst et al., 2003), genetic miner (van der Aalst et 

al., 2005), heuristic miner (Weijters et al., 2006), inductive miner (Leemans et al., 2013), 

fuzzy miner (Günther et al., 2007), etc. In this study, we used the fuzzy miner. This algorithm 

allows discovering process models from very large event logs, in less than 1 second and easy 

to understand. 

We applied the fuzzy miner using Disco tool (Gunther et al., 2012) on the filtered 

event log. The discovered model of the customer order fulfillment process is illustrated in 

Figure 2.4. In the resulting derived model, all cases start with the task ‘S’ and end with the 

task ‘E’. The numbers, the thickness of transitions and the coloring depict how frequently 

each activity and path has been executed.  

 

 

 

Figure 2.4. The discovered process models using Disco tool from the filtered event log 

 

2.2.6. Compliance verification 
 

Compliance verification in process mining is a set of methods that allow comparing a 

business process model with the event log of the same process model. The goal of 

compliance verification is to investigate whether the actual execution of a business process, 
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i.e., the event log and the modeled business process are in compliance with each other. To do 

so, the fitness metric; which measures how much the process model can reproduce the traces 

recorded in the event log; is measured. One way to find the fitness is to reply the log in Petri 

net (Van der Aalst et al., 1998). Log replay is operated such that if there are missing tokens to 

fire the transitions in question, they are created artificially to continue the reply. Token-based 

fitness metric f computes the amount of missing and remaining tokens during the log replay. 

If the log could be replayed correctly the value of f is equal to 1.  

Compliance verification allows identifying differences and deviations between the 

modeled behavior (the standard model) and the observed behavior (the event log). Two types 

of differences can be detected: (i) a behavior observed in the event log, while it is not allowed 

by the model, and (ii) a behavior allowed in the model but never captured in the log. These 

discrepancies could be determined by one of the following techniques: replay (Rozinat et al., 

2008), trace alignment (Adriansyah, 2014), and behavioral alignment (Goedertier et al., 

2009). In this study, trace alignment method is selected because it can handle complex 

control-flows that contain invisible tasks in a Petri net (Van der Aalst et al., 1998). An 

alignment between a recorded process execution (i.e., a process instance) and a process 

model is a pairwise comparison between the executed tasks and the tasks allowed by the 

model. This pairwise comparison can generate three results: (i) perfect alignment step, i.e., 

the log is replayed correctly on the process model; (ii) missing events, i.e., the process model 

forces a task that is not recorded in the event log to be executed; (iii) wrong events, i.e., the 

process model does not allow a task recorded in the log to be executed.  

In this step, we aim to answer the following questions: Is and how much the actual 

process of customer order fulfillment as recorded in the event log conforms to the standard 

process model designed by the company? In case there are discrepancies in the customer 

order fulfillment process where are they located? To answer these questions, first, we 

converted the standard model of customer order fulfillment process into a Petri net model. 

Then we computed the fitness metric by running “Conformance Checker” plugin in ProM. 

After that, we run the plugin “Conformance Checking of DPN (Xlog)” to locate discrepancies 

based on trace alignment. The value of fitness obtained is 0.945 which indicates that 94.5% 

of the recorded events are correctly replayed by the event log. This means 5.5% of the 

recorded events deviate from the standard model. The capture screen of trace alignment 

generated using the “Conformance Checking of DPN (Xlog)” plugin is depicted in Figure 

2.5. Perfect alignments are illustrated in green color, missing events in purple color, and 
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wrong events in yellow color. 

The result of the alignment is summarized in Table 2.4. As can be seen, from 1653 

replayed cases, there are 1460 cases where the event log and the process model are 

synchronized, i.e., 88.32% of the total executed cases followed exactly the standard process 

model designed by the company. This value is high; however, the existence of some missing 

and wrong events illustrates the presence of some deviations. According to the result obtained 

in Table 2.4, the activity N0160 has been allowed by the process model to be executed 154 

times when it was not recorded in the event log. This can be seen as a skipped activity and 

indicates that 9.32% of the received customer orders skipped the post-processing painting and 

plating. Moreover, Table 2.4 shows that the activity N0180 has been executed 39 times while 

it was not allowed to be executed in the process model. This indicates that in 2.36% of total 

cases, the task operating on product delivery was performed several times in the same case. 

This might be explained by the fact that the task related to product delivery faced some issues 

and the task sent back to solve the problem occurred. This can be classified as a normal 

behavior. However, the fact that the post-processing painting and plating of the products has 

been skipped 154 times generates the following question. Are there special products that do 

not require the post-processing of painting and plating? If the answer to this question is ‘NO’, 

then an investigation about this observed negative behavior is required. A product, which 

necessitates painting and plating operations after quality inspection, skips this post-

processing, might engender issues related to customer satisfaction. Nevertheless, if the 

answer to the above question is ‘YES’, then the standard process model requires an 

improvement. The process model discovered in the previous section can be guidance for the 

improvement of the standard process model. Excepting the question related to the post-

processing task, we can say that in overall the customer order fulfillment process is well 

managed by the company. 

 

Table 2.4. Result of an alignment between the executed activities and the activities allowed 

by the standard model 

Alignment Result Number of traces Model Event log Deviating tasks % From total cases 

Perfect alignment 1460 √ √ - 88.32% 

Missing Events 154 √ - N0160 9.32% 

Wong Events 39 - √ N0180 2.36% 
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Figure 2.5. Captured screen of trace alignments illustrating perfect alignment, missing events 

and wrong events 

 

2.2.7. Process performance analysis 
 

In this section, the process model discovered in Section 2.5 is filtered by removing 

non-frequent paths forming a process model representing 99% of cases. This model is then 

extended with the timestamps of both activities and between activities, i.e., the time between 

the ending time of the preceding activity and the starting time of the following activity. With 

the time attribute of events, bottlenecks which negatively affect the performance of the whole 

process can be identified. For instance, the time attribute of activities enables to identify, in 

which activities, the process is spending too much time, while the timestamp between 

activities can allow detecting queuing delays in the process. The extended process model is 

shown in Figure 2.6. The numbers placed bellow activities depict the average time in which 

these activities are performed and the numbers associated with the transitions (i.e., arcs) 

represents the average time between activities, i.e., queuing delays. The thickness of 

transitions shows the average time between activities in comparison with the other arcs. The 

more a transition is thick; the longer is the time between activities. 

As can be seen in Figure 2.6, there are three significant activities which are taking too 

much time in the whole process compared to others, i.e., N0130, N0160 and N0170. In other 

words, the production, the post-processing painting and plating and the packing sub-

processes are taking in average 46.9, 37.5 and 47.2 days respectively. Regarding the time 

between activities, most of the transitions are automatic, i.e., they are instant or taking 
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milliseconds. Nevertheless, there is a very thick transition between N0060 and N0130, which 

indicates that after requesting the purchase of raw materials required for production, it takes 

47.6 days in average before the production of a customer order can start. In order to 

determine the reason why it takes this much time to start the production process, we have 

investigated the Raw Material Purchasing Process. 

Raw material purchasing process is handled through 7 activities. This process starts 

by requesting a material purchase. The requested purchase is then approved and the approval 

of the purchase request is verified by the purchase department and then by the business 

department. As soon as it is verified, the purchase is finalized and the order of the purchase is 

performed. The last activity is receiving and verifying the ordered purchase. The attributes of 

these activities are presented in Table 2.5. 

Similar to the customer order fulfillment process, we have extracted the data related to 

raw material purchase process from the SPPM system of the company. This data have been 

sorted, pre-processed, converted into an event log of XES format and filtered such that 

incomplete events are removed. The final obtained event log contains 9 activities including 

one start and one end, 663 cases and 9829 complete events recorded within one year and 

seven months. We have mined the model of raw material purchasing process using the fussy 

miner due to its strong ability in handling less structured process models. Figure 2.7 shows 

the derived model that represents the actual behavior of raw material purchasing process. As 

can be seen in Figure 2.7(a), we have obtained a spaghetti model containing frequent and 

infrequent paths that are difficult to understand. Therefore, this model has been filtered such 

that all activities and only frequent paths are maintained as shown in Figure 2.7(b). This 

process model is then extended in Figure 2.7(c) with the timestamps of activities and between 

activities for the purpose of investigating the performance characteristics of raw material 

purchasing process.  
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Figure 2.6. The mined process model extended with timestamps 

 

As can be seen, most of the activities are taking few seconds or few minutes, except 

the activities N0100, N0090, N0080 and N0110 which are taking 38.1, 34.6, 22.8 and 15.1 

hours respectively. In other words, purchase approval verification by purchase and business 

departments, purchase finalization and purchase ordering are taking a long time compared to 

other activities. Concerning the time between activities, we have identified several transitions 

that are taking too much time and which are all of them backward works. The performance 

and frequency of these transitions are presented in Table 2.6. The transitions N0070→S, 

N0080→S and N0090→S illustrate the situation where the purchases are not approved in 

different stages of the process, so sent back for verification and then to restart the purchase 

process of the material. The cause of these backward executions could be due to the lack of 

information, i.e., specifications, exact quantity, etc. The transitions E→N0090, E→N0100 and 

E→N0110 illustrate the situation where the ordered purchase is received, however, instead of 

forwarding it to the production process, the received material is sent back for purchase 

verification, purchase finalization and purchase reordering. In case it is not approved, the 

purchase is sent back to restart the purchase process. The cause of these backwards could be 
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due to non-conformance of the received material with the desired material in terms of quality, 

specifications, etc., or due to mistakes committed during the purchasing process. Moreover, 

the arcs of these backward executions are thick which indicates that it takes too much time 

before the reworks (restart purchasing process, reapprove purchase, reorder purchase, etc.) 

can be performed. 

 

Table 2.5. The attributes of activities of raw material purchasing process 

 

Activity Attribute 

Start  S 

Material Purchase Request N0060 

Purchase Approval N0070 

Purchase Approval Verification (Purchase Dep.) N0080 

Purchase Approval Verification (Business Dep.) N0090 

Purchase Finalization N0100 

Purchase Order N0110 

Materials Reception and Verification N0120 

End  E 

 

 

Table 2.6. Backward transitions performance 

 

Backward transitions Waiting time Frequency 

N0070→S 49.6 hours 117 (17.64%) 

N0080→S 46.7 hours 133 (20.06%) 

N0090→S 5.6 days 53 (8%) 

E→N0090 3.5 days 97 (14.63%) 

E→N0100 3.2 days 100 (15.8%) 

E→N0110 43.2 hours 27 (4%) 
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Figure 2. 7. Discovered model of materials purchasing process, i.e., a (100% activities, 100% 

paths detail), b (100% activities, 25% paths detail – only most important flows are shown) 

and c (100% activities, 25% paths detail, extension with timestamps) 

 

Based on the identified activities that are taking too much time, the reworks, and the 

time spent before the reworks are performed and taking into consideration their frequencies, 

we can say that too many delays are occurring which negatively affect the performance of 

raw material purchasing process. Since the production process strongly depends on the 

availability of raw materials, any delay occurring in the material purchasing process 

engenders the delay of the production process. Therefore, in order to minimize the waiting 

time identified between requesting raw material purchases and the production process in the 

customer order fulfillment process, efficient actions need to be undertaken to reduce the 

backward executions and minimize the time of the identified activities that are taking too 

much time in the raw material purchasing process. In case a backward execution is necessary 

for this process, the waiting time to restart the process also need to be reduced. 

Reducing the waiting time between requesting raw material purchases and the 

production process will not only accelerate the launching of production but will also 

contribute to reducing the lead time of the whole process of the customer order fulfilment 
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process. Furthermore, to minimize more the lead time of the whole process of customer order 

fulfilment, production lead time, post-processing lead time, and packing lead time need to be 

reduced. It is because in these three sub-processes the customer order fulfilment process is 

spending too much time. As lead time reduction is considered one of the main focuses of lean 

manufacturing, implementing the principle of this approach can largely help in improving the 

performance of the customer order fulfilment process. 

 

Conclusion 

In this chapter, we presented a case study of applying process mining on a real-life 

customer order fulfillment process of a ship and naval parts manufacturing company, which is 

characterized by a very long lead time. The process under this case study refers to the entire 

process from the point a customer make an order, passing by order handling, production, 

quality inspection until the delivery of the final product to the customer. The data of this 

process have been extracted from the Shipbuilding Processing Plan Management System of 

the organization, preprocessed and converted into an event log supported by process mining 

tools. Then, we performed the discovery of the real as-is process model, followed by the 

conformance verification analysis. After that, we measured the actual performance of the 

customer order fulfillment process.  

Process performance analysis has identified the existence of significant activities (sub-

processes) taking too much time in the process as well as the existence of one major queuing 

delay between requesting material purchase and the production process. After requesting the 

purchase of raw materials required for production, it takes too much time (47.6 days in 

average) before the production of a customer order can start. In order to determine the reason 

why it takes this much time to start the production process, we have investigated the Raw 

Material Purchasing Process. By doing so, we found that too many delays are occurring 

which negatively affect the performance of raw material purchasing process. Since the 

production process strongly depends on the availability of raw materials, any delay occurring 

in the material purchasing process engenders the delay of the production process. Therefore, 

the first step to improve the performance of the customer order fulfillment process and reduce 

its lead time is to reduce the waiting time identified between requesting raw material 

purchases and the production process. This can be done by investigating the root causes of 

the delays occurred in the material purchasing process. The delays that need to be 

investigated include the activities where the material purchasing process is spending too 

https://en.wikipedia.org/wiki/Lean_manufacturing
https://en.wikipedia.org/wiki/Lean_manufacturing
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much time, several reworks, and the waiting time before the reworks start. The second step to 

reduce the lead time of the customer order fulfillment process is to reduce the lead time of the 

major sub-processes which are affecting negatively the performance of the customer order 

fulfillment process. The major sub-processes where the whole process is spending too much 

time are the production, post-processing, and packing. As the lead time reduction is 

considered one of the main focuses of lean manufacturing, implementing the principle of this 

approach can largely help in improving the performance of the customer order fulfillment 

process. Now, we can clearly observe the importance of process mining in improving 

industrial business process. 
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Chapter 3 PRELIMINARIES 

 

In this section, we define an event log, the starting point of process mining. We also define 

Petri net graphs and workflow net graphs which we will use as a process model 

representation. Moreover, we present preliminaries about the standard constructs and 

complex constructs of a workflow net. 

 

3.1. Event logs 

An event log stores the execution history of a business process. An example of event 

log is illustrated in Table 3.1. The events in the table are grouped by case and sorted 

chronologically. The sequence of events that is recorded for a process instance is called a 

trace. In this example, the trace for case 1 of Table 3.1 is <request purchase, approve 

purchase, verify approval, finalize purchase, purchase order, receive purchase & verify>. For 

a convenient use of events, we use a single letter for each activity instead of its full name. For 

instance, using single letters, the trace for case 1 will be  < a,  b,  c,  d,  e ,f> . An event log is 

a set of traces.  Accordingly, the event log of Table 3.1.1 can be represented as { < a,  b,  c,  d,  

e, f>100, < a,  b,  c,  c,  d,  e , f >75, …}. For the rest of the thesis, we will use the single letters 

as an abbreviation for activities name.  

 

Table 3.1. Example of an event log 

 
Case id Event id Activity Timestamp …. 

Q521-QZR 

N0060 Request Purchase  5/15/2014 16:35 …. 

N0070 Approve Purchase  5/15/2014 16:40 …. 

N0080 Verify Approval 5/16/2014 16:40 …. 

N0090 Finalize Purchase  5/16/2014 17:42 …. 

N0100 Purchase Order 5/16/2014 17:30 …. 

N0110 Receive Purchase  & verify  6/13/2014 10:55 …. 

Q523-B85 

N0060 Request Purchase  5/15/2014 16:36 …. 

N0070 Approve Purchase  5/15/2014 16:41 …. 

N0080 Verify Approval 5/15/2014 16:41 …. 

N0080 Verify Approval 5/15/2014 16:42 …. 

N0090 Finalize Purchase  5/15/2014 16:55 …. 

N0100 Order Purchase Order 5/15/2014 18:00 …. 

N0110 Receive Purchase  & verify  6/15/2014 16:44 …. 
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. . . . . 

. . . . . 

    . 

 

 

Definition 3.1 (Trace, Event Log) 
  

Let 𝑇 ⊆  ￡  be the set of all process activities. An event e is the occurrence of an 

activity: 𝑒 ∈ 𝑇.  A trace σ ∈  T∗ is a sequence of activities. An event log 𝐿 is a finite non-

empty set of traces: 𝐿 ⊆  𝑇∗. 

 

3.2. Process models 

Process models represent the behaviour of a set of activities that belongs to a process 

or a workflow. Business process models are very primordial as it helps in having a deeper 

understanding of how your processes work and the way the business functions, so that the 

processes can be improved. Process models can be represented by several notations such as 

BPMN, transition systems, Petri nets, etc. In this thesis, we will use only Petri net 

representation to represent a process model. Petri net can be easily transformed to other 

notations. 

 

3.2.1 Petri net 

 

A Petri net is a directed bipartite graph that consists of places and transitions 

interconnected by directed arcs. Graphically, places are denoted by circles, transitions are 

represented by rectangles and arcs are represented by arrows with directly link places with 

transitions.  Places represent possible states of the system; Transitions are events or actions 

which cause the change of state; and every arc simply connects a place with a transition or a 

transition with a place. A change of a state is denoted by a movement of token(s) (black dots) 

from place(s) to place(s); and is caused by the firing of a transition. The firing represents an 

occurrence of the event or an action taken. The firing is subject to the input conditions, 

denoted by token availability.  The formal definition is presented in Definition 3.2. Figure  

3.1 shows a petri net model deduced from the event log of Table 3.1. 
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Figure 3.1. The corresponding petri net model of the event log of table 3.1(A sound workflow 

net) 

 

Definition 3.2 (Petri net graph) (Van der Aalst, 1998).  

 

A Petri net graph is a 3-tuple (P, T, A) in which P is a finite set of places; T is a finite 

set of transitions, such that 𝑃 ⋂ 𝑇 = ∅; and 𝐴 ⊆  (𝑃 ×  𝑇)  ∪ (𝑇 ×  𝑃) is a set of directed 

arcs, called the flow relation. A place 𝑝 ∈ 𝑃 is an input place of a transition 𝑡 ∈ 𝑇 if and only 

if (iff) there exists an arc 𝑎 ∈ 𝐴  such that ∙ 𝑡 = {𝑝 ∈ 𝑃/𝑎(𝑝, 𝑡) > 0}. A place 𝑝 ∈ 𝑃  is an 

output place of a transition 𝑡 ∈ 𝑇 if there exists an arc 𝑎 ∈ 𝐴 such that 𝑡 ∙= {𝑝 ∈ 𝑃/𝑎(𝑡, 𝑝) >

0}. 

A marking of a Petri net (graph). A marking of a Petri net is a multiset of its places, i.e., a 

mapping 𝑀: 𝑆 → 𝒩, which means that the marking assigns a number of tokens to each place. 

A marked Petri net is a pair (N, M), where N = (P, T, A) is a Petri net, and M is a bag over P 

denoting the marking of the net.  

 

Definition 3.3 (Firing rule) (Van der Aalst, 1998).  

 

Let (N = (P, T, A), M) be a marked Petri net. Transition t ∈ T is enabled (represented 

as (𝑁, 𝑀)[𝑡 >) iff •t ≤ M. The firing rule −[−> ⊆ N × T × N is the smallest relation 

satisfying any (N = (P, T, A), M) ∈ N and any t ∈ T, (𝑁, 𝑀)[𝑡 > ⇒ (𝑁, 𝑀)[𝑡 > (𝑁, 𝑀 −• 𝑡 +

 𝑡 •). 

In the marking shown in Figure 3.1 (i.e., one token in the source place), transition 

Request purchase is enabled and firing this transition removes the token from the input place 

and puts a token in the output place. In the resulting marking, transition Approve purchase is 
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enabled. If transition Approve purchase is executed, firing will removes the token from the 

input place of Approve purchase and puts a token in the output place of Approve purchase 

and so on.  

 

Definition 3.4. (Reachable markings)  

 

Let (N, s0) be a marked P/T-net in N. A marking s is reachable from the initial 

marking s0 iff there exists a sequence of enabled transitions whose firing leads from s0 to s. 

The set of reachable markings of (N, s0) is denoted [N, s0>. 

The marked P/T-net shown in Figure 3.1 has 8 reachable markings. Sometimes it is 

convenient to know the sequence of transitions that are fired in order to reach some given 

marking.  

 

Definition 3.5. (Firing sequence)  

 

Let (N, s0) with N = (P, T, F) be a marked P/T net. A sequence σ ∈ T* is called a 

firing sequence of (N, s0) iff, for some natural number n ∈ IN, there exist markings s1,...,sn 

and transitions t1,...,tn ∈ T such that σ = t1 ...tn and, for all i with 0 ≤ i. 

 

Definition 3.6. (Connectedness)  

 

A net N = (P, T, F) is weakly connected, or simply connected, iff, for every two nodes x 

and y in P ∪ T, x(F ∪ F −1)*y, where R−1 is the inverse and R* the reflexive and transitive 

closure of a relation R. Net N is strongly connected iff, for every two nodes x and y, xF*y. 

 

We assume that all nets are weakly connected and have at least two nodes. The P/T-net 

shown in Figure 3.1 is connected but not strongly connected because there is no directed path 

from the sink place to the source place, or from Receive & verify to Request purchase, etc. 

(Van der Aalst, 2003). 

 

Definition 3.7. (Boundedness, safeness)  

 

A marked net (N = (P, T, F), s) is bounded iff the set of reachable markings [N, s> is 

finite. It is safe iff, for any s’ ∈ [N, s> and any p ∈ P, s’ (p) ≤ 1. Note that safeness implies 
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boundedness.  

The marked P/T-net shown in Figure 3.1 is safe (and therefore also bounded) because 

none of the 8 reachable states puts more than one token in a place. (Van der Aalst, 2003). 

 

Definition 3.8. (Dead transitions, liveness)  

 

Let (N = (P, T, F), s) be a marked P/T-net. A transition t ∈ T is dead in (N, s) iff there is 

no reachable marking s’ ∈ [N, s> such that (N, s’ )[t . (N, s) is live iff, for every reachable 

marking s’ ∈ [N, s> and t ∈ T, there is a reachable marking s’’ ∈ [N, s’ such that (N, s’’)[t 

>. Note that liveness implies the absence of dead transitions.  

 

None of the transitions in the marked P/T-net shown in Figure 3.1 is dead. However, the 

marked P/T-net is not live since it is not possible to enable each transition continuously. 

 

 

3.2.2 Workflow net 

A workflow net is a special case of a Petri net that is used to model the workflow of 

process activities. Workflow net transitions represent activities or tasks, while places 

represent the pre/post conditions. A workflow net is a Petri net with a single source place and 

a single sink place. In addition, all nodes are on a path from start to end, except the source 

and sink. The model shown in Figure 3.1 is a workflow net. The formal definition of a 

workflow net is given as follows. 

 

Definition 3.9.(Workflow net graph) (Van der Aalst, 1998).  

 

(P, T, A) is a workflow net graph iff (P, T, A) is a Petri net graph, and there exists a 

single source place start 𝑝 ∈ 𝑃 such that ∙ 𝑝 = ∅, and a single sink place end 𝑝 ∈ 𝑃 such that 

𝑝 ∙= ∅, and every place and every transition are on a path from start to end. 

Sound workflow net: 

A workflow net is sound iff a process with a start marking of k tokens in its source 

place can reach the termination state marking with k tokens in its sink place (defined as k-

sound workflow net). At the moment of termination, when there is a token in the sink 

place, all other places are empty. Additionally, in a sound workflow net, all transitions can 
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fire (Van der Aalst, 1997). The workflow net shown in Figure 3.1 is a sound. 

 

3.3. Standard constructs of a Petri net 

 

A workflow net can be composed of the following standard constructs: sequence, 

AND-split, AND-join, XOR-split, and XOR-join. A workflow net with standard constructs is 

illustrated in Figure 3.2. 

 

 

 

Figure 3.2. Example of a workflow net with standard constructs 

 

3.4. Complex constructs of a Petri net 

The current process discovery algorithms are all capable of discovering sequences, 

choices, and parallelism. However, no existing technique can discover the following complex 

constructs together in a restricted time: short loops, invisible tasks, duplicate tasks and non-

free choice constructs. In real-life processes, these complex constructs are common, so it is 

important to provide a technique that can successfully identify them all. We will define these 

complex constructs in this section before providing our discovery approach in the next 

section. 

 

3.4.1. Invisible Tasks 

An invisible task is a hidden task that has been executed but does not appear in the 

event log. For instance, the execution of a task that has been skipped to allow flexibility in 

the execution of a process is an invisible task that exists in the process model but cannot be 

recorded in the event log. Because invisible tasks are not present in the log, they are difficult 

to detect. Invisible tasks were first classified by (Wen et al., 2007b) into four types according 

to the functional structure: SIDE, SKIP, REDO, and SWITCH. These four types are 

XOR-split

XOR-join

AND-split

AND-join

Sequence

Transition (Activity/Task)

Place (Condition)Source Place 

Sink Place 
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summarized in Table 3.2, as shown below. The abbreviation IvT will be used to refer to 

invisible tasks. 

