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Abstract 

Extreme floods occur more frequently than in the past due to climate warming, and they 

have more profound socio-economic impacts. Flood forecasting is one of the important 

components of flood risk management and mitigation but is subject to multiple uncertainties 

caused by meteorological inputs, initial states, model structures, and model parameters. Numerous 

research efforts investigated the uncertainties in the tasks of flood prediction. However, at present 

we entirely lack comprehensive studies that can handle long-lasting challenges of computational 

burden, inaccuracy, and unreliable predictability in real-time ensemble flood forecasting with 

uncertainty quantification. This dissertation aims to gain comprehensive knowledge of building 

novel modeling frameworks for computationally efficient and accurate real-time ensemble flood 

forecasting with uncertainty quantification. 

 In this dissertation, a series of innovative methodologies have been developed for accurate, 

robust, and efficient uncertainty quantification of hydrological models in predicting floods. These 

methods include: (i) a unified modeling framework based on generalized likelihood uncertainty 

estimation (GLUE) framework coupled with polynomial chaos expansion (PCE) for fast and 

robust quantifying and understanding the parameter uncertainty of hydrological model in flood 

predictions; (ii) a novel modeling framework, for computationally efficient and accurate real-time 

ensemble flood forecasting with uncertainty quantification, which combines three modeling 

techniques together for the first time: surrogate modeling, parameter inference, and data 

assimilation; (iii) a novel, robust and efficient surrogate data assimilation approach for real-time 

flood forecasting using PCE to replace internal processes of Ensemble Kalman filters (EnKFs); 
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and (iv) a new surrogate model, named polynomial chaos-kriging (PCK), that can provide reliable 

ensemble results, even for extreme events that deviate significantly from the training data space. 

Corresponding major accomplishments of this dissertation are abridged as follows. (i) The 

PCE surrogate model is firstly integrated into the GLUE framework to offset the computational 

demands of an uncertainty quantification task. It provides the benefits of an interpretable, 

probabilistic framework on which to make inferences about the drivers of model behavior, as well 

as the sensitivities of the model’s output to the uncertain inputs. (ii) The novel framework of real-

time ensemble flood forecasting embraces the benefits of three modeling techniques together for 

the first time: (1) PCE surrogates can significantly decrease computational time; (2) Parameter 

inference (GLUE) allows for model faster convergence, reduced uncertainty, and superior 

accuracy of simulated results; and (3) EnKFs assimilate errors that occur during forecasting. This 

framework provides a holistic, robust approach to accounting and understanding the uncertainties 

of hydrological parameters and vastly reducing the computational burden of ensemble simulations 

in real-time flood prediction. This modeling framework contributes to a shift in modeling paradigm 

arguing that complex, high‐fidelity hydrologic and hydraulic models should be increasingly 

adopted for real‐time and ensemble flood forecasting. (iii) The power of surrogate approaches is 

further exploited to develop new surrogate filters by replacing the internal processes of the EnKFs 

with PCE. A comprehensive investigation into how to configure a surrogate filter indicates that 

the new partial (replacing part of original filters) and invariant (valid for entire time periods) 

approaches are preferred in terms of accuracy and efficiency, which helps directly reduce the 

number of dimensions and bridge the gap between hindcasting and real-time forecasting. This 

proposed surrogate filter will be a promising alternative tool for performing computationally-

intensive data assimilation in high-dimensional problems. And (iv) a new surrogate model named 
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polynomial chaos-kriging (PCK) is developed by combining the advantages of two well-known 

surrogate models, PCE and kriging. This combination enabled streamflow prediction for extreme 

events that deviated significantly from the trained data space, and allowed for quantifying 

predictive uncertainty robustly and efficiently. This finding will ultimately inspire novel designs 

toward a potentially more comprehensive surrogate model. 
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CHAPTER I 

 

Introduction 

“Without some goals and some efforts to 

reach it, no man can live” 

- (Dostoyevsky, F) 

 

 

1.1 Motivation of the research 

1.1.1 Significances and challenges of flood forecasting 

Floods are one of the most destructive natural hazards and lead to severe social and 

economic impacts in most corners of the world (Fig. 1.1) [Dottori et al., 2018; Paprotny et al., 

2018]. In the last decade, flooding has affected more than two billion people (Fig. 1.2a) with the 

estimated socio-economic losses that are more than $662 billion with the trend of growth over the 

globe (Fig. 1.2b) [CRED-UNISDR, 2015; Ward et al., 2017]. This trend is mainly induced by a 

rising number of global extreme floods caused by the growth of mega urban regions, deforestation, 

and extreme precipitation events [Tanoue et al., 2016; Paprotny et al., 2018]. Where the latter 

reason is recognized as the most cause of flooding (bar plot in Fig. 1.1) with recent extreme 

precipitation events that have highlighted the vulnerability of settlements and infrastructures to 

flooding [Bloschl et al., 2020]. 

The magnitude and frequency of extreme flooding events are likely to rise due to global 

warming [Donat et al., 2016; Prein et al., 2016]. Given the worldwide significance of floods, early 



2 

 

warning systems and flood forecasting need to be as robust as possible. Adequate warnings allow 

people to protect themselves and their property from the harmful effects of floods [WMO, 2018]. 

This motivates the need to improve the operational flood risk system, in particular, flood 

forecasting, in order to serve as a premise for early warning, preparing, and give timely emergency 

plans to mitigate the damage of floods. [Cloke and Pappenberger, 2009; Thomas E. Adams, 2016; 

WMO, 2018]. 

 

Figure 1.1. Count of flood events (color bar) and fatalities (orange circle) for the period of 1985-

2019 for each country and 2.5o × 2.5o latitude-longitude grid, respectively. The bar plot represents 

the number of causes of flooding. The data sources: Global Active Archive of Large Flood Events. 
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Figure 1.2. (a) Annual counts of global flood events (black bar), exposed population (blue shaded), 

and fatalities (red shaded) affected flood from 1985 to 2019. (b) Reported global flooded area (blue 

shaded) and economic loss (black line) from 1985 to 2019. The data sources: Global Active 

Archive of Large Flood Events. 

Hydrologic, hydraulic, or coupled models (called process-based models) are the most 

commonly used methods to predict flooding phenomena [Bogner and Pappenberger, 2011; Liu et 

al., 2012; Li et al., 2015; Si et al., 2015], although advanced data-driven models currently have 

been confirmed to produce high accuracy for flood forecasting without in the light of physical laws 

underlying the rainfall-runoff process [Bai et al., 2016; Hu et al., 2019b; Jiang et al., 2020]. 

Numerous process-based models have been developed from simplified, lumped, and conceptual to 

sophisticated, spatially distributed, and highly interrelated processes of water movement, energy, 

topography, vegetation processes, even anthropogenic impacts in a watershed [Vrugt et al., 2006a]. 

Each model has adopted various representations of the physical processes for water flow over an 
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entire area presented by mathematical equations [Smith et al., 2004; Vrugt et al., 2005; Kim et al., 

2013; Maxwell et al., 2014; Kim and Ivanov, 2015].  

Although the growing availability of hydrologic observations at fine spatial and temporal 

scales nowadays helped to improve understanding of the physics and dynamics of the hydrologic 

system and develop more advanced and sophisticated models [Reed et al., 2004; Liu and Gupta, 

2007; Smith et al., 2012]. Their outputs (e.g., streamflow) still exists extensive uncertainties due 

to a lack of knowledge of the involved physical processes and their interactions, the infeasibility 

of identifying model parameters, and difficulties in measuring (or estimating) initial and current 

states [Beven, 1989; Butts et al., 2004; Ajami et al., 2007; Moradkhani and Sorooshian, 2008; 

Ivanov et al., 2010; Kim et al., 2012a; DeChant and Moradkhani, 2014; Kim and Ivanov, 2014; 

Kim et al., 2016a; Mockler et al., 2016]. Furthermore, due to the complexities of natural 

phenomena represented by equifinality [Beven and Freer, 2001; Beven, 2006], hysteresis [Wei and 

Dewoolkar, 2006; Ivanov et al., 2010; Fatichi et al., 2015], non-uniqueness [Beven, 2000; 

McKenna et al., 2003; Kim and Ivanov, 2014; Kim et al., 2016a], non-linearity [Kitanidis and Bras, 

1980; Xie and Zhang, 2010; Kim and Ivanov, 2015], and internal variability [Nikiema and Laprise, 

2011; Mondal and Mujumdar, 2012; Lafaysse et al., 2014; Kim et al., 2016c; Kim et al., 2016b; 

Kim et al., 2018],  perfect predictions using numerical models are infeasible. Thus, quantifying 

and reducing uncertainties has been a major challenge for researchers in flood prediction and in 

water planning and supply, sediment management, and reservoir operation [Faber and Stedinger, 

2001; Todini, 2004; Benke et al., 2008; Saad and Ghanem, 2009; Kim et al., 2016c; Kim et al., 

2016b]. Without consideration of the associated uncertainty, predicted results would be limited 

value to real-world flood management. 
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1.1.2 The need for an accurate and computationally efficient ensemble flood forecasting 

framework 

In the past decades, numerous approaches have been developed to quantify the predictive 

uncertainty of hydrologic responses [Beven and Binley, 1992; Moradkhani et al., 2005c; Vrugt et 

al., 2005; Weerts and El Serafy, 2006; Han et al., 2007; Lohani et al., 2014], but this remains a 

challenge. First, a number of optimization techniques (such as downhill simplex [Nelder and Mead, 

1965], the shuffled complex evolution (SCE-UA) method [Duan et al., 1992], and the particle 

swarm optimization [Kennedy and Eberhart, 1995]) have been developed to find the single best 

fitting parameter set. They were successfully used in diverse engineering applications, but the 

calibration techniques still lack the ability to properly treat the various uncertainties inherent in the 

system [Moradkhani et al., 2005a]. Furthermore, although a set of parameters obtained from a 

watershed best represents the behavior of the basin, it may not work for other watersheds [Beven, 

1989; Beven and Binley, 1992; Moradkhani and Sorooshian, 2008]. Failure to identify a range of 

parameter values may increase uncertainty in the model outputs [Moradkhani and Sorooshian, 

2008]. 

Second, data assimilation methods such as the ensemble Kalman filter (EnKF) [Evensen, 

1994] and the particle filter (PF) [Arulampalam et al., 2002] also have received much attention, 

especially in real-time forecasting. This is because these techniques continuously update model 

states and parameters whenever new observations are available to improve model predictability 

[Vrugt et al., 2005; Liu et al., 2012; Moradkhani et al., 2012]. However, some parameters of 

hydrologic models may not be completely identifiable, and therefore do not show convergence 

during the assimilation process for complex domains [Moradkhani et al., 2005a; Moradkhani et 

al., 2012]. Moreover, the potential collapse of EnKF (in which all ensemble members result in a 
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similar value) can be resolved by updating each ensemble member with an independently 

perturbed observation [Burgers et al., 1998]; in other words, the magnitudes of model states or 

parameters cannot converge to the values corresponding to observations even after many repeated 

attempts at the assimilation process. The PF method has an advantage over EnKF in terms of 

reducing numerical instability because it provides particle weights and uses non-Gaussian state-

space models [Liu et al., 2012]. On the other hand, the PF method is computationally more 

expensive than EnKF, as it generally requires more ensemble members based on the sequential 

Monte Carlo method [Moradkhani et al., 2005a; Liu et al., 2012]. 

Alternative probabilistic methods have been developed to deal with uncertainty 

quantification. They are mostly based on the Monte Carlo (MC) procedure, which provide the 

posterior distribution of parameters [Beven, 2006]. The most common uncertainty quantification 

methods include: Generalized Likelihood Uncertainty Estimation (GLUE) [Beven and Binley, 

1992], Bayesian recursive estimation technique (BaRE) [Thiemann et al., 2001], the Metropolis 

method [Kuczera and Parent, 1998], the Shuffled Complex Evolution Metropolis (SCEM-UA) 

[Vrugt et al., 2003a; Vrugt et al., 2003b], and the DiffeRential Evolution Adaptive Metropolis 

(DREAM) scheme [Vrugt et al., 2008b]. The GLUE method attempts to identify a variety of 

parameter sets (namely “behavioral parameter set”) given likelihood functions and cutoff threshold 

values [Moradkhani and Sorooshian, 2008]. The BaRE approach can simultaneously perform 

parameter estimation and hydrologic prediction. Uncertainties associated with parameter estimates 

are updated recursively, and uncertainty in output predictions becomes smaller when 

measurements are successively assimilated [Thiemann et al., 2001]. The Metropolis method 

developed by Kuczera and Parent [1998] uses a random walk that adapts to a true probability 

distribution to describe parameter uncertainty. The SCEM-UA is the extension of the SCE-UA 
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algorithm, which combines the strengths of the Metropolis algorithm, controlled random search, 

competitive evolution, and complex shuffling to continuously update a proposal distribution and 

evolve it into a posterior target distribution [Vrugt et al., 2003b]. The DREAM scheme is an 

adaptation of the SCEM-UA using a novel Markov Chain Monte Carlo (MCMC) sampler. It shows 

excellent efficiency for complex, highly nonlinear, and multimodal target distributions [Vrugt et 

al., 2008b]. It is generally necessary to increase the number of repeated model runs to successfully 

capture the uncertainty of model predictions using these methods [Beven, 2006; Moradkhani and 

Sorooshian, 2008]. Consequently, thousands of simulations have to be run to obtain the uncertainty 

in the outputs because of the high dimensionality of the parameter space and heterogeneity of input 

fields. The traditional method for uncertainty quantification is not always feasible for the high-

fidelity model, which is computationally expensive [Todini, 2004; Beven, 2006; Rosenzweig et al., 

2021]. Even using computational advancements (a workstation, a computational cluster, or cloud 

computing infrastructure), the computational burden still remains a barrier for the task of real-time 

ensemble flood forecasting [Wing et al., 2019; Hosseiny et al., 2020; Xu, 2020; Rosenzweig et al., 

2021].  

