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Abstract 

Virtual Reality (VR), Augmented Reality (AR), and Metaverse are some of the most frequent 

words these days. Introduction of Web 3.0 is promising potentially big changes in everyday life 

of people by incorporating VR, AR and Metaverse. Virtual reality (VR) is fully imaginary or 

replica of the real world. Augmented Reality (AR) is the technology which enhances real world 

by superimposing virtual objects onto real objects. Metaverse includes both VR, and AR to 

create novel, interactive world. Once fully developed, meetings, workspaces, gaming, virtual 

tourism, etc., will all be integrated in Metaverse. In the research, we concern about creating such 

a virtual space where virtual tours are conducted to make the marine tourism more accessible for 

wider audience.  

We focus our efforts on the animated ocean surface, for which we leverage a set of wave 

spectrum models from oceanographic research. We discuss the intricacies of said models, as well 

as their fitness for real-time rendering.  

The findings of the study were applied to render the Sea Environment around Ulsan, South 

Korea. Additionally, some dolphin and whale models were added to the scene. The scene is set 

to simulate marine life and tourism. The Unity game engine is exploited to render the simulation 

and ease the development. The resulting scene were recorded and played on the whale watching 

tour boat on October 31, 2021, Ulsan, South Korea. 

At the end of the demonstration, we conducted a survey. In the survey, virtual reality sea 

surfaces were recommended as an alternative to the real-world marine tourism. Around 80% 

percent of participants supported the development of such virtual spaces. 
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1. Introduction 

Recent advancements in the technology have created novel experiences. Today people no longer 

need to travel long distances to see their friends or family members and talk. They no longer even 

need to be at the office to carry their professional duties. Students are studying online, and more 

contents are coming in near future. One of the most famous technologies with huge market capital 

and opportunities is Metaverse. 

The metaverse is a digital reality that combines aspects of social media, online gaming, 

augmented reality (AR), virtual reality (VR), and cryptocurrencies to allow users to interact 

virtually. Augmented reality overlays visual elements, sound, and other sensory input onto real-

world settings to enhance the user experience. In contrast, virtual reality is entirely virtual and 

enhances fictional realities.  

As the Virtual Reality (VR) grows, it will create online spaces where user interactions are more 

multidimensional than current technology supports. Instead of just viewing digital content, users in 

VR will be able to immerse themselves in a space where the digital and physical worlds converge. 

One such case can be watching whales on the sea in the virtual world. 

Marine tourism has always been one of the most popular types of tourism and entertainment. 

The value of watching and feeling the life under and on the water has never been underestimated. 

The water is undoubtedly the central part of this appealing tourism.  

Even though most part of the Earth is covered with water, there are millions of people who has 

very little chance to see the sea and learn because of the geographic location of their home country 

and financial situations that are not sufficient to afford such an expensive overseas travel. 

Fortunately, cheap, and more accessible alternative solutions, for example VR, are arising. This 

study investigates these alternative solutions and water surface renderings in the development of 

virtual tourism. 

1.1 Problem Statement 

As we mentioned previously, marine tourism is simply not an accessible type of entertainment 

in some places in the world. People would need a lot of financial resources to go overseas just to 
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watch water washing beaches. To travel on the boat and just go deep inside the sea is a dream of 

many. Moreover, watching sea life, such as whales and dolphins, is not something frequent even for 

people living side by side with the sea.  

Ulsan is one of the famous places to watch whales in Korea. Thousands of people visit Ulsan 

and get on the whale watching boats organized every weekend 5-8 months in a year. Despite its 

high frequency, watching whales on the sea is very rare experience. Many people pay for the boat 

even though they know that they would not see marine mammals. 

Fluid simulation has never been a computationally easy feat for computers to render real time. 

To give the intuition of how computationally complex the fluid simulation (sea surface in this case) 

is, suppose we have N waves and M points on the surface of the water. We would need to compute 

𝑁 ×𝑀 calculations at every frame because we need to calculate every wave at every point. When N 

and M are small numbers, it is a feasible task, but to get realistic looking ocean simulations we want 

N and M to be up to thousands or even more. The computational complexity would be O(𝑁 ×𝑀) 

which is very expensive process.  

Realistic ocean surface simulation has been successfully achieved in movies like Titanic, Water 

World, etc. Jerry Tessendorf developed the method which was used to render realistic sea surfaces 

in said movies. [1] Unfortunately, the method purposed by Jerry Tessendorf cannot recommend an 

easy-to-use model. It requires specialized artists to tweak its parameter for getting visually plausible 

water simulations. The need to decrease the parameters to tweak is essential in spreading the 

method to wider developer audience. 

In conclusion, there are three problems we want to tackle. The first is the creation of an 

accessible marine tourism. The second is the computational complexity of water rendering methods. 

The third is the complex parameters of the ocean rendering method of Jerry Tessendorf.  

1.2 Purpose Statement 

This research concerns with finding alternative solutions to the problems stated above. The 

perfect solution in the case of marine tourism would be an accessible and approachable way of 

experiencing marine life. The solution should expand the marine tourism so that it can cover more 

people around the world while suggesting quality services. For the second problem, we would like 

to make the simulation with better and more efficient way so that computers can render at real-time 
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without breaking the simulation. Lastly, the simulation should leave as few parameters as possible 

for the end artist to tweak while producing the same realism as the method developed by Jerry 

Tessendorf. 

1.3 Contributions 

We made two primary contributions. The first is to employ different spectra algorithm that the 

one utilized by Jerry Tessendorf. Also, we provided the demonstration of the implementation in 

Unity. The second is development of a virtual tour space for whale watching tourism. 

For the first contribution, we replaced the Phillips spectra used by Jerry Tessendorf with 

JONSWAP spectra model. By leveraging JONSWAP spectra, we could reduce the number of 

parameters that an end artist uses to generate realistic looking shaders. Although the spectra model 

we used was developed before this research, we supplied with thorough discussions, explanations, 

and implementations of them in Unity. Since Unity does not provide built-in water system, 

developers usually need to program their own. Without good understanding of mathematics behind 

the water simulations, graphics card programming, and shaders which are themselves very 

complicated topics, developers find it very intimidating and time consuming to have their own 

water system. We explained all the algorithms and highlighted the simulation data flow in Unity.  

Second contribution is specializing this research towards marine tourism. We developed a 

virtual space where people can experience whale watching tours in virtual world. Additionally, we 

simulated the sea surface around Ulsan.  

1.4 List of Publications 

1. S. Alimardanov, U. Chong.: Implementation of Audio Augmented Reality using Unity 

for Whale Images. KICSP, South Korea, 2020. 

2. S. Alimardanov, U. Chong.: Audio Augmented Reality Using Unity for Marine Tourism. 

IHCI 2020, Springer Nature Switzerland AG, 2021. 

3. S. Alimardanov, U. Chong.: Modelling Whale Skeleton using Autodesk 3DS Mask. 

KICSP, South Korea, 2021. 

4. S. Alimardanov, U. Chong.: Implementation of Virtual Sea Environment by Various 

Wind Speeds. KICSP, South Korea, 2021.  
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2. Background 

In this chapter, we introduce the tools we used for this research such as Unity, and Virtual 

Reality (VR). Additionally, introduction of the wave spectra model that we intent to use as a main 

algorithm will be discussed.  

The chapter is organized as follows: Section 2.1 will give a brief introduction to the main game 

engine used to simulate the virtual space. The next Section 2.2 defines the term Virtual Reality.  