 

Table 3.2.  Classification of invisible tasks 
 

IvT types Definition Event log Process Model 

Short Redo (SR) Repeat the 

execution of 

some tasks 

{<a,b,c>, 

<a,b,b,c>} 
 

Long Redo (LR) 

{<a,b,c,d>, 

<a,b,c,…b,c,d>} 

 

Short Skip (SS) Skip the 

execution of 

some tasks 

{<a,c>, 

<a,b,c>} 
 

Long Skip (LS) {<a,d>, 

<a,b,c,d>} 
 

Side (SD) 

Directly 

follow the 

source or sink 

place 

{<a,b,c>, 

<b,a,c>} or 

{<x,y,z>, 

<x,z,y>} 

 

 

Switch (SW) Switch the 

execution of 

some tasks 

{<a,c>, <b,d>, 

<b,c>} 

 

 

 

3.4.2. Short Loops 

A short loop can be either a loop of length one (L1p) or a loop of length two (L2p). In a 

loop of length one, there is one task that can be repeated several times, while a loop of length 

two involves two tasks that can be repeated many times. Fig. 3.3(a) depicts a process model 

with a loop of length one where task B can be repeated several times. Fig. 3.3(b) illustrates a 

process model with a loop of length two, where the two tasks B and C follow each other and 
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can be repeated several times. 

 

 
 

Figure 3.3. Example of sound process models with short loops: (a) a loop of length one and 

(b) a loop of length two. 

 

3.4.3. Duplicate Tasks (DT) 

Duplicate tasks are tasks sharing the same name but placed in two or more nodes in 

the workflow net. Fig. 3.4 depicts a process model with two duplicate tasks, A and E. Since it 

is difficult to differentiate between duplicate tasks sharing the same name in the event log, it 

is difficult to mine such a process model correctly based on its event log. 

 
 

Figure 3.4. Example of a sound process model with duplicate tasks 

 

 

3.4.4. Non-Free Choice Construct (NFC) 

 

A non-free choice construct combines choice and synchronization (Wen et al, 2007a). 

In other words, the choice between two or more tasks depends on the tasks that have already 

been executed in a given process model. Fig. 3.5 gives an example of a workflow process 

model with a non-free-choice construct. In this model, if task A happens, task D will happen, 

and task E will not happen; whereas, if task B is executed, task E will be executed, but task D 

will not be executed. The existence of this non-free choice construct is due to the implicit 

dependencies between tasks A and D and between B and E. Therefore, it is necessary to 

detect all dependencies to correctly derive a process model with non-free choice constructs 

from an event log. There are two types of dependencies in workflow nets: explicit and 

(a) (b)
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implicit. An explicit dependency is a direct causal relationship between activities, while an 

implicit dependency is an indirect causal relationship between activities (Wen et al., 2006). 

The formal definitions of these two types of dependencies are given below. 

 

 

 
Figure 3.5. Sound workflow process model with a non-free choice construct 

 

 

Definition 3.5 (Explicit Dependency) (Wen et al., 2006).  

 

Let N = (P, T, A) be a sound workflow net with an input place i and an output place o. 

For any 𝑎, 𝑏 ∈  𝑇, there is an explicit dependency between 𝑎 and 𝑏 iff:  

1. Connective: 𝑎 • ∩ •  𝑏 ≠  ∅, and  

2. Successive: there is some reachable marking 𝑠 ∈  [𝑁, [𝑖] > such that (𝑁, 𝑠)[𝑎 >

 𝑎𝑛𝑑 (𝑁, 𝑠 − • 𝑎 +  𝑎 •)[𝑏 >. 

 

Definition 3.6 (Implicit Dependency) (Wen et al., 2006).  
 

Let N = (P, T, A) be a sound workflow net with an input place i and an output place o. 

For any 𝑎, 𝑏 ∈  𝑇, there is an implicit dependency between 𝑎 and 𝑏 iff:  

1. Connective:  𝑎 • ∩ •  𝑏 ≠  ∅, 

2. Disjunctive: there is no reachable marking 𝑠 ∈  [𝑁, [𝑖] >  such that (𝑁, 𝑠)[𝑎 >

 𝑎𝑛𝑑 (𝑁, 𝑠 − • 𝑎 +  𝑎 •)[𝑏 >. 

3. Reachable: there is some reachable marking 𝑠 ∈  [𝑁, [𝑖] > such that (𝑁, 𝑠)[𝑎 >, 

and there is some reachable marking 𝑠’ ∈  [𝑁, 𝑠 − • 𝑎 +  𝑎 •> such that (𝑁, 𝑠’)[𝑏 >. 

As shown in Figure 3.3.4, the place P2 and its associated arcs represent explicit 

dependencies between A and C and between B and C, while P3 and its associated arcs reflect 

an implicit dependency between A and D. 
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Conclusion  

In this chapter, we introduced event logs and process models, and we discussed the 

Petri net and workflow net and also its standard and complex constructs because it is a 

language abstraction used by many process discovery techniques. We will use this model 

representation in this thesis, especially in Chapters 6 and7. In the next chapter, we will 

present our framework for process discovery algorithms. 
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Chapter 4 PROCESS DISCOVERY TECHNIQUES RECOMMENDATION 

FRAMEWORK 

 

Process mining is new techniques whereby knowledge from event log stored in 

today’s information systems are extracted to automatically construct business process models 

to have a full understanding of the real behaviour of processes, identify bottlenecks, and then 

improve them. Many process discovery algorithms have been proposed today. However, users 

and businesses still cannot choose or decide the appropriate mining algorithm for their 

business processes. Nevertheless, existing evaluation and recommendation frameworks have 

several important drawbacks. In this chapter, we propose a new framework for 

recommending the most suitable process discovery technique to a given process taking into 

consideration the limitations of existing frameworks. 

 

4.1. Literature review 

A number of papers have developed frameworks to evaluate or recommend process 

discovery techniques. Rozinat, J., et al. (2007) have written an important and a good starting 

article on building process mining algorithms benchmark framework. They introduced two 

methodologies to evaluate process discovery techniques. The first strategy is based on 

evaluation using metrics and the second one is a machine learning strategy. Wang, J., et al. 

(2012) extended this work by empirically evaluating process discovery techniques using 

artificial and real-life datasets, as well as different similarity measures. Despite the fact that 

this framework allow users and businesses select the process mining algorithm suitable to a 

given event log, empirical evaluation is time consuming. Only after performing experiments 

on all existing mining algorithms can be decided the best algorithm. Particularly, remarkable 

work do (Wang, J. et al., 2013) present in which the problem of spending long time in 

performing experiments to select the appropriate mining algorithm was considered. Their 

proposed framework is based on learning step and recommendation step. In the first phase a 

regression model is built based on features extracted from high quality selected reference 

models and on the similarities between the reference models and the mined models. Using 

this regression model as well as features extracted from the other models, similarities 

between reference models and mined models are predicted without performing experiments. 

While the authors’ results obtained by applying this framework are very accurate and 

attractive, there is a weakness in this concept. The presented methodology is strongly based 
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on reference models. However, reference models usually are not available in practical world. 

Ribeiro, J. et al. (2014) developed a framework and a tool for recommending control flow 

algorithms. Based on features extracted from event logs and prediction models built from 

experiments, top-K control-flow miners are recommended. Although this work takes event 

logs as input rather than reference models considering the limitation in (Wang, J. et al., 2013), 

the study can be criticized on the fact that in the framework, performing experiments to build 

prediction models are required before recommending top-k mining algorithm. Thus, again 

time consuming. The proposed systems would have been more interesting if the authors had 

based their framework on event logs and had reduced the experiments required to decide the 

mining algorithm suitable for a given event log. Pérez-Alfonso et al, (2015) proposed an 

approach to recommend a process discovery algorithm based only the classification of event 

logs, but they just conceptualised the idea. Jouck, T., et al. (2018) proposed a classification 

based framework to evaluate the quality of process discovery algorithms. The starting point 

of this framework is the generation of random samples of process models artificially from a 

specified population of processes. For each model, a training log with fitting traces and a test 

log with both fitting and non-fitting traces are generated. The quality of process discovery 

algorithms is based on the capability of the algorithm in correctly classifying a trace 

representing real process behaviour as fitting and a trace representing non-related behaviour 

to the process as non-fitting. Nevertheless, similar to other methodologies, it is an empirical 

framework. A user needs to run experiments on all existing discovery technique until he can 

decide the best algorithm based on quality performance. 

 

4.2. Process Discovery Recommendation Framework 

Existing evaluation and recommendation frameworks allow users choose the best 

algorithm to a given process by comparing the performance of existing discovery algorithms 

empirically. While in fact, recommending a process discovery technique for a given process 

log based on empirical assessment is time and resource consuming. From a business 

perspective, practically one cannot perform experiments on all algorithms each time to decide 

the most suitable algorithm at the end. In addition, some recommendation frameworks are 

based on reference models. There is a strong possibility that reference models are not 

available in the practical world.  

The development of a recommendation framework for process discovery algorithms is 
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strongly needed due to the abundance of process discovery algorithms and due to the fact that 

each algorithm has different characteristics and ability, and specific limitations. One of the 

big differences between existing discovery algorithms is the ability to discover the standards 

and complex constructs of a process model which are short loops, invisible tasks, non-free 

choice constructs, non-free choice involved in invisible tasks, and duplicate tasks. There is 

currently no algorithm that can handle all of these structures in a restricted time. For instance, 

the Inductive Miner algorithm (Leemans et al., 2013) is robust for invisible tasks, but it 

cannot handle duplicate tasks and non-free choice constructs. Another example is the Region-

based algorithm (Bergenthum et al., 2007), which is capable of mining some non-free choice 

constructs but cannot handle invisible and duplicate tasks. The other algorithms have similar 

problems. Each algorithm has an advantage in mining specific structures but at same time 

there is a restriction in mining other constructs.  

In this chapter, we propose a new framework to recommend or select a mining 

algorithm suitable for a given event log. The idea of this framework consists of extracting the 

constructs of a process model from the corresponding event log without discovering any 

model. In other words, investigating the log whether it contains short loops, invisible tasks, 

non-free choice constructs, non-free choice involved in invisible tasks, and duplicate tasks. 

And using knowledge data base which contains the information about the capability of each 

algorithm in discovering the said structures, one can decide the candidate techniques suitable 

for the given event log. Knowledge data base can be constructed from the results obtained 

through existing comparison and evaluation frameworks that evaluate the ability of process 

discovery algorithms in mining the aforementioned constructs. In the proposed framework, 

no reference model and no empirical evaluation are needed to recommend a process 

discovery technique. In case the constructs extraction stage resulted in too many candidate 

algorithms, other metrics gathered in the knowledge data base from research papers (e.g. 

mining time, soundness, etc.) will be used to reduce the candidate algorithms. For instance, if 

after structures extraction from event logs, the results show that the log contains duplicate 

tasks, alpha algorithm, inductive miner and other algorithms will be eliminated due to their 

inability to discover duplicate tasks. Since Alpha* algorithm and genetic miner both can mine 

duplicate tasks, they are both candidates. However, according to the mining time metric in 

data base knowledge, genetic algorithm takes a long time compared to alpha*  algorithm to 

discover a model from an event log characterized by the existence of duplicate tasks. In this 

case, the recommended discovery algorithm to mine such event logs is alpha* algorithm 
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without performing any empirical evaluation. The overall framework is illustrated in Figure 

4.1. 

 
 

Figure 4.1. Process discovery algorithms recommendation framework 

 

 

4.2.1.  Constructs  

 

The most relevant constructs typically discovered by process discovery algorithms are 

sequence, exclusive choice, inclusive choice, parallelism, loops, invisible tasks, non-free 

choice, and duplicate tasks.  

✓ Sequence: Certain process activities need to be sequentially executed. 

✓ Exclusive choice: Certain process parts of the process are mutually exclusive. In 

several notations, this is known as XOR split/join. 

✓ Parallelism: Certain branches are “parallel”, indicating that the activities of a first 

part of the model are executed simultaneously with the activities of a second part of 

the model. In several notations, this is known as AND split/join. 

✓ Inclusive choice: a choice needs to be made on which part(s) of process that follow 
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need to be performed, when reaching given points of the process. Inclusive choice is 

different from exclusive choice because multiple parts can be executed in parallel 

and different from the parallelism construct since not every part that follows the 

reached point needs to be executed. In several notations, this is known as OR 

split/join. 

✓ Loop: The execution of certain parts of the process can be sequentially repeated 

multiple times. 

✓ Invisible tasks: Certain transitions are incorporated into the model for a process-

routing purpose. For instance, combined with exclusive choices, invisible tasks allow 

the execution of some parts of the process to be skipped. 

✓ Duplicate activities: Certain activities share the same name but placed in two or 

more nodes in the process model. 

✓ Non-free choice: when the choice of one or multiple branches is influenced by a 

choice occurred before.  

 

We classify these constructs into standards constructs that can be discovered by all of 

existing process discovery algorithms and complex constructs that cannot be mined by all of 

the algorithms. We are not concerned with the standards constructs. Our main focus, in this 

chapter, is on the complex constructs which make the ability of each algorithm different in 

terms of mining these constructs.  

 

4.2.2. Complex construct detection 

In this section, we will present the equations used to detect short loops, invisible tasks, 

non-free choice and non-free choice involved in invisible tasks in a given event log. The 

equations for detecting the complex constructs are based on the extensions of alpha miner.  

Compared to other algorithms, the extensions of alpha miner (i.e., alpha++, alpha$, alpha#) 

address most of the construct separately, i.e., short loops, all types of invisible tasks and non-

free choice constructs.  

 

(a) Basic ordering relations 

In 𝛼  algorithm, the originator and the driver of the 𝛼 −extensions algorithms, six 

basic relations were defined: >𝐿 ,  ∆𝐿 ,  ◊𝐿 , →𝐿 , ‖𝐿 , and ≠𝐿 . Relation >𝐿  represents two 

activities that can successively be executed. If the same activity is executed two or multiple 
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times successively, then the direct succession refers to a loop with length-one structure. 

Relation  ∆𝐿 expresses a loop with length-two structure (e.g., aba). This relation is used also 

to distinguish length-2-loop from parallel routing. Relation  ◊𝐿  refers to two way loop-2-

length, which means two activities have the  ∆𝐿 relations between each other (e.g. aba, bab). 

Relation →𝐿 shows the direct causal relation between two activities. Relation ‖𝐿 represents 

the activities that can be executed concurrently (e.g., ab, ba). Relation ≠𝐿  refers to two 

activities never following each other directly. 

 

Definition 4.1(Basic Ordering relations) 

Let A be a set of activities, L be an event log over A, a and b be two activities in A, the 

relation defined in 𝛼 and 𝛼+algorithms as follows: 

 𝑎 >𝐿 𝑏 ⇔  ∃𝜎 =  𝑡1𝑡2 … 𝑡𝑛 ∈ 𝐿, 𝑖 ∈ 1, … , 𝑛 − 1: 𝑡𝑖 = 𝑎 ∧ 𝑡𝑖+1 = 𝑏, 

 𝑎 ∆𝐿 𝑏 ⇔  ∃𝜎 =  𝑡1𝑡2 … 𝑡𝑛 ∈ 𝐿, 𝑖 ∈ 1, … , 𝑛 − 2: 𝑡𝑖 = 𝑡𝑖+2 = 𝑎 ∧ 𝑡𝑖+1 = 𝑏, 

 𝑎 ◊𝐿  𝑏 ⇔ (𝑎 ∆𝐿 𝑏)  ∨  (𝑏 ∆𝐿 𝑎),  

 𝑎 →𝐿 𝑏 ⇔ ((𝑎 >𝐿 𝑏) ∧ (𝑏 ≯𝐿 𝑎)) ∨ (𝑎 ◊𝐿  𝑏), 

 𝑎 ‖𝐿𝑏 ⇔ (𝑎 >𝐿 𝑏) ∧ (𝑏 >𝐿 𝑎) ∧ (𝑏 ◊ 𝐿𝑎),  and 

 𝑎 ≠𝐿 𝑏 ⇔ ((𝑎 ≯𝐿 𝑏) ∧ (𝑏 ≯𝐿 𝑎)). 

 𝑎 >𝐿 𝑎 ⇔  ∃𝜎 =  𝑡1𝑡2 … 𝑡𝑛 ∈ 𝐿, 𝑖 ∈ 1, … , 𝑛 − 1: 𝑡𝑖 = 𝑎 ∧ 𝑡𝑖+1 = 𝑎, 

 

(b) Short loops detection 

The relation that can detect loops of length two is defined in the basic ordering 

relations in Definition 4.1 as  ∆𝐿 . The relation that can detect loop of length one loop is 

defined using relation of direct succession as follows: 

 

 𝑎 >𝐿 𝑎 ⇔  ∃𝜎 =  𝑡1𝑡2 … 𝑡𝑛 ∈ 𝐿, 𝑖 ∈ 1, … , 𝑛 − 1:  𝑡𝑖 = 𝑎 ∧  𝑡𝑖+1 = 𝑎 

 

Several constructs and sound models cannot correctly be discovered with the 

existence of a loop of length-one. Therefore, most of the algorithms focus on the pre and 

post-processing steps of process mining as a solution to tackle length-one loops. Similarly, 

our framework starts by investigating the existence of a loop of length-one in the event log 

using the direct succession relation >𝐿 . Once it is detected, the framework records the 
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existence of loop of length-one, removes it from the event log and then investigates the rest 

of the constructs in the new event log defined in Definition 4.2. 

 

Definition 4.2 (loop-1-length free event log) 

Let A be a set of activities, L be an event log over A, a be an activity from A, and L1L 

be the set of loops of length-one, the new event log A’ free of loop-1-length is defined as 

follows: 

 

 𝐴𝑙𝑜𝑔 = {𝑎 ∈A|∃σ∈L[𝑡 ∈ 𝜎]}, 

 L1L = { 𝑎 ∈ 𝐴|∃𝜎=𝜎= 𝑡1𝑡2…𝑡𝑛∈𝐿; 𝑖∈2,3,..,𝑛 𝑎 = 𝑡𝑖 ∧ 𝑎 = 𝑡𝑖+1  ∨   𝑎 = 𝑡𝑖−1 ∧ 𝑎 = 𝑡𝑖}, 

 𝐴′ =  𝐴𝑙𝑜𝑔\𝐿1𝐿. 

 

(c) Invisible tasks detection 

𝛼# algorithm introduced the mendacious dependency ⇝𝐿 to reflect invisible tasks of 

type SKIP, REDO, and  SWITCH. The relation ⇝𝐿 can be used to detect the existence of 

invisible tasks in the event log and to discover them in a process model. The mendacious 

dependency ⇝𝐿 defined in 𝛼# algorithm is defined in Definition 4.3. 

 

Definition 4.3 (mendacious dependency associated with invisible tasks) 

Let A be a set of activities, L be an event log over A, and a, b be two activities from A. 

The mendacious dependency associated with invisible tasks is defined as follows: 

 

 𝑎 ⇝𝐿 𝑏 ⇔  (a →𝐿 𝑏)  ∧  ∃ 𝑥, 𝑦 ∈ 𝐴: (a →𝐿 𝑥)  ∧  (y →𝐿 𝑏)  ∧  (𝑦 ≯𝐿 𝑥)  ∧  (𝑥 ∦𝐿 𝑏) 

∧ (𝑎 ∦𝐿 𝑦) 

 

This relation is capable of detecting invisible tasks of type Short-Skip, Long-Skip, 

Short-Redo, and  Long-Redo. The basic idea of  ⇝𝐿 for detecting these types is illustrated in 

Figure 4.2. Task 𝑡 in Figure 4.2 represents an invisible task. If the two tasks 𝑥 and 𝑦 are 

equal, 𝑡 is of Short-Skip type. If 𝑥 reaches 𝑦, 𝑡 is of Long-Skip type. If the two tasks 𝑎 and 𝑏 

are equivalent, 𝑡 is of Short-Redo type. If 𝑏 reaches 𝑎, 𝑡 is of type Long-redo type. Otherwise, 

𝑡 is of type Switch. However, the relation detects these kinds of invisible tasks only when 
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they are executed as a sequential workflow. The relation   ⇝𝐿  is incapable of detecting 

invisible tasks of these types if they are in parallel with other tasks. Therefore, 𝛼$ algorithm 

improved the mendacious dependencies by introducing new definitions to detect invisible 

tasks of type Short-Skip, Long-Skip, Short-Redo, and  Long-Redo when they are executed 

concurrently with other tasks.  

 

 
 

Figure 4.2. Illustration of the basic idea of  ⇝𝑳 

 

𝛼$  algorithm introduced the Between-set to be used to improve the mendacious 

dependency. Between-set is defined in Definition 4.4, and refers to the tasks occurring 

between two tasks. If the two tasks are the endpoints of a concurrent construct, the Between-

Set is the set of tasks in the parallel branches. For instance in Figure 4.3, 𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝐿, 𝑎, 𝑏)  =

 {𝑥, 𝑦, 𝑐}. 

 

Definition 4.4 (Between-Set) 

 

Let A be a set of activities, L be an event log over A, a and b be two activities from A, 

𝜎 be a trace that belongs to L, the Between-Set of a,b, i.e. 𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝐿, 𝑎, 𝑏), is defined as 

follows:  

 

 𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝜎, 𝑎, 𝑏) = {𝜎𝑘|∃1≤𝑖<𝑗≤𝑚(𝜎𝑖 = 𝑎 ∧ 𝜎𝑗 = 𝑏) ∧ 𝑖 < 𝑘 < 𝑗 ∧ ∄𝑖<𝑙<𝑗 

(𝜎𝑙 = 𝑎 ∨ 𝜎𝑙 = 𝑏))}, 

 ⌐𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝜎, 𝑎, 𝑏) = {𝜎𝑘|1 ≤ 𝑘 ≤ 𝑚}   ∖  𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝜎, 𝑎, 𝑏), 𝑎𝑛𝑑 

 𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝐿, 𝑎, 𝑏) = ∪𝜎∈𝐿 𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝜎, 𝑎, 𝑏) ∖∪𝜎∈𝐿 ⌐𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝜎, 𝑎, 𝑏). 

 

The mendacious dependency  ⇝𝐿  is improved as ↪𝐿  and defined in Definition 4.5. 

the improved mendacious dependency ↪𝐿 is capable of detecting the types of invisibles tasks 

when they are involved in a concurrent construct. The basic idea of ↪𝐿 is illustrated in Figure 



76 
 

4.3. Task 𝑡 in Figure 4.3 represents an invisible task in a parallel branch. Similar to Figure 

4.2, if the two tasks 𝑥 and 𝑦 are equal, 𝑡 is of Short-Skip type. If 𝑥 reaches 𝑦, 𝑡 is of Long-

Skip type. If the two tasks 𝑎 and 𝑏 are equivalent, 𝑡 is of Short-Redo type. If 𝑏 reaches 𝑎, 𝑡 is 

of type Long-redo type. Otherwise, 𝑡 is of type Switch. 

 

Definition 4.5 (Mendacious dependencies associated with invisible tasks in parallel) 

 

Let A be a set of activities, L be an event log over A, a and b be two activities from A, 

𝜎 be a trace that belongs to L, the mendacious dependency 𝑎 ↪𝐿 𝑏 associated with invisible 

tasks involved in a parallel construct  is defined as follows:  

 

 𝑎 ≥𝐿 𝑏 ⇔  ∃ 𝒙,𝒚∈𝑨  𝐵𝑒𝑡𝑤𝑒𝑒𝑛 (𝐿, 𝑥, 𝑦)  ⊂  𝐵𝑒𝑡𝑤𝑒𝑒𝑛 (𝐿, 𝑎, 𝑏)  ∧  ∀ 𝑚 ∈  

(𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝐿, 𝑎, 𝑏) ∖ (𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝐿, 𝑥, 𝑦) ∪ {𝑥, 𝑦})) ∀𝑛 ∈ 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 (𝐿, 𝑥, 𝑦)  

: (𝑚  ‖𝐿 𝑛)  ∧  ∃𝜎∈𝐿 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 (𝜎, 𝑎, 𝑏)  ⊆  (𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝐿, 𝑎, 𝑏) ∖ {𝑥, 𝑦}), 

 𝑎 ⇉𝐿 𝑏 ⇔ ((𝑎 ≥𝐿 𝑏) ∧ (𝑏 ≱𝐿 𝑎)) ∨ (𝑎 ◊𝐿 𝑏), and 

 𝑎 ↪𝐿 𝑏 ⇔ ∃ 𝑥, 𝑦 ∈ 𝐴: (a →𝐿 𝑥)  ∧  (y →𝐿 𝑏) ∧ (𝑥 ∦𝐿 𝑏) ∧  (𝑦 ∦𝐿 𝑎) ∧ (𝑎 ⇉𝐿 𝑏) 

∧ (𝑦 ≱𝐿 𝑥). 

 

 

Figure 4.3. Illustration of the basic idea of improved mendacious dependency 

 

The mendacious dependency  ⇝𝐿 can detect invisible tasks of types Skip, Redo, and 

Switch involved in a sequential constructs using one relation. The dependency  ⇝𝐿 can be 

seen as a combined relation that can detect invisible tasks of type Short-Skip, Long-Skip, 

Short-Redo, and  Long-Redo involved in a sequential construct. Similarly, the improved one 

↪𝐿  can discover invisible tasks of types Skip, Redo, and Switch involved in a parallel 

construct using one relation. The dependency ↪𝐿 can be seen as a combined relation that can 
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detect invisible tasks of type Short-Skip, Long-Skip, Short-Redo, and Long-Redo involved in 

a parallel construct. In fact, there are process discovery algorithms which can detect a certain 

types of invisible tasks while cannot detect the other types. For instance, ETM algorithm 

(Buijs et al., 2012) is capable of discovering invisible tasks of types Short-Skip and Long-Skip 

involved in a sequential construct whereas it is incapable of discovering those of types Short-

Redo and long redo in sequence, and Short-Skip and Long-Skip in parallel and switch. 