Recently, surrogate modeling approach gradually becomes an attractive solution to address 

the computational issue in the task of uncertainty quantification [Razavi et al., 2012b; Wang et al., 

2018; Dwelle et al., 2019; Zhang et al., 2020]. This approach substitutes a high-cost deterministic 

model with a cheap-to-run “surrogate” model that reproduces comparable physical properties but 

has a lower computational cost [Razavi et al., 2012b; Asher et al., 2015; Tran et al., 2020]. The 

central premise for a surrogate model to provide results consistent with the original model is to be 

able to approximate the relationship between input and output similar to the original model [Wang 

and Shan, 2007; Smith, 2013; Asher et al., 2015; Rajabi, 2019]. The use of a surrogate model is 
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computationally inexpensive compared to the original process-based model, and it can be 

rigorously sampled for uncertainty propagation, parameter inference, or sensitivity analysis. A full 

analysis of the uncertainty for any outputs of interest is carried by running a Monte Carlo 

simulation with the surrogate model. Due to the efficiency of the surrogate, thousands of 

simulations can be finished in a reasonable time [Asher et al., 2015; Dwelle et al., 2019; Zhang et 

al., 2020]. Considering abundant published works, Gaussian process or kriging [Santner et al., 

2003], and polynomial chaos expansion (PCE) [Wiener, 1938] were preferred in statistics and 

engineering (often computational fluid dynamics) [Le Maı̂tre et al., 2002; Zhao and Xue, 2010; 

Razavi et al., 2012b; Baştuğ et al., 2013; Asher et al., 2015; Fan et al., 2016; Schöbi et al., 2017; 

Ricciuto et al., 2018; Wang et al., 2018; Dwelle et al., 2019; Rajabi, 2019; Wang et al., 2020; 

Zhang et al., 2020]. However, prior studies only stop at using the surrogate model to deal with 

inverse problems. (e.g., uncertainty quantification or sensitivity analysis), little research has been 

done with it on real-time flood predictions and, especially, it’s extrapolating capability. 

1.2 Research scope 

As listed in works of literature, at present we still lack solutions of an accurate and 

computationally efficient ensemble flood forecasting approach with uncertainty quantification. 

Addressing the corresponding shifts across accuracy, predictability, extrapolating capability, and 

computational efficiency in flood forecasting is one of the most critical challenges facing society 

nowadays. This dissertation aims to examine the existing problems in ensemble flood forecasting 

and suggest novel methodologies to provide solutions to those problems. Research scopes are 

manifest in the following chapters. 
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In Chapter 2, an efficient framework of uncertainty quantification is presented, where a 

well-known generalized likelihood uncertainty estimation (GLUE) framework of Beven and 

Binley [1992] is revisited. It is applied to quantify the parameter uncertainty of a lumped, 

deterministic rainfall–runoff model (Nedbør–Afstrømnings model, NAM) in hydrologic 

simulations. Firstly, two new indexes based on the efficiency and accuracy performance of GLUE 

are formed to optimize the cutoff threshold of likelihood function. The appropriate number of 

ensemble behavioral sets is then specified to maintain the sufficient range of uncertainty but to 

avoid any unnecessary computation. To offset the computational cost of quantifying the 

uncertainty, the GLUE is coupled with a PCE surrogate model, where the size of experimental 

design and polynomial degree are reasonably determined. Specifically, the least angle regression 

method is introduced to construct a more accurate surrogate model with a smaller size of training 

data compared to a surrogate model using a regular regression method. The performance aspects 

of the developed framework (e.g., accuracy and efficiency) are presented by applying the 

framework to quantify the parameter uncertainties in hydrologic simulations for 8 and 9 flood 

events that occurred in the Thu Bon watershed in Vietnam and Hongcheon watershed in South 

Korea, respectively. 

Chapter III introduces a novel modeling framework that simultaneously improves accuracy, 

predictability, and computational efficiency in real-time ensemble flood forecasting. It embraces 

the benefits of three modeling techniques integrated together for the first time: surrogate modeling, 

parameter inference, and data assimilation. The use of PCE surrogates significantly decreases 

computational time. Parameter inference (using GLUE) allows for model faster convergence, 

reduced uncertainty, and superior accuracy of simulated results. EnKFs assimilate errors that occur 

during forecasting. To examine the applicability and effectiveness of the integrated framework, 18 



10 

 

difference approaches are developed according to how surrogate models are constructed, what type 

of parameter distributions are used as model inputs, and whether model parameters are updated 

during the data assimilation procedure. The performance in terms of accuracy, predictability, and 

computational efficiency of 18 approaches is investigated by applying them to forecast floods that 

occurred in the Vu Gia watershed in Vietnam. In light of the parsimony and good skill of the 

modeling framework, the novelty and applicability of the developed modeling framework are 

discussed. 

A novel, robust and efficient approach to surrogate data assimilation is presented in 

Chapter IV with the aim of addressing the computational challenge due to the requirement of 

repetitive model evaluations in real-time ensemble flood forecasting. A total of eight surrogate 

filters are developed by replacing the whole or internal processes of EnKFs with PCE surrogates, 

where the formulation of these surrogate filters can be characterized according to their different 

surrogate structures, building systems, and assimilating targets. An advanced optimization scheme, 

named sequential experimental design-polynomial degree (SED-PD), is also advised to 

compensate for the potential shortcomings of the existing sequential experimental design (SED). 

Its dual optimization system resolves the issue of SED by which the value of the polynomial degree 

had to be selected ad-hoc or by trial and error; its multiple stopping criteria ensure convergence 

even when an accuracy metric does not monotonically decrease over iterations. The chapter also 

provides investigations of the accuracy and efficiency performances of these surrogate filters and 

two original filters (i.e., EnKF and Dual EnKF) with both synthetic and real data experiments of 

data assimilation for flood forecasting in the Vu Gia watershed in Vietnam. Several discussions 

are then presented to highlight the necessity and transferability of surrogate filters and SED-PD in 

applications of data assimilation and surrogate construction, respectively. 



11 

 

Chapter V introduces a new surrogate model (called polynomial chaos-kriging, PCK) that 

merges PCE and Gaussian process with kriging variance. The aim of this combination is to enable 

the surrogate model to predict streamflow for extreme events that deviated significantly from the 

trained data space, and allowed for quantifying predictive uncertainty robustly and efficiently. The 

predictability skill and superiority of PCK compared to PCE and OK (ordinary kriging) are 

investigated through experiments of quantifying the uncertainty to eight test flood events using a 

modeling framework that applies GLUE to surrogate models. Additionally, the effects of the 

acceptance threshold types on the model accuracy and efficiency are discussed. And a new 

“performance score” is formed to indicate how much better the accuracy and efficiency of the 

surrogate model are over the original model, thereby providing a guideline for selecting an 

appropriate surrogate emulator. 

The last chapter summarizes this dissertation and addresses perspectives for ongoing and 

future directions of the research. The major conclusions and critical assumptions of the conducted 

research are presented, along with the feasibility of expanding the developed modeling frameworks 

for ensemble flood forecasts associating with complex real-world engineered systems.  
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CHAPTER II 

 

Efficient uncertainty quantification of hydrologic 

predictions with a surrogate model 

“You don’t have to be great to start, but you 

have to start to be great” 

- (Ziglar, Z) 

 

2.1 Introduction 

Extreme floods occur more frequently than in the past due to climate warming, and they 

have more profound socio-economic impacts [Hirabayashi et al., 2013; Winsemius et al., 2015]. 

Providing highly accurate predictive information and presenting warning messages in a timely 

manner play a key role in mitigating the risk of floods. Hydrologic, hydraulic, or coupled models 

are the most commonly used methods to predict flooding phenomena. Each model has adopted 

various representations of the physical processes for water flow over an entire area [Smith et al., 

2004; Vrugt et al., 2005; Kim et al., 2013; Maxwell et al., 2014; Kim and Ivanov, 2015]. However, 

these predictive models always involve uncertainty due to a lack of knowledge of the involved 

physical processes and their interactions, the infeasibility of identifying model parameters, and 

difficulties in measuring (or estimating) initial and current states [Beven, 1989; Butts et al., 2004; 

Ajami et al., 2007; Moradkhani and Sorooshian, 2008; Ivanov et al., 2010; Kim et al., 2012a; 

DeChant and Moradkhani, 2014; Kim and Ivanov, 2014; Kim et al., 2016a; Mockler et al., 2016]. 

Thus, quantifying and reducing uncertainties has been a major challenge for researchers in flood 
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prediction and in water planning and supply, sediment management, and reservoir operation 

[Faber and Stedinger, 2001; Todini, 2004; Benke et al., 2008; Saad and Ghanem, 2009; Kim et al., 

2016c; Kim et al., 2016b]. 

Numerous approaches have been proposed to quantify the uncertainty associated with 

model parameters in hydrologic prediction. First, a number of optimization techniques (such as 

downhill simplex [Nelder and Mead, 1965], the shuffled complex evolution (SCE-UA) method 

[Duan et al., 1992], and the particle swarm optimization [Kennedy and Eberhart, 1995]) have been 

developed to find the single best fitting parameter set. They were successfully used in diverse 

engineering applications, but the calibration techniques still lack the ability to properly treat the 

various uncertainties inherent in the system [Moradkhani et al., 2005a]. Furthermore, although a 

set of parameters obtained from a watershed best represents the behavior of the basin, it may not 

work for other watersheds [Beven, 1989; Beven and Binley, 1992; Moradkhani and Sorooshian, 

2008]. Failure to identify a range of parameter values may increase uncertainty in the model 

outputs [Moradkhani and Sorooshian, 2008]. 

Second, data assimilation methods such as the ensemble Kalman filter (EnKF) [Evensen, 

1994] and the particle filter (PF) [Arulampalam et al., 2002] also have received much attention, 

especially in real-time forecasting. This is because these techniques continuously update model 

states and parameters whenever new observations are available to improve model predictability 

[Vrugt et al., 2005; Liu et al., 2012; Moradkhani et al., 2012]. However, some parameters of 

hydrologic models may not be completely identifiable, and therefore do not show convergence 

during the assimilation process for complex domains [Moradkhani et al., 2005a; Moradkhani et 

al., 2012]. Moreover, the potential collapse of EnKF (in which all ensemble members result in a 

similar value) can be resolved by updating each ensemble member with an independently 
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perturbed observation [Burgers et al., 1998]; in other words, the magnitudes of model states or 

parameters cannot converge to the values corresponding to observations even after many repeated 

attempts at the assimilation process. The PF method has an advantage over EnKF in terms of 

reducing numerical instability because it provides particle weights and uses non-Gaussian state-

space models [Liu et al., 2012]. On the other hand, the PF method is computationally more 

expensive than EnKF, as it generally requires more ensemble members based on the sequential 

Monte Carlo method [Moradkhani et al., 2005a; Liu et al., 2012]. 

Alternative probabilistic methods have been developed to deal with uncertainty 

quantification. They are mostly based on the Monte Carlo (MC) procedure, which provide the 

posterior distribution of parameters. The most common probabilistic methods include: Generalized 

Likelihood Uncertainty Estimation (GLUE) [Beven and Binley, 1992], Bayesian recursive 

estimation technique (BaRE) [Thiemann et al., 2001], the Metropolis method [Kuczera and Parent, 

1998], the Shuffled Complex Evolution Metropolis (SCEM-UA) [Vrugt et al., 2003a; Vrugt et al., 

2003b], and the DiffeRential Evolution Adaptive Metropolis (DREAM) scheme [Vrugt et al., 

2008b]. The GLUE method attempts to identify a variety of parameter sets (namely “behavioral 

parameter set”) given likelihood functions and cutoff threshold values [Moradkhani and 

Sorooshian, 2008]. The BaRE approach can simultaneously perform parameter estimation and 

hydrologic prediction. Uncertainties associated with parameter estimates are updated recursively, 

and uncertainty in output predictions becomes smaller when measurements are successively 

assimilated [Thiemann et al., 2001]. The Metropolis method developed by Kuczera and Parent 

[1998] uses a random walk that adapts to a true probability distribution to describe parameter 

uncertainty. The SCEM-UA is the extension of the SCE-UA algorithm, which combines the 

strengths of the Metropolis algorithm, controlled random search, competitive evolution, and 
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complex shuffling to continuously update a proposal distribution and evolve it into a posterior 

target distribution [Vrugt et al., 2003b]. The DREAM scheme is an adaptation of the SCEM-UA 

using a novel Markov Chain Monte Carlo (MCMC) sampler. It shows excellent efficiency for 

complex, highly nonlinear, and multimodal target distributions [Vrugt et al., 2008b]. 