Section 2.4 gives nomenclature and basic relationship that are used throughout this chapter. Section 

2.5 explains the wave dispersion. Section 2.6 presents the wave spectrum concept, whereas Section 

2.7 discusses the directional spreading. The last Section 2.8 returns the stationary spectrum to 

calculate amplitude of the wave. 

2.1 Unity 

Unity3D is a cross-platform game creation system developed by Unity Technologies containing 

game engine and an integrated development environment (IDE). It is used to develop games for 

websites, desktops, handheld devices and consoles. Previously released on Mac OS in 2005, it was 

then expanded to target more than fifteen platforms. It can be run on Windows or Mac OS X system. 

Supported Platforms include BlackBerry 10, Windows Phone 8, Windows, OS X, Linux (mainly 

Ubuntu), Android, iOS, Unity Web Player (including Facebook), Adobe Flash, PlayStation 3, 

PlayStation 4, PlayStation Vita, Xbox 360, Xbox One, Wii U, and Wii. It includes an asset server 

and Nvidia PhysX physics engine (Cross-platform Application Development using Unity Game 

Engine). [2]  

2.2 Virtual Reality 

Virtual Reality (VR) is popular name for an absorbing, interactive, Computer-mediated 

experience in which person perceives a synthetic (simulated) environment by means of special 

human-computer interface Equipment. It interacts with simulated objects in that environment as if 

they were real. Several persons can see one another and interact in shared Synthetic environment 

such as battlefield.[3]   

Virtual Reality is a term used to describe a computer-generated virtual environment that may be 

moved through and manipulated by a user in real time. A virtual environment may be displayed on 

a head-mounted display, a computer monitor, or a large projection screen. Head and hand tracking 
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systems are employed to enable the user to observe, move around, and manipulate the virtual 

environment. 

The main difference between VR systems and traditional media (such as radio, television) lies 

in three dimensionality of Virtual Reality structure. Immersion, presence, and interactivity are 

peculiar features of Virtual reality that draw it away from other representational technologies. 

Virtual reality does not imitate real reality, nor does it have a representational function. Human 

beings have inability to distinguish between perception, hallucination, and illusions.[3]   

2.3 Forces on the Sea and Waves 

Ocean surface waves are generated by forces, such as storms, earthquakes, the gravity of sun 

and moon, but with wind being the most prominent one. Each of these forces influences one or 

more frequency bands of the electromagnetic wave spectrum. The combination of said frequency 

bands constitutes the spectrum of ocean waves. 

 

Table 2.1 A classification of ocean surface waves by period and frequency. [4]   

band as well as the corresponding frequency band. The shortest period waves are the capillary 

waves, with periods less than 0.1s. These are the first waves which one is able to notice when the 

wind starts to blow on the ocean surface, they appear like a fine structure of small ripples of nearly 

capillary dimension. Next are the ultragravity waves with periods ranging from 0.1s to 1s. The 

ordinary gravity waves observed at sea have periods varying from 1s to 30s and are composed of 

two types of waves, namely sea waves and swell. Sea waves are gravity waves directly generated 

and affected by local winds, and after the wind ceases to blow, they are called swell. More 

generally, swell consists of wind-generated gravity waves that are not significantly affected by the 

local wind; therefore, they have been generated elsewhere or at some time in the past. Beyond the 
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ordinary gravity waves there are infragravity waves, with periods between 30 s and 5 min. Then 

there are the long-period waves with periods in the range 5 min to 12 h. Their representatives in the 

sea are tsunamis and storm surges. The ordinary tidal waves represent the astronomical tides with 

fixed wave periods of about 12 h and 24 h. At the end of the spectrum there are the transtidal waves 

with periods greater than 24 h. These include the longer period components of astronomical tides. 

Ocean surface waves are also classified by their major governing forces. First, the disturbing 

force which causes the actual water displacement, and second, the restoring force which brings the 

water back to its position at rest. Winds are responsible for the generation of capillary waves, ultra-

gravity waves, gravity waves and infragravity waves, whereas long-period waves like tsunamis are 

generated by storms and earthquakes. The ordinary tides are caused by the  

 

Figure 2.1 Wave frequency band, as well as the relative amount of energy. [4]  

gravitational pull of sun and moon, transtidal waves, on the other hand, by storms, sun and moon. 

As soon as the water has been displaced, the force to bring capillary waves back to their position at 

rest is exerted by surface tension. Ultragravity waves, gravity waves and infragravity waves have 

gravity as their major restoring force. Gravity together with Coriolis act as the restoring force for 

long-period waves, ordinary tidal waves and transtidal waves. Figure 2.1 shows the entire spectrum 

of ocean surface waves and the forces responsible for various portions of the spectrum. As one can 

see, gravity is the main restoring force, therefore ocean surface waves are classified as surface 

gravity waves. Most of the energy of the spectrum is contained in two of the period ranges: the 
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ordinary gravity waves, and the ordinary tidal waves. Ordinary tidal waves, infragravity waves, 

long period waves, as well as transtidal waves do not contribute significantly to the actual optical 

appearance of the ocean in deep water, therefore we may omit them. The remaining types of waves 

have wind as the common disturbing force and are therefore grouped under the term wind generated 

waves, or in short, wind waves. Wind waves still contain a large part of the energy of the spectrum 

and range from ripples with less than a centimeter in height to huge waves more than thirty meters 

high. 

 

Table 2.2 Nomenclature and Symbols 

In order to be able to model the surface of such an intricate fluid system as the ocean, one has 

to reduce complexity. Research fields such as ocean engineering or coastal engineering employ the 

Airy wave theory to model the properties of the sea. Airy wave theory, also known as linear wave 

theory, describes the propagation of gravity waves on the surface of a homogeneous fluid with a set 

of linear equations. These equations give a decent approximation of the wave dynamics and 

kinematics with enough accuracy to model the state of the sea over a limited amount of time. 

Symbol Meaning 

λ 

T 

ω 

f 

θ 

S(ω, θ) 

S(ω) 

D(θ) 
k 

kx 

ky 

k 

ω = φ(k) 

E 

ρ 

σ 

g 

h 

U 

F 

a 

t 

ξ 

Wavelength 

Period 

Angular Frequency 

Ordinary Frequency 

Angle of wave relative to wind direction 

Wave spectrum 

Non-directional Wave Spectrum 

Directional Spreading Function 

Wave number vector, or Wave vector 

X component of Wave vector 

Y component of Wave vector 

Magnitude of wave vector 

Dispersion Relationship 

Time average of wave energy 

Density of water = 1000 

Surface Tension coefficient = 0.074 

Gravitational constant = 9.81 

Ocean depth 

Average wind speed 

Fetch 

Wave amplitude 

Time 

Swell 
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2.4 Nomenclature and Basic Relationships 

The spectra presented in this thesis rely on a large number of physical parameters and different 

variables. Table 2.2 lists the symbols we use along with their meanings. The definition of some of 

these physical properties in terms of each other are given by the following definitive equations: 

𝜔 =
2𝜋

𝑇
 (2.1) 

  

𝜔 = 2𝜋𝑓 (2.2) 

  

𝐤 = (𝑘𝑥, 𝑘𝑦) (2.3) 

  

𝑘 = √𝑘𝑥2 + 𝑘𝑦2 (2.4) 

   

𝑘 =
2𝜋

𝜆
 (2.5) 

   

𝜃 = arctan
𝑘𝑦

𝑘𝑥
 (2.6) 

 

2.5 Wave Dispersion 

In order to discuss the wave spectra in detail, we must first present a functional relationship 

between the travel speed of waves and their wavelengths. This relationship is called the dispersion 

relationship, and is written as a function relating angular frequency ω to the wave number k. The 

dispersion relationships depend on gravity, ocean depth, and other physical parameters. 