Similarly, the Heuristic Miner (Weijters et al., 2006) is proven to be able to detect invisible 

tasks. However, it cannot detect those of types Short-Redo in a sequence construct and Short-

Skip in a parallel construct. Hence, even if the Heuristic Miner is proven to discover invisible 

tasks, if the existence of invisible task of type Short-Skip in a parallel construct is detected in 

the log, the Heuristic Miner will not be recommended.  The dependencies  ⇝𝐿  and ↪𝐿  do 

not detect the types of invisible tasks separately. Therefore, we need to define a relation for 

each type of invisible tasks.  

In our framework, we define a relation for each type of invisible tasks by splitting the 

two relations  ⇝𝐿   and ↪𝐿  and based on the information that if the two tasks 𝑥 and 𝑦 are 

equal, 𝑡 is of Short-Skip type. If 𝑥 reaches 𝑦, 𝑡 is of Long-Skip type. If the two tasks 𝑎 and 𝑏 

are equivalent, 𝑡 is of Short-Redo type. If 𝑏 reaches 𝑎, 𝑡 is of type Long-redo type. Otherwise, 

𝑡 is of type Switch. The relations detecting invisible tasks of types Short-Skip, Long-Skip, 

Short-Redo, and Long-Redo in a sequential construct is defined in Definition 4.7, Definition 

4.8, Definition 4.9, and Definition 4.10 respectively. The relations detecting of those involved 

in a parallel construct are defined in Definition 4.11, Definition 4.12, Definition 4.13, and 

Definition 4.14 respectively. 

Before that we define two relations will be used in the new definitions for detecting 

each type of invisible tasks separately. These two relations are  ≫𝐿  and ⊱𝐿 . They were 

introduced in 𝛼++ algorithm. Relation ≫𝐿 represents the case where one task can only be 

indirectly followed by another task, while relation ⊱𝐿 refers to the situation when one task can 

be followed by another task either directly or indirectly. 𝑎 ≫𝐿 𝑏  means that task 𝑏  is 

reachable from task 𝑎  indirectly and 𝑎 ⊱𝐿 𝑏  indicates that task 𝑏  is reachable from task 𝑎 

directly or indirectly. Relations ≫𝐿 and ⊱𝐿 are defined in Definition 4.6. 

 

Definition 4.6 (Reachable dependencies) 

 

Let A be a set of tasks, L be an event log over A, a, b two tasks from A, the dependency 

𝑎 ≫𝐿 𝑏 reflects the indirect reachable dependency between the two tasks a and b and 𝑎 ⊱𝐿 𝑏 
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reflects the indirect or direct reachable dependency between the two tasks a and b. These two 

relations are defined as follows: 

 

 𝑎 ≫𝐿 𝑏 ⇔   ∃𝜎 =  𝑡1𝑡2 … 𝑡𝑛 ∧ 𝑖, 𝑗 ∈ 1, … , 𝑛: 𝑖 < 𝑗 ∧ 𝑡𝑖 = 𝑎 ∧ 𝑡𝑗 = 𝑏 ∧  ∀𝑘 ∈ 

[𝑖 + 1, … , 𝑗 − 1]: 𝑡𝑘 ≠ 𝑎 ∧ 𝑡𝑘 ≠ 𝑏 

 𝑎 ⊱𝐿 𝑏 ⇔ (𝑎 →𝐿 𝑏) ∨ (𝑎 ≫𝐿 𝑏) 

 

Definition 4.7 (Short skip in sequence) 

 

Let A be a set of tasks, L be an event log over A, a, b two tasks from A, the dependency 

𝑎 ⇢𝐿
𝑠𝑠𝑠 𝑏 reflects the mendacious dependency associated with invisible tasks of type Short 

Skip in Sequence and is defined as follows: 

 

 𝑎 ⇢𝐿
𝑠𝑠𝑠 𝑏 ⇔ (𝑎 →𝐿 𝑏 ) ∧ ∃𝑥 ∈ 𝐴: (𝑎 →𝐿 𝑥) ∧ (𝑥 →𝐿 𝑏) ∧ (𝑥 ∦𝑤 𝑏) ∧ (𝑎 ∦𝑤 𝑥) ∧

(𝑥 ≯𝐿 𝑥). 

 

 

 

Definition 4.8 (Short redo in sequence) 

 

Let A be a set of tasks, L be an event log over A, x, y two tasks from A. the dependency 

𝑥 ⇢𝐿
𝑠𝑟𝑠 𝑦 represents the mendacious dependency associated with invisible tasks of type Short 

Redo in Sequence and is defined as follows: 

 

y ⇢𝐿
𝑠𝑟𝑠 x ⇔ (𝑦 ≯𝐿 𝑥) ∧ ∃𝑎 ∈ 𝑇: (a →𝐿 𝑥) ∧ (y →𝐿 𝑎) ∧ (𝑥 ∦𝐿 𝑎) ∧ (𝑎 ∦𝐿 𝑦) ∧ (𝑎 >𝐿 𝑎). 

 

Definition 4.9 (Long skip in sequence) 

 

Let A be a set of tasks, L be an event log over A, a, b two activities from A. the 

dependency 𝑎 ⇢𝐿
𝑙𝑠𝑠 𝑏 reflects the mendacious dependency associated with invisible tasks of 

type long Skip in Sequence and is defined as follows: 

 

a ⇢𝐿
𝑙𝑠𝑠 b ⇔ (a →𝐿 𝑏)  ∧  ∃ 𝑥, 𝑦 ∈ 𝐴: (a →𝐿 𝑥)  ∧  (y →𝐿 𝑏)  ∧  (𝑦 ≯𝐿 𝑥)  ∧  (𝑥 ∦𝐿 𝑏) 

∧ (𝑎 ∦𝐿 𝑦) ∧ (𝑥 ⊱𝐿 𝑦). 
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Definition 4.10 (long redo in sequence) 

 

Let A be a set of tasks, L be an event log over A, x, y two activities from A. the 

dependency 𝑥 ⇢𝐿
𝑠𝑟𝑠 𝑦 which represents the mendacious dependency associated with invisible 

tasks of type long Redo in Sequence is defined as follows: 

 

y ⇢𝐿
𝑙𝑟𝑠 x  ⇔  ∃ 𝑎, 𝑏 ∈ 𝐴:  (a →𝐿 𝑥)  ∧  (y →𝐿 𝑏)  ∧  (𝑥 ∦𝐿 𝑏) ∧ (𝑦 ∦𝐿 𝑎)  ∧  (𝑏 ⊱𝐿 𝑎) 

∧ (𝑎 >𝐿 𝑏). 

 

Definition 4.11 (Short skip in parallel) 

 

Let A be a set of tasks, L be an event log over A, a, b two activities from A, the 

dependency 𝑥 ⇢𝐿
𝑠𝑠𝑝 𝑦 which represents the mendacious dependency associated with invisible 

tasks of type Short-Skip in Parallel is defined as follows: 

 

 𝑎 ≥𝐿
𝑠ℎ 𝑏 ⇔ ∃𝑥 ∈ 𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝐿, 𝑎, 𝑏) ∧ ∀ 𝑚 ∈ (𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝐿, 𝑎, 𝑏) ∖ {𝑥}): (𝑚  ‖𝐿𝑥)  

∧  ∃𝜎∈𝐿𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝜎, 𝑎, 𝑏) ⊆ (𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝐿, 𝑎, 𝑏) ∖ {𝑥}), 

 𝑎 ⇉𝐿
𝑠ℎ 𝑏 ⇔ ((𝑎 ≥𝐿

𝑠ℎ 𝑏) ∧ (𝑏 ≱𝐿
𝑠ℎ 𝑎)) ∨ (𝑎 ◊𝐿 𝑏), 

 𝑎 ⇢𝐿
𝑠𝑠𝑝 𝑏 ⇔ ∃ 𝑥, 𝑦 ∈ 𝐴: (a →𝐿 𝑥)  ∧  (y →𝐿 𝑏) ∧ (𝑥 ∦𝐿 𝑏) ∧ (𝑦 ∦𝐿 𝑎) ∧ (𝑎 ⇉𝐿

𝑠ℎ 𝑏). 

 

Definition 4.12 (Short redo in parallel) 

 

Let A be a set of tasks, L be an event log over A, x, y two activities from A, the 

dependency 𝑥 ⇢𝐿
𝑠𝑟𝑝 𝑦 which represents the mendacious dependency associated with invisible 

tasks of type Short-Redo in Parallel is defined as follows: 

 

𝑦 ⇢𝐿
𝑠𝑟𝑝 𝑥 ⇔ ∃ 𝑎 ∈ 𝐴: (a →𝐿 𝑥)  ∧  (y →𝐿 𝑎) ∧ (𝑎 ∦𝐿 𝑥) ∧ (𝑦 ∦𝐿 𝑎) ∧ (𝑦 ⇉𝐿

𝑠ℎ 𝑥) 

∧ (𝑎 >𝐿 𝑎). 

 

Definition 4.13 (long skip in parallel) 

 

Let A be a set of tasks, L be an event log over A, a, b two activities from A, the 

dependency 𝑥 ⇢𝐿
𝑙𝑠𝑝 𝑦 which represents the mendacious dependency associated with invisible 

tasks of type Long-Skip in Parallel is defined as follows: 
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 𝑎 ≥𝐿
𝑙𝑔

𝑏 ⇔  ∃ 𝑥,𝑦∈𝐴  𝐵𝑒𝑡𝑤𝑒𝑒𝑛 (𝐿, 𝑥, 𝑦)  ⊂  𝐵𝑒𝑡𝑤𝑒𝑒𝑛 (𝐿, 𝑎, 𝑏)  ∧  ∀ 𝑚 ∈  

(𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝐿, 𝑎, 𝑏) ∖ (𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝐿, 𝑥, 𝑦) ∪ {𝑥, 𝑦})) ∀𝑛 ∈ 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 (𝐿, 𝑥, 𝑦)  

: (𝑚  ‖𝐿 𝑛)  ∧  ∃𝜎∈𝐿 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 (𝜎, 𝑎, 𝑏)  ⊆  (𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝐿, 𝑎, 𝑏) ∖ {𝑥, 𝑦}), 

 𝑎 ⇉𝐿
𝑙𝑔

𝑏 ⇔ ((𝑎 ≥𝐿
𝑙𝑔

𝑏) ∧ (𝑏 ≱𝐿
𝑙𝑔

𝑎)) ∨ (𝑎 ◊𝐿 𝑏), 

 𝑎 ⇢𝐿
𝑙𝑠𝑝 𝑏 ⇔ ∃ 𝑥, 𝑦 ∈ 𝐴: (a →𝐿 𝑥)  ∧  (y →𝐿 𝑏) ∧ (𝑥 ∦𝐿 𝑏) ∧ (𝑦 ∦𝐿 𝑎) ∧ (𝑎 ⇉𝐿

𝑙𝑔
𝑏) 

∧ (𝑦 ≱𝐿 𝑥) ∧ (𝑥 ⊱𝐿 𝑦). 

 

Definition 4.14 (long redo in parallel) 

 

Let A be a set of tasks, L be an event log over A, a, b two activities from A, the 

dependency 𝑥 ⇢𝐿
𝑙𝑟𝑝 𝑦 which represents the mendacious dependency associated with invisible 

tasks of type Long-Redo in Parallel is defined as follows: 

 

𝑦 ⇢𝐿
𝑙𝑟𝑝 𝑥 ⇔ ∃ 𝑎, 𝑏 ∈ 𝐴: (a →𝐿 𝑥)  ∧  (y →𝐿 𝑏) ∧ (𝑥 ∦𝐿 𝑏) ∧  (𝑦 ∦𝐿 𝑎) ∧ (𝑦 ⇉𝐿

𝑙𝑔
𝑥) 

∧ (𝑏 ≱𝐿 𝑎) ∧ (𝑏 ⊱𝐿 𝑎). 

 

(d) Non-Free Choice constructs 

Non-free choice constructs are detected by detecting implicit dependencies. 𝛼++ 

algorithm introduced three implicit dependencies to detect five types of non-free choice 

constructs illustrated in Figure 4.4. However, the proposed relations are based on the places 

component of a workflow net. Thus, they are based on both the discovered process model and 

the event log. In our framework, we are supposed to detect non-free choice constructs based 

only on the information in the event log. Therefore, we transformed the three implicit 

dependencies such that the conditions on places are converted to transitions. For more details 

about the implicit dependencies of defined in 𝛼++ algorithm, refer to (Wen et al., 2007a). The 

transformed implicit ordering relations for detecting non-free choice constructs are defined in 

Definition 4.15. 
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Figure 4.4. Sound sub-WF-nets with different location of implicit dependencies (Wen et al., 

2006) 

 

Before that we introduce two relations ⊲𝐿  and ⊳𝐿  defined in 𝛼++  algorithm and 

which will be used in the definition of implicit dependencies. Moreover, we introduce a new 

relation, the ⧏𝐿 , which we will use it too in defining the implicit dependencies. Relation ⊲𝐿 

represents XOR-Split, ⊳𝐿 corresponds to XOR-Join and ⧏𝐿 represent AND-split. Relations 

⊲𝐿, ⊳𝐿 and ⧏𝐿 are defined in Definition 4.15.  

 

Definition 4.15 (XOR-Split, XOR-Join and AND-split) 

 

Let A be a set of tasks, L be an event log over A, a, b two activities from A. 

 

 𝑎 ⊲𝐿 𝑏 ⇔ (𝑎 ≠𝐿 𝑏) ∧ ∃𝑐 ∈ 𝐴: (𝑐 →𝐿 𝑎) ∧ (𝑐 →𝐿  𝑏), 

 𝑎 ⊳𝐿 𝑏 ⇔ (𝑎 ≠𝐿 𝑏) ∧ ∃𝑐 ∈ 𝐴: (𝑎 →𝐿 𝑐) ∧ (𝑏 →𝐿  𝑐), 
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 𝑎 ⧏𝐿 ⇔  ∃𝑥, 𝑦 ∈ 𝐴: (𝑎 →𝐿  𝑥) ∧ (𝑎 →𝐿  𝑦)  ∧ (𝑥 ‖𝐿𝑦). 

 

Definition 4.16 (Implicit ordering relations) 

 

Let A be a set of tasks, L be an event log over A, a, b two activities from A, the implicit 

dependencies →𝐿1 , →𝐿2 , and →𝐿3  which detect non-free choice constructs are defined as 

follows:  

 

 𝑎 →𝐿1 𝑏 ⇔ (𝑎 ≯𝐿 𝑏) ∧   ∃𝑐 ∈ 𝐴: (𝑎 >𝐿 𝑐) ∧ (𝑐 ⊲𝐿 𝑏)  ∧  ∄𝑡 ∈ 𝐴: (𝑡 >𝐿 𝑎) 

∧ (( 𝑡 >𝐿 𝑎)  ∨  (𝑡 ‖𝐿𝑎)), 

 𝑎 →𝐿21 𝑏 ⇔ (𝑎 ≫𝐿 𝑏) ∧  𝑎 ⧏𝐿 ∧  ∃𝑏′ ∈ 𝐴: (𝑏 ⊲𝐿 𝑏′) ∧ ∄𝑡 ∈ 𝐴: 𝑎 >𝐿 𝑡   

∧ (𝑡 ⊱𝐿 𝑏 𝑜𝑟 𝑡 ‖𝐿𝑏) ∧ ∃𝑡′ ∈ 𝐴: 𝑎 >𝐿 𝑡′ ∧ (𝑡′⊱𝐿𝑏 ∨  𝑡′‖𝐿𝑏), 

 𝑎 →𝐿22 𝑏 ⇔ (𝑎 ≫𝐿 𝑏) ∧  𝑏 ⧐𝐿 ∧  ∃𝑎′′ ∈ 𝐴: (𝑎 ⊳𝐿 𝑎′) ∧ ∄𝑡 ∈ 𝐴: 𝑡 >𝐿 𝑏   

∧ (𝑎 ⊱𝐿 𝑡 𝑜𝑟 𝑎 ‖𝐿𝑡) ∧ ∃𝑡′ ∈ 𝐴: 𝑡′>𝐿𝑏 ∧ (𝑎′⊱𝐿𝑡′ ∨  𝑎′‖𝐿𝑡′), 

 𝑎 →𝐿2 𝑏 ⇔  𝑎 →𝐿21 𝑏 ∨ 𝑎 →𝐿22 𝑏 , and 

 𝑎 →𝐿3 𝑏 ⇔  (𝑎 ⊲𝐿 𝑎′) ∧ (𝑏 ⊳𝐿 𝑏′) ∧ (𝑎 ≫𝐿 𝑏) ∧ (𝑎¬≫𝐿 𝑏′). 

 

First of all, relation →𝐿1 detects the implicit dependencies illustrated in Figure 4.4(b) 

and (g) from an event log. Secondly, relation →𝐿2 detects the implicit dependencies shown in 

Figure 4.4(c) to (f). Finally, relation →𝐿3 detects the implicit dependencies similar to Figure 

4.4(a). 

 

(e) Invisible tasks involved in a non-free choice construct detection 

 

There are cases where invisible tasks are involved in a non-free choice construct. An 

example is illustrated in Figure 4.5. Tasks t1 and t2 are invisible tasks designed to skip the 

execution of tasks B and E. t2 together with E, p2, p3, and p4 form a non-free choice 

construct indicating that if the invisible tasks t1 is executed, t2 will be later executed and E 

will not be performed, and if B is executed, E will be executed later and not t2. To detect the 

involvement of invisible tasks in a non-free choice construct, the reachable dependencies 

between the two invisible tasks t1 and t2 need to be detected in this example. For this, 𝛼$ 

algorithm introduced the notion of conditional reachable dependency (CRD) which requires 

adding artificially a starting task (i.e., ⊥ ) and an ending task (i.e., ⊤ ). The conditional 

reachable dependency is defined in Definition 4.17. The relation a ≫𝐿 𝑏 which indicates that 
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𝑎 is indirectly followed by 𝑏 is used in this definition. Definition 4.17 introduced three types 

of CRDs: pre-CRD (i.e., ⊱𝐿,𝑝𝑟𝑒=𝑥 ), post-CRD (i.e., ⊱𝐿,𝑝𝑜𝑠𝑡=𝑦 ), and both-CRD (i.e., 

⊱𝐿,𝑝𝑟𝑒=𝑥,𝑝𝑜𝑠𝑡=𝑦). a ⊱𝐿,𝑝𝑟𝑒=𝑥,𝑝𝑜𝑠𝑡=𝑦 𝑏 indicates that there is a trace where a ≫𝐿 𝑏 holds and 𝑥 

is executed directly before 𝑎 and 𝑦 is performed directly after 𝑏. 

 

 

 

Figure 4.5. Example of a sound WF-net with invisibles tasks t1 and t2 involved in a non-free 

choice construct  (L = {<A, B, C, D, E, F>, <A, C, D, F>}) 

 

Definition 4.17 (Conditional reachable dependency) 

Let A be a set of activities, L be an event log over A, ⊥ and ⊤ are staring activity and 

ending activity artificially added to each trace in the event log such that for a trace σ with 

length n, 𝜎0 =⊥ and  𝜎𝑛+1 = ⊤, a, b two activities from A and x, y two activities from 𝐴 ∪

{⊥} ∪ {⊤}. Conditional reachable dependencies are defined as follows: 

 

 a ⊱𝐿,𝑝𝑟𝑒=𝑥 𝑏 ⇔ (a →𝐿 𝑏)  ∨  (∃𝜎∈𝐿∧1≤𝑖≤|𝜎| 𝜎𝑖 = 𝑎 ∧  𝜎𝑖−1 = 𝑥 ∧ (𝑎 ≫𝜎 𝑏)), 

 a ⊱𝐿,𝑝𝑜𝑠𝑡=𝑦 𝑏 ⇔ (a →𝐿 𝑏)  ∨  (∃𝜎∈𝐿∧1≤𝑗≤|𝜎| 𝜎𝑗 = 𝑏 ∧  𝜎𝑗+1 = 𝑦 ∧ (𝑎 ≫𝜎 𝑏)), 

 a ⊱𝐿,𝑝𝑟𝑒=𝑥,𝑝𝑜𝑠𝑡=𝑦 𝑏 ⇔ (a →𝐿 𝑏)  ∨  (∃𝜎∈𝐿∧1≤𝑖,𝑗≤|𝜎|  𝜎𝑖 = 𝑎 ∧  𝜎𝑗 = 𝑏 ∧  𝜎𝑗+1 = 𝑦  

∧  𝜎𝑖−1 = 𝑥 ∧ (𝑎 ≫𝜎 𝑏)). 

 

𝛼$  algorithm defined the reachable dependency related to invisible tasks based on 

conditional reachable dependency. For two invisible tasks x and y, 𝑥 ⊱𝐿 𝑦 holds if there exist 

four tasks 𝑎1 , 𝑎2 , 𝑏1,  and 𝑏2  such that 𝑎1 →𝐿 𝑥 , 𝑥 →𝐿 𝑏1 , 𝑎2 →𝐿 𝑦 , 𝑦 →𝐿 𝑏2 , and 

𝑏1 ⊱𝐿,𝑝𝑟𝑒=𝑎1,𝑝𝑜𝑠𝑡=𝑏2
𝑎2 . 𝑥 ⊱𝐿 𝑚  holds if there exist two tasks 𝑎  and 𝑏  such that 𝑎 →𝐿 𝑥 , 

𝑥 →𝐿 𝑏, and 𝑏 ⊱𝐿,𝑝𝑟𝑒=𝑎 𝑚.  𝑚 ⊱𝐿 𝑥 is similar to 𝑥 ⊱𝐿 𝑚. The reachable dependencies related 

to invisible tasks involved in a non-free choice construct are defined in Definition 4.18. 
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Definition 4.18 (Reachable dependencies related to invisible tasks with non-free 

choice) 

Let A be a set of activities, L be an event log over A, me be an activity from A, x,y be 

two invisible tasks, the reachable dependencies related to invisible tasks in a non-free choice 

are defined as follows: 

 

 𝑥 ⊱𝐿 𝑚 ⇔  ∃(𝑎=⊥ ∨ 𝑎∈𝐿) ∧ 𝑏∈𝐿 (𝑎 →𝐿 𝑥)  ∧  (𝑥 →𝐿 𝑏)  ∧  𝑏 ⊱𝐿,𝑝𝑟𝑒=𝑎 𝑚  

 𝑚 ⊱𝐿 𝑥 ⇔  ∃ 𝑎∈𝐿  ∧(𝑏∈𝐿 ∨ 𝑏=⊤) (𝑎 →𝐿 𝑥)  ∧  (𝑥 →𝐿 𝑏)  ∧  𝑚 ⊱𝐿,𝑝𝑟𝑒=𝑏 𝑎  

 𝑥 ⊱𝐿 𝑦 ⇔  ∃(𝑎1=⊥ ∨ 𝑎1∈𝐿) ∧ 𝑏1∈𝐿 ∧ 𝑎2∈𝐿 ∧ (𝑏2∈𝐿 ∨ 𝑏2=⊤)  (𝑎1 →𝐿 𝑥)  ∧  (𝑥 →𝐿 𝑏1)    

∧ (𝑎2 →𝐿 𝑦) ∧ (𝑦 →𝐿 𝑏2) ∧  𝑏1 ⊱𝐿,𝑝𝑟𝑒=𝑎1,𝑝𝑜𝑠𝑡=𝑏2
𝑎2. 

 

However, the reachable dependency defined in 𝛼$ algorithm to detect the involvement 

of invisible tasks in a non-free choice construct actually does not differentiate between non-

free choice and a free choice. For instance, 𝑡1 ⊱𝐿 𝑡2 of the event log of the WF-net shown in 

Figure 4.5 where there is a reachable dependency between 𝑡1and 𝑡2 holds, and 𝑡1 ⊱𝐿 𝑡2 of 

the event log of the WF-net shown in Figure 4.6 where there is no reachable dependency 

between 𝑡1and 𝑡2 also holds.  In the log of Figure 4.6  𝑡1 ⊱𝐿 𝑡2 holds and also 𝑡1 ⊱𝐿 𝐸 holds. 

To detect that there is reachable dependency between 𝑡1and 𝑡2  𝑡1 ⊱𝐿 𝐸  should not hold. 

Based on this, we improved the reachable dependency related to invisible tasks in Definition 

4.19. 