It is generally necessary to increase the number of repeated model runs to successfully 

capture the uncertainty of model predictions using the probabilistic methods. Therefore, the 

computational time must increase [Ballio and Guadagnini, 2004; Herman et al., 2013]. One of the 

methods that can offset the increase in time required to calculate uncertainty quantification is to 

use a parallel computing technique [Vrugt et al., 2006b; Vrugt et al., 2008a]. However, the 

downside of this is that the computer hardware configuration requirements lead to expensive cost 

[Cintra and Velho, 2018]. A surrogate model (also called metamodel, response surfaces, data-

driven model, or model emulator) has been proposed to address the issues that the probabilistic 

methods involve. Its main objective is to provide nearly equivalent results to those of the original 

model, quantify the degree of uncertainty more quickly, and effortlessly evaluate the sensitivity of 

model parameters [Gerstner, 1998; Xiu and Karniadakis, 2002; Berveiller et al., 2006; Blatman 

and Sudret, 2010; Blatman and Sudret, 2011; Oladyshkin and Nowak, 2012; Schobi and Sudret, 

2014]. Arising from a variety of disciplines, various surrogate models have been developed and 

implemented for water resources problems, such as Gaussian process, artificial neural networks, 

support vector machines, and polynomial chaos expansion [Baú and Mayer, 2006; Razavi et al., 

2012a; Sargsyan et al., 2014; Christelis and Hughes, 2018; Wang et al., 2018; Dwelle et al., 2019; 

Hu et al., 2019a; Rajabi, 2019; Tran and Kim, 2019; Tran et al., 2020; Wang et al., 2020; Zhang 

et al., 2020]. Among the surrogate models, the polynomial chaos expansion (PCE) method [Wiener, 

1938; Ghanem and Spanos, 1991] has drawn lots of attention, especially in hydrology studies 
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where quantifying the uncertainty of model parameters has been a major issue [Rajabi, 2019]. 

Those studies are performed specifically for flood prediction [Fan et al., 2014; Wang et al., 2015; 

Wang et al., 2017], subsurface flow [Laloy et al., 2013; Sochala and Le Maître, 2013; Meng and 

Li, 2018], and groundwater dynamics [Laloy et al., 2013; Asher et al., 2015]. PCE can mimic the 

non-linear behaviors, characteristics of the complex physical model and provide global sensitivity 

analysis easily [Dwelle et al., 2019]. Also, the use of PCE can noticeably offset the computational 

costs necessary for simulating a great number of ensemble runs, allowing for the uncertainty 

quantification to take place, even in real-time [Tran et al., 2020]. However, they did not present a 

way of optimizing their PCE constructions to quantify predictive uncertainty, as well as details of 

coupling with GLUE [e.g., Ciriello et al., 2012; Baştuğ et al., 2013; Fan et al., 2014; Wang et al., 

2015; Fan et al., 2016]. 

In this Chapter, we aim to propose a unified framework for (i) quantifying the parametric 

uncertainty of a conceptual rainfall-runoff (CRR) model integrated with the GLUE framework, (ii) 

quantifying the same uncertainty of a surrogate model built with PCE and identifying changes in 

efficiency and accuracy as compared to the deterministic model, and (iii) assessing the sensitivity 

of PCE parameters to identify whether the parameter lower/upper bounds can be further 

constrained; and then to (iv) discuss challenges existed in the use of PCE and examine/point out 

an efficient surrogate model for the original model. Wherein, the first three objectives of the 

unified framework is presented in Section 2.2, while Section 2.3 focuses on the last concerning. 
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2.2 Uncertainty quantification of hydrologic predictions with a surrogate model 

2.2.1 Methods 

2.2.1.1 Polynomial chaos expansion  

Polynomial chaos expansion (PCE) [Wiener, 1938; Ghanem and Spanos, 1991] is one of 

the propagation uncertainty methods and a powerful meta-modeling technique. The PCE method 

aims to provide a functional approximation of a computational model through its spectral 

representation with a suitably built basis of polynomial functions. In this dissertation, a surrogate 

model based on the PCE (so-called PCE model) is constructed to mimic a conceptual hydrologic 

model and quantify the parametric uncertainty of the model simulation.  

The following is a brief summary of PCE theory [Sudret, 2008; Blatman and Sudret, 2010]. 

Consider a deterministic rainfall-runoff model denoted by 𝓜. The input space of the model is 

represented by random vectors of input parameters 𝜽, and the model response, 𝑦 (i.e., streamflow) 

is:  

𝑦 = 𝓜(𝜽)      (2.1) 

The goal of this theory is to approximate the computational model, 𝓜 with the PCE model, 

𝓜𝑃𝐶𝐸(𝜽). The latter is computed with a finite sum of orthonormal polynomials for the input 

parameters. 

𝑦 ≈ 𝓜𝑃𝐶𝐸(𝜽) =  ∑ 𝜀Ψ(𝜽)𝑁Ψ−1
=0     (2.2) 

where 𝜀  is PCE model coefficients to be determined for all multi-indices;  Ψ(𝜽)  are the 

corresponding multivariate orthonormal polynomials given as the input parameters;  is a multi-

index that identifies the components of the multivariate polynomials; 𝑁𝑃  is the number of 
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deterministic model parameters 𝜽 = {𝜃𝑗 , 𝑗 = 1, … , 𝑁𝑃}; and 𝑁Ψ is the number of PCE coefficients 

(i.e., the number of polynomial expansion basis terms) determined by 𝑁𝑃  and the polynomial 

degree 𝑝 as: 

𝑁Ψ =
(𝑁𝑃+𝑝)!

𝑁𝑃!𝑝!
     (2.3) 

The multi-dimensional polynomials are constructed as the product of univariate 

orthonormal polynomials:  

Ψ(𝜽) =  ∏ Ψ𝑗

(𝑗)
(𝜃𝑗)

𝑁𝑃
𝑗=1      (2.4) 

Here, Ψ𝑗

(𝑗)
 is the univariate orthonormal polynomials of the j-th parameter of degree 𝑗 . 

Depending on the probabilistic characteristics of 𝜽, different polynomial bases can be used 

for Ψ(𝜽). Polynomial basis functions based on the Weiner-Askey scheme [Xiu and Karniadakis, 

2002] are illustrated in Table 2.1 for the commonly-used distributions of random variables.  

Table 2.1. Polynomial basis functions for probability distributions of uncertain parameters 

Distribution 

Orthogonal 

polynomial 

family 

Support 

Uniform Hermite (𝑙𝑜𝑤, 𝑢𝑝) 

Gaussian Legendre (−∞, ∞) 

Gamma Laguerre [0, ∞) 

Beta Jacobi (𝑙𝑜𝑤, 𝑢𝑝) 

 *𝑙𝑜𝑤 and 𝑢𝑝 denote the lower and upper bounds of uncertain parameters, respectively. 

When constructing the PCE model, one of the important steps is to compute the PCE 

coefficients (𝜀). Determining PCE coefficients generally depends on the number of the training 

set (so called experiment design) (𝑁) and the polynomial degree (𝑝) [Blatman and Sudret, 2010; 
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Blatman and Sudret, 2011]. Increasing these numbers requires a lot of computational resources 

(e.g., Table 2.2), and this tendency will be accelerated if more complicated models are simulated 

over a complex domain [Sudret, 2008].  

Table 2.2. Time required for computing PCE coefficients depending on the number of (a) 

experimental design (N) with p of 3, and (b) polynomial degree (p) with N of 50, for 3 flooding 

events (in seconds) (for information about flood events, see Section 2.2.2) 

(a) for Experiment design (N)  (b) for Polynomial degree (p) 

N Event 2 Event 5 Event 8  p Event 2 Event 5 Event 8 

10 1.3 1.3 7.2  1 1.4 1.4 7.9 

50 2.0 2.1 11.3  2 1.4 1.4 9.1 

100 4.0 4.1 22.4  3 1.4 1.5 10.8 

200 5.5 5.6 30.7  4 2.1 1.8 12.3 

500 7.9 7.9 43.2  5 3.2 2.8 17.0 

700 9.2 9.4 53.9  7 11.8 11.3 58.1 

1000 11.3 12.1 63.1  10 84.2 89.0 415.0 

2000 30.9 39.9 165.7  12 328.4 332.8 1455.1 

The projection method [Ghiocel and Ghanem, 2002; Le Maı̂tre et al., 2002] is one of the 

methods used to compute the PCE coefficients. Therein, 𝑁  is simply determined from a 

mathematical equation with the polynomial degree, 𝑝, and the number of model parameters, 𝑁𝑃, 

i.e., N=(p+1)
𝑁𝑃. For example, if 𝑝 is 3 and 𝑁𝑃 is 9, 𝑁 will be equal to 262,144. Repeating the 

original model based on these numbers takes a considerable amount of time. To reduce such a 

large computational time, the ordinary least square regression (OLS) method is generally 

employed in which 𝑁  can be given by the researcher [Berveiller et al., 2006; Sudret, 2008; 

Blatman and Sudret, 2010]. Specifically, the PCE coefficients can be estimated by the regression 

method as follow: 

𝜀 = argmin𝜀∈ℝ|𝐴|𝔼[(𝑦 −  ∑ 𝜀𝛂Ψ𝛂(𝜽)𝛂∈𝐴 )2]   (2.5) 

Given a collection 𝓧 = {𝒳(1), … , 𝒳(𝑁)} consisting of the number of 𝑁 sets of the parameters 𝜽 

(the set 𝓧 is called the experimental design), 𝓨 = {𝓜(𝒳(1)), … , 𝓜(𝒳(𝑁))} is the corresponding 
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model evaluation {𝒴(𝑘) = 𝓜(𝒳(𝑘)), 𝑘 = 1, … , 𝑁}. The estimates of the PCE coefficients are thus 

given by: 

𝜀̂  =  argmin𝜀∈ℝ|𝐴|
1

𝑁
∑ (𝒴(𝑘) −  ∑ 𝜀𝛂Ψ𝛂(𝒳(𝑘))𝛂∈𝐴 )

2𝑁
𝑘=1    (2.6) 

which is equivalent to: 

𝜀̂ = (𝐅𝐓𝐅)−1𝐅T𝒴     (2.7) 

where 𝐅 is so-called the information matrix of size 𝑁 × |𝐴| whose generic term reads:   

𝐅𝑘,𝛂 = Ψ𝛂(𝒳(𝑘))      𝑘 = 1, … , 𝑁;  𝛂 = 0, … , 𝑁Ψ − 1   (2.8) 

Also, note that the effect of 𝑁 on PCE results has not been investigated in the literature 

[e.g., Ciriello et al., 2012; Baştuğ et al., 2013; Fan et al., 2014; Wang et al., 2015; Fan et al., 2016] 

– this will be addressed in Sec. 2.2.3.2 in more detail. Additionally, the 𝑝  value can be 

approximated depending on the complexity of model outputs and by the subjectivity of the 

researcher, where most common values used in literature are 2 or 3 [e.g., Sochala and Le Maître, 

2013; Fan et al., 2014; Wang et al., 2015; Wang et al., 2017]. In this work, the least squares 

regression method [Berveiller et al., 2006; Sudret, 2008; Blatman and Sudret, 2010; Blatman and 

Sudret, 2011] was employed.  

2.2.1.2 Deterministic rainfall-runoff model: NAM 

Conceptually, lumped rainfall-runoff models treat the whole catchment as a uniform unit 

so that single representative values are used over the catchment for all inputs and parameters 

[Moradkhani and Sorooshian, 2008]. These conceptual rainfall-runoff models are computationally 

efficient, and therefore they are widely used in various studies. For this research, the NAM (Nedbør 

- Afstrømnings Model) was employed. The NAM [Nielsen and Hansen, 1973] is one of the widely 
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used deterministic, lumped models that simulates streamflow in the world. It is considered to be a 

very useful and flexible model and has been applied to many study regions [Madsen, 2000; Butts 

et al., 2004; Thompson et al., 2004; Liu et al., 2007; Makungo et al., 2010; O’Brien et al., 2013; 

Mockler et al., 2016]. [Madsen, 2000; Butts et al., 2004; Thompson et al., 2004; O’Brien et al., 

2013; Mockler et al., 2016]. Specifically, its design assumes three different and mutually integrated 

storages representing a surface zone, lower zone, and routing components that simulate overland 

flow, interflow, and base flow, respectively. The model requires two input forcing variables (𝑁𝐼) 

of spatially averaged precipitation and evapotranspiration, five model states (𝑁𝑆 = 5), and nine 

model parameter values (𝑁𝑃 = 9) listed in Table 2.3 [DHI, 2014]. The latter states and parameters 

control the amount of water content and the rates of release from the conceptualized storage 

compartments of the model. Because evapotranspiration is assumed to be negligible during the 

rainy season with flooding events, the number of inputs used in this study is 1 (𝑁𝐼 = 1). For more 

detail, readers can refer to DHI [2014]. 