For deep water, in which the ocean depth is vastly larger than considered wavelengths, the 

dispersion relation- ship is derived as: 

𝜔2 = 𝑔𝑘 (2.7) 

A finite-depth dispersion relationship is: 
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𝜔2 = 𝑔𝑘𝑡𝑎𝑛ℎ𝑘ℎ (2.8) 

 

where h represents the ocean depth. 

We can include a term which will only influence the relation- ship when waves have very 

small wavelengths, to simulate capillary wave dispersion. Capillary waves are small waves, 

typically with wavelengths less than a few centimeters, whose dynamics are primarily governed by 

surface tension. A dispersion relationship which incorporates the effects of surface tension at small 

scales as well as the full effects of gravity and ocean depth is: 

𝜔2 =  (𝑔𝑘 +
𝜎

𝜌
𝑘3)𝑡𝑎𝑛ℎ𝑘ℎ (2.9) 

where σ represents the surface tension coefficient in units of N/m, and ρ represents the density in 

kg/m3. These relationships are all approximations, and there is a large set of different relationships 

to choose from. 

The capillary formulation given in (2.9) is nearly identical to the finite depth formulation given 

in (2.8) for waves with large wavelengths, for which the 
𝜎

𝜌
𝑘3 term approaches zero. Similarly, the 

finite depth formulation is nearly identical to the deep-water formulation in (2.7) for large 

wavelengths when tanh kh approaches unity. Therefore, we always use the capillary formulation in 

our implementation. For mathematical analysis, though, we may resort to either the Deep or Finite 

Depth representations as the need for simplification demands. 

2.6 The Wave Spectrum 

The wave spectral density function, or wave spectrum, is a function which expresses the time-

average energy of a random ocean configuration as a continuous function of angular frequency ω 

and direction θ. Spectral analysis of a height field represents the field as an infinite sum of discrete 

2d cosine waves. [5]  

A single 2D wave in an XYZ cartesian coordinate system, with Z up, can be described by the 

following equation: 

𝜂𝑖(𝑥, 𝑦, 𝑡) = 𝑎𝑖cos[𝑘𝑖(cos 𝜃𝑖 + sin 𝜃𝑖) − 𝜔𝑖𝑡 + 𝜖𝑖] (2.10) 
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where a is an amplitude, ω is the angular frequency of the wave, k is the wavenumber, θ is the 

direction of the wave counterclockwise from the positive x-axis, 𝑡 is time, and 𝜖 is the phase offset. 

Using vector notation, 

𝐫 = (𝑥, 𝑦)

𝐤𝑖 = (𝑘𝑖cos 𝜃, 𝑘𝑖sin 𝜃)

= (𝑘𝑥𝑖, 𝑘𝑦𝑖)
 

𝜂𝑖(𝐫, 𝑡) = 𝑎𝑖cos(𝐤𝑖. 𝐫 − 𝜔𝑖𝑡 + 𝜖𝑖) (2.11) 

Because 𝜔 and 𝜃 are both functions of 𝐤, a single wave is characterized entirely by the numbers 

(𝐤𝑖, 𝑎𝑖, 𝜖𝑖). The entire ocean can be represented as just a sum of infinitely many of these 2𝐷 waves: 

𝜂(𝐫, 𝑡) =∑  

∞

𝑖=0

𝑎𝑖cos(𝐤𝑖 ⋅ 𝐫 − 𝜔𝑖𝑡 + 𝜖𝑖) (2.12) 

We can formally define the wave spectrum in a useful form that will allow us to relate the spectrum 

to amplitudes in spectral space [5] : 

𝑎𝑖
2

2
≈ 𝑆(𝜔𝑖, 𝜃𝑖)Δ𝜔𝑖Δ𝜃𝑖 (2.13) 

Each distinct random ocean surface has one and only one spectrum associated with it, and just 

as each surface is unique, each spectrum is unique. The different spectral models we discuss below 

in detail are intended to represent the average over a very large number of unique random oceans 

with the same physical characteristics. [6]  

The directional wave spectrum 𝑆(𝜔, 𝜃) is written as the product of a non-directional spectrum 

𝑆(𝜔) and a directional spreading function 𝐷(𝜔, 𝜃): 

𝑆(𝜔, 𝜃) = 𝑆(𝜔)𝐷(𝜔, 𝜃) (2.14) 

We present independent models for each component, starting with the non-directional spectra. 

2.6.1 The JONSWAP Spectrum 

Based on analysis of data collected as part of the Joint North Sea Wave Observation Project 

(JONSWAP), Hasselmann [7] that the oceans never reach a fully developed state. Nonlinear 
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interactions between waves, breaking of large wave crests, directional diffusion of wave energy, 

and turbulence in the wind itself all contribute to the continued development of waves. [5]   

Hence an extra and somewhat artificial factor was added to the Pierson-Moskowitz spectrum [8] 

In order to improve the fit to their measurements. The JONSWAP spectrum is thus a Pierson-

Moskowitz spectrum multiplied by an extra peak enhancement factor 𝛾𝑟.The JONSWAP spectrum 

is formulated as follows: 

𝑆𝐽𝑂𝑁𝑆𝑊𝐴𝑃(𝜔) =
𝛼𝑔2

𝜔5
exp (−

5

4
(
𝜔𝑝

𝜔
)
4

) 𝛾𝑟 (2.15) 



𝑟 = exp −
(𝜔 − 𝜔𝑝)

2

2𝜎2𝜔𝑝
2

𝛼 = 0.076 (
𝑈2

𝐹𝑔
)

0

. 22

𝜔𝑝 = 22 (
𝑔2

𝑈𝐹
)

𝛾 = 3.3

𝜎 = {
0.07 𝜔 ≤ 𝜔𝑝

0.09 𝜔 > 𝜔𝑝

 

where 𝐹 is the fetch, which is the length of the area over which the wind is acting on the water, 

formally defined as “the distance, from a lee shore”. The fetch term can be intuitively understood as 

the abstract size of the wind event over distance and time that is producing the waves. Young [9] 

presents an extremely detailed look at the measurement, geometry, and effects of fetch on wave 

spectra. 

The JONSWAP Spectrum is similar to the Pierson Moskowitz spectrum, but waves continue to 

grow as distance and time grow (fetch), with a much more pronounced peak. Aesthetically, this 

means that the primary waves are strongly visible, with other wavelengths relatively damped out. 

This produces a much better visual match to photographs of ocean states. 

2.6.2 The Texel MARSEN ARSLOE (TMA) Spectrum  

The JONSWAP Spectrum [10] was fit to observations of waves in deep water. Kitaigorodskii 

[11] studied how deep-water spectra could be adapted to match field observations for shallow water 
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equilibrium ranges. They developed a frequency dependent function of ocean depth which can be 

applied as a multiplier to a deep-water spectrum. This is known as the Kitaigorodskii Depth 

Attenuation Function, and takes the form: 

Φ(𝜔ℎ) = [
(𝑘(𝜔, ℎ))−3

∂𝑘(𝜔, ℎ)
∂𝜔

(𝑘(𝜔,∞)))−3
∂𝑘(𝜔∞)
∂𝜔

] (2.16) 

where 𝜔ℎ is a dimensionless frequency defined by 𝜔√ℎ/𝑔. This is an intimidating function at first 

glance, but when plotted as a function of 𝜔ℎ, as seen in Figure 2.2, we see that the function takes a 

very simple shape that we can easily approximate. An approximation for 

 

Figure 2.2 𝛷(𝜔, ℎ) as a function of 𝜔ℎ [5]  

Φ(𝜔, ℎ) given in Thompson and Vincent [12] is: 

Φ(𝜔, ℎ) ≈ {

1

2
𝜔ℎ
2  if 𝜔ℎ ≤ 1

1 −
1

2
(2 − 𝜔ℎ)

2  if 𝜔ℎ > 1

 

This approximation has less than 4% error over the plotted domain Hughes [10] . A smooth 

step function from 0 to 2.2 or a stretched and translated tanh function will also work. 