 

 

 

Figure 4.6. Example of a sound WF-net with invisibles tasks t1 and t2 not involved in a free 

choice construct (L = {<A, B, C, D, E, F>, <A, C, D, F>, <A, B, C, D, F>, <A, C, D, E, F>}) 
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Definition 4.19 (Improved reachable dependency related to invisible tasks)  

 

Let A be a set of activities, L be an event log over A, me be an activity from A, x,y be 

two invisible tasks, the improved reachable dependencies related to invisible tasks in a non-

free choice are defined as follows: 

 

 𝑥 ⊱𝐿 𝑚 ⇔  ∃(𝑎=⊥ ∨ 𝑎∈𝐿) ∧ 𝑏∈𝐿 (𝑎 →𝐿 𝑥)  ∧  (𝑥 →𝐿 𝑏)  ∧  𝑏 ⊱𝐿,𝑝𝑟𝑒=𝑎 𝑚 ∧

∄𝒏∈𝝈 𝒃 ⊱𝑳,𝒑𝒓𝒆=𝒂 𝒏 , 

 𝑚 ⊱𝐿 𝑥 ⇔  ∃ 𝑎∈𝐿  ∧(𝑏∈𝐿 ∨ 𝑏=⊤) (𝑎 →𝐿 𝑥)  ∧  (𝑥 →𝐿 𝑏)  ∧  𝑚 ⊱𝐿,𝑝𝑟𝑒=𝑏 𝑎 ∧

∄𝒏∈𝝈 𝒎 ⊱𝑳,𝒑𝒓𝒆=𝒏 𝒂 , 

 𝑥 ⊱𝐿 𝑦 ⇔  ∃(𝑎1=⊥ ∨ 𝑎1∈𝐿) ∧ 𝑏1∈𝐿 ∧ 𝑎2∈𝐿 ∧ (𝑏2∈𝐿 ∨ 𝑏2=⊤)  (𝑎1 →𝐿 𝑥)  ∧  (𝑥 →𝐿 𝑏1)    

∧ (𝑎2 →𝐿 𝑦) ∧ (𝑦 →𝐿 𝑏2) ∧  𝑏1 ⊱𝐿,𝑝𝑟𝑒=𝑎1,𝑝𝑜𝑠𝑡=𝑏2
𝑎2  ∧

 ∄𝒏∈𝑳 𝒃𝟏 ⊱𝑳,𝒑𝒓𝒆=𝒂𝟏,𝒑𝒐𝒔𝒕=𝒃𝒏
𝒂𝟐. 

 

4.2.3. Knowledge data base construction 

All existing process discovery algorithms have no problem in correctly discovering 

the standard (sequence, choice, and parallel) constructs. The difference between the 

algorithms appears in the mining of complex constructs. Knowledge data-base will contain 

the information on the ability of each algorithm in mining the complex constructs. The 

process discovery techniques that are included in the knowledge data-base are 𝛼 algorithm, 

𝛼+algorithm,   𝛼++algorithm, 𝛼# algorithm, Inductive Miner (IM), HeuristicsMiner (HM), 

ILP (Werf et al.,2009), ETM (Buijs et al., 2012), Region Miner (RM), Transition System (TS) 

(Kalenkova et al, 2014), DWS (Greco et al, 2006), and Genetic Miner (GM). There are other 

algorithms but there are not implemented in ProM. Only the information of those 

implemented in ProM is included in the knowledge data-base. However, any newly 

developed algorithm and implemented in ProM can be included in the knowledge data-base. 

Knowledge data-base includes the information on the capability of any of these algorithms in 

discovering in detail the complex constructs: Short loops of length one (𝐿1𝑝 for short), Short 

loops of length two (𝐿2𝑝 ), invisible tasks of type Short-Skip in sequence (IvT − SS𝑠𝑒𝑞 ), 

invisible tasks of type Short-Skip in parallel (IvT − SS𝑝𝑎𝑟), invisible tasks of type Short-Redo 

in sequence (IvT − SR𝑠𝑒𝑞 ), invisible tasks of type Short-Redo in parallel (IvT − SR𝑝𝑎𝑟 ), 

invisible tasks of type Long-Skip in sequence (IvT − LS𝑠𝑒𝑞), invisible tasks of type Long-
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Skip in parallel (IvT − LS𝑝𝑎𝑟), invisible tasks of type Long-Redo in sequence (IvT − LR𝑠𝑒𝑞), 

invisible tasks of type Long-Redo in parallel (IvT − LR𝑝𝑎𝑟), non-free choice construct (NFC), 

and invisible tasks involved in a non-free choice construct (IvT-NFC). 

 

(a) Algorithms classification based on their ability in mining complex constructs 

 

There are plenty of empirical studies on the capability of process discovery techniques 

in mining complex constructs. However, most of studies focus on a small number of 

algorithms or on the most frequently used ones. Moreover, they do not evaluate the ability of 

algorithms in discovering all types of complex constructs.  Therefore, we generated event 

logs containing all types of aforementioned complex constructs. We imported the event logs 

with the ProM tool and ran the plugin of each of the aforementioned algorithms. 

𝛼 algorithm and 𝛼+ algorithm were not evaluated because we know before that 

𝛼 algorithm cannot discover the complex constructs and 𝛼+ algorithm can discover from 

complex constructs only the two types of short loops (𝐿1𝑝 and 𝐿2𝑝 ). We ran the experiments 

on the rest of algorithms. The results shows that 𝛼++algorithm can correctly discover the two 

types of short loops and the three types of non-free choice constructs while it is incapable of 

discovering all types of invisible tasks and IvT-NFC. 𝛼#algorithm is able of mining 𝐿1𝑝, 𝐿2𝑝, 

IvT − SS𝑠𝑒𝑞 , IvT − SR𝑠𝑒𝑞 , IvT − LS𝑠𝑒𝑞 , IvT − LR𝑠𝑒𝑞  whereas it is unable of discovering 

IvT − SS𝑝𝑎𝑟 , IvT − SR𝑝𝑎𝑟 , IvT − LS𝑝𝑎𝑟 , IvT − LR𝑝𝑎𝑟 , IvT − SW , NFC , and IvT − NFC . 

Inductive miner can discover correctly the two types of short loops, seven types of invisible 

tasks. However, this latter cannot detect one type of invisible tasks which are of type Switch 

and of type Short Redo in parallel, non-free choice constructs and invisible tasks involved in 

a non-free choice construct. Heuristic miner is capable of mining invisible tasks of types  

IvT − LR𝑠𝑒𝑞, IvT − SS𝑠𝑒𝑞, IvT − LS𝑠𝑒𝑞, IvT − LS𝑝𝑎𝑟, IvT − SW, a similar behaviour to short 

loops of type 𝐿2𝑝, but it cannot discover short loops of type 𝐿1𝑝 , invisible tasks of types 

IvT − SR𝑠𝑒𝑞 , IvT − SR𝑝𝑎𝑟 , IvT − SS𝑝𝑎𝑟 , non-free choice constructs, and invisible tasks 

involved in a non-free choice construct. Integer linear programming miner (ILP) can mine the 

two types of short loops, whereas it cannot discover all types of invisible tasks, non-free 

choice constructs, and invisible tasks involved in a non-free choice construct. Evolutionary 

Tree Mine (ETM) is capable of discovering short loops of types 𝐿1𝑝, invisible tasks of types  

IvT − SS𝑠𝑒𝑞, IvT − LS𝑠𝑒𝑞 while it is incapable of mining short loops of type 𝐿2𝑝, invisible 

tasks of types IvT − SR𝑠𝑒𝑞 , IvT − SR𝑝𝑎𝑟 , IvT − LR𝑠𝑒𝑞 , IvT − LR𝑝𝑎𝑟 , IvT − SS𝑝𝑎𝑟 , IvT −
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LS𝑝𝑎𝑟 , IvT − SW, non-free choice constructs, and invisible tasks involved  in a non-free 

choice construct. Region miner (RM) is able of deriving short loops of type 𝐿2𝑝, invisible 

tasks of type similar behaviour to IvT − LR𝑠𝑒𝑞, while it cannot discover short loops of types 

𝐿1𝑝, the rest of invisible tasks, non-free choice constructs, and IvT − NFC. Transition system 

(TS) can derive short loops of types 𝐿2𝑝 and similar behaviour to 𝐿1𝑝, invisible tasks of types 

IvT − SS𝑠𝑒𝑞, similar behaviour to IvT − SR𝑠𝑒𝑞, similar behaviour to IvT − SS𝑝𝑎𝑟. However, 

this technique cannot discover IvT − LR𝑠𝑒𝑞 , IvT − LR𝑝𝑎𝑟 , IvT − LS𝑠𝑒𝑞 , IvT − LS𝑝𝑎𝑟 , non-

free choice constructs, and invisible tasks involved in a non-free choice structure. Disjunctive 

Workflow Schema (DWS) algorithm can mine short loops of type, invisible tasks of types 

IvT − SS𝑠𝑒𝑞 , IvT − SR𝑠𝑒𝑞 , IvT − LS𝑠𝑒𝑞 , IvT − LR𝑠𝑒𝑞 , IvT − SW . Nevertheless, it cannot 

derive short loops of types 𝐿1𝑝, all invisible tasks that are involved in a parallel construct, 

non-free choice constructs, and invisible tasks involved in a non-free choice construct. Finally, 

genetic miner (GM) can discover all constructs except invisible tasks of type IvT − SS𝑝𝑎𝑟, 

non-free choice constructs, and IvT − NFC. The abilities of these algorithms in mining the 

complex constructs are summarized in Table 4.1.  

 

Table 4.1. Comparison of the ability of current algorithms in mining standard and complex 

constructs 

 
 𝜶++ 𝜶# IM HM ILP ETM RM  TS DWS GM 

𝐋𝟏𝐩 Yes Yes Sb No Yes Yes No Sb No Yes 

𝐋𝟐𝐩 Yes Yes Yes Sb Yes No Yes Yes Yes Yes 

𝐈𝐯𝐓𝐒𝐑𝐬𝐞𝐪  Sb Yes Yes No No No No Sb Yes No 

𝐈𝐯𝐓𝐋𝐑𝐬𝐞𝐪  No Yes Yes Yes No No Sb No Yes Yes 

IvTSRpar
 No No No No No No No No No No 

IvTLRpar
 No No Yes No No No No No No Yes 

𝐈𝐯𝐓𝐒𝐒𝐬𝐞𝐪
 No Yes Yes Yes No Yes No Yes Yes Yes 

𝐈𝐯𝐓𝐒𝐒𝐩𝐚𝐫
 No No Yes No No No No Sb No No 

𝐈𝐯𝐓𝐋𝐒𝐬𝐞𝐪
 No Yes Yes Yes No Yes No No Yes Yes 

𝐈𝐯𝐓𝐋𝐒𝐩𝐚𝐫
 No No Yes Yes No No No No No Yes 

𝐈𝐯𝐓𝐒𝐖 No Yes  No  Yes  No No No No Yes  Yes  

NFC Yes  No No  No No No No No No Yes 
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𝑰𝒗𝑻𝒊𝒏−𝑵𝑭𝑪 No No No No No No No No No No 

There is no discovery algorithm capable of discovering invisible tasks of type Short 

Redo in parallel and invisible tasks involved in a non-free choice constructs. Only 𝛼$ 

algorithm can discover these two types of invisible tasks. However, this algorithm is not 

implemented in ProM. Therefore, we exclude the detection of invisible tasks of types  IvT −

SRpar and IvT − NFC. 

(b)  Mining time based classification of discovery algorithms  

Process model discovery time may differentiate from algorithm to algorithm. Most of 

existing algorithms may take milliseconds to few minutes based on the size of the event logs 

to discover a process model. However, there are some algorithms which can take a long time 

to derive a process model such as genetic miner. This latter takes a long time in mining a 

process model even with a small event log and for big event log, it may run forever. Therefore, 

genetic algorithm might be the last candidate process discovery algorithm to recommend. The 

Evolutionary tree miner and Integer linear programing algorithms also take two much time to 

discover a model. Genetic miner takes time more than ETM and ETM takes time more than 

the ILP algorithm, and these three algorithms take time compared to the rest of algorithms.  

 

(c) Algorithms classification based on their ability in discovering sound models. 

There are process discovery algorithms that are not guaranteed to discover sound 

models. 𝛼 algorithm series and heuristic miner might produce process models that are not 

sound. They may contain problems such as deadlocks, livelocks, etc. The inductive miner and 

ILP miner can guarantee soundness of discovered models (Jouck et al., 2018). A process 

model that is not sound cannot replay traces until the end.  

Conclusion 

In this chapter, we proposed a framework for recommending the suitable process 

discovery algorithm to a given event log. The proposed methodology consists of detecting the 

complex control flow constructs existing in event log without discovering any model. Then 

recommending the best algorithm to a given event log based on a knowledge database 

containing information of the ability of existing algorithms on mining complex constructs, 

based on computation time, and based on the ability of model on discovering sounds models. 

The complex control-flow constructs detection is based on the relations introduced in Alpha 
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algorithms (𝛼++, 𝛼# , 𝛼$), but in this work, the relations are used and improved to detect 

complex constructs from event logs without discovering any process model.  
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Chapter 5 RECOMMENDATION FRAMEWORK IMPLEMENTATION AND 

EVALUATION 

 

This chapter discusses the experimental evaluation of the framework proposed for 

recommending business process discovery algorithms. First, we discuss the implementation in 

ProM, followed by an explanation of method used for evaluation. Then in section 5.3, we 

describe an evaluation based on 40 artificial examples. In section 5.4, we discuss an evaluation 

based on 5 more realistic event logs. 

 

5.1.  Implementation in ProM 

As we have shown in the previous chapter, the framework consists of two parts. The first 

part is the detection of complex constructs from a given event log. The second part consists of 

recommending, based on knowledge data base, the algorithm capable of handling the 

constructs detected from the event log in the first part. The first part (i.e., the major part) 

which consists of detecting the complex characteristics (i.e., invisible tasks, non-free choice, 

loops) has been implemented in ProM. ProM is an extensible framework that provides a 

comprehensive set of plugins for the discovery, conformance checking and analysis of process 

models from event logs and can be downloaded from http://www.processmining.org. ProM 

takes an event log as input in the standard XES format and uses process mining plugins for 

different purposes. Knowledge in data base on the ability of algorithms in mining the complex 

constructs can be changed and updated with the conducted researches on enhancing the ability 

of existing algorithms in handling complex constructs. Figure 5.1 shows a screenshot of the 

plugin of detecting the status of complex constructs from a given event log. 

 

http://www.processmining.org/
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Figure 5.1. A screenshot of the implementation of the plugin detecting the status of complex 

constructs from event log 

The plugin works as follows. Once the event log in question is imported in ProM, the 

plugin “Event Log Characteristics Detection for Recommending Process Discovery 

Algorithms” is selected and run. The output is a table which indicates whether the complex 

constructs (i.e., Short loops of length one (𝐿1𝑝 for short), Short loops of length two (𝐿2𝑝), 

invisible tasks of type Short-Skip in sequence (IvT − SS𝑠𝑒𝑞), invisible tasks of type Short-Skip 

in parallel ( IvT − SS𝑝𝑎𝑟 ), invisible tasks of type Short-Redo in sequence ( IvT − SR𝑠𝑒𝑞 ), 

invisible tasks of type Short-Redo in parallel (IvT − SR𝑝𝑎𝑟), invisible tasks of type Long-Skip 

in sequence ( IvT − LS𝑠𝑒𝑞 ), invisible tasks of type Long-Skip in parallel ( IvT − LS𝑝𝑎𝑟 ), 

invisible tasks of type Long-Redo in sequence (IvT − LR𝑠𝑒𝑞), invisible tasks of type Long-

Redo in parallel (IvT − LR𝑝𝑎𝑟), non-free choice construct (NFC), and invisible tasks involved 

in a non-free choice construct (IvT-NFC)) exist or not in the event log by showing “YES” if 

exist and “NO” if not. Then, based on the result obtained in the table and knowledge database, 

candidate algorithms are recommended. A screenshot of an example of obtained results is 

depicted in Figure 5.2. 
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Figure 5.2. A screenshot of the result obtained from an example event log 

5.2. Evaluation Framework 

The framework has been evaluated using 40 artificial event logs and 5 real-life event 

logs. The 40 artificial event logs contain randomly the 11 characteristics L1p , L2p , IvT −

SS𝑠𝑒𝑞 , IvT − SR𝑠𝑒𝑞 , IvT − LS𝑠𝑒𝑞 , IvT − LR𝑠𝑒𝑞 , IvT − SS𝑝𝑎𝑟 , IvT − SR𝑝𝑎𝑟 , IvT − LS𝑝𝑎𝑟 , 

IvT − LR𝑝𝑎𝑟, and NFC. The characteristics existing in the logs were detected and candidate 

algorithms were recommended based on the detected characteristics and based on knowledge 

database containing information on the ability of  𝛼+algorithm,   𝛼++algorithm, 𝛼# algorithm, 

Inductive Miner (IM), Heuristics Miner (HM), Integer Linear Programming algorithm (ILP), 

Evolutionary Tree Miner (ETM), Region Miner (RM), Transition System (TS), and DWS on 

mining the complex constructs. If more than one algorithm is recommended, a 

recommendation based on time classification and soundness classification is conducted. Then, 

the final recommended algorithm is used to discover a process model from the event log in 

question. After that, for artificial event logs, the process model discovered with the final 

recommended algorithm is compared with the reference model of these event logs. In the 

practical world, usually reference models are not available. Therefore, for real life data, the 

model discovered with the recommended algorithm is replayed by the event log to investigate 

whether the event log is in conformance with the discovered process model. An illustration of 

the evaluation method is depicted in Figure 5.3.The comparison of the discovered model with 

the original model and the event log is conducted using conformance checking metrics. We 

used three types of metrics: behavioural similarity (𝐵𝑃 𝑎𝑛𝑑 𝐵𝑅), to evaluate how similar the 
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discovered model and the original model behaved in terms of precision and recall; and 

structural similarity (𝑆𝑃 𝑎𝑛𝑑 𝑆𝑅), to assess how structurally similar the discovered model and 

the original model were in terms of precision and recall; ETC precision to identify whether the 

process model is precise to the observed behaviour (i.e., the event log). ETC precision is used 

when the reference model is unavailable. Behavioural and structural similarity metrics are 

used in the case of evaluation using artificial data and ETC precision metric is used in the case 

of evaluation using real-life data. 

To identify similarity between two process models, an original model and a discovered 

model, the behavioural and structural similarity between them must be considered (de 

Medeiros et al., 2007). The behavioural similarity metrics measure the similarity in behaviour 

between two models in terms of precision and recall (de Medeiros et al., 2007). These metrics 

investigate the event log to quantify how similar the behaviour of discovered model is to that 

of its original model. This is done by replaying each trace against the two models and 

calculating how many activities are enabled in each model at the occurrence of every event in 

the trace. The more enabled activities the two models have in common, the higher is the 

similarity between them. 

 

 

Figure 5.3. A screenshot of the result obtained from an example event log 
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Definition 5.1 (Behavioral precision and recall) (de Medeiros et al., 2007). 

Some parameters are defined as follows: 

σ: a trace in an event log. 

L(σ): the number of occurrences of σ in an event log. 

𝑁𝑜 and 𝑁𝑑: the respective Petri nets for the original and the discovered models. 

𝐶𝑜 and 𝐶𝑑: the respective causality relations for 𝑁𝑜 and 𝑁𝑑. 

The behavioral precision and recall are defined as: 

𝐵𝑝(𝐿, 𝐶𝑜 , 𝐶𝑑) = (∑(
𝐿(𝜎)

|𝜎|
× ∑

𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝐶𝑜 , 𝜎, 𝑖)|∩ 𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝐶𝑑, 𝜎, 𝑖)|

|𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝐶𝑑, 𝜎, 𝑖)|

|𝜎|−1

𝑖=0

 )/ ∑ 𝐿(𝜎)

𝜎∈𝐿

 

𝐵𝑅(𝐿, 𝐶𝑜 , 𝐶𝑑) = (∑(
𝐿(𝜎)

|𝜎|
× ∑

𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝐶𝑜 , 𝜎, 𝑖)|∩ 𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝐶𝑑, 𝜎, 𝑖)|

|𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝐶𝑜 , 𝜎, 𝑖)|

|𝜎|−1

𝑖=0

 )/ ∑ 𝐿(𝜎)

𝜎∈𝐿

 

Where, 𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝐶𝑜 , 𝜎, 𝑖) is the set of enabled activities when parsing the next event (or task) 

after position i in trace σ (de Medeiros et al., 2007). The value of both behavioral precision 

and recall metrics lies in the [0, 1] range. A value close to 1 indicates very high degree of 

similarity between the two models. The behavioral precision reflects how much of the 

behavior of the discovered model is also in the original model. The behavioral recall reflects 

how much of the behavior of the original model also occurs in the discovered model. 

For structural similarity, the structural precision and recall metrics (de Medeiros et al., 

2007) are used. The structural recall reflects the number of correct causality relations present 

in the discovered model as a fraction of the total number of causality relations in the original 

model. The structural precision reflects the fraction of correct causality relations present in the 

discovered model. 

Definition 5.2 (Structural precision and recall) (de Medeiros et al., 2007). 

Let NO = (Po, To, Fo ) and Nd = (Pd, Td, Fd) be respective Petri nets for the original and 

discovered models. Let Co and Cd be the respective causality relations for No and Nd. The 

structural precision and structural recall are defined as:  
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𝑆𝑝(𝑁𝑜, 𝑁𝑑) =  
|𝐶𝑜 ∩ 𝐶𝑑|

𝐶𝑑
 

𝑆𝑅(𝑁𝑜, 𝑁𝑑) =  
|𝐶𝑜 ∩ 𝐶𝑑|

𝐶𝑜
 

Both structural precision and recall are in the range [0, 1]. A value close to 1 means they are 

very similar structurally. 

5.3.  Evaluation using artificial event logs 

We have evaluated our approach using 40 artificial examples and compared the results 

of the proposed framework with empirical evaluation. The corresponding complete logs are 

generated manually. In the set of 40 models, the maximum number of activities in a process 

model is less than 15 and the number of cases in one event log is less than 30. The 40 

reference models contain randomly the following characteristics L1p , L2p , IvT − SS𝑠𝑒𝑞 , 

IvT − SR𝑠𝑒𝑞 , IvT − LS𝑠𝑒𝑞 , IvT − LR𝑠𝑒𝑞 , IvT − SS𝑝𝑎𝑟 , IvT − SR𝑝𝑎𝑟 , IvT − LS𝑝𝑎𝑟 , IvT −

LR𝑝𝑎𝑟, and NFC. For this analysis, we used visual inspection (the mined model is similar to 

reference model) and the conformance metrics aforementioned before i.e., 𝐵𝑟  (behavioural 

recall), 𝐵𝑝 (behavioural precision), 𝑆𝑟 (structural recall), and 𝑆𝑝 (structural precision). 

By visually comparing the reference models and the model discovered by the 

recommended algorithm, we find that 95% of process models (38 models out of 40) are 

similar to reference models. In addition to the visual inspection, the conformance metrics for 

testing behavioural and structural similarities between originals models and the models 

discovered by recommended algorithms are computed. The obtained results are illustrated in 

Figure 5.3.  As can be seen, the results obtained by computing conformance metrics are 

similar to the results obtained by visual inspection. 38 process models are looks similar to the 

original models (the values are equal or close to 1). Only two discovered models are not 

similar to the reference models. These are discovered from the events logs L29 and L38. For 

L29, structural similarity metrics are slightly far from value 1 but the behavioural similarity 

metrics are close to 1. If we look at the original model, it contains a loop of length one while 

in the discovered model, there is an invisible task of type short redo in sequence. Actually, 

these two structures are different but they have similar behaviour. This justifies the values of 

structural similarity metrics being far from 1. For L38, the original model contains two 

invisible tasks involved in a non-free choice construct. However, in the discovered model, the 
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two invisible tasks are correctly discovered and the implicit dependency between the two 

invisible tasks which reflects the construct of a non-free choice is not discovered. This is also 

logical, since none of the existing algorithms implemented in ProM is capable of discovering 

invisible tasks involved in a non-free choice construct. 

 

Figure 5.4. Comparison of mining results by recommended algorithms with reference models 

on complete logs generated from artificial examples. 

5.4. Evaluation based on real-life event logs 

The evaluation using artificial event logs shows that the proposed framework is powerful 

enough to recommend a process discovery algorithm suitable to a given event log by detecting 

complex constructs in the event log. Now we use more realistic examples to show the 

applicability of the proposed framework. We conducted the evaluation using 5 real-life event 

logs taken from the Process Mining Manifesto database and from the Shipbuilding Processing 

Plan Management System of a heavy manufacturing company. First, we detected the existing 

constructs from the event logs, and then we recommended the suitable algorithms using the 

constructed knowledge database. The obtained results are illustrated in Table 5.1. After that, 

we discovered for each event log, process models using different process discovery 

algorithms. Then, to evaluate the discovered models, we checked the conformance between 

the mined models and the corresponding event logs using the plugin of ProM “Check 

Conformance using ETConformance”. This conformance checker provides information on 

how much the mined model is precise to the corresponding event log. The precision metric is 

called ETC precision. The obtained results are shown in Table 5.2. Then, we compare the the 

of precision metric of each discovered model by each algorithm and for each event log 

recommended algorithm in Table 5.2 with recommended algorithm in Table 5.1. The models 
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were discovered using Inductive Miner (IM), Heuristics Miner (HM), Alpha++ algorithm, 

Alpha # algorithm, Integer Linear Programming Miner (ILP), Evolutionary Tree Miner 

(ETM), DWS algorithm, Genetic Miner and Region Miner. Only IM, HM, ILP, DWA, Alpha#, 

Alpha++ algorithms are shown in Table 5.2. The others are not illustrated due to the running 

time which exceeded five minutes. 

Table 5.1. Recommended algorithm for each event log 
 

Event logs L1 L2 L3 L4 L5 

#cases 97 110 663 1676 31509 

#events 361 3770 19658 129428 1202267 

#tasks 8 21 18 38 66 

Recommended 

algorithm 

Alpha++ 

 

IM/ILP 

 

IM 

 

IM/DWS ILP 

 

Table 5.2. The ETC precision values of discovered models 
 

 HM Alpha++ IM Alpha# ILP DWS 

L1 0.7973 1.0 0.8 0.8 0.8 0.69 

L2  0.3811 0.6665 0.6665 0.6665 0.7 0.6665 

L3 - - 0.945 0.4423 0.361 0.3 

L4 0.4 0.03 0.8709 0.02 - 0.89 

L5 0.681 - 0.89 - 0.91 0.45 

(-) The value could not be computed. 