Table 2.3. Description of the NAM model states and parameters 

 
Unit Description 

Lower 

Bound  

Upper 

Bound 

S
ta

te
s 

U mm Water content in surface storage 0 35 

L mm Water content in lower zone/root storage 0 400 

OF m3/s Overland flow 0 +∞ 

IF m3/s Inter flow 0 +∞ 

BF m3/s Base flow 0 +∞ 

P
a

ra
m

et
er

s 

Um mm Maximum water content in surface storage 5 35 

Lm mm Maximum water content in lower zone/root storage 50 400 

CQOF [-] Overland flow coefficient 0 1 

CKIF hrs Interflow drainage constant 200 2000 

TOF [-] Overland flow threshold 0 0.9 

TIF [-] Interflow threshold 0 0.9 

TG [-] Groundwater recharge threshold 0 0.9 

CK12 hrs Time constant for routing interflow and overland flow 3 72 

CKBF hrs Time constant for base flow 500 5000 
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2.2.1.3 Uncertainty quantification: GLUE 

The uncertainty of hydrologic models is influenced by various sources such as model input, 

initial conditions, boundary conditions, and model parameters. In general, it is difficult to estimate 

all these influencing factors in realistic conditions. Thus, even within the same model, a large 

number of parameter combinations may provide the same model results [Beven, 1989]. Simulation 

results obtained by models are subject to various uncertainties. This is not uncommon, especially 

in lumped hydrologic models that use homogeneous parameters for the entire domain. In this work, 

the GLUE method [Beven and Binley, 1992] was chosen to quantify the uncertainty of the lumped 

NAM caused by the parameter uncertainty. 

There are two reasons for selecting this method. Compared to other methodologies, GLUE 

is straightforward to implement, and it allows flexibility in the definition of the likelihood function 

used to separate behavioral and nonbehavioral parameter sets [Beven, 2006; Blasone et al., 2008a; 

Beven and Binley, 2014]. The behavioral sets refer to any random combination of parameters that 

qualify the preset criteria of likelihood functions among all combinations of the parameters. Then, 

“accepted behavioral runs” are defined as those simulated with the behavior parameter sets. 

Another advantage of GLUE is that it is designed to be non-intrusive, meaning that one should not 

need to modify any of the existing source codes in the deterministic models [Vrugt et al., 2008c]. 

The GLUE method includes several steps. First, a deterministic model was simulated with 

the parameter sets randomly sampled from prior distributions of parameters. In this study, the 

initial values of parameters are extracted using the Monte Carlo method from uniform distributions 

constrained with the potential ranges (see Table 2.3 where upper and lower bounds are illustrated, 



23 

 

which were adopted from DHI [2014]). Then, the performance of each model run is evaluated by 

choosing any likelihood function. As a result, only a part of the runs can be selected as the 

behavioral run. The stricter the likelihood function condition, the more accurate the simulation 

result, and the smaller the number of behavioral runs. Last, we quantified the uncertainty from the 

GLUE behavioral runs of both NAM and PCE model (Fig. 2.1). 

 

Figure 2.1. The unified framework of the hydrologic model uncertainty quantification using PCE 

and GLUE. 
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Although the GLUE has been adopted in many studies, the main difficulty of this method 

is the subjectivity of the selections of the likelihood function and cutoff threshold [Montanari, 

2005; Beven, 2006; Mantovan and Todini, 2006; Freni et al., 2008; Stedinger et al., 2008; Xiong 

and O’Connor, 2008; Freni et al., 2009b; Freni et al., 2009a; Li et al., 2010; Mirzaei et al., 2015]. 

First, the choice of the likelihood function plays a crucial role because it lays the foundation for 

determining the behavioral parameter sets [Beven and Binley, 1992]. Various likelihood functions 

have been proposed in many works [Beven and Binley, 1992; Romanowicz et al., 1994; 

Christensen, 2004; Montanari, 2005; Moriasi et al., 2007a], which quantify the closeness between 

observations and model simulations. The Nash – Sutcliffe efficiency (NSE) has been used most 

often [Freer et al., 1996; Gupta et al., 1998; Madsen, 2000; Uhlenbrook and Sieber, 2005; Kuczera 

et al., 2006; Freni et al., 2008; Stedinger et al., 2008; Gupta et al., 2009; Franz and Hogue, 2011]. 

However, several indices with different functions have been introduced in other studies to evaluate 

the model simulations including the daily root mean square estimation, the heteroscedastic 

maximum likelihood estimation for daily mean flow [Yapo et al., 1996], the peak runoff-runoff 

volume index [Hossain and Anagnostou, 2005], or a likelihood measure based on the sum of the 

absolute errors for discharge [Choi and Beven, 2007]. In this work, 3 metrics for the purpose of 

simulating a flood phenomenon were focused, namely, Nash – Sutcliffe efficiency (NSE), peak 

error (PE), and volume error (VE), which represent the shape, peak, and volume of the flood 

hydrograph, respectively [Kim et al., 2012b]. 

NSE =  1 −
∑ (𝑦𝑡

𝑜𝑏𝑠−𝑦𝑡)2T
𝑡=1

∑ (𝑦𝑡
𝑜𝑏𝑠−𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2T

𝑡=1

     (2.9) 

PE =  
|𝑦𝑚𝑎𝑥

𝑜𝑏𝑠 −𝑦𝑚𝑎𝑥|

𝑦𝑚𝑎𝑥
𝑜𝑏𝑠 × 100                (2.10) 
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VE =
|𝑉𝑜𝑏𝑠−𝑉|

𝑉𝑜𝑏𝑠 × 100              (2.11) 

Here, 𝑦𝑡
𝑜𝑏𝑠 and 𝑦𝑡 are observed and simulated streamflow at time 𝑡, respectively; T is the total 

duration of a rainfall event; 𝑦𝑚𝑎𝑥
𝑜𝑏𝑠  and 𝑦𝑚𝑎𝑥 are observed and simulated streamflow at the peak 

time of the event, respectively; and 𝑉𝑜𝑏𝑠 and 𝑉 are the total volume of observed and predicted 

hydrograph, respectively. 

Another weakness of the GLUE is its dependency on the arbitrary selection of acceptance 

thresholds for the behavioral parameter sets. Acceptance threshold values for the selected 

likelihood functions should be determined beforehand to be qualified as the behavioral set, and 

such a selection strongly influences the model results [Freni et al., 2008; Li et al., 2010]. Universal 

values for behavioral acceptance thresholds accepted in every study have not yet been reported. 

The values were rather examined separately, often relying on a researcher’s experience [Beven and 

Binley, 1992; Romanowicz et al., 1994; Freer et al., 1996; Zak and Beven, 1999; Blasone et al., 

2008a; Beven and Binley, 2014]. In this dissertation, two indices representing an accuracy and 

efficiency are proposed to identify how to quantitatively determine the cutoff values of likelihood 

functions including NSE, PE, and VE. The first index, named the accuracy index (𝐴𝐼), calculates 

the temporal average (𝑈) of the GLUE uncertainty identified here as the range between the 2.5th 

and 97.5th percentiles of the 1,000 behavioral ensemble outcomes over the entire computation time 

in the hydrograph, expressed in Eq. (2.12). This computation is repeated for varying threshold 

values of each likelihood function (i.e., 𝑖𝑑 = 1 to 17 corresponding to the range from 0.5 to 0.9 in 

0.025 increments for NSE; 𝑖𝑑 = 1 to 21 from 1 to 51% at an interval of 2.5% for PE and VE). 

Finally, the accuracy index is computed from Eq. (2.13), which is defined based on the ratio of 

temporal averages (𝑈𝑖𝑑) to the maximum (𝑈𝑚𝑎𝑥) value. 
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𝑈 =
1

𝑇
∑ (𝑦𝑡

97.5 − 𝑦𝑡
2.5)𝑇

𝑡=1     (2.12) 

𝐴𝐼𝑖𝑑 = 1 −
𝑈𝑖𝑑 

𝑈𝑚𝑎𝑥
     (2.13) 

Here, 𝑖𝑑 is an index corresponding to varying threshold values. 𝑦𝑡
97.5 and 𝑦𝑡

2.5 are the discharge 

values corresponding to the 2.5th and 97.5th percentiles of the uncertain distribution at time 𝑡. The 

other index, named the efficiency index (𝐸𝐼), defined in Eq. (2.14), first counts the number of 

model runs (𝑄) required until 1,000 behavioral sets from the GLUE procedure are obtained. Then,  

𝑄  is computed for each  𝑖𝑡 , i.e., for the identical varying threshold values of each likelihood 

function. Finally, the efficiency index is estimated by using the ratio to the maximum number of 

model runs (𝑃𝑚𝑎𝑥) among the numbers (𝑃𝑖𝑑). The values of 𝐴𝐼 and 𝐸𝐼 vary from 0 and 1. 

𝐸𝐼𝑖𝑑 = 1 −
𝑃𝑖𝑑

𝑃𝑚𝑎𝑥
     (2.14) 

Two indices proposed above are designed to have opposite tendencies – such a 

characteristic has an advantage in determining the cutoff threshold values. One could pay attention 

to the intersection point of these two index curves as an optimal value that meets some degree of 

accuracy and efficiency at the same time, which is termed behavioral acceptance threshold. 

2.2.1.4 Sensitivity analysis: Sobol’ indices and Morris methods 

Sensitivity analysis (SA) is used to evaluate how much each parameter contributes to the 

output uncertainty and allows for identification of important parameters that dominate model 

behavior [Saltelli, 2002b]. Generally, SA can be categorized into two groups of local and global 

SA. The local SA computes the changes in the model simulation by changing one parameter while 

keeping other parameters constant. However, it is often unable to produce meaningful results 

[Saltelli et al., 2004; Jiang et al., 2015]. On the other hand, the global SA investigates the changes 
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in the model by varying all parameters simultaneously. There are a couple of global SA methods 

that are widely used, such as Fourier amplitude sensitivity test (FAST) [Cukier et al., 1973], Morris 

one-at-a-time screening (MOAT) [Morris, 1991], Sobol’ sensitivity indices [Sobol', 1993], 

response surface methodology (RSM) [McKay et al., 1979a], etc. In this work, we performed a 

global sensitivity analysis based on Morris one-at-a-time screening and Sobol’ sensitivity indices.  

In the abundant literature on sensitivity measures [Sudret, 2008], the Sobol’ indices have 

received much attention since they provide accurate information for most models. Sobol’ indices 

are a variance-based sensitivity analysis that identifies parameter sensitivities by evaluating the 

variance of model output (𝑦) due to the variability of individual parameters and their parameter 

interactions [Sobol', 2001; Saltelli, 2002b; Crestaux et al., 2009]. Instead of the model output 𝑦, 

model performance measures (e.g., NSE, PE, and VE) can be used as an objective function to 

quantify the sensitivity indices [Tang et al., 2007a]. Sobol’ indices correspond to variance-based 

decomposition, as they measure fractional contributions of each parameter or group of parameters 

towards the total output variance. Specifically, the total variance, 𝐷(𝑦) is decomposed as: 

𝐷(𝑦) = ∑ 𝐷𝑎
𝑀𝑃
𝑎=1 + ∑ 𝐷𝑎𝑏𝑎<𝑏 + ⋯ + 𝐷1…𝑀𝑃

   (2.15) 

where 𝐷𝑎 is the variance of 𝑦 due to the changes of 𝑎-th model parameter, 𝜽𝑎, denoting the first-

order contribution to 𝐷(𝑦); 𝐷𝑎𝑏  is the variance of 𝑦 due to the pairwise interactions of 𝑎-th and 𝑏-

th parameters, referring to the second-order contribution. The first (𝑆𝑎), total-order (𝑆𝑇𝑜𝑡𝑎𝑙,𝑎), and 

second-order (𝑆𝑎𝑏) Sobol’ sensitivity indices can be respectively expressed as: 

𝑆𝑎(𝑦) =
𝐷𝑎(𝑦)

𝐷(𝑦)
       (2.16) 

𝑆𝑇𝑜𝑡𝑎𝑙,𝑎(𝑦) = 1 −
𝐷�̃�(𝑦)

𝐷(𝑦)
     (2.17) 
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𝑆𝑎𝑏(𝑦) =
𝐷𝑎𝑏(𝑦)

𝐷(𝐿𝑦)
      (2.18) 

where 𝐷�̃� is the variance averaged over the contributions resulting from all parameters except for 

𝜽𝑎. 

To analyze the sensitivity of NAM parameters, we outline two sensitivity indices, including 

the first-order and total-order Sobol’ indices. The computational requirements to evaluate the first 

and total order sensitivity indices is 𝑛𝑠 × (𝑁𝑃 + 2) model runs, where 𝑛𝑠 denotes the number of 

samples of each parameter for which the indices are to be calculated [Saltelli, 2002a]. 