Wonderfully, for all the detail and care taken, the final form of the spectrum is just the product 

of the JONSWAP spectrum and the Kitaigorodskii Depth Attenuation function: 

𝑆TMA(𝜔) = 𝑆JONSWAP (𝜔)Φ(𝜔, ℎ) (2.17) 

The incorporation of depth damping alleviates a significant challenge for artists working to 

create plausible oceans in an environment. 
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2.7 Directional Spreading 

The study of how wave energy disperses directionally, relative to the primary wind direction, is 

extremely elaborate. From a theoretical perspective, the amount of spreading is a function of energy 

concentration in each wavelength, which is related to the notion of the sea's development, and is 

therefore a function of the primary, wind speed, the fetch, and the spectrum. Furthermore, there is a 

distinction between the directional spreading of the locally affected Sea versus the directional 

spreading of the Swell, which is wave, energy that travels into an area from excitation by wind or 

storm elsewhere. [13] [5]   

The Directional Spreading function is written 𝐷(𝜔, 𝜃) . It multiplies the non-directional 

spectrum function 𝑆(𝜔) to produce the directional spectrum 𝑆(𝜔, 𝜃), as shown in equation (2.14). 

Any form of 𝐷(𝜔, 𝜃) must satisfy the condition: 

∫  
𝜋

−𝜋

𝐷(𝜔, 𝜃)d𝜃 = 1 (2.18) 

2.7.1 Mitsuyasu Directional Spreading 

Mitsuyasu [14] fit a directional data set captured with a cloverleaf buoy to a function with a 

single shaping parameter, 𝑠, of a form: 

𝐷(𝜔, 𝜃) = 𝑄(𝑠)|cos(𝜃/2)|2s (2.19) 

where 𝑄(𝑠) is a normalization factor to satisfy the condition in (2.18). Ochi [13] provides a closed-

form approximate solution for 𝑄(𝑠)expressed in terms of the Euler gamma function: 

𝑄(𝑠) =
22𝑥−1

𝜋

Γ(𝑠 + 1)2

Γ(2𝑠 + 1)
 (2.20) 

The parameter 𝑠 is fit to the data as follows: 

𝑠 = {
𝑠𝑝(𝜔/𝜔𝑝)

5
𝜔 ≤ 𝜔𝑝

𝑠𝑝(𝜔/𝜔𝑝)
−2.5

𝜔 > 𝜔𝑝

 (2.21) 

where 𝜔𝑃 is the peak angular frequency for the non-directional spectrum, and 𝑠𝑝 is calculated from 

𝜔𝑝 and physical parameters as follows: 
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𝑠𝑝 = 11.5(𝜔𝑝𝑈/𝑔)
−2.5

 (2.22) 

2.7.2 Hasselmann Directional Spreading  

Hasselmann [7] fit the JONSWAP data set to produce a directional spreading function that uses 

form in Equation (2.19), but with s computed differently: 

𝑠 = {
6.97(𝜔/𝜔𝑝)

4.06
𝜔 ≤ 𝜔𝑝

9.77(𝜔/𝜔𝑝)
−2.33−1.45((𝑈𝜔𝑝/𝑔)−1.17)

𝜔 > 𝜔𝑝

 (2.23) 

2.8 Initial Wave Spectrum and Directional Spreading 

The initial state consists of two 2D arrays of complex numbers, each of which is (𝑁/2) + 1 in 

width (in the x dimension) and 𝑁 in height, where 𝑁 represents the width and height of the desired 

spatial height field. In our system, we constrain 𝑁 to be a power of two, though most FFT [15] 

software can handle arbitrary sizes. When iterating in spectral space, the iteration coordinate is over 

discrete values of the wave vector 𝐤. However, our spectra have all been written in terms of the 

variables (𝜔, 𝜃). To change variables correctly, the change of variables theorem has to be employed. 

The said step gives the equation below: 

𝑆(𝑘𝑥, 𝑘𝑦) = 𝑆(𝜔, 𝜃)
d𝜔

d𝑘
/𝑘 (2.24) 

The relationship between wave amplitude and the wave spectrum was described in equation 

(2.13), which can be solved for the mean amplitude: 

𝑎‾(𝑘𝑥, 𝑘𝑦 , Δ𝑘𝑥Δ𝑘𝑦) = √2𝑆(𝑘𝑥, 𝑘𝑦)Δ𝑘𝑥Δ𝑘𝑦 (2.25) 
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3. Implementation 

The previous chapter discussed the wave spectrum concept, a theoretical framework developed 

by oceanographic research to describe the distribution of wave energy among ocean surface waves 

which have been exposed to identical conditions, such as wind speed and distance to shore. Based 

on wave spectra we are able to synthesize ocean surfaces of great variety: from a perfectly calm sea, 

over one slightly agitated by the wind, to one with massive waves caused by a storm. But to be able 

to visualize such diverse seas in a convincing manner we are dependent on more data than surface 

elevation alone. Therefore, as described by Tessendorf, [1] we may capitalize on the spectral 

representation of ocean waves to obtain three distinct additional datasets. One, high-quality normal 

vectors by deriving the ocean surface’s slope vectors in frequency space. Two, displacements to 

transform the gentle form of the sea into a more agitated one, where the waves are more similar to 

Gerstner waves than to sinusoids. Three, the first-order partial derivatives of aforementioned 

displacements, as they allow us to deduce the locations on the ocean surface where foam and spray 

may arise. Each of the three datasets requires us to construct additional spectra, all derived directly 

from the ocean surface elevation spectrum. 

Alongside data synthesis, it is the rendering of a water body as large as the ocean that poses a 

challenge. The variety of possible camera views may range from closeups of the water surface to 

vistas where the sea spans all the way to the horizon. In the former case we would like to be able to 

observe small-scale detail on the water surface, such as ripples caused by gravity-capillary waves. 

The latter case is not difficult to handle in principle, because the ocean surface data we synthesize is 

seamlessly tileable. Still, we would prefer that the viewer may not be able to notice that the ocean 

surface repeats itself in all directions. To tackle both issues at once, we adopt the level-of-detail 

approach taken by Eric Bruneton and Dupuy [16] and Bruneton. [17] We compute a set of ocean 

surface tiles of differing size, where each tile samples a different part of the wave energy spectrum. 

By combining the tiles, we may extend the sum of waves as far as into the gravity-capillary wave 

domain. As for the tiling artifacts, even though we are unable to entirely remove periodicity by 

combing multiple tiles, we are at least able to increase the period to the least common multiple of 

the different tile sizes. 

As one may already guess, we are burdened with a significant number of Fourier Transforms, 

based on both the number of spectra per tile (surface elevation, slopes, displacements, first order 
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derivatives of the displacements), and the number of different tiles. Thus, we need to make sure to 

keep the computational workload on an acceptable level for real-time display. We chose to tackle 

the issue at hand in a twofold manner. First, key properties of the ocean surface spectrum allow us 

to accelerate the computation of its Inverse Fourier Transform considerably. Second, we reduce the 

amount of spectral data to transform. We achieve the latter by improving upon the level-of-detail 

approach by Eric Bruneton and Dupuy [16] and Bruneton [17] with a multi-resolution scheme, 

where specific datasets are generated at a lower resolution than the other ones. 