As can be seen in Table 5.1, Alpha++ was recommended to be a suitable process 

discovery algorithm for the event log L1 due to the detection of a non-free choice construct in 

the event log L1 and due to the fact that the numbers of events, cases and tasks are not that 

big. In Table 5.2, the precision value of the model discovered by Alpha++ algorithm is the 

higher among the others (equal to 1). The precisions values of the models mined by IM, HM, 

ILP, Alpha#, DWS is lower. This is logical since those algorithms are incapable of handling 

non-free choice constructs. For log L2, no complex construct was detected. Thus, any one of 

the five algorithms can be recommended. However, since Alpha algorithms and Heuristic 

Miner do not guarantee sound models with big event logs, we recommended IM, ILP and 

DWS. The values of precision of IM and DWS are similar and the precision value of ILP is a 
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slightly higher. For log L3, invisible task of type short skip in sequence was detected. 

Therefore, IM algorithm was recommended. In Table 5.2, the precision value of IM was the 

highest. The results obtained for logs L4 and L5 are similar to the previous ones. Based on the 

obtained results, we can conclude that the recommendation framework is working well. 

Conclusion 

In this chapter, we described the implementation of the proposed framework in ProM. 

Then, we discussed the methodology and metrics used for the evaluation. The framework has 

been evaluated using artificial data and real-life data. The obtained results show that the 

recommended algorithms are correctly recommended. However, the framework has been 

evaluated with small number of real-life event logs. In the future work, we will use more real-

life data. 
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Chapter 6 HEURISTIC RULE-BASED ALGORITHM 

 

Several process discovery algorithms have been developed and applied successfully. 

However, there are complex constructs that current discovery techniques cannot correctly 

discover in models based on event logs. These complex constructs are short loops, invisible 

tasks, duplicate tasks, and non-free choice constructs. There is currently no algorithm that can 

handle all of these structures in a restricted time. For instance, the Inductive Miner algorithm 

(Leemans et al., 2013) is robust for invisible tasks, but it cannot handle duplicate tasks and 

non-free choice constructs. Another example is the Region-based algorithm (Bergenthum et al., 

2007), which is capable of mining some non-free choice constructs but cannot handle invisible 

and duplicate tasks. The other algorithms have similar problems. Therefore, the aim of this 

chapter is to introduce a novel algorithm that is capable of constructing a workflow model 

with short loops, invisible tasks, non-free choice constructs, and duplicate tasks. This 

technique is called the Heuristic Rule-based algorithm (i.e., HR). 

The Heuristic Rule-based algorithm focuses on the control-flow perspective of process 

mining by designing process models based on a given event log. The starting point of the HR 

algorithm is the construction of the Ancestor/Descendent Table for each activity in each event 

trace in the event log. The Ancestor/Descendent Table (A/D Table) is similar to the 

Predecessor/Successor Table (P/S Table). The idea of constructing a P/S table was first 

introduced in (Li et al., 2007) to extend the α −Algorithm to duplicate task mining. Here, the 

A/D table is used as a starting point of a new algorithm that mines all the standard and 

complex characteristics that might exist in an event log, such as sequences, parallelism, 

exclusive choices, invisible tasks, duplicate tasks, short loops, and non-free choice constructs. 

First, we introduce the A/D Table, the starting point of our approach. Second, we explain how 

to detect the standard constructs. Third, we provide the heuristic rules that can detect the 

complex constructs. Finally, we present the algorithm. In this paper, we assume: (i) the event 

log is complete (a task is following another task directly iff the log contains an example of this 

behaviour), and (ii) there is no noise in the log (each event recorded in the event log is correct 

and is representative of the behaviour of the model to be discovered). Related work is 

discussed in Chapter 1. 

6.1.  Elaboration of the Ancestor/Descendant Table 

The starting point of our Heuristic Rule-based algorithm is the construction of the A/D 
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Table for each activity in each trace. For each activity X that occurs in an event trace, the 

following information is extracted from the event log: (i) the name of the activity that directly 

precedes activity X (we use 𝑇𝑎(𝑋) to denote the ancestor of X (Predecessor of X)), and (ii) the 

name of the activity that directly follows activity X (we use 𝑇𝑑(𝑋) to denote the descendent of 

X (Successor of X)). The information extracted about activity X is gathered in the A/D table.  

Consider, for example, the event log shown in Table 6.1. It consists of 10 activities, and 

only distinctive event traces that represent all possible occurrences of every activity are 

illustrated. Table 6.2 presents the ancestor and descendant of every activity B in each 

representative trace. 

Table 6.1. Example of an event log (containing only possible event traces) 

 

Case id Event Trace 

σ1 A B C E F G I J 

σ2 A B A B C E F G I J 

σ3 A B D E F H J 

σ4 A B A B D E F H J 

 

The activity identifier 𝜎𝑖(X,n) indicates the nth occurrence of an activity called X in the 

event trace 𝜎𝑖 . For instance, 𝜎1(B,1) refers to the first occurrence of activity B in 𝜎1 , and 

𝜎4(B,2) refers to the second occurrence of activity B in 𝜎4. The ancestor of the first occurrence 

of activity B in the event trace 𝜎1 is activity A. We denote 𝑇𝑎(𝐵, 1)𝜎1
= 𝐴. The descendent of 

the second occurrence of activity B in the event trace σ4 is activity D. We denote 𝑇𝑑(𝐵, 2)𝜎4
=

𝐷. 

 

Table 6.2. An example of an A/D table for activity B 

Activity identifier Ta Td 

𝜎1(B,1) A C 

𝜎2(B,1) A A 

𝜎2(B,2) A C 

𝜎3(B,1) A D 

𝜎4(B,1) A A 

𝜎4(B,2) A D 
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6.2.  Identification of Standard Constructs  

Any workflow net can be constructed from the standard constructs (sequence, AND-

split/join, and XOR-split/join) to represent sequences, choices, and parallelism. A process 

model can be obtained from the event log by a search for causal dependencies (Van der Aalst 

et al., 2006). For example, a task that always follows another task might indicate a causal 

dependency between the two tasks. The following notations are designed to detect such 

dependencies and mine the standard constructs based on the A/D Table. Let L be an event log 

and σ𝑘 ∈ 𝐿 be the event traces. 

1. 𝑇𝑑(𝑥) = {𝑦, 𝑧} if there are 𝑥, 𝑦, 𝑧 ∈ σ𝑖, σ𝑗  and σ𝑖 , σ𝑗 ⊆ σ𝑘 such that ∀i = j or i ≠ j: 

𝑇𝑑(𝑥, 𝑛)𝜎𝑖
= 𝑦 and 𝑇𝑑(𝑥, 𝑚)𝜎𝑗

= 𝑧, 

2.  𝑇𝑎(𝑥) = {𝑦, 𝑧} if there are 𝑥, 𝑦, 𝑧 ∈ σ𝑖 , σ𝑗 and σ𝑖, σ𝑗 ⊆ σ𝑘 such that ∀i = j or i ≠ j: 

𝑇𝑎(𝑥, 𝑛)𝜎𝑖
= 𝑦 and 𝑇𝑎(𝑥, 𝑚)𝜎𝑗

= 𝑧, 

3. x>𝒚𝒊,𝒊≥𝟏 if ∀i ≥ 1: 𝑇𝑑(𝑥) = {𝑦𝑖} and 𝑥 ∈ 𝑇𝑑(𝑦𝑖), 

4. x//y if there are 𝑥, 𝑦 ∈ σ𝑖 , σ𝑗  and σ𝑖, σ𝑗 ⊆ σ𝑘 such that ∀i ≠ j: 𝑇𝑑(𝑥, 𝑛)𝜎𝑖
= 𝑦 and 

𝑇𝑑(𝑦, 𝑚)𝜎𝑗
= 𝑥, and ∄𝜎𝑙, 𝜎𝑜 such that 𝑇𝑑(𝑥)𝜎𝑙

= 𝑥 and/or 𝑇𝑑(𝑦)𝜎𝑜
= 𝑦, 

5. x<//(y,z) if there are 𝑥, 𝑦, 𝑧 ∈ σ𝑘 such that 𝑥 > 𝑦 and 𝑥 > 𝑧 and 𝑦//𝑧, 

6. //(x,y)<z if there are 𝑥, 𝑦, 𝑧 ∈ σ𝑘 such that 𝑥 > 𝑧 and 𝑦 > 𝑧 and 𝑥//𝑦, 

7. x<V(y,z) if there are 𝑥, 𝑦, 𝑧 ∈ σ𝑘 such that 𝑥 > 𝑦 and 𝑥 > 𝑧 and 𝑦 ∈  𝑇𝑑(𝑧) and 𝑧 ∈

 𝑇𝑑(𝑦), 

8. V(x,y)<z if there are 𝑥, 𝑦, 𝑧 ∈  σ𝑘 such that 𝑥 > 𝑧 and 𝑦 > 𝑧 and 𝑥 ∈  𝑇𝑎(𝑦) and 𝑦 ∈

 𝑇𝑎(𝑥). 

9. I:x if there is 𝑥 ∈  𝜎𝑘 such that 𝑇𝑎(𝑥)𝜎𝑘
= {∅}, 

10. x:O if there is 𝑥 ∈  𝜎𝑘 such that 𝑇𝑑(𝑥)𝜎𝑘
= {∅}. 

If there are 𝑥, 𝑦, ∈  𝜎𝑖 such that: 𝑇𝑑(𝑥)𝜎𝑖
= 𝑦, this indicates that the descendent of task 

x in 𝜎𝑖 is task y. Based on this, the ordering relations are extracted. In definition (1), 𝑇𝑑(𝑥) =

{𝑦, 𝑧} signifies that an activity x can be followed by y and by z. This can be achieved iff x has 

two different descendants in different event traces or if two different occurrences of x have 

distinct descendants in the same event trace. Note that a task can have one or multiple 

descendants; thus, one task can be followed directly by one or multiple tasks. Definition (2) is 

similar to (1). Definition (3) specifies that, if x can be directly followed by one or multiple 
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tasks 𝑦𝑖, such that 𝑦𝑖 is never followed by x, then there is a causal dependency between tasks x 

and 𝑦𝑖 . This causal dependency is denoted by (>). Definition (4) indicates that if the 

descendent of task x is equal to y in trace 𝜎𝑖 and the descendent of task y is equal to x in a 

different trace, and there is no trace where the descendants of x and/or y are equivalent to x 

and y respectively, then the two tasks x and y are in parallel. The relation (<//) in definition (5) 

identifies the AND-split that allows more than one task to be executed simultaneously. 

x<//(y,z) indicates that two tasks y and z occur in parallel, and that their concurrency happens 

just after task x is executed. This can be achieved iff x is directly followed by y and z, and y 

and z are in parallel. In definition (6), the relation (//<) denotes the AND-join in order to 

synchronize concurrent workflows, and //(x,y)<z specifies that two parallel tasks x and y are 

joined, after their execution, in task z. The relations (<V) and (V<) in definitions (7) and (8) 

specify the XOR-split and the XOR-join, respectively, for an exclusive choice between two or 

more tasks. x<V(y,z) refers to the situation in which the choice between two tasks y and z is 

made after the execution of task x, whereas V(x,y)<z states that task z happens after only one 

of the tasks x and y is executed. One can write x<//(𝑦1 , 𝑦2, . . 𝑦𝑛) to indicate that several 

activities 𝑦1, 𝑦2, . . 𝑦𝑛 occur in parallel, and the AND-split is in task x. Similarly, one can write 

V(𝑦1 ,  𝑦2, . . 𝑦𝑛 )<z to indicate that an exclusive choice can be made from multiple tasks 

𝑦1, 𝑦2, . . 𝑦𝑛, and the XOR-join is in task z. Finally, the notation (I:) in definition (9) refers to a 

start activity, while the relation (:O) in definition (10) specifies an end activity.  

In this section, the notations that can detect the standard constructs of a process model 

from a given event log on the basis of the A/D table are introduced. However, real-life 

processes contain complex constructs such as loops, invisible tasks, duplicate tasks, and non-

free choice constructs. These complex characteristics are addressed in the following section. 

6.3.  Identification of Complex Constructs  

In this section, advanced heuristic rules are introduced to detect invisible tasks, short 

loops, duplicate tasks, and non-free choice constructs. 

 

6.3.1.  Invisible Tasks Discovery  

An invisible task is a hidden task that has been executed but cannot be recorded in the 

event log. Invisible tasks were classified for the first time by (Wen et al., 2007b) into four 

types according to the functional structure: REDO, SKIP, SIDE, and SWITCH. REDO-type 

invisible tasks can be divided into two subtypes: short and long. Similarly, SKIP-type invisible 
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tasks can be split into short-skip and long-skip. SIDE-type invisible tasks can also be divided 

into two types: side-type at the beginning and side-type at the end. There is only one type of 

SWITCH. These seven types of invisible tasks will be detected with the following advanced 

heuristic rules. 

 

(a) Detection of Invisible Tasks of Type Short Redo (IvT-SR) 

An IvT-SR is a task that allows the execution of one task to be repeated. Consider the 

complete log L1 and its process model, represented in a Petri net graph in Figure 6.1(a), which 

contains an invisible task t allowing the repetition of b. The starting point of our HR algorithm 

for any type of mining is the construction of the A/D Table. The A/D Table of L1 is presented 

in Table 6.3. Accordingly, the following dependencies are extracted: a>b and b>c. However, 

task b can be repeated several times, and the relation (>) cannot detect the repetition of task b 

because it does not allow a task to be followed by itself. Therefore, direct successions (i.e., 

𝑇𝑑(𝑥) = 𝑦) need to be used. Any repeatable task b can be determined by a search of the 

ordering bb in the event traces of the log. In other words, such a task can be identified by a 

search of the direct succession 𝑇𝑑(𝑏)𝜎𝑖
= 𝑏 or 𝑇𝑎(𝑏)𝜎𝑖

= 𝑏. Based on this observation, let L 

be an event log and σ𝑖 ∈ 𝐿 be the event traces. We introduce the heuristic rule that can detect 

an IvT-SR as follows: 

IF there exists 𝑥 ∈  𝜎𝑖 such that 𝑇𝑑(𝑥)𝜎𝑖
= 𝑥 OR 𝑇𝑎(𝑥)𝜎𝑖

= 𝑥, THEN there exists 𝑡 ∈

𝐼𝑣𝑇 − 𝑆𝑅 such that 𝑥 > 𝑡 AND 𝑡 > 𝑥  (R1) 

Rule (1) states that, if there exists a task x that belongs to a trace 𝜎𝑖  such that the 

descendent or ancestor of x is equivalent to x, then there exists an invisible task t that allows 

the repetition of x. The detected invisible task will be placed such that t follows x and is 

followed by x. 

 

Figure 6.1. Sound process models of invisible tasks of type short redo (a) and long redo (b) 

 

Table 6.3. The A/D Table of L1 
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Task id σ1(𝑎, 1) σ2(𝑎, 1) σ1(𝑏, 1) σ2(𝑏, 1) σ2(𝑏, 𝑘) σ1(𝑐, 1) σ2(𝑐, 1) 

𝑻𝒂 ∅ ∅ a a b b b 

𝑻𝒅 b b c b c ∅ ∅ 

  

(b) Detection of Invisible Tasks of Type Long Redo (IvT-LR).  

An invisible task of type long redo is a task that allows repetition of two or more 

activities. Figure 6.1(b) depicts a Petri net model containing an invisible task of type long 

redo (IvT-LR) and its corresponding complete log L2. The A/D Table of log L2 is presented in 

Table 6.4. Accordingly, we obtain only a>b and b>d. Since 𝑇𝑑(𝑐, 1)𝜎2
= 𝑏 and 𝑇𝑑(𝑏, 1)𝜎2

=

𝑐, the relation (>) cannot be used to provide insight into tasks b and c. Therefore, the heuristic 

rule to detect invisible tasks of type long redo will be strongly based on direct succession 

relations. An IvT-LR can allow the repetition of several tasks. Let 𝑥1, 𝑥2, … , 𝑥𝑛 ∈  𝜎𝑗 be the 

tasks to be repeated by an IvT-LR, and let 𝑖 be the 𝑖th occurrence of 𝑥1, 𝑥2, … , 𝑥𝑛. If we have 

two repetitions, we will have a sequence of 𝑥1𝑥2 … 𝑥𝑛𝑥1𝑥2 … 𝑥𝑛 ; if the repetition is 

performed three times, we will have 𝑥1𝑥2 … 𝑥𝑛𝑥1𝑥2 … 𝑥𝑛𝑥1𝑥2 … 𝑥𝑛; and so on. It is clear in 

the A/D Table that the descendent of the last occurrence of the last task 𝑥𝑛 is different than 𝑥1, 

while the other occurrences of 𝑥𝑛 is equivalent to 𝑥1. Let L be an event log and σ𝐾 ∈ 𝐿 be the 

event traces. Based on these observations, the heuristic rule (2) to discover an IvT-LR is 

defined as follows. 

IF ∃𝑥1, 𝑥2, … , 𝑥𝑝 ∈  𝜎𝑗 AND ∃𝑖 ∈ {1, . . , 𝑞} AND ∀𝑘 ∈ {1, . . , 𝑝 − 1} such that 𝑇𝑑(𝑥𝑘, 𝑖)𝜎𝑗
=

𝑥𝑘+1 AND 𝑇𝑑(𝑥𝑘, 𝑖 + 1)𝜎𝑗
= 𝑥𝑘+1 AND for k=p ⋀ i≠q: 𝑇𝑑(𝑥𝑝, 𝑖)

𝜎𝑗
= 𝑥1 AND for k=p ⋀ i=q: 

𝑇𝑑(𝑥𝑝, 𝑞)
𝜎𝑗

≠ 𝑥1 THEN ∃𝑡 ∈ 𝐼𝑣𝑇 − 𝐿𝑅 such that 𝑥𝑝 > 𝑡 AND 𝑡 > 𝑥1  (R2) 

Rule (2) states that if there exist p tasks 𝑥1, 𝑥2, …, and 𝑥𝑝  which can be repeated 𝑖 

times such that for 1≤k≤p-1, the descendants of task 𝑥𝑘 are equal in the occurrences 𝑖 and 

𝑖 + 1 , and for k=p (the last activity), the descendent of 𝑥𝑝  is equivalent to 𝑥1  in the 

occurrence 𝑖 and different from 𝑥1 in the occurrence 𝑖 + 1, then there is an invisible task of 

type long redo which can allow the repetition of 𝑥1, 𝑥2, …, and 𝑥𝑝. 

 

 



105 
 

Table 6.4. The A/D Table of L2 

Tas

k id 

σ1(𝑎, 1) σ2(𝑎, 1) σ1(𝑏, 1) σ2(𝑏, 1) σ2(𝑏, 𝑘) σ1(𝑐, 1) σ2(𝑐, 1) σ2(𝑐, 𝑘) σ1(𝑑, 1) σ2(𝑑, 1) 

𝑻𝒂 ∅ ∅ a a c b b b c c 

𝑻𝒅 b b c c c d b d ∅ ∅ 

 

(c) Detection of Invisible Tasks of Type Short Skip (IvT-SS).  

Flexibility is one of the primary characteristics of modern execution systems. In many 

cases, skipping the execution of one or more tasks is required for rapid execution of a process. 

Skipping the execution of some activities is actually an action that has been taken; however, 

this action is not recorded in the information system, which makes it difficult for process 

miners to detect its execution based on the event log. The skipped execution of one task is 

represented by an invisible task called a short skip (IvT-SS). Consider the complete event log 

L3 and its Petri net model depicted in Figure 6.2(a). Since there is no repetition of tasks in the 

log, the notation (>) can be used, as well as its derivatives. The A/D Table of log L3  is 

presented in Table 6.5. Accordingly, we obtain the following causal dependencies: a>b, a>c, 

and b>c. Even though we have a>b and a>c, the conditions of AND-split and XOR-split are 

not satisfied. Similarly, for a>c and b>c, the conditions of AND-join and XOR-join are not 

satisfied. Since tasks a, b, and c are not involved in any choice or concurrency, it is clear from 

the causal dependencies a>b, b>c, and a>c that there is only one case, an invisible task that 

skips the execution of task b between task a and task c (a>c). The rule for discovering an 

IvT-SS is given below: 

IF there are 𝑥, 𝑦, 𝑧 ∈  𝜎𝑘 such that 𝑥 > 𝑦 AND 𝑦 > 𝑧 AND 𝑥 > 𝑧 AND not 𝑥 <//(𝑦, 𝑧) AND not 

𝑥 < 𝑉(𝑦, 𝑧) AND not //(𝑥, 𝑦) < 𝑧 AND not 𝑉(𝑥, 𝑦) < 𝑧, THEN there exists 𝑡 ∈ 𝐼𝑣𝑇 − 𝑆𝑆 

such that 𝑥 < 𝑉(𝑦, 𝑡) AND 𝑉(𝑦, 𝑡) < 𝑧  (R3)   
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Rule (3) determines that, if three tasks x, y, and z exist such that there are causal 

dependencies between x and y, between y and z, and between x and z, and these dependencies 

are not involved in an AND-split, XOR-split, AND-join, or XOR-join, then there exists an 

invisible task t that allows the skipping of y. This invisible task will be placed such that there 

is an exclusive choice between t and y. 

 

Figure 6.2. Short-skip invisible task in a sequential workflow (a) and a concurrent workflow 

(b) 

 

Table 6.5. The A/D Table of L3 

Task id σ1(𝑎, 1) σ2(𝑎, 1) σ1(𝑏, 1) σ1(𝑐, 1) σ2(𝑐, 1) 

𝑻𝒂 ∅ ∅ a b a 

𝑻𝒅 b c c ∅ ∅ 

Rule (3) attempts to detect an invisible task of type short skip that is located in the 

middle of a workflow. Let us assume that the place after b and t in Figure 6.2 (a) is the sink 

place (the end place), and that task c does not exist, or the task before b and t is the source 

place (the start place) and that task a does not exist. Rule (3) will not be able to detect this 

case. Therefore, we define a rule that is a special case of rule (3): 

IF there are 𝑥, 𝑦, 𝑧 ∈  𝜎𝑘  such that 𝑥 > 𝑦 AND [𝑦: 𝑂 AND 𝑥: 𝑂] OR [𝐼: 𝑦 AND 𝐼: 𝑥],  THEN 

there exists 𝑡 ∈ 𝐼𝑣𝑇 − 𝑆𝑆such that [𝑥 < 𝑉(𝑡, 𝑦) AND 𝑡: 𝑂] OR [𝑉(𝑡, 𝑥) < 𝑦 AND 𝐼: 𝑡]  (R4)   

Rule (4) attempts to detect an invisible task of type skip that allows the execution of a 

task y to be skipped when y is directly connected either to the sink place or the source place. 

The invisible task t will be placed such that there is an exclusive choice between t and y, and t 

is directly connected to the sink place or there is an exclusive choice between t and x, and t is 

directly connected to the source place. 
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Now, rules (3) and (4) can correctly detect an IvT-SS, but only in a sequential 

workflow. In a concurrent workflow, the situation is different. Consider the complete event 

log L4 depicted in Figure 6.2(b). The A/D Table of L4 is shown in Table 6.6. 

Table 6.6. The A/D Table of L4 

 

Task id σ1(a, 1) σ2(a, 1) σ3(a, 1) σ1(b, 1) σ2(b, 1) σ1(c, 1) σ2(c, 1) σ3(c, 1) σ1(d, 1) σ2(d, 1) σ3(d, 1) 

𝑻𝒂 ∅ ∅ ∅ a d d b d b a a 

𝑻𝒅 b d d d c ∅ ∅ ∅ c b c 

 

Based on Table 6.6, we obtain the following dependencies: a>b, a>d, b>c, d>c, 

a<//(b, d), and //(b, d)<c. These dependencies only refer to the existence of the concurrent 

tasks b and d, the AND-split in task a, and the AND-join in task c and do not provide any 

insight into the task that has been skipped. 𝜎3 = < 𝑎, 𝑑, 𝑐 > is the only trace that does not 

contain task b. In other words, only trace 𝜎3 can provide insight into the skipped task b, while 

the two remaining traces can only provide insight into the concurrency. Let L be a complete 

log and 𝜎𝑘 ∈ 𝐿 be the event traces. Accordingly, we define the heuristic rule that derives an 

IvT-SS in a concurrent workflow as follows:  

IF ∃𝑤, 𝑥1, 𝑥2, . . , 𝑥𝑛 , 𝑧 ∈  𝜎𝑘 such that 𝑤 <//(𝑥1, 𝑥2, . . , 𝑥𝑛) AND //(𝑥1, 𝑥2, . . , 𝑥𝑛) < 𝑧 AND 

∃𝜎𝑖 ⊆  𝜎𝑘: 𝑇𝑎(𝑥𝑗/1≤𝑗≤𝑛)𝜎𝑖
= 𝑤 AND 𝑇𝑑(𝑥𝑗/1≤𝑗≤𝑛)𝜎𝑖

= 𝑧, THEN ∃𝑡 ∈ 𝐼𝑣𝑇 − 𝑆𝑆𝑝𝑎𝑟 such that 

w < 𝑉(𝑥1, 𝑥2, . . , 𝑥𝑛, 𝑡) AND 𝑉(𝑥1, 𝑥2, . . , 𝑥𝑛, 𝑡) < 𝑧 (R5) 

Rule (5) states that, if there exist concurrent tasks 𝑥1, 𝑥2, . ., and 𝑥𝑛 , such that the 

ancestor of 𝑥𝑗 is the activity splitting the AND of the concurrency and the descendent of 𝑥𝑗 is 

the activity joining the AND of the concurrency, then there exists an invisible task that allows 

the execution of 𝑥𝑗 to be skipped. The detected invisible task will be placed such that there is 

an exclusive choice between 𝑥1, 𝑥2, . . , 𝑥𝑛 and t. For an invisible task of type short skip in a 

sequential workflow, we use the notation t ∈ 𝐼𝑣𝑇 − 𝑆𝑆𝑠𝑒𝑞; for an invisible task of type short 

skip in a concurrent workflow, we use the notation t ∈ 𝐼𝑣𝑇 − 𝑆𝑆𝑝𝑎𝑟. 
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Figure 6.3. Process model with an invisible task of type skip combined with a parallel 

construct 

 

There is another type of invisible tasks of type short skip in a parallel workflow. For 

instance, Figure 6.3 depicts a process model with an invisible task t combined with the 

parallel construct (b,c,p1,p2,p3,p4). This type of invisible tasks can be detected with the 

following rule: 

IF ∃𝑤, 𝑥1, 𝑥2, . . , 𝑥𝑛 , 𝑧 ∈  𝜎𝑘 such that 𝑤 <//(𝑥1, 𝑥2, . . , 𝑥𝑛) AND //(𝑥1, 𝑥2, . . , 𝑥𝑛) < 𝑧 AND 

𝑤 > 𝑧 THEN ∃𝑡 ∈ 𝐼𝑣𝑇 − 𝑆𝑆𝑝𝑎𝑟: 𝑤 < 𝑉(𝑡, 𝑥𝑗/1≤𝑗≤𝑛) AND 𝑉(𝑡, 𝑥𝑗/1≤𝑗≤𝑛) < z (R6) 

 

(d) Detection of Invisible Tasks of Type Long Skip (IvT-LS).  