Besides, the Morris method is also used to confirm Sobol’ indices. The Morris method 

(MOAT) is designed to work with low computational cost to determine which parameters are (i) 

negligible, (ii) linear and additive, and (iii) nonlinear or involved in interactions with other 

parameters [Jiang et al., 2015]. Herein, we used the improved version of Campolongo et al. [2007], 

with 𝑛𝑚 samples of each parameter; this method requires a total of  𝑛𝑚 × (𝑁𝑃 + 1) simulations, 

resulting in two sensitivity measures for each parameter: the mean (𝜇∗) and standard deviation (𝜎) 

values. A high value of 𝜇∗ indicates a parameter that has a significant effect on the model output, 

and the value of 𝜎 indicates that either the parameter is interacting with other parameters or it has 

non-linear effects on the model output. 

After the surrogate model (PCE model) was developed, we used the MC method to conduct 

the sensitivity analysis to input uncertain parameters [Sobol', 2001]. The number of sample of 

parameters is a key component for both the Morris and Sobol’ methods. A rough rule of thumb 

about the number of model evaluations is that at least 10 × 𝑁𝑃 sample points are needed to identify 

the component factors (i.e., parameters) [Levy and Steinberg, 2011]. In the Sobol’ method, many 

previous studies used a large sample size to analyze the sensitivity of model parameters, e.g., 8,192 
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sets were used to analyze the sensitivity of 18 model parameters [Tang et al., 2007b] while 500,000 

sets were used for 14 model parameters [van Werkhoven et al., 2009]. On the other hand, there are 

several studies using a relatively small sample size, which proved sufficient to maintain the 

accuracy and repeatability of Sobol’ analysis, e.g., a sample size of 2000 was used for 21 [Fu et 

al., 2012], 13 [Tang et al., 2007a], and 28 model parameters [Zhang et al., 2013]. Therefore, on 

the basis of prior studies and our experiment, a sample size 𝑛𝑠 of 2,000 was used, which requires 

2000 × (9 + 2) = 22,000 model runs to analyze the Sobol’ indices. For the Morris method, a typical 

𝑛𝑚 found in the literature is 10 [Neumann, 2012; Jiang et al., 2015], and thus a total number of 

10 × (9 + 1) = 100 model runs were applied. 

2.2.2 Case study 

In this research, we chose the ‘Thu Bon’ basin located in central Vietnam as the study area 

(Fig. 2.2) because it is known as a region vulnerable to flood. The watershed belongs to a tropical, 

continental monsoon region. Thus, this region has experienced intense rainfall, severe floods and 

significant damage. For example, the flood event in 1999 resulted in total damage of 29 million 

USD, 53 deaths, and 3,500 hectares of damaged fields [UNDP, 1999]. This watershed drains into 

the upstream part of the ‘Thu Bon’ River, which is one of the sub-basins of the ‘Vu Gia-Thu Bon’ 

river basin. The basin has a catchment area of 3,208 km2, a mainstream length of 105 km, and 

altitudes ranging from 15 to 2,530 m (‘Nong Son’ in Fig. 2.2). Since the slope of the terrain is very 

steep (approximately 22.4% in average), the average annual precipitation is larger than 2,000 

mm/year, and most of the rain falls from September to December (rainy season). Floods occur 

rapidly and frequently in this timeframe. The flow peak in the flooding events is averaged over 

5,000 m3/s, and the largest flow peak observed was 10,000 m3/s in 1999 at the outlet of ‘Nong 

Son’. Streamflow data used for the outlet was observed hourly at the only hydrometric station 
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within the domain. Rainfall data were also observed hourly and obtained from the four weather 

stations near the study area. The average rainfall over the basin was calculated using the Thiessen 

polygon method (Table 2.4).  

 

Figure 2.2. Study area: Thu Bon basin 

 

Table 2.4. General information of meteorological and hydrometric stations 

Station Measurement 

Coordinate of stations 
Areal weights for 

Thiessen polygons Latitude Longitude 

Tra My Rain 15°19'60"N 108°15'0"E 0.471 

Tien Phuoc Rain 15°28'60"N 108°17'60"E 0.188 

Kham Duc Rain 15°28'0"N 107°49'0"E 0.158 

Nong Son Rain, Flow 15°41'60"N 108° 3'0"E 0.183 

 

After inspecting the available data, eight flood events were specifically selected in this 

work (Table 2.5, Figs. 2.3 and 2.4). Those events were chosen to include flood events 
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corresponding to various (low, middle, and high) return periods based on a frequency analysis of 

flood events (Fig. 2.3). NAM was used to model the Thu Bon watershed for the 8 selected flood 

events. A warm-up simulation of 10 hours was additionally performed before starting to collect 

results. Results for only 3 flood events will be illustrated in the main thesis for simplicity, while 

the rest of the results are included in the Appendix A. 

Table 2.5. Characteristics of selected flood events 

Event 
Time 

[DD/MM/YYYY] 

Flood 

peak 

[m3/s] 

Flood 

frequency 

[%] 

Flood 

volume 

[million m3] 

Total 

rainfall 

[mm] 

Duration 

[hours] 

1 13/09/2015-16/09/2015 1408 92.8 169.8 176.8 84 

2 15/10/2015-17/10/2015 893 97.6 135.4 160.3 71 

3 01/11/2015-07/11/2015 2508 85.7 645.5 452 162 

4 24/11/2015-01/12/2015 1173 95.2 375.8 294.9 170 

5 12/09/2016-14/09/2016 3243 73.8 312 297.6 72 

6 31/10/2016-06/11/2016 2801 78.6 686 401.1 166 

7 31/11/2016-08/12/2016 6730 33.3 1,969.8 786 215 

8 10/12/2016-22/12/2016 8169 16.7 2,436.8 848.5 300 

 

 

Figure 2.3. Flood frequency curve for the ‘Nong Son’ station; historic peaks refer to annual 

maximum peak flows from 1978 to 2016; the flood frequency curve is fitted using the Pearson 

Type III distribution. 
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Figure 2.4. Observation of rainfall (histograms using the right axis) and discharge (lines using the 

left axis) for 3 flooding events corresponding to small, medium, and large return periods, 

respectively. 

2.2.3 Results 

2.2.3.1 Behavioral acceptance thresholds and the number of behavioral sets of GLUE 

To determine the cutoff threshold values, we designed two indices ( 𝐴𝐼  and  𝐸𝐼 ) with 

opposite tendencies. Fig. 2.5 noticeably shows that the accuracy index increases while the 

efficiency index decreases as the conditions of each likelihood function are tightened. The 

behavioral acceptance threshold values for the 8 flooding events are computed from Fig. 2.5 (and 

the Appendix A) and are summarized in Table 2.6. From this, we can determine the behavioral 

acceptance threshold as the average over the results of 8 events, resulting in values of 0.82 for 

NSE, 4.05% for PE, and 4.35% for VE. 

Table 2.6. Values of the acceptance behavioral threshold 

Event 
NSE 

[-] 

PE 

[%] 

VE 

[%] 

1 0.79 4.87 5.00 

2 0.85 4.48 4.81 

3 0.80 4.91 5.12 

4 0.81 5.41 5.17 

5 0.85 4.47 4.83 

6 0.83 2.50 3.81 

7 0.83 2.85 3.61 

8 0.83 2.93 2.48 
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Mean 0.82 4.05 4.35 

 

Figure 2.5. The acceptance threshold values of each likelihood function versus the accuracy (𝐴I) 

and efficiency (𝐸𝐼) indices of NAM model for 3 flooding events. 

 

The next question is how many behavioral sets are necessary to capture a sufficient 

uncertainty range. It is apparent that the more behavioral sets one has, the larger the uncertainty 

range becomes. However, we should determine the optimal number of ensembles for the 

behavioral sets to avoid excessive runtime. In previous studies, the ensemble size was chosen to 

be random or large enough to fully identify the confidence interval of the uncertainty [Cameron et 

al., 2000; Beven and Freer, 2001; Hossain and Anagnostou, 2005; Choi and Beven, 2007; Blasone 

et al., 2008b; Jin et al., 2010; Shen et al., 2012]. The optimal ensemble size can be determined 

based on a visual inspection of several key features of the hydrograph (i.e., flood peak and volume), 

rather than using a random selection. Another feature (i.e., time to flood peak) was not considered 
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in our analysis because the differences between our ensemble results was not significant. Fig. 2.6 

shows the evident dependency of the number of ensemble sizes on these key characteristics. As 

expected, increasing the ensemble size can amplify the chances of various outcomes, resulting in 

a greater uncertainty range (the latter is similarly computed as the difference between peak or 

volume values corresponding to 97.5% and 2.5% of ensemble members). Note that the range of 

uncertainty does not change significantly for an ensemble size of 500 for all the 8 flooding events 

(see Fig. 2.6 and the Appendix A). Thus, 500 behavioral sets are used as an optimal ensemble size 

in the study. 

 

Figure 2.6. The number of ensemble size versus the uncertainty width at flood peak (left) and the 

uncertainty range of flood volume over entire period (right) for 3 flooding events. 
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2.2.3.2 Polynomial degree and the number of experiment design on building PCE  

We investigated the effects of the experiment design, 𝑁 and the polynomial degree, 𝑝 on 

the PCE model results, thereby providing a guideline for selecting both parameters based on our 

cases. First, to assess the effect of 𝑁, we ran several simulations with 𝑁 values varying between 

10 and 1,500, while the value of 𝑝 was controlled at 3 for every flood event. The results of 4 

metrics of NSE, PE, VE, and R2, which are compared with the observations show that the values 

of 4 metrics change significantly (Fig. 2.7) when 𝑁 equals 50. Using Event 8 as an example, NSE 

increases from 0.83 to 0.96, PE decreases from 4.5 to 2.6%, and VE also reduces approximately 

from 17 to 4%when the 𝑁 value increases from 10 to 50. For 𝑁 values larger than 50, the model 

performances are generally comparable. This confirms that a PCE model constructed with an 𝑁 of 

50 has good simulation capacities that are similar to other models with a larger 𝑁. 

 

Figure 2.7. The effect of the number of experiment design (𝑁) in the PCE model on four accuracy 

indices for 3 flooding events. The black line and the shaded region refer to the mean value and 

95 % confidence interval of 500 behavioral PCE results, respectively. 

 

  Similar to 𝑁, we ran a number of simulations with 𝑝 varying from 1 to 12 and with 𝑁 

controlled at 50. The results of Fig. 2.8 show that two tendencies can be generally observed, 

although they may vary depending on the events (see the Appendix A): (1) the values of the 4 
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metrics change considerably when 𝑝  equals 3 or 4, and remain stable for large values of 𝑝 

especially in Event 2; (2) the values vary negligibly over the entire range of the 𝑝, especially in 

Event 8 and for NSE and R2. For example, NSE values range from 0.935 to 0.946 and 0.963 to 

0.965 for Events 5 and 8, respectively, and R2 varies slightly as well. Since the 𝑝  does not 

significantly affect the performance of the model, a low polynomial degree would be preferred in 

terms of reducing the computational time in constructing a PCE model. To sum up these two 

tendencies, a 𝑝  of 3 or 4 would be a good choice. In the rest of this work, a 𝑝  of 4 will be 

consistently employed to build the PCE model. 

 

Figure 2.8. The effect of polynomial degree (𝑝) in the PCE model on four accuracy indices for 3 

flooding events. The black line and the shaded region refer to the mean value and 95 % confidence 

interval of 500 behavioral PCE results, respectively. 

 

2.2.3.3 The accuracy and efficiency of PCE model 

With the optimal coefficients of 𝑁 = 50 and 𝑝 = 4, a PCE model was built to quantify the 

uncertain range of flow predictions and to compare the degree of accuracy and efficiency with the 

results of the deterministic NAM. The uncertainty of both models is illustrated in Fig. 2.9 with the 

same 500 ensemble sets that were independently generated from the NAM and PCE. To be 

consistent, the uncertainty bound is also defined as a 95% confidence interval, which corresponds 

to 2.5% and 97.5% quantiles of the 500 ensemble distribution. Fig. 2.9 shows this uncertainty 
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range of both NAM and PCE model in a hydrograph and their comparisons for a mean of a 500 

ensemble results at each computation time. Since we used 500 behavioral sets from GLUE, which 

satisfies the behavioral acceptance thresholds, the overall comparison with observation is 

acceptable for both models and for all the flood events (see Table 2.7 and the Appendix A). 

Specifically, the results of PCE model show that the NSE of all the events is higher than 0.82, and 

the mean values of PE and VE of all events are approximately 3.9% and 2.6%, respectively; NSEs 

for Events 1, 2, or 3 (corresponding to a smaller frequency events) were greater than 0.9. Even for 

a flood hydrograph with a high peak and a complex shape (e.g., Event 8), the flood shape of the 

PCE model was very close to that of the observation, where the medians of 500 NSE, PE, and VE 

were 0.957, 2.415%, and 1.953%, respectively. Also, a comparison of the results of PCE models 

with observation and the NAM results is acceptable, resulting in only insignificant differences. 