The remainder of this chapter is organized as follows: Section 3.1 gives a compact summary of 

ocean surface synthesis by means of a wave energy spectrum. Section 3.2 discusses the equations of 

slopes and displacements. Section 3.3 shows the heigh level data flow of the ocean simulation in 

Unity. In addition, sub-section 3.3.1 is dedicated for the demonstration of the spectrum 

implementations in unity compute shaders.  

3.1 Spectrum Synthesis 

Using the spectra we discussed in the previous chapter, we defined surface elevation as follows: 

𝜂(𝐱, 𝑡) =∑  

𝐤

1

√2
(𝜉𝑟 + i𝜉𝑖)√2𝑆(𝜔)𝐷(𝜃, 𝜔)

𝑑𝜔(𝒌)

𝑑𝑘

1

𝑘
Δ𝑘𝑥Δ𝑘𝑧e

i𝜔(𝐤)𝑡ei𝐤𝐱 (3.1) 

where 𝜉𝑟  and 𝜉𝑖  are random scalars drawn from the Standard Normal Distribution. Both the 

wavevector domain 𝐤  and the spatial domain 𝐱  are of resolution 𝑁 × 𝑁 , where 𝑁  is a natural 

number, and a power of two. The latter requirement is a concession to the Fast Fourier Transform 

algorithm, which works fastest at such resolutions. Moreover, the spatial domain x has an extent of 

𝐿 × 𝐿, thus the grid point spacing of the wave vector domain is as follows: 

Δ𝑘𝑥 = Δ𝑘𝑧 = Δ𝑘 =
2𝜋

𝐿
 

We may subsume part of Equation (3.1) into the following: 

ℎ0(𝒌) =
1

√2
(𝜉1 + 𝑖𝜉2)√2𝑆(𝜔)𝐷(𝜃, 𝜔)

𝑑𝜔(𝒌)

𝑑𝑘

1

𝑘
Δ𝑘𝑥Δ𝑘𝑧 (3.2) 
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where ℎ0(𝐤) represents a random generated spectrum based on wave energy spectrum. As long as 

the wavevector domain and the wave energy spectrum do not change, ℎ0 does not change either. 

Hence, it is necessary to generate ℎ0  only once for a specific set of parameters such as area, 

resolution, wind and fetch. As ℎ0  by itself has no notion of time, we still need to take care of 

animation. Based on Equation (3.1) and (3.2) we may write: 

ℎ(𝐤, 𝑡) = ℎ0(𝐤)e
i𝜔(𝐤)𝑡 (3.3) 

3.1.1 Hermitian Wave Spectrum 

The spectrum ℎ(𝐤, 𝑡) from Equation (3.3) is not Hermitian for two reasons. First, the real-

valued part of the spectrum would need to be an even function, which is only the case if the 

directional spread employed by the wave energy spectrum is centrosymmetric. Only two of the 

directional spreading functions presented in this work are centrosymmetric: the Unified spectrum's 

and the Phillips spectrum. Second, each element of ℎ0(𝐤) is generated in combination with a pair of 

random numbers, which makes it close to impossible to end up with matching pairs ℎ0(−𝐤) =

ℎ0(𝐤)
∗ . As we would like to profit from the performance gains an optimized Inverse Fourier 

Transform for real-valued functions offers, we are in need of a Hermitian spectrum. Thus, we may 

rewrite Equation (3.3) as follows: 

ℎ(𝐤, 𝑡) = ℎ0(𝐤)𝑒
𝑖𝜔(𝑘)𝑡 + ℎ0(−𝐤)𝑒

−𝑖𝜔(𝑘)𝑡 (3.4) 

which gives us a Hermitian spectrum, independent of both the generated random numbers and 

whether the wave energy spectrum is an even function or not. 

Note: Surface elevation 𝜂 gives the same results for Equation (3.3) and Equation (3.4). Still, 

Equation (3.3) requires a standard Inverse Fourier Transform with a complete complex-valued 

source spectrum and a complex-valued result array of the same size. The real-valued part of the 

result array represents the surface elevation, whereas the imaginary valued part is a by-product 

which holds no relevant information and is therefore to be discarded. 

3.2 Slopes and Displacements 

At this point we can compute surface elevation. For lighting purposes, we also need to find the 

surface’s slope vectors to be able to compute the surface’s normal vectors. The simplest way to compute 
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the slope is through finite differences in the spatial domain of the surface. Such an approach is efficient 

memory- and computation-wise, but may lack quality, because it can be a poor approximation to the 

slope of waves with small wavelengths. We are able to obtain more precise slope vectors by employing 

spectral differentiation. Spectral differentiation allows us to find the derivatives of a function via the 

Fourier Transform. 

First, we will look at the more simple, one-dimensional case of spectral differentiation. We reduce 

the spatial domain as well as the wavevector domain from beforehand to one dimension. Let N be the 

resolution of the spatial and wavenumber domains, and L the size of the spatial domain. Moreover, let α 

∈ ℕ with −
𝑁

2
 ≤ α < 

𝑁

2
, let the spatial domain be 𝑥 ∈ 𝛼

𝐿

𝑁
, and let the wavenumber domain be 𝑘 ∈ 𝛼

2𝜋

𝐿
. 

Let g(k) be the Discrete Fourier Transform of f (x), then we may write the Inverse Discrete Fourier 

Transform as follows: 

𝑓(𝑥) = ∑  

𝑘

𝑔(𝑘)ei𝑘𝑥  

If we follow the lead of the continuous Fourier Transform, then, in the discrete case, we may compute 

the nth derivative of f (x) as follows: 

d𝑛𝑓(𝑥)

d𝑥𝑛
= ∑  

𝑘

(i𝑘)𝑛𝑔(𝑘)ei𝑘𝑥  (3.5) 

Johnson [4] shows that Equation (3.5) is not correct for odd n in combination with even N. For 

example, if f (x) is a real function, then g(k) is Hermitian. But ik g(k) is not Hermitian for even N 

therefore the first order derivative of f (x) would end up being a complex-valued function instead of a 

real-valued one. To get correct results for all n and N, we rewrite the above equation as follows: 

d𝑛𝑓(𝑥)

d𝑥𝑛
= ∑  

𝑘

𝑑(𝑘, 𝑛)𝑔(𝑘)ei𝑘𝑥  (3.6) 

 𝑑(𝑘, 𝑛) = {
0  if 𝑛 odd, and 𝑁 even, and |𝑘| =

𝑁

2

2𝜋

𝐿
,

(i𝑘)𝑛 else. 
 (3.7) 

Now we may go back to the two-dimensional case, with our original two-dimensional domains x and 

k. The resolution of said domains is 𝑁 × 𝑁, the size of the spatial domain is 𝐿 × 𝐿. Let g(k) be the 

Discrete Fourier Transform of f (x), then we may write the Inverse Discrete Fourier Transform [18] in 

two dimensions as follows: 
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𝑓(𝐱) = ∑  

𝐤

𝑔(𝐤)ei𝐤𝐱 

Based on Equation (3.6), and by reusing Equation (3.7) for both dimensions (N and L are equal for both 

dimensions), we find the derivatives of f(x): 

∂𝑛+𝑚𝑓(𝐱)

∂𝑥𝑛 ∂𝑧𝑚
= ∑  

𝐤

𝑑(𝑘𝑥 , 𝑛)𝑑(𝑘𝑧 , 𝑚)𝑔(𝐤)ei𝐤𝐱 (3.8) 

where x and z denote the two components of vector x, and 𝑘𝑥 and 𝑘𝑧 the two components of wavevector 

k respectively. As we need to find the surface slope vector, we need to compute the surface elevation’s 

first order partial derivatives. Given surface elevation η(x, t), we obtain the two-dimensional surface 

slope vector s as follows: 

𝐬(𝐱, 𝑡) = [
∂𝜂(𝐱, 𝑡)

∂𝑥
,
∂𝜂(𝐱, 𝑡)

∂𝑧
] (3.9) 

We leave it as an exercise for the reader to substitute the terms η(x, t) and h(k, t) into Equation (3.8) 

to be able to compute the surface slope vector as given in Equation (3.9). 