An invisible task of type long skip (IvT-LS) is a hidden task that allows two or more 

tasks to be skipped in the execution. Since the behaviour of an IvT-LS in a sequential 

workflow can differ from its behaviour in a concurrent workflow (similar to an IvT-SS), the 

two cases will be handled separately.  

To derive an IvT-LS in a sequential workflow, consider the complete log L5 and its 

process model, as depicted in Figure 6.4. The A/D Table of L5 is presented in Table 6.7. The 

following dependencies are extracted from Table 8: a>b, a>d, c>d, b>c, a<V(b,d), and 

V(a,c)<d. However, the last two dependencies are unrealistic because task a is splitting an 

XOR-split of two tasks b and d whereas d is joining an XOR-join of task a and another task. 

For this, we introduce definition 6.1. 

Definition 6.1. Let L be a complete event log and 𝜎𝑘 ∈ 𝐿 be the event traces. 

- If there are 𝑤, 𝑥, 𝑦, 𝑧 ∈ 𝜎𝑘 such that 𝑤 < 𝑉(𝑥, 𝑧) and 𝑉(𝑤, 𝑦) < 𝑧, then 𝑛𝑜𝑡 𝑤 < 𝑉(𝑥, 𝑧) 

and 𝑛𝑜𝑡 𝑉(𝑤, 𝑦) < 𝑧. 

- If there are 𝑤, 𝑥, 𝑦, 𝑧 ∈ 𝜎𝑘  such that 𝑥 <//(𝑧, 𝑦)  and //(𝑤, 𝑥) < 𝑦, then 𝑛𝑜𝑡 𝑥 <

//(𝑧, 𝑦) and 𝑛𝑜𝑡 //(𝑤, 𝑥) < 𝑦. 
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-  

 

 

Figure 6.4. Long-skip invisible task in a sequential workflow 

 

Table 6.7. The A/D Table of L5 

 

Task id σ1(a, 1) σ2(a, 1) σ1(b, 1) σ1(c, 1) σ1(d, 1) σ2(d, 1) 

𝑻𝒂 ∅ ∅ a b c a 

𝑻𝒅 b d c d ∅ ∅ 

 

Based on Table 6.7 and definition 6.1, we obtain the following dependencies: a>b, 

b>c, c>d, a>d, not a<V(b,d), and not V(a,c)<d. Since we have (a>b, b>c, c>d) and (a>d), 

and no concurrency or choice is detected, there exists a long-skip invisible task that skips the 

two tasks b and c between task a and task d. Accordingly, the rule that discovers an IvT-LS in 

a sequential workflow is constructed as follows: 

IF there are 𝑤, 𝑥, 𝑦, 𝑧 ∈ 𝜎𝑘 such that 𝑤 > 𝑥 AND 𝑥 > 𝑦 AND 𝑦 > 𝑧 AND 𝑤 > 𝑧 AND 

𝑛𝑜𝑡 𝑤 < 𝑉(𝑥, 𝑧) AND 𝑛𝑜𝑡 𝑉(𝑤, 𝑦) < 𝑧, THEN ∋ 𝑡 ∈ 𝐼𝑣𝑇 − 𝐿𝑆𝑠𝑒𝑞/𝑥, 𝑦 such that 𝑤 <

𝑉(𝑥, 𝑡) AND 𝑉(𝑦, 𝑡) < 𝑧 (R7) 

Rule (7) investigates whether four activities w, x, y, and z follow each other 

successively with causal dependency such that the first activity is followed with causal 

dependency by the fourth activity, and the four activities are not involved in an XOR-split or 

XOR-join. If these conditions are fulfilled, then there exists an invisible task t that allows the 

execution of the two in-between activities to be skipped. The detected invisible task will have 

the following dependencies: an exclusive choice between x and t (XOR-split) and an 

exclusive choice between y and t (XOR-join). 

Rule (7) can detect an 𝐼𝑣𝑇 − 𝐿𝑆𝑠𝑒𝑞 of length two (that is, an invisible task that allows 
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the execution of only two tasks to be skipped), when in fact several tasks can be skipped at 

once. Actually, this can be drawn easily from rule (7). Before we address this, we introduce a 

new relation (>>) in definition 6.2, as follows. 

Definition 6.2. Let L be a complete event log and 𝜎𝑘 ∈ 𝐿 be the event traces. 

If there are 𝑎, 𝑏, … , 𝑦, 𝑧 ∈ 𝜎𝑘  such that 𝑎 > 𝑏 and 𝑏 > 𝑐  and…and 𝑦 > 𝑧, then 𝑎 >> 𝑧  and 

(𝑏, 𝑐, . . , 𝑦)  ∈ >>. 

Based on rule (6) and definition 6.2, we define the heuristic rule that can discover an 

invisible task allowing the execution of several tasks to be skipped as follows: 

IF ∃𝑥𝑖 ∈ 𝜎𝑘 such that 𝑥1 >> 𝑥𝑛 AND 𝑥2, … , 𝑥𝑛−1 ∈ >> AND 𝑥1 > 𝑥𝑛 AND 𝑥2, … , 𝑥𝑛−1∈ 

<V(,) AND 𝑥2, … , 𝑥𝑛−1∈ V(,)<, THEN ∋ 𝑡 ∈ 𝐼𝑣𝑇 − 𝐿𝑆𝑠𝑒𝑞 such that 𝑥1 < 𝑉(𝑥2, 𝑡) AND 

𝑉(𝑥𝑛−1, 𝑡) < 𝑥𝑛 (R7*) 

Rule (7*) states that, if there exist multiple activities following each other 

successively with causal dependency, such that the first activity is followed with causal 

dependency by the last activity, and none of the activities are involved in an XOR-split or 

XOR-join, then there is an invisible task t that allows the execution of all activities except the 

first and last to be skipped. t will be placed such that there is an exclusive choice between t 

and the second activity (XOR-split) and between t and the activity before the last activity 

(XOR-join). 

Similar to rule (4), let us assume that the place after c and t in Fig. 8 is the sink place, 

and that task d does not exist, or the place before b and t is the source place and that a does 

not exist. Rule (7*) will not be able to detect this case. Therefore, we define rule (8), which is 

a special case of rule (7*): 

IF there are 𝑥𝑖 ∈ 𝜎𝑘 such that 𝑥1 >> 𝑥𝑛 AND 𝑥2, … , 𝑥𝑛−1 ∈ >> AND [𝑥1: 𝑂 AND 𝑥𝑛: 𝑂] OR 

[𝐼: 𝑥1 AND 𝐼: 𝑥𝑛] THEN ∋ 𝑡 ∈ 𝐼𝑣𝑇 − 𝐿𝑆𝑠𝑒𝑞 such that [𝑥1 < 𝑉(𝑥2, 𝑡) AND 𝑡: 𝑂] OR 

[𝑉(𝑥𝑛−1, 𝑡) < 𝑥𝑛 AND I: 𝑡] (R8) 

Rule (8) attempts to detect an invisible task of type skip that allows the execution of 

the sequence 𝑥2, … , 𝑥𝑛 to be skipped when 𝑥𝑛 is directly connected to the sink place and the 

execution of the sequence 𝑥1, … , 𝑥𝑛−1  to be skipped when 𝑥1  is directly connected to the 

source place. 
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Let us move now to the case of a concurrent workflow. To discover an IvT-LS in a 

concurrent workflow, we follow the same process used for an IvT-SSpar. Consider the Petri 

net model in Figure 6.5 and its complete event log L6. We obtain the following dependencies: 

b>c, d>e, a<//(b, d), and //(c, e)<f. These dependencies indicate the existence of concurrent 

tasks (b>c and d>e), an AND-split in task a, and an AND-join in task f. If this is so, when 

task b, c, d or e appears in an event trace, all three tasks should appear in succession, e.g., 

abcdef, adbcef, abdecf. However, a trace such as <a, d, e, f>, where d followed by e appear 

alone, might exist in an event log. This can happen when there is an invisible task that allows 

the execution of b and c to be skipped. Based on this observation, the heuristic rule to detect 

an IvT-LS in a concurrent workflow is defined as follows:  

IF there are 𝑤, 𝑥1, 𝑥2, . . , 𝑥𝑛, 𝑦1, 𝑦2, . . , 𝑦𝑚, 𝑧 ∈ 𝜎𝑘 such that 𝑤 <//(𝑥1, 𝑦1) AND //(𝑥𝑛, 𝑦𝑚) <

𝑧 AND 𝑥1 ≫ 𝑥𝑛 AND 𝑦1 ≫ 𝑦𝑚 AND ∃σ𝑖 ⊆  σ𝑘: (𝑓𝑜𝑟 𝑇𝑎(𝑦1)𝜎𝑖
= 𝑤: 𝑇𝑑(𝑦𝑚)𝜎𝑖

= 𝑧), THEN 

∋ 𝑡 ∈ 𝐼𝑣𝑇 − 𝐿𝑆𝑝𝑎𝑟such that 𝑤 < 𝑉(𝑥1, 𝑡) AND 𝑉(𝑥𝑛, 𝑡) < 𝑧 (R9) 

 

 

Figure 6.5. Long-skip invisible task in a concurrent workflow 

 

Rule (9) states that, if activities 𝑥1, 𝑥2, 𝑥3, . . , 𝑥𝑛 are in parallel with 𝑦1, 𝑦2, 𝑦3, . . , 𝑦𝑚, 

such that 𝑥1 > 𝑥2, 𝑥2 > 𝑥3,.., 𝑥𝑛−1 > 𝑥𝑛 and 𝑦1 > 𝑦2, 𝑦2 > 𝑦3,.., 𝑦𝑚−1 > 𝑦𝑚; if there is an 

event trace 𝜎𝑖 in which the ancestor of 𝑦1 is the activity splitting the AND of concurrency; 

and the descendent of 𝑦𝑚 is the activity joining the AND of concurrency, then there is an 

invisible task t that enables the execution of activities 𝑥1, 𝑥2, 𝑥2, . . , 𝑥𝑛 to be skipped, such that 

there is an exclusive choice between 𝑥1 and t (XOR-split) and between 𝑥𝑛 and t (XOR-join). 

Rule (9) can detect an invisible task of type long skip that allows multiples activities in 

parallel to be skipped. 
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Figure 6.6. Process model with an invisible task of type long skip combined with a parallel 

construct 

Similar to IvT-SSpar, there is also another type of IvT-LSpar where t is combined with 

a parallel construct as shown in Figure 6.6. The rule that can detect this type of invisible tasks 

is as follows. 

IF there are 𝑤, 𝑥1, 𝑥2, . . , 𝑥𝑛, 𝑦1, 𝑦2, . . , 𝑦𝑚, 𝑧 ∈ 𝜎𝑘 such that 𝑤 <//(𝑥1, 𝑦1) AND //(𝑥𝑛, 𝑦𝑚) <

𝑧 AND 𝑥1 ≫ 𝑥𝑛 AND 𝑦1 ≫ 𝑦𝑚 AND 𝑤 > 𝑧 THEN ∋ 𝑡 ∈ 𝐼𝑣𝑇 − 𝐿𝑆𝑝𝑎𝑟 such that 𝑤 < 𝑉(𝑥1 ∧

𝑦1, 𝑡) AND 𝑉(𝑥𝑛 ∧ 𝑦𝑚, 𝑡) < 𝑧 (R10) 

As can be seen, the rules that can detect invisible tasks of type long skip are based on 

the relation (>). However, if the execution of two tasks can be skipped by the IvT-LS and the 

execution of the same tasks can be repeated by the existence of an IvT-LR, then the invisible 

task of type long skip cannot be detected. To detect IvT-LR, the relation (>) cannot be used 

because the two tasks are following each other. Hence, the IvT-LS cannot be detected. We call 

this situation an overlapping. This overlapping can be handled by the introduction of the 

following rule:  

IF ∃𝑡 ∈ 𝐼𝑣𝑇 − 𝐿𝑅/𝑥, 𝑦 AND 𝑤 > 𝑥 AND 𝑇𝑑(𝑥) = 𝑦 AND 𝑦 > 𝑧 AND 𝑤 > 𝑧, THEN ∃𝑡 ∈

𝐼𝑣𝑇 − 𝐿𝑆/𝑥, 𝑦  (R11)   

This rule enables us to detect an IvT-LS that allows the execution of two tasks to be 

skipped when the execution of these tasks can be repeated with the existence of an IvT-LR. 

 

(e) Detection of Invisible Tasks of Type Side (IvT-SD).  

There are situations in which the workflow begins with two or more tasks that must be 

executed simultaneously or ends with concurrent tasks. In these situations, the representation 

of the workflow net requires an invisible task that is placed before or after the concurrent 

tasks. Therefore, an IvT-SD can belong to one of two categories: an invisible task of type side 

in the beginning (IvT-SDB) that directly follows the source place or an invisible task of type 
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side at the end (IvT-SDE) that is followed directly by the sink place. 

To detect an IvT-SDB, consider the complete log L7 shown in Figure 6.7(a). The A/D 

Table of log L7 is depicted in Table 6.8. The relations extracted from the A/D Table are 𝐼: 𝑎, 

𝐼: 𝑏 and //(a,b)<c, indicating that there is an AND-join in task c of two parallel tasks a and b, 

while no AND-split can be identified from the A/D Table of L7. However, the parallel tasks a 

and b are connected directly to the source place without an AND-split. This is possible only 

when there exists an invisible task that splits the AND-split of the two parallel tasks a and b. 

On this basis, the rule that discovers an invisible task of type side in the beginning is defined 

as follows: 

IF there are 𝑥1, 𝑥2, . . , 𝑥𝑛, 𝑦1, 𝑦2, . . , 𝑦𝑚, 𝑧 ∈ 𝜎𝑘 such that 𝑥1 ≫ 𝑥𝑛 AND 𝑦1 ≫ 𝑦𝑚 AND 

//(𝑥𝑛, 𝑦𝑚) < 𝑧 𝐼: 𝑥1 AND 𝐼: 𝑦1, THEN there exists 𝑡 ∈ 𝐼𝑣𝑇 − 𝑆𝐷𝐵 such that 𝑡 <//(𝑥1, 𝑦1) 

(R12) 

Table 6.8. The A/D Table of L7 

 

Task id σ1(a, 1) σ2(a, 1) σ1(b, 1) σ2(b, 1) σ1(c, 1) σ2(c, 1) 

𝑻𝒂 ∅ b a ∅ b a 

𝑻𝒅 b c c a ∅ ∅ 

 

Rule (12) investigates that, if activities 𝑥1, 𝑥2, 𝑥3, . . , 𝑥𝑛  are in parallel with 

𝑦1, 𝑦2, 𝑦3, . . , 𝑦𝑚 , such that 𝑥1 > 𝑥2 , 𝑥2 > 𝑥3,.., 𝑥𝑛−1 > 𝑥𝑛  and 𝑦1 > 𝑦2 , 𝑦2 > 𝑦3,.., 𝑦𝑚−1 >

𝑦𝑚; if there is an AND-join of 𝑥𝑛 and 𝑦𝑚 and no AND-split of 𝑥1 and 𝑦1 (𝑥1 and 𝑦1 do not 

have an ancestor); then there exists an invisible task that is connected directly to the source 

place and is followed directly by the concurrent tasks 𝑥1 and 𝑦1. 

 

 

 

Figure 6.7. Sound process models with an IvT-SDB (a) and an IvT-SDE (b) 
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To identify an IvT-SDE, consider the complete event log L8 and its corresponding 

model shown in Figure 6.7(b). The A/D Table of L8 is presented in Table 6.9. The relations 

derived from Table 6.9 are a>//(b,c), b:O, and c:O. Unlike in an IvT-SDB, there is an AND-

split in task a of two concurrent tasks b and c, whereas no AND-join can be derived from the 

A/D Table. However, the parallel tasks b and c are connected directly to the sink place, which 

can be allowed only if there exists an invisible task that joins them. Accordingly, the heuristic 

rule that can discover such a construct is designed as follows:  

IF there are 𝑥1, 𝑥2, . . , 𝑥𝑛, 𝑦1, 𝑦2, . . , 𝑦𝑚, 𝑧 ∈ 𝜎𝑘 such that z <//(𝑥1, 𝑦1) AND 𝑥1 ≫ 𝑥𝑛 AND 

𝑦1 ≫ 𝑦𝑚 AND 𝑥𝑛: 𝑂 AND 𝑦𝑚: 𝑂, THEN there exists 𝑡 ∈ 𝐼𝑣𝑇 − 𝑆𝐷𝐸 such that //(𝑥𝑛, 𝑦𝑚) < 𝑡  

(R13) 

Rule (13) verifies that, if activities 𝑥1, 𝑥2, 𝑥3, . . , 𝑥𝑛 are in parallel with 𝑦1, 𝑦2, 𝑦3, . . , 𝑦𝑚, 

such that 𝑥1 > 𝑥2, 𝑥2 > 𝑥3,.., 𝑥𝑛−1 > 𝑥𝑛 and 𝑦1 > 𝑦2, 𝑦2 > 𝑦3,.., 𝑦𝑚−1 > 𝑦𝑚; if there is an 

AND-split of 𝑥1 and 𝑦1 and no AND-join of 𝑥𝑛 and 𝑦𝑚 (𝑥𝑛 and 𝑦𝑚 do not have a descendent); 

then there exists an invisible task joining the concurrent tasks 𝑥𝑛  and 𝑦𝑚  and connected 

directly to the sink place.  

 

Table 6.9. The A/D Table of L8 

 

Task id σ1(a, 1) σ2(a, 1) σ1(b, 1) σ2(b, 1) σ1(c, 1) σ2(c, 1) 

𝑻𝒂 ∅ ∅ a c b a 

𝑻𝒅 b c c ∅ ∅ b 

 

(f) Detection of Invisible Tasks of Type Switch (IvT-SW).  

An invisible task of type switch is a hidden task that allows a workflow net to switch 

the execution of some tasks to others. We consider the complete log L9 and its model depicted 

in Figure 6.8. The invisible task indicated in the process model switches the execution from 

task d to c. The A/D Table of L9 is shown in Table 6.10. The relations that can be extracted 

from this table are a>c, b>d, b>c, //(a,b)<c, and b<//(d,c). As can be seen, the derived 

relations refer to the existence of an AND-split in task b of two parallel tasks d and c and an 

AND-join in task c of two parallel tasks a and b, which is unreasonable. Based on definition 

6.1, we obtain not//(a,b)<c and not b<//(d,c).  

Accordingly, we have the following dependencies: a>c, b>d, b>c, not //(a,b)<c, and 
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not b<//(d,c). Since no parallel or choice is determined, there exists an IvT that switches the 

execution from task d to task c. Based on this, the rule that can derive an IvT-SW is 

constructed as follows: 

IF there are 𝑤, 𝑥, 𝑦, 𝑧 ∈ 𝜎𝑘 such that 𝑤 > 𝑦 AND 𝑥 > 𝑧 AND 𝑥 > 𝑦 AND 𝑛𝑜𝑡 𝑥 <//(𝑧, 𝑦) 

AND 𝑛𝑜𝑡//(𝑤, 𝑥) < 𝑦, THEN there exists 𝑡 ∈ 𝐼𝑣𝑇 − 𝑆𝑊 such that 𝑥 < 𝑉(𝑡, 𝑧) AND 

𝑉(𝑤, 𝑡) < 𝑦     (R14) 

 

 

Figure 6.8. Example of a sound process model containing an IvT-SW 

 

Table 6.10. The A/D Table of L9 
 

Task id σ1(a, 1) σ1(c, 1) σ2(b, 1) σ3(b, 1) σ2(d, 1) 

𝑻𝒂 ∅ a ∅ ∅ b 

𝑻𝒅 c ∅ d c ∅ 

 

Rule (14) verifies that, if there exist tasks w, x, y, and z such that the causal 

dependencies between them are 𝑤 > 𝑦, 𝑥 > 𝑧, and 𝑥 > 𝑦 and such that they are not involved 

in any parallel or choice, then an invisible task of type switch will be detected such that x is 

splitting the exclusive choice between t and z, and y is joining the exclusive choice between w 

and t. 

 

6.3.2. Short Loops Discovery  

A short loop can be a loop of length one, L1p (when one task can be repeated several 

times), or a loop of length two, L2p (when two tasks can be repeated many times). These two 

types of short loops will be detected by our heuristic rules below. 

(a) Detection of a Loop of Length One (L1p).  
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To detect a loop of length one 𝐿1𝑝 , consider the complete log L10 and its process 

model shown in Figure 6.9, in which task b can be repeated several times. The A/D Table of 

L10 is presented in Table 6.11 and allows us to obtain a>c, a>b, b>c, and 𝑇𝑑(𝑏) = 𝑏 . 

Although we have a>b and a>c, the conditions of AND-split and XOR-split are not satisfied. 

Similarly, for a>c and b>c, the conditions of AND-join and XOR-join are not satisfied. 

However, the relation 𝑇𝑑(𝑥) = 𝑥 can also refer to the existence of an invisible task of type 

short redo. The only difference is that a succession such as ac can exist in an event log with 

𝐿1𝑝 but not with an invisible task of type short redo. To distinguish between 𝐿1𝑝 and an IvT-

SR, it is necessary to investigate the existence of a succession such as ac. Based on this, 

letting L be a complete log, we define the heuristic rule that can discover loops 𝐿1𝑝 of length 

one as follows: 

IF there are 𝑥, 𝑦, 𝑧 ∈ 𝜎𝑘 such that 𝑥 > 𝑧 AND 𝑥 > 𝑦 AND 𝑦 > 𝑧 AND not 𝑥 <//(𝑦, 𝑧) AND 

not 𝑥 < 𝑉(𝑦, 𝑧) AND not //(𝑥, 𝑦) < 𝑧 AND not 𝑉(𝑥, 𝑦) < 𝑧 AND there exist 𝜎𝑖 ⊆  𝜎𝑘 such 

that 𝑇𝑑(𝑦)𝜎𝑖
= 𝑦 OR 𝑇𝑎(𝑦)𝜎𝑖

= 𝑦, THEN 𝑦 ∈ 𝐿1𝑝    (R15) 

Rule (15) states that, if there exist three tasks x, y, and z such that there are causal 

dependencies between x and y, between x and z, and between y and z; the three activities are 

not involved in an AND-split, AND-join, XOR-split, or XOR-join; and the descendant or 

ancestor of y is equivalent to y, then there exists a loop 𝐿1𝑝 in y.  

 

 

Figure 6.9. Sound workflow models containing a short loop of length one 𝑳𝟏𝒑 

 

Table 6.11. The A/D Table of L10 
 

Task 

id 

σ1(𝑎, 1) σ2(𝑎, 1) σ3(𝑎, 1) σ1(𝑏, 1) σ2(𝑏, 2) σ2(𝑏, 𝑘) σ1(𝑐, 1) σ2(𝑐, 1) σ3(𝑐, 1) 

𝑻𝒂 ∅ ∅ ∅ a a b b b a 

𝑻𝒅 b b c c b c ∅ ∅ ∅ 
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However, if all conditions of rule (15) are satisfied except the last two (Td(y)σi
= y or 

Ta(y)σi
= y), then an invisible task of type short skip will be detected. On the other hand, if 

Td(y)σi
= y or Ta(y)σi

= y is satisfied, an invisible task of type short redo will be detected. 

Thus, if all conditions of rule (15) are satisfied, two invisible tasks will be detected: one that 

allows the execution of a given task to be repeated, and one that allows the execution of that 

task to be skipped. Hence, one can conclude that if, rule (15) is satisfied, L1p can never be 

discovered. This case also refers to the overlapping. 