The uncertainty bound of PCE model is slightly broader than that of the NAM for the relatively 

smaller Event 2. However, note the high R2 values (greater than 0.99 for all 8 events, see Table 

2.7) for a 1:1 comparison of ensemble mean values in time between the NAM and the PCE model 

results. One can therefore confirm that the PCE model provides a good simulation capability 

equivalent to the NAM in the Thu bon river watershed for diverse flooding events with different 

return periods.  

Table 2.7. Metrics of NSE, PE, VE, and R2 for (a) NAM and (b) PCE models compared with 

observation for all the events chosen in this study. 

Event 
 

R2  (a) NAM model  (b) PCE model 

  NSE[-] PE[%] VE[%] R2[-]  NSE[-] PE[%] VE[%] R2[-] 

1  0.996  0.966 2.343 2.756 0.965  0.962 3.546 2.718 0.960 

2  0.980  0.928 2.166 2.160 0.892  0.930 3.727 3.437 0.908 

3  0.998  0.937 1.885 2.261 0.937  0.937 2.511 2.183 0.935 

4  0.989  0.822 3.440 1.024 0.860  0.820 5.701 3.574 0.848 

5  0.995  0.955 2.498 2.998 0.944  0.944 4.995 1.610 0.926 

6  0.990  0.825 3.225 2.115 0.857  0.824 5.447 3.152 0.851 

7  0.999  0.852 1.969 2.134 0.871  0.853 2.498 1.994 0.872 

8  0.999  0.957 2.031 2.009 0.964  0.957 2.415 1.953 0.964 
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Figure 2.9. Comparison of 95% confidence interval of (left) 500 behavioral NAM runs estimated 

from GLUE and (middle) 500 PCE runs computed from the PCE model; (right) 1:1 comparison of 

the temporal values averaged over 500 ensemble for both models, for 3 flooding events. 

 

The times required to obtain the above uncertainty range are then evaluated and compared 

to determine a relative efficiency. First, the total runtime needed to implement 500 NAM runs are 

72, 86.4, and 92.6 secs for Event 2, 5, and 8, respectively, while PCE model are 15.1, 15.5, and 

33.4 secs. On the other hand, the total runtime in the PCE model consists of 3 times: (i) the time 
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required for the 500 PCE behavioral runs. Those are 5.9, 4.9, and 11.9 secs for Events 2, 5, and 8, 

respectively (see Table 2.8). The other 2 times are associated with building the PCE model: (ii) the 

time to secure the number of experimental designs (i.e., 50 runs of 𝑁) and (iii) the time to compute 

the PCE coefficients. As expected, the efficiency of the PCE model is not superior to the NAM 

when the ensemble size is small. For example, for a 500 ensemble size, there is only an efficiency 

improvement of approximately three times in Event 8 and five times in Event 2. However, its 

efficiency improved significantly for larger ensemble sizes, e.g., approximately eight to seventeen 

times faster for an ensemble size of 100,000 (Table 2.8).  

Table 2.8. Comparison of the times required for constructing the ensemble of NAM and PCE 

models from 500 to 100,000 for 3 flooding events (in seconds). The times for PCE model consist 

of (i) the time to generate 500 model runs, (ii) the time to secure the number of the experiment 

design (i.e., 50 runs of N), and (iii) the time to compute the PCE coefficients. 

Event Model  
Ensemble size 

500 1000 10,000 100,000 

2 

NAM  72 141.3 1398.6 14292.2 

PCE 

(i) 5.9 11.5 111.8 1116.1 

(ii) 7.1 

(iii) 2.1 

Total 15.1 20.7 121 1125.3 

5 

NAM  86.4 176.3 1675.9 18452.2 

PCE 

(i) 4.9 9.9 99.8 1066.8 

(ii) 8.8 

(iii) 1.8 

Total 15.5 20.5 110.4 1077.4 

8 

NAM  92.6 184.1 1819 24017.1 

PCE 

(i) 11.9 24.1 236.4 3033.1 

(ii) 9.2 

(iii) 12.3 

Total 33.4 45.6 257.9 3054.6 

 

2.2.3.4 Toward a more efficient simulation with sensitivity analysis 

The sensitivity of the 9 parameters adopted in the NAM and PCE model was investigated 

by both visual inspection of the posterior distribution and mathematical computations of the Sobol’ 



40 

 

and Morris indices. First, one can graphically inspect the posterior distribution of each parameter 

that was derived from the GLUE based on the behavioral acceptance threshold of likelihood 

functions. Looking at Fig. 2.10, the shape of the posterior distribution varies depending on the 

parameter and the event. Note that some distributions have a pointed shape, indicating that those 

parameters are sensitive and well identifiable, while other flat distributions indicate that their 

parameters are relatively insensitive and more uncertain. For most events, Fig. 2.10 shows that the 

parameters of “CQOF” and “CK12” have quite narrow (pointed) distributions, representing a low 

uncertainty, while the remaining 7 parameters are almost equally distributed over the entire 

parameter range and have wider distributions, indicating a higher uncertainty. The narrowed range 

of the sensitive parameters CQOF and CK12 depends on the event. For Event 2, the CQOF and 

CK12 ranged from 0.25 to 0.44 and from 40 to 66, respectively, while for Event 5, these narrowed 

from 0.4 to 0.46 and from 40 to 45 (Fig. 2.10). 

 

Figure 2.10. The posterior histograms of nine parameters of the NAM model inferred by GLUE 

for 3 flooding events. 

 

Second, sensitivity analysis using Morris screening and the Sobol’ indices showed that 

both results are comparable and consistent with the result inferred from the previously mentioned 
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posterior distribution. The results for Events 2, 5, and 8 shown in Fig. 2.11 (and the Appendix A 

for other events) also confirmed that CQOF and CK 12 are the most sensitive parameters to all 3 

likelihood functions, while other parameters have very low relative sensitivity. Specifically, the 

model outputs in terms of the metric of PE are sensitive to both CQOF and CK12, while those for 

VE are sensitive to COQF. NSE showed more mixed results for various events. In Event 2, the 

NSE outputs were also sensitive to CQOF and CK12, while in Event 8, those are most sensitive to 

only CQOF. Summing up all the events, the sensitivity of CQOF is the largest for most events, and 

CK12 is the next sensitive parameter, especially for events with smaller return periods. Therefore, 

it can be concluded that CQOF and CK12 are the most important parameters, and these should be 

preferentially considered for calibration. 

 

Figure 2.11. Sensitivity results of nine parameters based on different likelihood functions for (left) 

NSE, (middle) PE, and (right) VE for 3 flooding events. Morris screening index is in the first row 

of six subplots corresponding to each event, while Sobol’ indices is in the second row. 
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Based on the sensitivity information obtained from the above inspections, one might want 

to save computational resources and increase efficiency in making any ensemble necessary for 

capturing uncertainty. We simply counted the number of repeated MC runs required for producing 

500 behavioral sets for 3 cases below, which employ (Case 1) the uniform distribution for the 

reduced range (see Table 2.9), (Case 2) the posterior distribution of GLUE (Fig. 2.10), and (Case 

3) a fixed value averaged over the posterior distribution (see Table 2.9). The number of MC runs 

to get 500 behavioral parameter sets decreased significantly as compared to the case when the 

original (wider) range of parameters were used (Table 2.10). This becomes more pronounced for 

Case 3 where the values of the 2 sensitive parameters were fixed as the mean value of the posterior 

distribution. The assessment results are as good as those given by using the original (wider) 

parameter range without deteriorating the model accuracy (Table 2.11). Therefore, this is one of 

the most efficient ways of indirectly reducing runtime by helping to find the behavioral set of 

parameters even faster by better identifying sensitive parameters from a narrowed parameter space 

during the calibration process. 

Table 2.9. The original (prior) range, reduced (posterior) range from GLUE, and the average of 

the posterior distribution for CQOF and CK12 for all events 

Event 
 CQOF [-]  CK12 [hrs] 

 original reduced mean  original reduced mean 

1  

0-1 

0.35 – 0.52 0.435  

3-72 

40 – 58 44.873 

2  0.25 – 0.44 0.347  40 – 66 49.550 

3  0.44 – 0.61 0.539  40 – 70 53.445 

4  0.42 – 0.46 0.449  40 – 44 41.080 

5  0.40 – 0.46 0.431  40 – 45 41.560 

6  0.41 – 0.60 0.519  46 – 70  60.568 

7  0.78 – 0.95 0.881  43 – 70  58.804 

8  0.85 – 0.98 0.916  52 - 70 63.685 
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Table 2.10 The number of model runs needed for obtaining 500 behavioral sets by using 

parameters sampled from the (a) prior and (b) posterior distributions for all events 

Event 

(a) from the prior 

parameters range 

(b) from the posterior parameter 

distributions 

Case 1  Case 2  Case 3 

1 115,736 11,009 3,625 735 

2 46,275 7,411 3,822 683 

3 20,446 3,642 2,729 618 

4 2,310,013 8,997 3,866 2,306 

5 564,818 4,408 2,132 821 

6 1,266,347 210,208 123,551 8,070 

7 17,725 2,428 1,492 500 

8 21,157 1,523 931 500 

 

Table 2.11. The accuracy of the model results when using parameters sampled from the posterior 

distributions for all events, compared with observation 

Even

t 

 Case 1  Case 2  Case 3 

NSE[-

] 

PE[%

] 

VE[%

] 

 NSE[-

] 

PE[%

] 

VE[%

] 

 NSE[-

] 

PE[%

] 

VE[%

] 

1  0.966 2.473 2.585  0.963 2.052 2.452  0.967 2.629 2.209 

2  0.931 2.021 2.125  0.936 1.969 1.962  0.937 1.779 1.539 

3  0.938 1.933 2.118  0.935 1.839 2.137  0.948 2.017 1.415 

4  0.822 3.458 1.051  0.822 3.350 1.019  0.823 3.566 1.108 

5  0.955 2.429 2.997  0.957 2.200 2.821  0.955 2.595 2.772 

6  0.826 3.312 2.123  0.826 3.276 2.240  0.825 3.150 1.807 

7  0.852 1.943 2.196  0.853 1.994 1.894  0.858 0.335 0.472 

8  0.956 2.041 1.991  0.956 1.934 1.856  0.959 0.597 1.373 

 

Consequently, the behavioral set search becomes more efficient for a greater number of 

identifiable parameters. Since these results come from limited cases for flooding samples, 

investigating the sensitivity for low/medium flow data is meaningful. Thus, we additionally 

conducted experiments for three lower flow events (their peaks are 20 – 40 times smaller than that 

of the Event 8), but we could not find any more identifiable parameters except for CQOF and 

CK12. The results of posterior parameter distributions as well as sensitivity analysis still show that 

the most sensitive parameters are CQOF and CK12, while the remaining parameters are less 
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sensitive, and their posteriors are almost uniformly distributed over their prior parameter ranges 

(not shown). This implies that only two parameters within the model structure play a decisive role 

when simulating events at small temporal scales. But, if one simulates events on a longer time 

scale where other land surface and subsurface dynamics become significant, other parameters may 

become important.  

2.2.4 Discussions 

One might contend that the advantage of PCE does not offset the extra effort required 

compared to using a simple model. Indeed, such an improvement in computational speed might 

look insignificant (3 to 17 times; see Table 2.8). However, this tendency will be noticeable if we 

use more complex models and consider the real-time flood forecasting problem. This is because 

the additional PCE efforts above can be made in advance before flooding occurs. Then, one just 

compares the times required to run any deterministic model versus its surrogate model. The time 

required to run the PCE (consisting of polynomials) is always similar and shorter, while the time 

required to run the original model increases significantly as the complexity of the latter model 

increases. Therefore, the effectiveness of the computation speed improves as the deterministic 

model becomes more complex.  

Another concern about whether PCE can capture the dynamics of more complex models 

for extremes is the universal problems that can occur with any data-driven model (e.g., surrogate 

modeling, deep learning, genetic algorithms, artificial neural networks, or fuzzy systems). 

Although studies have not yet been conducted on whether PCE can be applied to more complex 

flooding phenomena like shock, backwater, and hydraulic jump, many hydrological studies show 

that its utility as a surrogate model has been successfully proved even for relatively simple models 
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as well as complex distributed models including: lumped, rainfall-runoff models [Fan et al., 2014; 

Wang et al., 2017], subsurface flow models [Sochala and Le Maître, 2013; Elsheikh et al., 2014], 

a complex numerical model of gas injection into porous media [Baştuğ et al., 2013], and a complex, 

process-rich ecohydrologic model [Dwelle et al., 2019]. Those studies have demonstrated that PCE 

both increases computational performance and mimics the deterministic models. 

Re-building the PCE model is necessary whenever a new deterministic model is developed. 

However, as mentioned above, reconstructing the PCE can be pre-performed during off-peak 

periods irrespective of the flood, and can save much time in making flow ensembles during on-

peak periods. Note the execution time of ~18 minutes versus ~5 hours in Event 5. This time 

reduction highlights that the efficiency of the PCE model is worthy of attention from a practical 

point of view because flood forecasting results should be provided early for flood warning or risk 

management. 