The two spectra which constitute the surface slope vector in the wavevector domain are Hermitian. 

Therefore, we are able to apply the optimization, which allows us to combine both spectra into one, 

obtaining both components of the surface slope vector with just one Inverse Fourier Transform. 

3.2.1 Normal Vectors 

In this work we employ a right-handed Cartesian coordinate system where the positive Y-axis points 

in the opposite direction of earth’s gravity. The two-dimensional surface slope vector lies in the XZ-

plane of the world space coordinate system. Based on the surface slope vector we may find the unit 

length surface normal vector n as follows: 

𝐧 =
(−𝑠𝑥 , 1, −𝑠𝑧)

∥∥(−𝑠𝑥, 1, −𝑠𝑧)∥∥
 

Where sx and sz denote the two components of slope vector s as obtained by Equation (3.9). 

3.2.2 Displacements 

The waves generated with the methods presented up to now tend to have rounded peaks and troughs, 

which is typical for fair weather conditions. But we also would like to be able to synthesize waves 
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matching poor weather conditions, such as strong winds or even storms. During such weather, ocean 

waves are sharply peaked at their tops and flattened at the bottoms. Tessendorf [1] describes a method 

based on the Fourier Transform to produce such choppy waves. The concept is simple: displace the grid 

points of the spatial domain in the XZ-plane, with the displacement varying locally with the waves. Note 

that the displacement is a two-dimensional vector, therefore we end up computing a vector field. Similar 

to spectral differentiation, we compute an Inverse Fourier Transform of the spectrum h, where the latter 

is modified by an additional term. We may write the displacement vector field as follows: 

𝑫(𝒙, 𝑡) =  [𝐷𝑥(𝒙, 𝑡), 𝐷𝑧(𝒙, 𝑡)] 

 
(3.10) 

with 

𝐷𝑥(𝐱, 𝑡) = ∑  

𝐤

𝑑(𝑘𝑥 , 𝑘)ℎ(𝐤, 𝑡)e
i𝐤𝐱 (3.11) 

  

𝐷𝑧(𝐱, 𝑡) = ∑  

𝐤

𝑑(𝑘𝑧 , 𝑘)ℎ(𝐤, 𝑡)e
i𝐤𝐱 (3.12) 

  

𝑑(𝑙, 𝑘) = {
0  if 𝑁 even, and 𝑘 = 0 or |𝑙| =

𝑁

2

2𝜋

𝐿

−i
𝑙

𝑘
 else. 

 (3.13) 

where the term d(l, k), in addition to make sure the resulting spectrum is Hermitian, also avoids a 

division by zero at k = 0. Because the spectra on the righthand side of Equations (3.11) and (3.12) are 

Hermitian, we are again able to obtain both components of the displacement vector field with just one 

Inverse Fourier Transform. 

Given grid point x = (x, z), time t and surface elevation η(x, t), we may write the corresponding three-

dimensional, vertically displaced vertex coordinate as follows: 

𝐯(𝐱, 𝑡) = [
𝑥

𝜂(𝐱, 𝑡)
𝑧

] (3.14) 
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With displacement vector D(x, t) at hand, according to Tessendorf (1999) we may compute the three-

dimensional, vertically and horizontally displaced vertex coordinate as follows: 

𝐰(𝐱, 𝑡) = [

𝑥 + 𝑢𝐷𝑥(𝐱, 𝑡)
𝜂(𝐱, 𝑡)

𝑧 + 𝑢𝐷𝑧(𝐱, 𝑡)
] (3.15) 

here 𝑢 ∈ ℝ  is a user-controlled parameter to scale the importance of the displacement vector. We have 

found that the above formula is correct as long as 𝑢 ≤ 0, otherwise the effect is the opposite of what we 

want to achieve. Looking at Equation (3.15), one can see that it is not the wave heights that are altered, 

but instead the grid points on the XZ-plane are transformed based on the spatial structure of the  

 

Figure 3.1: Red: the original wave profile. Blue: the displaced wave profile, note the step tops and the 

flattened walleys (u = -3). [4]  

 

Figure 3.2: Background: the original wave profile. Foreground: the displaced wave profile, with some of the 

self-intersections highlighted. We chose a large displacement scaling parameter (u = -7.5) to better 

emphasize the effect of self-intersection. [4]  
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height field. This particular transformation accomplishes the effects we sought: the waves’ peaks are 

sharpened, and the waves’ valleys are broadened. Figure 3.1 shows two profiles of the wave height 

along one direction, where one profile uses displaced coordinates, while the other does not. 

3.2.3 Slopes after Displacement 

Based on Figure 3.1 one may see that the application of displacements does not only alter the 

underlying grid points, but as a direct consequence the surface’s slope, too. Hence, we need to adjust our 

computation of the slope vector to the new circumstances. Given surface elevation η(x, t), displacement 

vector D(x, t), and grid point transformation x + uD(x, t), according to Dupuy and Bruneton , private 

communication] we obtain the two-dimensional surface slope s as follows: 

𝐬(𝐱, 𝑡) = [

∂𝜂(𝐱, 𝑡)
∂𝑥

1 + 𝑢
∂𝐷𝑥(𝐱, 𝑡)

∂𝑥

,

∂𝜂(𝐱, 𝑡)
∂𝑧

1 + 𝑢
∂𝐷𝑧(𝐱, 𝑡)

∂𝑧

] (3.16) 

where u is the displacement scale parameter. Now, in addition to surface height η, displacement vector D, 

and the slopes of η, we also need to compute a partial derivative of Dx and Dz each. Again, we may 

compute the latter two by means of spectral differentiation, see Equation (3.8).  