Examine Figure 6.10. The event log depicted is similar to L10, (i.e., the event log of 

L1p). The models illustrated in Figure 6.9, and Figure 6.10 share similar behaviour but differ 

in structure. One of the main quality criteria used for process discovery is simplicity (Van der 

Aalst, 2011). A good model has good fitness, good precision, good generalization, and a 

simple structure. Among the two models in Figure 6.9, and Figure 6.10, the most structurally 

simple is the model of 𝐿1𝑝 in Figure 6.9. Hence, we introduce the following new rule: 

IF 𝑡 ∈ 𝐼𝑣𝑇 − 𝑆𝑆/𝑦 AND 𝑡 ∈ 𝐼𝑣𝑇 − 𝑆𝑅/𝑦, THEN 𝑦 ∈ 𝐿1𝑝 (R16) 

Rule (16) states that, if an invisible task of type short skip (which allows the execution 

of task y to be skipped) and an invisible task of type short redo (which allows the execution 

of task y to be repeated) are detected, then they will be transformed into a loop of length one 

𝐿1𝑝 in y. 

 

 

Figure 6.10. Process model having similar event logs and behaviour with 𝑳𝟏𝒑 

 

(b) Detection of a Loop of Length Two (L2p).  

First, we divide loops of length two (L2p) into two types, L2p,a and L2p,b, as shown in 

Figure 6.11. Loops L2p,a and L2p,b have the same definition and the same role; however, they 
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are represented differently. Therefore, they will be handled separately.  

To detect a loop of length one of type 𝐿2𝑝,𝑎, consider the complete log L11 and its 

workflow model depicted in Figure 6.11 (a), where tasks b and c are in a loop and can be 

repeated many times. The A/D Table of log L11 is presented in Table 6.12. Accordingly, we 

obtain only a>b and b>d. Since 𝑇𝑑(𝑐, 1)𝜎2
= 𝑏 and 𝑇𝑑(𝑏, 1)𝜎2

= 𝑐, the relation (>) cannot be 

used to gain insight into tasks b and c. Therefore, the heuristic rule that can detect loop of 

length two type 𝐿2𝑝,𝑎 will be strongly based on direct succession relations. As can be seen, 

𝑇𝑑(𝑐, 1)𝜎2
= 𝑏  and 𝑇𝑑(𝑏, 1)𝜎2

= 𝑐  represent the ordering bcb. However, this ordering can 

also exist in the case of an invisible task of type long redo bcbc. The difference between two 

tasks b and c belonging to an IvT-LR and two tasks b and c belonging to L2p,a is that the 

descendent of the last occurrence of b in an IvT-LR is task c, whereas the descendent of the 

last occurrence of b in L2p is different than task c. Based on this, let k be the kth occurrence of 

b and c, let L be an event log, and let σ𝑖 ∈ 𝐿 be the event traces. Based on these observations, 

the heuristic rule (17) to discover a loop of length two is defined as follows. 

IF ∃𝑥, 𝑦 ∈  𝜎𝑖 and ∃𝑘 ∈ {1, . . , 𝑝} such that 𝑇𝑑(𝑥, 𝑘)𝜎𝑖
= 𝑦 AND 𝑇𝑑(𝑦, 𝑘)𝜎𝑖

= 𝑥 AND 

𝑇𝑑(𝑥, 𝑘 + 1)𝜎𝑖
≠ 𝑦 AND 𝑇𝑎(𝑥, 1)𝜎𝑖

≠ 𝑦, THEN there exist 𝑥, 𝑦 ∈ 𝐿2𝑝,𝑎  (R17) 

Rule (17) verifies four conditions to detect the existence of a loop of length two of 

type 𝐿2𝑝,𝑎. The first and second conditions verify that the descendent of the kth occurrence of 

x is y and the descendent of the kth occurrence of y is x, respectively. The third condition 

verifies that the descendent of the (k+1)th occurrence of x is different than y, and the last 

condition verifies that the ancestor of the first occurrence of x is distinct from y. The four 

conditions are investigated in the same event trace σ𝑖. If a 𝑘 ∈ {1, . . , 𝑝} is found in which the 

four conditions are satisfied, the existence of a loop of length two between x and y will be 

detected. For instance, let L = {<a,b,d>, <a,b,c,b,c,b,c,b,d>} be a sample event log of a model 

containing 𝐿2𝑝,𝑎. The value of k that satisfies the conditions of rule (17) is k=3 in the second 

event trace. 
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Figure 6.11.The workflow model of a loop of length two : (a) 𝑳𝟐𝒑,𝒂 and (b) 𝑳𝟐𝒑,𝒃   

 

Table 6.12. The A/D Table of L11 

 

T 

id 

σ1(𝑎, 1) σ2(𝑎, 1) σ1(𝑏, 1) σ2(𝑏, 1) σ2(𝑏, 2) σ2(𝑏, 𝑘) σ2(𝑐, 1) σ2(𝑐, 𝑘) σ1(𝑑, 1) σ2(𝑑, 1) 

𝑻𝒂 ∅ ∅ a a c c b b b b 

𝑻𝒅 b b d c c d b b ∅ ∅ 

 

The second type of loop length two 𝐿2𝑝,𝑏 as depicted in Figure 6.11(b) can be seen as 

a combination of two loops of length one. The event log of a process model containing this 

kind of loop can have the following behaviours: bcbc, cbcb, cbc, bcb, etc. These behaviours 

can be found also when either a loop of length two of type 𝐿2𝑝,𝑎 or invisible tasks of type 

long redo IvT-LR exists in the event log (an overlapping situation). Based on this, we define 

the following rule for detecting a loop length two of type 𝐿2𝑝,𝑏: 

IF 𝑥,𝑦 ∈ (𝐿2𝑝,𝑎 OR 𝐼𝑣𝑇 − 𝐿𝑅) 𝐴𝑁𝐷 𝑥 ∈  𝐿1𝑝 AND/OR 𝑦 ∈  𝐿1𝑝, THEN 𝑥,𝑦 ∈ 𝐿2𝑝,𝑏  (R18) 

Rule (18) states that if with the heuristic rules x and y are detected to belong to loop of 

length two of type 𝐿2𝑝,𝑎 or to invisible task of type long redo; and x and/or y are (is) detected 

to belong to loop of length one, then x and y belong to loop of length two of type 𝐿2𝑝,𝑏 not to 

𝐿2𝑝,𝑎 nor 𝐼𝑣𝑇 − 𝐿𝑅. This indicates that this type of loop can be detected only after invisible 

tasks of type long redo and loop length two of type 𝐿2𝑝,𝑎 are detected. 

 

6.3.3. Non-Free Choice Construct (NFC) Discovery  

A non-free choice construct is a case in which choice and synchronization are 
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combined (Wen et al, 2007a). As mentioned before, the detection of implicit dependencies is 

necessary to discover a workflow net with non-free choice constructs. Let us assume that 

there is an implicit dependency between activity A and activity B. If task A is executed, other 

tasks should be executed before B is executed. Since the distance of the dependency between 

A and B is at least two, there will be no trace in the event log where A is directly followed by 

B. 

 
 

Figure 6.12. Sound sub-workflow nets with implicit dependencies (Wen et al., 2006) 

 

Wen et al., (2006) classified implicit dependencies into seven cases, as shown in 

Figure 6.12, such that each pattern appears in a sound workflow net. Since the detection of 

implicit dependencies is considered the most important factor in appropriately discovering 

process models with non-free choice constructs, the seven cases of implicit dependencies 

depicted in Figure 6.12 will be detected with our heuristic rules. Before that we denote 

𝑇𝑑+𝑘(a) 𝜎𝑗
 and 𝑇𝑎+𝑘(a) 𝜎𝑗

 the (k-1)th descendent and ancestor of task a in the trace 𝜎𝑗 

respectively (e.g. 𝑇𝑑+1(a) 𝜎𝑗
denotes the second descendent of a in trace 𝜎𝑗). The heuristic 

rules that allow detecting implicit dependencies are as follows: 

IF ∃𝑤, 𝑥, 𝑦, 𝑧 ∈  𝜎𝑘 such that 𝑤 <//(𝑥, 𝑦) AND ∃ 𝜎𝑖 ⊆  𝜎𝑘: 𝑇𝑎(𝑥)𝜎𝑖
= 𝑤 AND ∃ 𝑘: 

𝑇𝑑+𝑘(𝑥)𝜎𝑖
= 𝑧 AND ∄𝑘′: 𝑇𝑑+𝑘′(𝑥)𝜎𝑖

= 𝑦 THEN 𝑤 > 𝑧 is an implicit dependency (R19) 

IF ∃𝑤, 𝑥, 𝑦, 𝑧 ∈  𝜎𝑘 such that //(𝑥, 𝑦) < 𝑤  AND ∃ 𝜎𝑖 ⊆  𝜎𝑘: 𝑇𝑑(𝑥)𝜎𝑖
= 𝑤 AND ∃ 𝑘: 
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𝑇𝑎+𝑘(𝑥)𝜎𝑖
= 𝑧 AND ∄𝑘′: 𝑇𝑎+𝑘′(𝑥)𝜎𝑖

= 𝑦 THEN 𝑤 > 𝑧 is an implicit dependency (R20) 

IF ∃𝑣, 𝑤, 𝑥, 𝑎, 𝑦, 𝑧 ∈  𝜎𝑘 𝑉(𝑣, 𝑤) < 𝑥 AND x>>>a AND a< 𝑉(𝑦, 𝑧) AND [∄ 𝜎𝑖 ⊆  𝜎𝑘: for 

𝑇𝑎(𝑥)𝜎𝑖
= 𝑣: 𝑇𝑑(𝑎)𝜎𝑖

= 𝑧], THEN 𝑣 > 𝑦 is an implicit dependency (R21) 

Rule (19) detects implicit dependencies from an event log of a workflow model with a 

sub-workflow net similar to the cases shown in Figures 6.3.12 16(b), (c), and (g). This rule 

investigates whether 𝑥 and 𝑦 are in parallel and the AND-split is in 𝑤, whether there is a trace 

𝜎𝑖 in which the ancestor of 𝑥 is 𝑤, whether there exists a k such that (k-1)th descendent of x in 

𝜎𝑖 is z, and whether there is no k’ such that (k’-1)th descendent of x in 𝜎𝑖 is y. If all of these 

conditions are satisfied, an implicit dependency 𝑤>𝑧 will be detected. 

Rule (20) detects implicit dependencies from an event log of a process model with a 

sub-workflow net similar to the cases shown in Figure 6.12(d). The explication of this rule is 

oppositely similar to the explanation of rule (19). 

Finally, rule (21) detects implicit dependencies from an event log of a workflow 

model with a sub-workflow net similar to Figures 6.3.12(a), (e) and (f). This rule states that, 

if there exists an exclusive choice between two tasks 𝑣 and 𝑤 joined in 𝑥, and x>>a, and a 

splits the exclusive choice of two tasks 𝑦 and 𝑧, and there exists no trace 𝜎𝑖  in which the 

ancestor of 𝑥 is 𝑣 and the descendent of 𝑎 is 𝑧, then an implicit dependency 𝑣 > 𝑦 will be 

detected. Note that a in rule (21) can be identical to x. 

The three rules (19), (20) and (21) are developed to detect the implicit dependencies 

of the seven types shown in Fig.15. However, these dependencies need to be detected after 

the invisible tasks are detected. This way, non-free choice constructs can be discovered 

correctly. 

Let us take the examples shown in Figure 6.13 to illustrate the capabilities of these 

rules. The workflow nets illustrated in Figures 6.13(a) and (d) do not have any implicit 

dependencies, while those shown in Figures 6.13(b), (c), (e), (f), and (g) contain implicit 

dependencies. Figure 6.13(a) depicts an original workflow net. Its corresponding complete 

event log is {<A,C,F,D>, <A,F,C,D>, <B,C,G,E>, <B,G,C,E>}. When we apply the three 

heuristic rules, no implicit dependency is detected. Similarly, for Figure 6.13(d) and its 

corresponding event log {<A,C,B,D>, <A,B,C,D>, <A,E,D>}, no implicit dependency is 

identified. For Figure 6.13(b), the corresponding complete workflow log is {<A,B,C>, 

<A,D,B,E>, <A,B,D,E>}. From this log, the implicit dependency 𝐴 > 𝐶  is detected with 
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heuristic rule (R19). For Figure 6.13(c), the corresponding complete event log is {<A,C,D>, 

<B,C,E>, <A,C,F,E>, <A,F,C,E>}. From this log, two implicit dependencies 𝐴 > 𝐷 and 𝐵 >

𝐸 are detected with rule (R21). The corresponding complete event log of Figure 6.13(e) is 

{<A,C,E,B,C,D>}. From this log, the implicit dependencies 𝐴 > 𝐸 and 𝐵 > 𝐷 are detected 

with rule (R21). For Figure 6.13(f), for which one complete event log is {<A,E,B,C,D,F>, 

<A,B,E,C,D,F>, <A,B,C,D,E,F>, <A,B,C,E,D,F>, <A,B,G,D,F>}, the implicit dependency 

𝐴 > 𝐺 is detected with rule (R19), and the implicit dependency 𝐺 > 𝐹 is detected with rule 

(R20). Finally, the corresponding complete event log of Figure 6.13(g) is {<A,B,C,D,E >, 

<A,C,D>}. From this log, the implicit dependencies 𝑡1 > 𝑡2 and 𝐵 > 𝐸 are detected with rule 

(R21) after the two invisible tasks 𝑡1 and 𝑡2 of type short skip are detected.  

 

 

 

Figure 6.13. Detection of implicit dependencies through the heuristic rules 

 

There is a case where the model discovered with invisible tasks involved in non-free 

choice using the aforementioned rules is unsound. An example of this case is illustrated in 

Figure 6.14. 

Figure 6.14(a) depicts the original sound model, while Figure 6.14(b) shows the 

process model discovered with the heuristic rules. In the model of Figure 6.14(b), invisible 
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tasks 𝑡1  and 𝑡2  are detected first. Then the implicit dependencies 𝐴 > 𝐷  and 𝐵 > 𝐸  of the 

non-free choice construct are detected. These implicit dependencies make the model unsound. 

The developed heuristic rules does not detect the arcs connecting p3 to 𝑡1 and p4 to 𝑡2. To 

solve this problem and discover a sound model, the following rule is developed: 

IF ∃𝑣, 𝑤, 𝑥, 𝑎, 𝑦, 𝑧 ∈  𝜎𝑘: 𝑉(𝑣, 𝑤) < 𝑥 AND x>>a AND a< 𝑉(𝑦, 𝑧) AND v>y AND ∃𝑡 ∈ 𝐼𝑣𝑇: 

a< 𝑉(𝑡, 𝑦), THEN 𝑣 > 𝑡 is an implicit dependency (R22) 

 

Figure 6.14. Process model with invisible tasks involved in a non-free choice construct: (a) 

original model and (b) discovered model  

 

6.3.4. Duplicate Tasks (DT) Discovery  

Duplicate tasks are those sharing the same name but placed in different transitions in 

the workflow net. Figure 6.15  depicts a process model with two duplicate tasks, a and e. It is 

difficult to differentiate between duplicate tasks sharing the same name in the event log. 

Hence, it is difficult to correctly mine the process model in Figure 6.15. Fortunately, Li et al., 

(2007) handled this problem by first using heuristic rules to identify tasks with similar names 

and then renaming them differently in the log. They then used the α −algorithm to mine a 

model from the updated log. The authors developed three rules to detect duplicate tasks, 

which we will transform here into our notations; to see the original notations, please refer to 

(Li et al., 2007). Let L be a complete event log and 𝜎𝑘 ∈ 𝐿 be the event traces. Let 𝜎𝑘(𝑥, 𝑛) 

be the ‘nth’ occurrence of task x in the trace 𝜎𝑘. The heuristic rules are as follows:  

IF ∃𝑥 ∈ 𝜎𝑖, 𝑥 ∈ 𝜎𝑗 such that 𝑇𝑎(𝑥, 𝑛1)𝜎𝑖
≠ 𝑇𝑎(𝑥, 𝑛2)𝜎𝑗

 AND 𝑇𝑑(𝑥, 𝑛1)𝜎𝑖
≠ 𝑇𝑑(𝑥, 𝑛2)𝜎𝑗

 AND 

𝑇𝑎(𝑥, 𝑛1)𝜎𝑖
≠ 𝑇𝑑(𝑥, 𝑛2)𝜎𝑗

 AND 𝑇𝑎(𝑥, 𝑛2)𝜎𝑗
≠ 𝑇𝑑(𝑥, 𝑛1)𝜎𝑖

, THEN < (𝑥, 𝑛1)𝜎𝑖
, (𝑥, 𝑛2)𝜎𝑗

>∈ 𝐷𝑇  
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(R23) 

IF ∃𝑥 ∈ 𝜎𝑖, 𝑥 ∈ 𝜎𝑖 and 𝑖 ≠ 𝑗 such that 𝑇𝑎(𝑥, 𝑛1)𝜎𝑖
= 𝑇𝑑(𝑥, 𝑛2)𝜎𝑗

 AND [𝑇𝑎(𝑥, 𝑛2)𝜎𝑗
≠

𝑇𝑎+1(𝑥, 𝑛1)𝜎𝑖
 OR 𝑇𝑑(𝑥, 𝑛1)𝜎𝑖

≠ 𝑇𝑑+1(𝑥, 𝑛2)𝜎𝑗
], THEN < (𝑥, 𝑛1)𝜎𝑖

, (𝑥, 𝑛2)𝜎𝑗
>∈ 𝐷𝑇 (R24) 

IF ∃𝑥 ∈ 𝜎𝑖, 𝑥 ∈ 𝜎𝑖 and 𝑖 ≠ 𝑗 such that 𝑇𝑑(𝑥, 𝑛1)𝜎𝑖
= 𝑇𝑎(𝑥, 𝑛2)𝜎𝑗

 AND [𝑇𝑎(𝑥, 𝑛1)𝜎𝑖
≠

𝑇𝑎+1(𝑥, 𝑛2)𝜎𝑗
 OR 𝑇𝑑(𝑥, 𝑛2)𝜎𝑗

≠ 𝑇𝑑+1(𝑥, 𝑛1)𝜎𝑖
], THEN < (𝑥, 𝑛1)𝜎𝑖

, (𝑥, 𝑛2)𝜎𝑗
>∈ 𝐷𝑇  (R25) 

Rule (23) states that, if the ancestors and descendants of two tasks sharing the same 

name (x) are distinct and are not cross-equivalent (i.e., 𝑇𝑎(𝑥)𝜎𝑖
≠ 𝑇𝑑(𝑥)𝜎𝑗

), then x with 

occurrence n1 and x with occurrence n2 are duplicate tasks sharing the same name. Cross-

equivalence refers to the case in which the ancestor of (x,n1) in 𝜎𝑖  is equivalent to the 

descendent of (x,n2) in 𝜎𝑗, and vice versa.  

In Rule (24), the first condition investigates the case in which the ancestor of (x,n1) in 

σi and the descendant of (x,n2) in σj are cross-equivalent. The second condition identifies the 

difference between the ancestor of (x,n2) in 𝜎𝑗 and the second ancestor of (x,n1) in 𝜎𝑖. The 

third condition is similar to the second and states the requirement that the descendant of (x,n1) 

in 𝜎𝑖 and the second descendant of (x,n2) in 𝜎𝑗 are not equivalent.  

Rule (25) handles another similar situation. Li et al., (2007) stated that, if the 

conditions of the aforementioned rules are satisfied, then task x with occurrence n1 and task x 

with occurrence n2 belong to the group of duplicate tasks DT. However, a limitation of the 

first rule has been discovered. Consider the complete log shown in Figure 6.16. If we apply 

rule (23) to this log, we find that task c belongs to duplicate tasks, when in fact task c is a 

unique task. Although the ancestors and descendants of two occurrences of task c are 

different and have no cross-equivalence, task c is still a unique task. We can conclude that, 

when a task joins an exclusive choice of distinct tasks and splits an exclusive choice of other 

different tasks, rule (23) incorrectly returns a duplicate task. Based on these observations, the 

conditions of rule (23) are insufficient and need to be extended. Therefore, we extend rule (23) 

to rule (23*) as follows: 

If ∃𝑣, 𝑤, 𝑥, 𝑦, 𝑧 ∈ 𝜎𝑘 such that rule (20) is satisfied AND not 𝑉(𝑤, 𝑣) < 𝑥 AND not 𝑥 <

𝑉(𝑦, 𝑧), THEN < (𝑥, 𝑛1)𝜎𝑖
, (𝑥, 𝑛2)𝜎𝑗

>∈ 𝐷𝑇   (R23*) 

We extended rule (23) to rule (23*) by adding the requirement that task x does not join 
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an exclusive choice of distinct tasks and also does not split an exclusive choice of other 

different tasks while keeping rules (24) and (25) the same. If a duplicate task is detected by 

rules (23*), (24), and (25), it will be renamed in the log. Then, the new log will be mined by 

our heuristic rule-based algorithm. Note that duplicate tasks must be detected first to not 

affect the detection of the other constructs. 

 

 

Figure 6.15. Example of a process model with duplicate tasks 

 

 

 

Figure 6.16. A process model with an OR-join and OR-split

 

6.4.  Mining Algorithm  

In this section we will present the heuristic rule-based algorithm. Let 𝐿 be a complete 

event log and 𝜎 be a sequence of activities in 𝐿. The algorithm HR is as follows: 
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-------------------------------------------------------------------------------------------------------------------------- 

Algorithm 𝑯𝑹(𝑾. 𝑵) 

1. 𝑇𝑙𝑜𝑔 ← {𝑡 ∈ 𝑇|∃𝜎∈𝐿𝑡 ∈ 𝜎}. 

2. 𝐿−𝐷𝑇 ← 𝐿. 

3. 𝑖𝑠𝐷𝑢𝑝 ← false. 

4. 𝑖𝑠𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 ← false. 

5. 𝑖𝑠𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠 ← false. 

6. 𝑖𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠 ← false. 

7. 𝑖𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝 ← false. 

8. FOR ∀ 𝑡 ∈ 𝑇𝑙𝑜𝑔 DO 

(𝛾 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐴𝐷𝑇𝑎𝑏𝑙𝑒(𝑡, 𝐿−𝐷𝑇). 

FOR ∀ 𝜃 ∈ 𝛾 DO 

    (𝛾′ ← {𝜃′ ∈ 𝛾/𝜃′ ≠ 𝜃}. 

     FOR ∀ 𝜃′ ∈ 𝛾′ DO 

        (𝑖𝑠𝐷𝑢𝑝 ← 𝑗𝑢𝑑𝑔𝑒𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒(𝜃, 𝜃′). 

         IF 𝑖𝑠𝐷𝑢𝑝 THEN 

    (//𝑡′ is the renamed task of task t 

               𝑡′  ← 𝑟𝑒𝑛𝑎𝑚𝑒𝑇𝑎𝑠𝑘(𝑡, 𝜃′, 𝛾). 

                        𝑇𝑙𝑜𝑔 ←  𝑇𝑙𝑜𝑔  ∪ {𝑡′}. 

                 𝑖𝑠𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 ← 𝑡𝑟𝑢𝑒. ). ). ).  

                  IF 𝑖𝑠𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 THEN 

                   𝐿−𝐷𝑇 ← 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦𝐿𝑜𝑔(𝐿−𝐷𝑇 , 𝛾). ). 

9. FOR ∀ θ ∈ 𝑇𝑙𝑜𝑔 DO 

(𝛾′ ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐴𝐷𝑇𝑎𝑏𝑙𝑒(𝑡, 𝐿−𝐷𝑇).). 

10. FOR ∀ β𝑘 ∈ 𝛾′ DO 

     (𝑖𝑠𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠 ← 𝑗𝑢𝑑𝑔𝑒𝑆𝑇𝐷𝐶𝑜𝑛𝑠𝑡(β𝑘).). 

11. 𝑇𝑓𝑖𝑟𝑠𝑡 ← {𝑡 ∈ 𝑖𝑠𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠/∃𝜎∈𝐿−𝐷𝑇𝐼: 𝑡}. 

12. 𝑇𝑙𝑎𝑠𝑡 ← {𝑡 ∈ 𝑖𝑠𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠/∃𝜎∈𝐿−𝐷𝑇𝑡: 𝑂}. 

13. FOR ∀ β′𝑘 ∈ 𝛾′ ⋀ 𝑖𝑠𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠 DO 

     (𝑖𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠 ← 𝑗𝑢𝑑𝑔𝑒𝐶𝑂𝑀𝑃𝐿𝐸𝑋𝐶𝑜𝑛𝑠𝑡(β′𝑘).).     

14. 𝐷𝐶 ← {𝑖𝑠𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠} ∪ {𝑖𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠}. 

15. FOR ∀ 𝐶 ∈ 𝐷𝐶  DO 
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     (𝑖𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝 ← 𝑗𝑢𝑑𝑔𝑒𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔(𝐶).). 

16. 𝐷𝐶  ← 𝐷𝐶 − 𝑖𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝.    

17. 𝑋 ← {(𝐴, 𝐵) ∈ 𝐷𝐶/∀(𝐴′, 𝐵′) ∈ 𝐷𝐶: 𝐴 ⊆ 𝐴′ ⋀ 𝐵 ⊆ 𝐵′ ⇒ (𝐴, 𝐵) = (𝐴′, 𝐵′)}. 

18. 𝑃 ← {𝑃(𝐴,𝐵)/(𝐴, 𝐵) ∈ 𝑋}  ∪ {𝑝𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑝𝑠𝑖𝑛𝑘}. 