We also pondered how these GLUE results would change if one had less restrictive 

threshold criteria (or if we used fewer likelihood functions). (i) The uncertainty band would be 

larger, the predictive power would be poorer, and computational power would improve. (ii) The 

GLUE’s posterior parameter distribution would follow a more uniform distribution rather than a 

“real” posterior distribution. (iii) The curve in Fig. 2.6 would be shifted upward, and the inflection 

point of this curve (i.e., optimal ensemble number) would be larger. In contrast, if one uses a “much” 

more restrictive set of criteria, the prediction would be close to the observation itself, so that the 

curve in Fig. 2.6 would be shifted downward and the inflection point would be diminished (i.e., 

located near zero). (iv) The posterior distribution of all parameters would converge equally over 

the 500 optimal ensemble size. This means that an ensemble size of 500 can fully demonstrate the 

“real” posterior distributions as well as the uncertainty range of model results. But, the posterior 



46 

 

distributions differ for an ensemble size smaller than 500 depending on the parameters, and those 

distributions have not converged except for the two sensitive parameters (Fig. 2.12).  

 

Figure 2.12. The posterior histograms of nine parameters of the NAM model inferred by GLUE 

for Event 1 with the ensemble size of (a) 50, (b) 100, and (c) 100,000. 

 

2.3 Towards efficient surrogate model using sparse polynomial chaos expansion 

2.3.1 Challenges in the use of the surrogate model  

As originally proposed by Wiener [1938], PCE was based on normally-distributed random 

variables and a Hermite polynomial, and was later extended to be applied to any statistical 

distribution by Xiu and Karniadakis [2002]. The key to PCE effectiveness is how to estimate PCE 

coefficients from the response of an original model at design points in the input space [Sudret, 

2008]. Two widely used methods for optimizing the PCE coefficients are the ‘projection’ method, 

which can be cast as a numerical integration problem using quadrature or sparse-grid methods, and 

the ‘regression’ method, which uses least square regression to minimize the mean square error 

between the surrogate model outputs and original model outputs [Sudret, 2008]. However, both 

methods is incompetent in optimizing a great number of PCE coefficients because of the large 
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number of model evaluations entailed [Blatman and Sudret, 2010; Razavi et al., 2012b; Liu et al., 

2013]. The number of PCE coefficients increases dramatically with the number of uncertain inputs 

and the polynomial order. This ‘full’ PCE requires an incredibly large number of model 

evaluations that severely restrict the engineering applications [Sargsyan et al., 2014].  

To circumvent this problem, methods of downsizing the PCE coefficients have been 

proposed such as sparse collocation [Shi et al., 2009], Bayesian compressive sensing [Sargsyan et 

al., 2014], and least angle regression (LAR) [Blatman and Sudret, 2008]. Among them, LAR has 

received attention recently because it has been proven to provide significant computational gains 

over original PCE. The purpose of LAR is generally to estimate only the coefficients for the 

important PCE basis terms and assign zero to the coefficients for the non-essential terms. LAR 

enables high orders of polynomials to be fit to nonlinear complex models without substantially 

increasing the computational cost during the construction of a surrogate model [Zhang et al., 

2020]. Although the effectiveness of LAR has been demonstrated, few studies have coupled LAR 

with PCE in order to quantify the uncertainty of a hydrologic model. 

The aims of this work are to examine whether sparse PCE (SPCE) captures the behavior 

of a hydrological model well, quantifies the uncertainty of parameters of the hydrological model, 

and analyzes the sensitivity of parameters to hydrologic predictions. To highlight the effectiveness 

and robustness of LAR, a well-known method, the ordinary least square regression (OLS), is used 

and compared. 



48 

 

2.3.2 Methods 

2.3.2.1 Sparse polynomial chaos expansion using least angle regression 

The least angle regression (LAR) method is an advanced regression method in solving Eq. 

(2.5) where a modification for the penalty term 𝜆‖𝜀‖1 is added: 

𝜀 = argmin𝜀∈ℝ𝑁Ψ 𝔼 [(𝑦 −  ∑ 𝜀Ψ(𝜽)𝑁Ψ−1
=0 )

2
] + 𝜆‖𝜀‖1     (2.19) 

where 𝜆 is a non-negative constant; ‖𝜀‖1 is a regularization term that forces a minimization to favor 

the sparse solution, computed as ‖𝜀‖1 = ∑ |𝜀|∈𝑁Ψ
.  

The main difference between LAR and OLS lies in the number of PCE coefficients, which 

is smaller in LAR than in OLS. Specifically, in OLS, the number of PCE coefficients that need to 

be estimated is 𝑁Ψ, which can be computed from Eq. (2.3). The surrogate model constructed by 

OLS is hereafter called full PCE (FPCE). On the other hand, LAR determines only the multivariate 

polynomials Ψ(𝜽) that have the most impact on the model response, while discarding polynomial 

terms that do not. The chosen weighty PCE coefficients are estimated, while other insignificant 

coefficients are set to be zero. A surrogate model is then achieved based on the sparse set of PCE 

terms and can be delineated as Eq. (2.20). This surrogate model is hereafter called sparse PCE 

(SPCE). For a detailed description of SPCE, readers can refer to Blatman and Sudret [2011]. To 

verify the accuracy of constructed surrogate models, the leave-one-out cross-validation error 

(𝐿𝑂𝑂) is commonly used. 

𝑦 = 𝑴(𝜽) ≈ 𝑴𝑃𝐶𝐸(𝜽) = ∑ 𝜀
𝑠Ψ

𝑠(𝜽)𝑆Ψ−1
=0    (2.20) 

𝐿𝑂𝑂 =  
1

𝑁
∑ (

𝓜(𝒳(𝑘))−𝓜𝑃𝐶𝐸(𝒳(𝑘))

1−𝒽𝑘
)

2
𝑁
𝑘=1    (2.21) 
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where 𝛹
𝑠(𝜽) = {𝛹0

𝑠(𝜽), … , 𝛹𝑆𝛹−1
𝑠 (𝜽)}  are the set of significant polynomials; 𝜀

𝑠 =

{𝜀0
𝑠, … , 𝜀𝑆𝛹−1

𝑠 } are the corresponding coefficients; 𝑆𝛹 is the number of PCE terms that are retained; 

𝒽𝑘 is the 𝑘-th diagonal term of the matrix 𝑭(𝑭𝑇𝑭)−1𝑭𝑇 and the information matrix 𝑭 is defined 

in Eq. 2.8. 

2.3.2.2 Hydrological model: Storage function model 

A conceptual, lumped, storage function-based hydrological model is employed, which 

has been adopted for flood prediction practice at the Han River Flood Control Office under 

the Ministry of Environment of Korea [Bae and Lee, 2011; Office, 2012; Park et al., 2014; 

Kim et al., 2019a]. The storage function model (SFM) [Kimura, 1961] is an event-based, 

lumped model that characterizes the relations of rainfall, runoff, and storage in watersheds 

and channels by solving the flow continuity equation. Rather than solving the full dynamic 

momentum equations, the SFM employs a nonlinear relation between storage and discharge 

for a given watershed and channel as: 

𝑆𝑏𝑎𝑠(𝑡) = 𝐾𝑏𝑎𝑠 × 𝑄𝑏𝑎𝑠
𝑃𝑏𝑎𝑠(𝑡)     (2.22) 

𝑆𝑐ℎ𝑛(𝑡) = 𝐾𝑐ℎ𝑛 × 𝑄𝑐ℎ𝑛
𝑃𝑐ℎ𝑛(𝑡)     (2.23) 

where 𝑆𝑏𝑎𝑠(𝑡)  and 𝑆𝑐ℎ𝑛(𝑡)  are the storage amounts of the basin and channel at time  𝑡 , 

respectively; 𝑄𝑏𝑎𝑠(𝑡) and 𝑄𝑐ℎ𝑛(𝑡) are the direct runoffs (flow rates) of the basin and channel 

at time 𝑡, respectively; 𝐾𝑏𝑎𝑠 and 𝑃𝑏𝑎𝑠 are the storage coefficient and exponent of the basin, 

while 𝐾𝑐ℎ𝑛 and 𝑃𝑐ℎ𝑛 are the storage coefficient and exponent of the channel.  

The spatially-lumped continuity equation for a given basin and channel is expressed 

as: 



50 

 

𝑑𝑆𝑏𝑎𝑠(𝑡)

𝑑𝑡
= 𝑅𝑒(𝑡 − 𝑇𝑙𝑏𝑎𝑠) − 𝑄𝑏𝑎𝑠(𝑡)    (2.24) 

𝑑𝑆𝑐ℎ𝑛(𝑡)

𝑑𝑡
= 𝑅𝑒(𝑡 − 𝑇𝑙𝑐ℎ𝑛) − 𝑄𝑐ℎ𝑛(𝑡)    (2.25) 

where 𝑅𝑒 is the effective rainfall, and 𝑇𝑙𝑏𝑎𝑠 and 𝑇𝑙𝑐ℎ𝑛 are time delays between the effective 

rainfall and the outflow of the basin and channel, respectively.  

In SFM, 𝑅𝑒(𝑡) is estimated based on the saturated rainfall approach of Sukegawa and 

Kitagawa [1992]. Specifically, before the accumulated rainfall depth ∑ 𝑅(𝑡)  reaches the 

saturated rainfall 𝑅𝑠𝑎, 𝑅𝑒(𝑡) is computed based on the primary runoff ratio (𝑓1); after ∑ 𝑅(𝑡) 

exceeds 𝑅𝑠𝑎, 𝑅𝑒(𝑡) is a function of the saturated runoff ratio (𝑓𝑠𝑎): 

𝑅𝑒(𝑡) = {
𝑓1 × 𝑅(𝑡)     ∑ 𝑅(𝑡) < 𝑅𝑠𝑎

𝑓𝑠𝑎 × 𝑅(𝑡)   ∑ 𝑅(𝑡) ≥ 𝑅𝑠𝑎
    (2.26) 

The lumped rainfall depth of the basin and channel (𝑅(𝑡)) is corrected based on 

observed rainfall depth (𝑅𝑜𝑏𝑠(𝑡)) and rainfall multiplication factor (𝛼): 𝑅(𝑡) = 𝛼 × 𝑅𝑜𝑏𝑠(𝑡). 

From the brief description above, one can see that a total of 10 parameters are required to 

control the outflow of the watershed and implement the SFM (Table 2.12). For more detail, 

readers can refer to Park et al. [2014]. 

Table 2.12. Description of the SFM parameters 

Parameter Unit Description Lower bound Upper bound 

𝛼 [-] Rainfall magnification coefficient 0 1.3 

𝑓1 [-] Primary runoff ratio 0 1 

𝑓𝑠𝑎 [-] Saturated runoff ratio 0 1 

𝑅𝑠𝑎 mm Saturated rainfall  0 300 

𝐾𝑏𝑎𝑠 [-] Basin storage-discharge coefficient 1 100 

𝑃𝑏𝑎𝑠  [-] Basin storage-discharge exponent 0 1 

𝑇𝑙𝑏𝑎𝑠 [hrs] Time delay in watershed 0 1 

𝐾𝑐ℎ𝑛 [-] Channel storage-discharge coefficient 1 100 

𝑃𝑐ℎ𝑛 [-] Channel storage-discharge exponent 0 1 

𝑇𝑙𝑐ℎ𝑛 [hrs] Time delay in channel 0 1 
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2.3.3 Case study 

The ‘Hongcheon’ watershed, which belongs to the Han river basin located in the central 

part of the Korean Peninsula, is chosen for this research (Fig. 2.13). The area of the basin is 883 

km2, its mainstream length is about 60 km, and its altitude ranges from 75 to 1180 m. This study 

collects data for the rainy season (June to September), focusing on the uncertainty of flood 

predictions. Rainfall data are observed at 15 weather stations near the study area, and streamflows 

are observed at the outlet of the watershed, ‘Hongcheon’ gauge station (Korea station ID = 

2014650). Hourly observations of rainfall and streamflow data were downloaded from the Han 

River Flood Control Office (http://www.hrfco.go.kr/main.do). After inspecting the data quality and 

availability, nine streamflow events (Table 2.13) were chosen, corresponding to various (low, 

middle, and high) return periods based on frequency analysis (Fig. 2.14). 

 

Figure 2.13. The ‘Hongcheon’ watershed belonging to Han river basin, and the locations of 

observed rainfall and flow gauges. 

http://www.hrfco.go.kr/main.do
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Figure 2.14. Flow frequency curve for the ‘Hongcheon’ station; historic peaks refer to annual 

maximum peak flows from 2000 to 2019; the flood frequency curve is fitted using the Gamma 

distribution. 