3.2.4  Self-Intersections 

The method by Tessendorf we use to generate choppy waves is not devoid of drawbacks. As shown 

in Figure 3.2, some of the displacement vectors we compute may be large enough to cause the displaced 

geometry to self-intersect. Near the top of some waves the surface, actually, passes through itself, and as 

a consequence invert, with the surface normal pointing inwards instead of outwards. We may get rid of 

this undesired side-effect in a rather simple way: reduce the magnitude of displacement scaling parameter 

u. On the other hand, Tessendorf suggests that we use said self-intersections to our advantage, because 

they may be able to signal the breaking of waves, as well as the production of foam and spray. Hence, we 

need to be able to test for such self-intersections in an efficient manner. Tessendorf recommends 

computing the determinant of the Jacobian matrix of the transformation from grid point x to displaced 

grid point x + uD(x, t). Based on the determinant we may decide if self-intersection is taking place. First, 

we need the Jacobian matrix of the grid point transformation g(x, t) = x + uD(x, t). The Jacobian matrix 

is the matrix of all first order partial derivatives of a vector valued function. As grid point transformation 
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g maps from ℝ2 to ℝ2 , the Jacobian matrix is 2 × 2  in size. Let J be the Jacobian matrix of 

transformation g, then we may write: 

𝐉(𝐱, 𝑡) = [
𝐽𝑥𝑥 𝐽𝑥𝑧
𝐽𝑧𝑥 𝐽𝑧𝑧

] = [
1 + 𝑢

∂𝐷𝑥(𝐱, 𝑡)

∂𝑥
𝑢
∂𝐷𝑥(𝐱, 𝑡)

∂𝑧

𝑢
∂𝐷𝑧(𝐱, 𝑡)

∂𝑥
1 + 𝑢

∂𝐷𝑧(𝐱, 𝑡)

∂𝑧

] 

Next, we compute the determinant of the Jacobian matrix: 

det(𝐉(𝐱, 𝑡)) = 𝐽𝑥𝑥𝐽𝑧𝑧 − 𝐽𝑧𝑥𝐽𝑥𝑧 

If the Jacobian determinant at x is positive, then g preserves orientation near x. If it is negative, g 

reverses orientation. We are interested in the latter case, because wherever the surface self-intersects, it 

actually folds back on itself via a loop, and a loop requires a reversal of orientation. One can see that 

wherever the surface self-intersects, the Jacobian determinant is negative. Figure 3.3 depicts a displaced 

surface, as well as the corresponding Jacobian determinants. One can see that wherever the surface self-

intersects, the Jacobian determinants is negative. 

 

Figure 3.3: Blue: the displaced wave profile (u = 7.5). Green: the Jacobian determinant. Note, that each 

instance of surface self-intersection is accompanied by negative Jacobian determinants. [4]  
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3.3 Implementation in Unity 

Finally, we implement the spectra and start simulation in Unity. Compute shaders, C# scripts and 

surface shaders are used for the rendering of the ocean surface (Figure 3.4).  

Compute shaders are programs that run on the graphics card, outside of the normal rendering 

pipeline. They can be used for massively parallel GPGPU algorithms, or to accelerate parts of game 

rendering. Usually, compute shader files are written in HLSL (High Level Shader Language) and 

compiled or translated into all necessary platforms automatically. Thus, we use terms “Compute 

shader” and “HLSL” interchangeably. Compute shaders are responsible for calculation of the 

spectrum. In addition, we exploited an IFFT [18] implementation in compute shaders to delegate 

heaviest calculations away from CPU.  

Firstly, compute shaders input initial data, such as wind speed, fetch etc. Secondly, it calculates 

the wave spectrum (Section 3.1.1), displacements (Section 3.2.2), slopes (Section 3.2.3). Up until 

this point everything calculated is in the frequency domain. At the third step, we convert the data 

from frequency domain to discrete time domain using IFFT.  

 

Figure 3.4 Implementation of the Sea Surface rendering in Unity Engine. 

A Unity C# script is used to control the data flow. For example, it gets input from an artist 

(unity developer) and sends it to the HLSL program. When HLSL finishes the calculations, C# 

script retrieves the results. Meanwhile, we calculate the ocean geometry in C#. Since the spectrum 

gives the wave heights not the geometry itself, we need geometrical body to apply those values. 

Consequently, we generate the geometry in C#.  
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Next, C# sends the values of the spectrum as well as the surface geometry to a unity surface 

shader. Surface shaders, as the name implies, define the physical characteristics of Materials. They 

are responsible for both calculating the final color of each pixel within a Material and performing 

the light calculations that define the shading of each pixel on the surface. Most surface shaders in 

Unity are extensions of the default Standard Surface Shader, which makes the creation process 

more intuitive and allows artists to define the look of their surfaces more freely.  

The data that unity surface shader inputs contains displacements, and derivatives of the 

displacements. In the shader, the displacements are used to modify the vertices of the ocean 

geometry. The derivatives of the displacements are used to calculate normals. Normals themselves 

are parameters that help the surface shader to apply colors and shadows.  

Foam effects are also applied in the unity surface shader. However, the detection of the foam 

points is done using the determinant of Jacobian matrices as described in Section 3.2.4. When the 

determinant has a negative value, the shader applies the foam texture.  

3.3.1 Spectrum Calculations in Compute Shaders 

In this section, implementations of JONSWAP spectrum with TMA correction and Directional 

Spreading are demonstrated.   

The first algorithm that HLSL calculates is the JONSWAP spectrum. Algorithm 1. shows the 

spectrum in HLSL code. In the “if-else” statement, surface tension coefficient, 

𝜎(𝑠𝑖𝑔𝑚𝑎), 𝑖𝑠chosen based the difference between 𝜔𝑎𝑛𝑑𝜔𝑝. The “r” variable at the following 

line is the power of peak enhancement factor, 𝛾. Then, we put all variables together and calculate 

the JONSWAP spectrum. Note that TMA correction [19] is also applied here.  

In Algorithm 2, the directional spreading function as shown in Section 2.7 is implemented. At 

the first line, a single shaping parameter, s, is calculated with additional swell parameter. C. 

Horvath [5] recommends including the swell parameter to generate visually plausible water 

simulation. Swell parameter is not defined in this research. An interested one can find thorough 

definition of the swell in the reference [5] At the second line of Algorithm 2, two directional 

spreading algorithms are linearly interpolated to produce mixed directional spreading. The first 

directional spreading function is the one which Jerry Tessendorf [1] is used. Again, the definition of  
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float JONSWAP (float omega, float g, float depth, SpectrumParameters pars) 
{ 
 // Choosing sigma value based on omega and omega at peak 
 float sigma; 
 if (omega <= pars.peakOmega) 
  sigma = 0.07; 
 else 
  sigma = 0.09; 
 
 // Peak enhancement factor calculation 
 float r = exp(- pow((omega - pars.peakOmega), 2)  
  / (2 * pow(sigma, 2) * pow(pars.peakOmega, 2))); 
  
 // 1/W  
 float oneOverOmega = 1 / omega; 
 
 // Wp/W -- omega at peak divided by omega. 
 float peakOmegaOverOmega = pars.peakOmega / omega; 
 
 // JONSWAP spectrum algorithm 
 float jonswapSpectrum = pars.scale  

* TMACorrection(omega, g, depth)  
     * pars.alpha  
     * pow(g, 2) 
     * pow(oneOverOmega, 5) 
     * exp(-1.25 * pow(peakOmegaOverOmega, 4)) 
     * pow(abs(pars.gamma), r); 
 
 return jonswapSpectrum; 
} 

Algorithm 1. JONSWAP spectrum with TMA correction in Compute Shader code. 

this algorithm is not included. In order to find further information, refer to [1] [5]  “Cosine2s” 

method in the “lerp” function is the implementation of Equation (2.19). It inputs difference of theta 

and user specified angle, a single shaping parameter, s. Then, the “Cosine2s” method returns 

directional spreading value. The algorithm produces values which is linearly interpolated between 

methods of Tessendorf. [1] [5]  

float DirectionSpectrum(float theta, float omega, SpectrumParameters pars) 
{ 
 // Calculation of s, a single shaping parameter, using swell 
 float s = SpreadPower(omega, pars.peakOmega) + 16  
    * tanh(min(omega / pars.peakOmega, 20)) * pow(pars.swell, 2); 
 
 // Linear interpolation between two directional spreading functions 
 return lerp(2 / 3.1415 * pow(cos(theta), 2), Cosine2s(theta - pars.angle, s), 

pars.spreadBlend); 
} 

Algorithm 2. Directional Spreading in Compute Shader code. 