19. 𝐹 ← {(𝑎, 𝑃(𝐴,𝐵))/(𝐴, 𝐵) ∈ 𝑋 ⋀ 𝑎 ∈ 𝐴} ∪{(𝑃(𝐴,𝐵), 𝑏)/(𝐴, 𝐵) ∈ 𝑋 ⋀ 𝑏 ∈ 𝐵} ∪

 {(𝑝𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑡)/𝑡 ∈ 𝑇𝑓𝑖𝑟𝑠𝑡}} ∪{(𝑡, 𝑝𝑠𝑖𝑛𝑘)/𝑡 ∈ 𝑇𝑙𝑎𝑠𝑡}. 

20. 𝑊𝑁 ← (𝑃, 𝑇𝑙𝑜𝑔, 𝐹) ▌ 

----------------------------------------------------------------------------------------------------------------  

 

The algorithm 𝐻𝑅 functions as follows. First, it explores the traces of the event log in 

step 1. Steps 2 to 7 include the initialization of the input log 𝐿−𝐷𝑇, the flag isDup to assess 

whether there are duplicate tasks, the flag isIdentify to investigate whether to identify the 

original input event log L, the flag isStandardConstructs to determine the standard constructs 

in the log, the flag isComplexConstructs to assess whether complex constructs exist in the log, 

and the flag isOverlap to identify overlapping constructs from detected constructs. Step 8 is 

borrowed directly from (Li et al., 2007). In this step, the A/D Table γ  of each task is 

constructed, and each table is examined for duplicate tasks based on rules (R23*), (R24), and 

(R25) in the function judgeDuplicate. Detected duplicate tasks are registered in tuple θ′ of γ, 

the renamed task 𝑡′ is added in 𝑇𝑙𝑜𝑔, and the new event log is still reserved in 𝐿−𝐷𝑇. In step 9, 

a new A/D Table γ′ of each task is constructed, because the original event log is updated 

when duplicate tasks are detected. In step 10, each table of each task is assessed for the 

standard constructs (causal dependency, AND-split, AND-join, XOR-split, XOR-join, first 

tasks, and last tasks) based on definitions 1 to 10, which were introduced in the standard 

constructs detection section. These definitions are in the function judgeSTDConst. Detected 

standard constructs are identified in β𝑘. In steps 11 and 12, the first and last tasks detected by 

the standard construct rules are returned in 𝑇𝑓𝑖𝑟𝑠𝑡 and 𝑇𝑙𝑎𝑠𝑡, respectively. Similar to step 10, in 

step 13, each table of each task is investigated for complex constructs (IvT-SR, IvT-LR, IvT-

SS, IvT-LS, IvT-SDB, IvT-SDE, IvT-SW, L1p, L2p, and NFC) based on rules (R1 to R10, R12 

to R15, R17 and R19 to R22) in the function judgeCOMPLEXConst. Note that in this step, 

invisible tasks are investigated first before loops and non-free choice constructs. If invisible 

tasks are detected, they are added to the log and the previous log Log-DT is updated. After that 

loops and non-free choice constructs are investigated. The detected complex constructs are 

identified in β′𝑘. In step 14, the detected standard and complex constructs are saved in Dc. In 
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step 15, the overlapping constructs from the detected constructs are identified by rules (R11), 

(R16) and (R18) in the function judgeOverlapping. Identified overlapping constructs are 

excluded in step 16. Steps 17 to 20 are directly borrowed from (Van der Aalst et al., 2004). In 

these steps, the places and the connecting arcs are built, and the discovered model in the 

workflow net is returned. Note that this ordering of detection is compulsory. Duplicate tasks 

must be detected first, or all results will be wrong. In addition, standard constructs need to be 

detected before complex constructs, because complex constructs depend on standard 

constructs. 

Conclusion 

In this chapter, we introduced and explained all steps of the heuristic rule-based 

technique for process model discovery from event logs. For the construction of the Heuristic 

Rule-based algorithm, a number of notations were designed to mine standard constructs 

(sequence, AND-split/join, and XOR-split/join), and a number of heuristic rules were 

developed to detect complex constructs (short loops, invisible tasks, non-free choice 

constructs, and duplicate tasks). One of the main features of the HR algorithm is that the 

modularity of the rules typically enables a knowledge base to be easily updated, extended or 

modified. In the next chapter we will evaluate the algorithm using artificial and real-life data. 
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Chapter 7 HEURISTIC RULE-BASED ALGORITHM EVALUATION 

 

In this section, we evaluate the HR algorithm using small artificial event logs. Then, 

we compare the HR algorithm with current algorithms in terms of its ability to mine standard 

and complex constructs. Finally, we evaluate our technique based on a real-life event log. 

 

7.1. Evaluation based on small artificial logs 

 

Before using real-life models, we first focus on smaller artificial examples that 

demonstrate the applicability of the HR algorithm. To test our framework, we applied the HR 

algorithm to 13 complete event logs generated from 13 artificial original models. The original 

models 𝑀𝑂 were manually constructed with 13 levels such that, at each new level, a complex 

construct was added to the model of the previous level. The more constructs we added to the 

model, the more complex it became. This way we can evaluate the ability of the algorithm in 

mining standard and complex constructs when they are incorporated together. Level 1 was a 

simple model containing a sequence and an exclusive choice. Level 2 was a model with a 

sequence, choice, and parallelism. At level 3, there was a sequence, choice, parallelism, and a 

loop of length one. At level 4, a loop of length two was added to the model in level 3. At level 

5, an invisible task of type short redo was incorporated with the two short loops, choice, and 

parallelism. At level 6, the model contained a sequence, choice, parallelism, a long loop, a 

type of non-free choice construct, and short- and long-skip invisible tasks. The model of level 

7 contained a choice, parallelism, a loop of length one, a loop of length two, a short-redo 

invisible task, and a long-redo invisible task. At level 8, the model included a choice, 

parallelism, short loops, short- and long-redo invisible tasks, and a short-skip invisible task. 

In the model of level 9, there was a choice and parallelism, along with short loops, short- and 

long-redo invisible tasks, and short- and long-skip invisible tasks. For the model of level 10, 

there were invisible tasks of type skip involved in a non-free choice construct. In the model 

of level 11, an invisible task of type side in the beginning was incorporated with short- and 

long-skip invisible tasks, a short-redo invisible task, short loops, choice, and parallelism. At 

level 12, the model contained an invisible task of type switch, choice, short-and long-skip 

invisible tasks, short- and long-redo invisible tasks, a loop of length two, and an invisible task 

of type side at the end. Finally, level 13 included a sequence, choice, parallelism, loops of 

length one and length two, another type of non-free choice construct, and short- and long-skip 
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invisible tasks. In this set of models, the maximum number of activities in a process model 

was less than 20, and the number of cases in one event log was less than 10. After applying 

the algorithm to 𝐿𝑖 logs such that 1 ≤ 𝑖 ≤ 13, we obtained 𝑀𝐷𝑖
 models.  

To evaluate the discovered models, we adopted conformance verification using 

conformance metrics. In this paper, we used three types of metrics: fitness (i.e., f), to identify 

whether the observed behaviour (i.e., the event log) was in compliance with the control flow 

specified by the process model; behavioural similarity (𝐵𝑝 𝑎𝑛𝑑 𝐵𝑟), to evaluate how similarly 

the discovered model and the original model behaved in terms of precision and recall; and 

structural similarity (𝑆𝑝 𝑎𝑛𝑑 𝑆𝑟), to assess how structurally similar the discovered model and 

the original model were in terms of precision and recall (De Medeiros et al., 2007). The 

values of 𝑓, 𝐵𝑝, 𝐵𝑟 , 𝑆𝑝, and 𝑆𝑟 can range from 0 to 1. The value of 𝑓 should be as close to 1 as 

possible. If 𝑓 = 1, the log can be parsed by the process model without any error. If the values 

of 𝐵𝑝, 𝐵𝑟 , 𝑆𝑝, and 𝑆𝑟 are close to 1, the original and discovered models are very similar. We 

also counted the number of transitions, places, and arcs of models 𝑀𝐷 and 𝑀𝑂. The results are 

illustrated in Table 7.1. 

 

Table 7.1. The performance evaluation results 

 
 Level 

1 

Level 

2 

Level 

3 

Level 

4 

Level 

5 

Level 

6 

Level 

7 

Level 

8 

Level 

9 

Level 

10 

Level 

11 

Level 

12 

Level 

13 

𝐵𝑝 1 1 1 1 1 1 1 1 1 1 1 1 1 

𝐵𝑟 1 1 1 1 1 1 1 1 1 1 1 1 1 

𝑆𝑝 1 1 1 1 1 0.91 1 1 1 1 1 1 1 

𝑆𝑟 1 1 1 1 1 1 1 1 1 1 1 1 1 

 𝑀𝑂 𝑀𝐷 𝑀𝑂 𝑀𝐷 𝑀𝑂 𝑀𝐷 𝑀𝑂 𝑀𝐷 𝑀𝑂 𝑀𝐷 𝑀𝑂 𝑀𝐷 𝑀𝑂 𝑀𝐷 𝑀𝑂 𝑀𝐷 𝑀𝑂 𝑀𝐷 𝑀𝑂 𝑀𝐷 𝑀𝑂 𝑀𝐷 𝑀𝑂 𝑀𝐷 𝑀𝑂 𝑀𝐷 

#𝑇 5 5 8 8 11 11 12 12 14 14 9 10 17 17 18 18 19 19 7 7 22 22 23 23 17 17 

#𝑃 6 6 9 9 10 10 10 10 12 12 9 10 12 12 13 13 13 13 9 9 17 17 17 17 14 14 

#𝐴 12 12 18 18 24 24 26 26 30 30 22 24 36 36 38 38 40 40 22 22 48 48 48 48 38 38 

 

As shown in Table 7.1., the value of 𝑓 is equal to 1 for all levels. Also, the discovered 

models are similar to the original models at levels 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, and 13, and 

all complex constructs (short loops, invisible tasks, and non-free choice constructs) are 

correctly discovered, although they are incorporated with each other. Even when the invisible 

tasks are in a non-free choice construct, they are correctly detected. The values of 
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𝐵𝑝, 𝐵𝑟 , 𝑆𝑝, and 𝑆𝑟 are 1 at all levels. This demonstrates that the HR algorithm is applicable, 

except at level 6, where the value of 𝑆𝑟 is 0.91. Moreover, the numbers of transitions, places, 

and arcs of the mined models in all levels are equivalent to those of the original models, 

except at level 6, where the number of transitions and arcs is greater than in the original 

model.  

At level 6, although the mined model and the original model are slightly structurally 

different (𝑆𝑟 = 0.91), they share the same behaviour (see Figure 7.1). This is because the 

loop between tasks H and I in the original model has been detected as an invisible task of 

type redo, which allows similar behaviour. The main outcome is that the implicit dependency 

between tasks B and D is detected correctly, as well as the IvT-SS. 

 

 
 

Figure 7.1. The process model of level 6: (a) original model, (b) model mined with the HR 

algorithm 

 

7.2. Comparison with other algorithms 

Let us now apply several algorithms to the 13 complete event logs used in the 

previous section and also to the complete sample event logs used throughout the paper in 

order to compare the abilities of our algorithm and current mining algorithms for mining 

standard and complex constructs. The algorithms we applied were 𝛼++, 𝛼#, 𝛼$, Inductive 

Miner (IM), HeuristicsMiner (HM), ILP (Werf et al.,2009), ETM (Buijs et al., 2012), Region 

Miner (RM), Transition System (TS) (Kalenkova et al, 2014), DWS (Greco et al, 2006), and 

Genetic Miner (GM). We imported the complete event logs with the ProM tool (Van Dongen 

et al., 2005) and ran the plugin of each of the aforementioned algorithms. We compared the 

models mined by the different algorithms and our HR algorithm with the original models 

based on a visual inspection. Table 7.2 illustrates the obtained results. ‘Yes’ indicates that the 
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construct in the original model was correctly detected in the mined model, ‘No’ indicates that 

the construct in the original model was not detected in the mined model, and ‘Sb’ indicates 

that the mined construct in the discovered model was not structurally similar to that in the 

original model but was behaviourally similar.  

 

Table 7.2. Comparison of the ability of current algorithms in mining standard and complex 

constructs 

 
 HR 𝜶++ 𝜶# 𝜶$ IM HM ILP ETM RM  TS DWS GM 

𝐒𝐏𝐂 Yes Yes Yes Yes  Yes Yes Yes Yes Yes Yes Yes Yes 

𝐋𝟏𝐩 Yes Yes Yes Yes Sb No Yes Yes No Sb No Yes 

𝐋𝟐𝐩 Yes Yes Yes Yes  Yes Sb Yes No Yes Yes Yes Yes 

𝐈𝐯𝐓𝐒𝐑  Yes Sb Yes Yes Yes No No No No Sb Yes No 

𝐈𝐯𝐓𝐋𝐑  Yes No Yes Yes  Yes Yes No No Sb No Yes Yes 

𝐈𝐯𝐓𝐒𝐒𝐬𝐞𝐪
 Yes No Yes Yes Yes Yes No Yes No Yes Yes Yes 

𝐈𝐯𝐓𝐒𝐒𝐩𝐚𝐫
 Yes No No Yes Yes No No No No Sb No No 

𝐈𝐯𝐓𝐋𝐒𝐬𝐞𝐪
 Yes No Yes Yes  Yes Yes No Yes No No Yes Yes 

𝐈𝐯𝐓𝐋𝐒𝐩𝐚𝐫
 Yes No No Yes Yes Yes No No No No No Yes 

𝐈𝐯𝐓𝐒𝐃𝐁 Yes  No Yes  Yes  Yes  No No Yes  Yes  No No No 

𝐈𝐯𝐓𝐒𝐃𝐄 Yes  No Yes  Yes Yes  No No Yes  Yes  No No No 

𝐈𝐯𝐓𝐒𝐖 Yes  No Yes  Yes  No  Yes  No No No No Yes  Yes  

𝐍𝐅𝐂𝟏 Sb  Yes  No Yes No  No Yes No Yes No No Sb 

𝐍𝐅𝐂𝟐 Yes  Yes  No Yes No No No No No Yes  Yes  Yes  

𝐍𝐅𝐂𝟑 Yes Yes No Yes No  No  Yes  No Yes No No No 

𝑰𝒗𝑻𝒊𝒏−𝑵𝑭𝑪 Yes No No Yes No No No No No No No No 

𝐃𝐓𝐍−𝐂𝐄 Yes No No No No No No Yes  No No No No  

𝐃𝐓𝐂𝐄 Yes  No No No No No No No  No No No Yes  

‘SPC’ refers to sequence, parallel, and choice, 𝐷𝑇𝑁−𝐶𝐸 refers to a duplicate task in the case of non-

cross-equivalence, and 𝐷𝑇𝐶𝐸 refers to a duplicate task in the case of cross-equivalence. 

All algorithms have no problem in correctly discovering the standard (sequence, 

choice, and parallel) constructs. The problem appears in the mining of complex constructs. As 

can be seen, no algorithm is able to correctly mine all complex constructs. Each algorithm 

differs in its ability to mine the different complex constructs. For instance, the inductive 

miner is capable of correctly discovering loops of length two and most invisible task types, 
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except for invisible tasks of type switch, where the algorithm fails. It can discover behaviour 

similar to that of loops of length one, but it is not capable of discovering non-free choice 

constructs or duplicate tasks. Similarly, the other algorithms are capable of mining some 

constructs but are unable to discover other constructs. With the same complete event logs, our 

HR algorithm is able to correctly detect short loops, invisible tasks, duplicate tasks, and non-

free choice constructs.  

 

7.3. Evaluation based on a real-life log 

The above evaluation results demonstrate that our HR algorithm is applicable to 

artificial data. Now, we use a more realistic example, depicted in Figure 7.2., to demonstrate 

the applicability of the HR algorithm. The process model shown in Figure 7.2 was mined 

based on a log obtained from the IEEE TF on Process Mining - Event Logs. The events of 

this real-life event log were sepsis cases from a hospital. Sepsis is a life-threatening condition 

that appears because of an infection. One case depicts the pathway through the hospital. The 

events were recorded by the ERP (Enterprise Resource Planning) system of the hospital. We 

filtered incomplete cases and noisy data in the event log with the ProM tool plugin ‘Filter 

using simple heuristics’. The filtered log contains 973 events, 155 cases, and 7 activities.  

 

 
 

Figure 7.2. Workflow net model discovered by the HR algorithm from a real-life event log 
 

 

By following the steps of our algorithm, we discovered the process model shown in 

Figure 7.2 by hand, drew the obtained model with the WoPeD tool, saved the model into a 

PNML extension, and then imported the obtained model and the real-life log with the ProM 

tool to verify the conformance of the model. Since, in reality, the original model is often 

unknown and only the log is available, we did not use the behavioural similarity and 

structural similarity metrics that we used to evaluate artificial data. Instead, we used the 

dimension of appropriateness for conformance verification, as well as fitness. 

http://data.4tu.nl/repository/collection:event_logs
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Appropriateness is used to determine whether the observed process (i.e., event log) is 

described in a suitable way by the model. In this evaluation, we used three metrics: fitness (f), 

behavioural appropriateness (aB), and structural appropriateness (aS), as introduced in 

(Rozinat and van der Aalst, 2006). Behavioural appropriateness identifies the degree of 

accuracy with which the process model describes the observed behaviour, while structural 

appropriateness identifies the degree of clarity with which the process model is represented. 

Fitness is defined in the previous section. Only if 𝑓 is close to 1 can 𝑎𝑆 and 𝑎𝐵 be considered. 

If the fitness is good, higher values of 𝑎𝑆 and 𝑎𝐵 are desirable. To compare the quality of the 

model discovered by our HR algorithm with other algorithms, we applied the 𝛼++algorithm, 

𝛼# algorithm, Inductive Miner (IM), HeuristicsMiner (HM), ILP, ETM, Region Miner (RM), 

Transition System (TS), DWS, and Genetic Miner (GM) to the same real-life event log. The 

results are illustrated in Figure 7.3. Note that only the algorithms available in ProM are 

applied. 

 

 

 

Figure 7.3. Comparison of mining results by the HR algorithm and current algorithms using a 

complete real-life event log . 𝐟 is the fitness value of the model, 𝐚𝐁 refers to behavioral 

apappropriateness, and 𝐚𝐒 denotes structural appropriateness. 

 

Very low fitness values were obtained for the models discovered by the 𝛼++algorithm, 

𝛼# algorithm, ILP, and Transition System. Therefore, we could not compute their behavioural 

HR IM HM RM GM DWS ETM

f 0.958 0.938 0.894 0.859 0.891 0.894 0.971

aB 1 0.83 0.958 1 0.857 0.958 1

aS 1 1 1 0.875 1 1 0.923

0.8

0.9

1

1.1
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and structural appropriateness. Only the algorithms with good fitness are displayed in Figure 

7.3. As can be seen, the mining results for our HR algorithm are impressive and better than 

those for the other algorithms. The fitness of the model discovered by the HR algorithm is 

greater than the fitness of the models mined by the IM, HM, RM, GM, and DWS algorithms. 

Only the model mined by ETM has a slightly higher fitness value than the model derived by 

the HR algorithm. Moreover, the values of 𝑎𝐵 and 𝑎𝑆 for conformance between the complete 

real-life log and the mined model are greater for the HR algorithm than for the IM, HM, RM, 

GM, DWS, and ETM algorithms. The model mined by the HR algorithm is the only model in 

which the value of fitness is very good and the values of 𝑎𝐵 and 𝑎𝑆 are both equal to 1. 

 

7.4.Limitations of the HR algorithm  

Despite the ability of the HR algorithm to successfully mine standard (sequence, 

choice, and parallel) constructs and complex constructs (short loops, invisible tasks, duplicate 

tasks, and non-free choice constructs), there are still some sound workflow nets that cannot 

be mined by the HR algorithm (e.g., the workflow net N shown in Figure 7.4). One complete 

event log of N is {<A,B,C,E>, <A,C,B,E>, <A,B,D,D,C,E>}. Using this event log as input, 

the HR algorithm discovers the model N’ shown in Figure 7.4. After A is executed, a token 

will be produced in p7 and p9. If B is executed, there will be a token in p8. If D is executed 

twice, there will be a token in p8 and two tokens in C. Then, if C is executed, the workflow 

will terminate, but one token will remain in p9. This is because the dependency between A 

and D is not detected; thus, the model is not sound. Perhaps more advanced heuristic rules 

introduced in the future will be able to handle this case. The HR algorithm is based on 

heuristic rules and one of the principal features of rule-based algorithms is that the modularity 

of the rules typically enables a knowledge base to be easily updated, extended or modified. 

 

 

 

Figure 7.4. N is the reference model, and N’ is the model mined by the HR algorithm 
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More basic issues from a practical point of view are problems related to completeness 

and noise. The correctness of the HR algorithm is based on the assumption that a given event 

log is complete. Therefore, it is impossible to mine a behaviour that has not yet been recorded 

in the log due to a short period of observation. Actually, this problem is not so much an issue 

for the HR algorithm but is a major problem in process mining.  

The other issue is noise. The HR algorithm operates on the assumption that all events 

recorded in the event log are correct, but this is not the case in the real world. In several 

works, the assumption that the log is noise free is considered as a limitation. However, this 

should not be considered as a limitation, since several techniques have been proposed to filter 

noise before applying the process discovery algorithms. The event log filtering techniques 

that have been proposed to address the problem of noise can typically be classified into four 

categories: 1) techniques for filtering events (e.g. Conforti et al, 2017), 2) techniques for 

filtering traces (e.g., Ghionna et al., 2008), 3) techniques for filtering activities (e.g., Tax et al., 

2017), and 4) filtering techniques integrated in the process discovery algorithm (e.g., 

Leemans et al., 2013). The first, second and third category of log filtering techniques are 

proposed to be used by the algorithms operating on the assumption that the log contains 

correct information. These noise filtering techniques can be used before applying the 

Heuristic Rule-based algorithm.  

Process discovery offers a new paradigm for process modelling based on recorded 

events. The discovered models provide organisations with a full understanding of how their 

processes are executed and what is really happening in the organisation. This enables them 

with full knowledge to make better business decisions. Although plenty of process discovery 

techniques have been developed and applied successfully, no algorithm is capable of 

discovering all structures from the event log in a restricted time. In the previous chapter, we 

proposed a process discovery approach, the Heuristic Rule-based algorithm, in which a 

number of notations were designed to mine standard constructs (sequence, AND-split/join, 

and XOR-split/join), and a number of heuristic rules were developed to detect complex 

constructs (short loops, invisible tasks, non-free choice constructs, and duplicate tasks). One 

of the main features of the HR algorithm is that the modularity of the rules typically enables a 

knowledge base to be easily updated, extended or modified.  

In this chapter, the approach is evaluated with both artificial and real-life data. The 

outcomes show that the heuristic rules can correctly detect the aforementioned constructs 
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even when they are involved together. We believe that this work provides a full understanding 

of the complex constructs which can help other researchers to extend or improve the existing 

algorithms in terms of mining complex constructs. 

Future work can mainly focus on the following points. First, investigating other cases 

and extending or improving the heuristic rules. Then, implementing the approach with larger 

real-life data sets.  
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Chapter 8 CONCLUSION 

 

Process mining is a set of techniques whereby knowledge from event log stored in 

today’s information systems are extracted to automatically construct business process models 

to have a full understanding of the real behaviour of processes, identify bottlenecks, and then 

improve them. In this thesis, we presented an overview of process mining framework. We 

presented a critical review of the state of the art of process mining challenges. We described 

an industrial application of process mining to demonstrate the applicability and show the 

importance of process mining in handling real-life problems. The critical review of process 

mining challenges has shown that there are many process discovery algorithms that have 

been proposed today to represent the real behaviour of a business process, and that there is a 

lack of a benchmark tool or a recommendation framework that recommend a suitable 

algorithm to a given event log. There are actually complex control-flow constructs that 

current discovery techniques cannot correctly discover in models based on event logs. These 

constructs are short loops, invisible tasks, and non-free choice constructs. There is currently 

no algorithm that can handle all of these structures in a restricted time. Therefore, we 

proposed a framework that recommends the process discovery algorithm appropriate to a 

given event log. Recommendation framework consists first of detecting the existing complex 

control-flow constructs in the event log without discovering any model, then recommending 

the algorithm suitable to the given event log based on a knowledge database containing 

information regarding the ability of each process discovery algorithm in mining the complex 

constructs, based on the computation time, and based on the ability of algorithms in mining 

sound models. We have evaluated the recommendation framework using artificial and real-

life event log. The results show that the framework can recommend correctly suitable 

algorithms to a given event log. This framework doesn’t consider duplicate tasks. Therefore, 

including the detection of duplicates tasks in the implementation will be considered in the 

future work. 

Since each of the existing discovery algorithms can handle specific complex 

constructs while cannot handle some constructs, we introduced a new heuristic rule-based 

algorithm that is capable of handling all constructs: shorts loops, non-free choice constructs, 

invisible tasks and duplicate tasks.  For the construction of the Heuristic Rule-based 

algorithm, a number of notations were designed to mine the standard constructs (sequence, 

AND-split/join, and XOR-split/join), and a number of heuristic rules were developed to 
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discover the complex constructs (short loops, invisible tasks, non-free choice constructs, and 

duplicate tasks). One of the main features of the HR algorithm is that the modularity of the 

rules typically enables a knowledge base to be easily updated, extended or modified. The 

approach was evaluated with both artificial and real-life data. The outcomes show that the 

heuristic rules can correctly detect the aforementioned constructs even when they are 

involved together. Future work can mainly focus on the following points. First, investigating 

other cases and extending or improving the heuristic rules, then, implementing the approach 

with larger real-life data sets.  
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