At the end, JONSWAP spectrum and Directional Spreading functions are multiplied to get the 

initial spectrum of the water simulation.    
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4. Results 

The Chapter 3 showed the implementation of the spectra in Unity compute shaders. In this 

chapter, rendering realistic Ulsan Sea environment will be discussed. The most important parameter 

in the sea simulation of this research is the wind speed. By altering it, we will be able to render any 

type of sea surfaces. As stated in chapter 2, this ocean simulation assumes the sea to be deep where 

the sea surface disturbing forces will not affect the water near underwater bed. Therefore, we will 

not simulate shallow water near beaches. 

 

Figure 4.1: Implementation results. A) Calm sea surface 10m/s wind speed. B) Sea surface with 

medium wind speed (4m/s). C) Agitated sea surface of 10m/s wind speed. 

To simulate deep Ulsan Sea surface, we have gathered high, medium, and small wind speeds. 

By applying the wind speed, realistic rendering of the sea surface is achieved. In addition to the sea 

rendering, we have also simulated marine mammals, such as dolphins and whales. The resulting 

scene then demonstrated on the whale watching tour boat to gather feedback from viewers.  

This chapter concerns with showcasing implementation results. Section 4.1 discusses the sea 

rendering outputs where Section 4.2 presents the survey results collected on the whale watching 

tour ship. 
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4.1 Ulsan Sea Surface Rendering 

The spectra model we have used in this rendering will be able to handle waves ranging from 

capillary waves to very agitated ones. The data taken from Ulsan Sea statistics shows that the 

highest wind speed on Ulsan Sea was around 10m/s on October 31, 2021. 

 

Figure 4.2: Additional 3D models added to the scene. A, D) are dolphin models. B, C) are whale 

models. 

Figure 4.1 is the resulting sea surface rendering and Figure 4.2 is the 3D models which were used to 

create a virtual sea environment. To achieve as realistic as possible virtual water surface rendering, 

we need to tweak several parameters such as color, foam intensity, wind speed and more. 

Fortunately, many other parameters need to be set only once and it will match other weather 

conditions seamlessly. The only two things we must change are wind speed and foam. Figure 4.1 

(A) shows very calm sea surface where wind speed is 0.1 and the foam intensity is zero. Figure 4.1 

(B) renders the sea surface with the wind speed going up to 4m/s as well as an increased foam 

intensity. At this stage, the sea is calmer compared to the Figure 4.1(C). But the waves still have 

relatively high picks and stay agitated. Figure 4.1 (C) demonstrates the resulting agitated sea 

surface, where wind blows at the speed of 10m/s. The foam intensity is also modified to match the 

behavior of the waves.  

4.2 Survey Results 

On October 31, 2021, we have conducted a survey targeting the participants of Ulsan Whale 

watching tour ship, Table 4.1. The attendees were shown 3 types of videos where the different sea 

  

  



29 

 

surface states and animated dolphins were simulated. After video, participants were asked to fill 

survey sheets consisting of several questions. The questions were started with asking the age and 

gender of the visitors and, also, asked about the importance of Simulated Ulsan Sea environment in 

the customer satisfaction where watching whale on the real ocean has very low probability. 

34 people participated in the survey of which 41% male and 55% female. The participants who 

took our survey answered 4 questions. The first question was about whether they hoped to see 

whales or dolphins on the sea before boarding on the ship. 21 people or 61% of them answered 

“Yes” meaning they had the intention of watching the marine mammals. Unfortunately, seeing 

whales on the sea are getting complicated human experience. 

The second question was if they could not see whales on the sea in real life, would they watch 

them in the virtual. This time 29 (85%) positive answers were collected.  

For the third question, we asked participant if the videos we had prepared that day was 

interesting and enjoyable to them. 88% participants wrote positive answers. The last question about 

their support for the development of this kind of products showed strong support reaching 84% of 

people. 

№ Questions “Yes” “No” “I don’t know” 

1 Did you ride a sightseeing boat thinking you 

could see a real whale? 

68% 19% 13% 

2 If you cannot see whales on the sea in real life, 

would you like to watch them in virtual reality? 

91% 9% 0 

3 Did the video you watched today helped you to 

understand whales and enjoy more? 

88% 6% 6% 

4 If these whale videos continue to be developed, 

would you like to take a tour boat again in the 

future? 

84% 3% 13% 

Table 4.1: The survey results. 

In conclusion, the possibility of people watching whales on the sea in real life is decreasing. At 

the same time, people have the same amount of interest to explore marine life and getting on the 

boat with the intention of seeing them even though they know it might not happen. The virtual 

experience could be cheap and more accessible alternative solution to the problem. Indeed, the 

survey have shown interest and support of people.  
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5. Conclusions 

We stated in the introduction that in this work we seek to synthesize animated ocean surfaces 

which are both believable and computationally feasible. To achieve said objective, we picked the 

choppy wave algorithm by Jerry Tessendorf, which adopts the wave spectrum concept from 

oceanographic research for computer graphics purposes. Tessendorf approximates the perturbations 

produced by the water surface by sampling the wave spectrum in frequency space via the Fast 

Fourier Transform algorithm. The FFT algorithm is highly efficient and generates a perturbation 

pattern which seamlessly tiles the ocean surface. An additional upside of the wave spectrum 

approach is that oceanographic research provides a wide range of wave spectra which are 

specifically tailored to the deep water of the open ocean. Said wave spectra are employed for 

oceanographic forecasts and simulations, therefore they give a high degree of realism. Thus, we 

chose to implement a wave-energy spectra that is well established in oceanographic literature.  

The resulting sea surface is then presented to people on the tour boat to check if it would really 

be an alternative solution for difficulties described in the introduction. Several video clips showing 

the sea surface renderings with whales and dolphins in the scene were played on the whale 

watching tour boat in Ulsan. We have simulated different weather conditions. The disturbing farce 

was wind speed and restoring force was gravitational constant of the Earth. After the video, we 

have conducted a survey. The survey was about people expectations and their thoughts about the 

development of alternative, virtual tourism services to solve problems which are stopping people 

enjoy marine life. People overall showed high degree of interest. The positive answers constituted 

more than 80% of the results.  

5.1 Limitations 

This study has mostly concerned with simulating ocean surface where water depth was assumed 

as deep as the disturbing force on the surface do not affect the water near the bed. Hence, the 

simulations of waters near beaches are not possible with the current methodology. Another, 

limitation is certain weather conditions, such as typhoons, is not covered. The approach we have 

applied uses wind speed to generate waves. The wind has straight direction and it con not be 

modified to generated circular motion as it can be seen in typhoons.  
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The other limitation is the lack of water splashes. Although we have generated foam effect to 

look the rendering realistic, believable water splashes could not be achieved. Boat and whale wakes 

were another form of water splash which would drastically increase the realism of the simulation. 

Additionally, the computational complexity at the current state is not low enough to support smart 

phones and other computer that does not contain GPUs. 

5.2 Future Works 

The future research work is largely around solving the limitations of current research. Shallow 

water simulations, underwater simulations, water splashes and expanding the coverage of more 

diverse weather conditions are some of many. Additionally, the integration of blockchain 

technologies where people can buy and sell their digital assets and donate for marine tourism using 

crypto currencies as a form of payments are planned. In the future the realism of the ocean surface 

should be increased, and the computational complexity needs to be adjusted to be executed on 

various types of user gadgets, for example, smartphones.  
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