 

Table 2.13. Characteristics of selected streamflow events in Hongcheon watershed 

Event 
Time 

(MM/DD/YYYY) 

Flood peak 

(m3/s) 

Flood frequency 

(%) 

Duration 

(hrs) 
1 7/7/2009-7/17/2009 2485.33 19  241 

2 7/10/2012-7/20/2012 416.61 86  241 

3 7/10/2013-7/17/2013 2264.07 28 169 

4 7/21/2013-7/27/2013 477.59 81  145 

5 7/23/2015-7/27/2015 477.60 81  97 

6 6/29/2016-7/9/2016 1460.90 52 241 

7 6/30/2017-7/5/2017 1616.14 47  121 

8 7/9/2017-7/13/2017 1337.97 57  97 

9 8/27/2018-8/31/2018 689.41 76  97 

 

2.3.4 Experimental configurations 

 The SPCE and FPCE models are compared by investigating the ability to construct a 

satisfactory surrogate model with a limited training dataset, the degree of accuracy reflecting 

uncertainty in streamflow prediction, and the degree of improvement in the efficiency of two 
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surrogate models compared to the original model. The following three experiments were 

conducted. 

The first experiment is designed to demonstrate the effectiveness of SPCE in a smaller 

experimental design. In the literature, the size ranges from 50 to 𝒪(104), based on the complexity 

of the original model [Hampton and Doostan, 2015; Dwelle et al., 2019; Torre et al., 2019; Tran 

and Kim, 2019]. In this experiment, a total of ten different sizes, 𝑁, from 10 to 5000 are used to 

build the surrogate model. A polynomial degree of 3 is used, as in previous studies [Fan et al., 

2016; Wang et al., 2017; Hu et al., 2019a; Tran and Kim, 2019; Tran et al., 2020]. 

Given surrogate models constructed for the optimum value of 𝑁 determined in the first 

experiment, the second experiment is conducted to quantify the uncertainty of streamflow 

prediction for nine rainfall events using GLUE. Prior distributions for the uncertain parameters are 

assumed to follow the uniform distribution over a given (prior) range [Beven, 2006; Vrugt et al., 

2008c; Tran and Kim, 2019]. Latin hypercube sampling (LHS) is used due to its efficiency [Hu et 

al., 2019a]. Regarding the cutoff threshold, we employ the ratio of the total number of simulations 

based on the likelihood function value to differentiate between the behavior and non-behavior runs. 

Specifically, the cutoff threshold is designated as the highest 1% of Nash-Sutcliffe efficiency 

coefficient (NSE) values computed using 100,000 random parameters sampled from the prior 

distributions [Beven, 2012; Tran and Kim, 2019]. The uncertainty of streamflow is then 

represented by calculating the ensemble interval for the NSE and Peak Error (PE) metrics, which 

can indicate important features of a streamflow event. 

Sensitivity analysis (SA) is implemented as the third experiment to recognize the critical 

parameters governing model behavior and to evaluate the influence of model parameters on model 

outputs [Saltelli, 2002a; Tran and Kim, 2019]. These key parameters can be identified qualitatively 
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based on the shape of the posterior distributions obtained from GLUE, or quantitatively based on 

the global sensitivity analysis. The latter produces the sensitivity indices for both parameters and 

their interactions. The total-order Sobol' indices [Sobol', 2001] are employed in this experiment. 

2.3.5 Results and discussions 

2.3.5.1 The construction of surrogate models 

We investigate the effects of the size of the experimental design on the accuracy of 

surrogate models constructed by FPCE and SPCE, thereby (i) providing a guideline for choosing 

the appropriate size of experimental design and (ii) demonstrating the superiority of SPCE to 

FPCE. As described in Section 2.3.4, we built several surrogate models with 𝑁 varying between 

10 and 5,000 for both FPCE and SPCE. Looking at Fig. 2.15, one can see that the 𝐿𝑂𝑂 values for 

all nine events decrease as the value of 𝑁 increases and are almost indistinguishable when 𝑁 

reaches a certain value (about 2,000 and 500 for FPCE and SPCE, respectively). In other words, 

if one uses a larger experimental design (greater number of samples) for training, the overall 

accuracy increases, but at some point the accuracy stabilizes. Visual inspection from Fig. 2.15 

confirmed that FPCE and SPCE developed with 𝑁 of 2,000 and 500, respectively, are suitable to 

represent SFM. Fig. 2.15 also reveals that SPCE outperforms FPCE in providing lesser 𝐿𝑂𝑂 

values for all events. Specifically, if 𝑁 is less than 200, the 𝐿𝑂𝑂 values obtained using SPCE are 

smaller than 1, while these values for FPCE are larger, ranging from about 5 to 100. If 𝑁 is greater 

than 200, the difference of 𝐿𝑂𝑂 between two surrogates decreases by about 10%. For all events, 

the 𝐿𝑂𝑂 values of SPCE constructed with 𝑁 of 500 are equal to or even smaller than those of 

FPCE with 𝑁 of 2,000. SPCE can build an efficient surrogate model with an accurate degree even 

if it utilizes an experimental design size that is four times smaller than that of FPCE. 
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Figure 2.15. The effects of the size of experimental design (𝑁) on the leave-one-out cross-

validation error (𝐿𝑂𝑂) in constructing surrogate models using FPCE and SPCE for 9 streamflow 

events. 

 

As a follow-up discussion based on the benefits of SPCE above, it can be expected that the 

use of this sparse approach would be more effective, especially for high-dimensional models where 

heavy computation is required. Since these high-dimensional models contain a large number of 

uncertain parameters (often greater than 𝒪(102)), the number of PCE coefficients (𝑁𝛹) that need 

to be estimated from Eq. (2.3) are also quite large. This requires a substantial number of model 

evaluations, up to 𝑁 = (𝑝 + 1)𝑁𝑃 [Sudret, 2008]. This computational burden emphasizes the need 

for a more efficient surrogate such as SPCE to reduce the number of PCE coefficients and save 
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computational resources. For example, for FPCE in this work, a total of 286 PCE coefficients are 

required for all events (computed via Eq. (2.3) for 10 uncertain parameters and the polynomial 

degree of 3). For SPCE, the number of PCE coefficients (𝑆𝛹) used varies depending on events 

from 25 (Event 7) to 34 (Event 2) given 𝑁 of 500 (Fig. 2.16a) and depending on 𝑁 (Fig. 2.16b). 

𝑆𝛹 increases with 𝑁 until about 200, while it does not change much for 𝑁 greater than 200. 𝑆𝛹 is 

always less than 50 for all events. With an appropriate value of 𝑁 (e.g., 500), the significant 

multivariate polynomials 𝛹(𝜽) can be fully detected and it is not necessary to use a larger 𝑁. 

Therefore, the number of PCE coefficients for SPCE is about 8 to 11 times smaller than that of 

FPCE for nine events. 

 

Figure 2.16. (a) The number of non-zero PCE coefficients in constructing FPCE (with 𝑁 of 2000) 

and SPCE (with 𝑁 of 500) for 9 streamflow events. (b) The effects of 𝑁 on the number of PCE 

coefficients in SPCE for 9 events. 
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2.3.5.2 The accuracy of surrogate models 

Based on the results from Section 2.3.5.2, optimum sizes of 2,000 and 500 are selected for 

𝑁 when building surrogate models for FPCE and SPCE, respectively. These surrogate models are 

then employed to quantify the uncertainty of hydrologic predictions through GLUE. The 

hydrographs of SFM, FPCE, and SPCE are presented with a 90% confidence range of 1,000 

behavioral (posterior) hydrographs in Fig. 2.17. The posterior results of all three models are highly 

satisfactory for all nine events – their uncertainty ranges are very narrow and cover observations. 

The R2 values for 1:1 comparisons between the ensemble mean results and observations are mostly 

higher than 0.8, and the R2 values of two surrogate models and SFM are similar. The accuracy 

indices NSE and PE also confirm that both FPCE and SPCE provide a good simulation capability 

equivalent to SFM for diverse streamflow events with different return periods (Fig. 2.18 and Table 

2.14). Additional comparisons between the surrogate models show that SPCE outperforms FPCE. 

Ensemble mean values for NSE and PE are as high as about 38% and 34% at the maximum, 

respectively (see Table 2.14 for Event 4). Additionally, the uncertainty ranges of NSE and PE for 

both surrogate models have smaller standard deviations (Std) than those for SFM. For example, in 

Event 1, the Std values of ensemble NSE for FPCE, SPCE, and SFM are 0.03, 0.03, and 0.06, 

respectively, while those of PE are 10.92, 10.46, and 14.05%, respectively (Table 2.14).  
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Figure 2.17. Streamflow predicted by SFM, FPCE, and SPCE for 9 streamflow events. The 90% 

confidence bands are drawn using 1,000 ensemble posterior members identified through GLUE. 

The scatter plots (and R2 values) represent 1:1 comparisons between the ensemble mean 

predictions (y-axis) and the observations (x-axis). 

 

 

Figure 2.18. Comparisons of accuracy metrics, NSE and PE for 3 models (SFM, FPCE, and SPCE) 

for 9 streamflow events. The boxplots demonstrate the median (central mark), the 25th and 75th 

percentiles (the edges of the box), and the maximum and minimum (the upper and lower whiskers) 

except for outliers (circle symbols). 
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Table 2.14. Mean and standard deviation (Std) for 1,000 values of NSE and PE for SFM, FPCE, 

and SPCE for 9 streamflow events. 

 

Event 

 

NSE [-] PE [%] 

Mean Std Mean Std 

SFM FPCE SPCE SFM FPCE SPCE SFM FPCE SPCE SFM FPCE SPCE 

1 0.80 0.78 0.78 0.06 0.03 0.03 30.09 27.70 31.51 14.05 10.92 10.46 

2 0.83 0.69 0.67 0.04 0.04 0.05 18.90 36.19 37.61 11.84 11.66 11.65 

3 0.74 0.85 0.84 0.05 0.02 0.02 56.69 42.00 45.55 15.50 7.76 6.62 

4 0.43 0.47 0.65 0.13 0.03 0.06 39.52 38.17 25.00 10.07 5.75 10.59 

5 0.82 0.67 0.74 0.05 0.03 0.04 28.11 25.29 32.27 11.73 12.42 10.23 

6 0.81 0.77 0.81 0.05 0.03 0.03 17.26 16.10 19.29 13.81 11.82 10.41 

7 0.86 0.85 0.89 0.05 0.02 0.02 21.86 22.23 21.19 13.80 10.62 9.25 

8 0.72 0.82 0.87 0.09 0.03 0.02 34.54 23.79 20.39 13.91 11.13 10.88 

9 0.79 0.79 0.86 0.05 0.02 0.02 37.09 22.94 27.75 20.88 16.84 12.07 

 

These ensemble results imply that the likelihood function and cutoff threshold must be 

carefully selected, which directly affect the prediction accuracy [Beven, 2006; Tran and Kim, 

2019]. For example, since we chose NSE in this study to represent the goodness-of-fit between 

simulation and observation, the ensemble of NSE has a satisfactory value higher than 0.7 for most 

events (Figure 2.18). However, the peak error (PE) is relatively large, ranging from 40% (Event 

6) to 78% (Event 3). That is, depending on the likelihood function preferred, one can control an 

outcome in flood prediction. If using a likelihood function that can represent the accuracy of the 

overall shape, peak size, time of arrival, and total flood volume of a streamflow event, it will make 

more informed decisions that better reflect each flood characteristic. 

Second, to obtain more accurate ensemble results, more likelihood functions with tighter 

cutoff thresholds can be used. However, instead of attaining higher-accuracy ensemble results, 

there is a sacrifice of significantly increasing the number of random runs. For example, instead of 

using the 1% cutoff threshold used in this work, if we apply a cutoff threshold of 0.8 for the NSE 

likelihood function (this value is often considered as satisfactory [Moriasi et al., 2007b]), the 
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number of ensemble behavior sets decreases sharply (see the number of behavior runs for 100,000 

and 10,000,000 prior runs in Table 2.15). The finding that there are only a very small number of 

ensembles signifies that random searches must be enhanced to obtain results that meet this level 

of accuracy. This is particularly noticeable for Event 4. With 10,000,000 random runs, SPCE could 

get only 88 behavior runs while FPCE could not attain even one behavior run. The fact that a large 

number of iterations are required to achieve the desired accuracy justifies the use of the surrogate 

model. Even in a simple model like SFM, the CPU runtime required to perform 100,000 random 

runs was about a month, so applying the model to practical problems is unreasonable. However, 

for SPCE, even 10,000,000 random simulations take only a few hours to run. The surrogate model 

consisting of the summations of polynomials has a great advantage for Monte-Carlo type repeated 

simulations. We will cover the computation time of each model in more detail in Section 2.3.5.4 

Table 2.15.The number of behavior runs obtained through GLUE for 3 model (SFM, FPCE, and 

SPCE), based on the likelihood function of NSE with its acceptance threshold of 0.8. Column (a) 

and column (b) present results obtained from 100,000 and 10,000,000 random runs, respectively. 

Event 
(a) (b) 

SFM FPCE SPCE FPCE SPCE 

1 104 14 11 1196 1456 

2 142 1 1 45 103 

3 20 104 62 9520 7503 

4 0 0 1 0 88 

5 104 0 5 15 521 

6 111 8 32 679 3306 

7 181 115 219 11147 21771 

8 36 35 84 2783 8251 

9 91 13 217 1710 21708 

 

2.3.5.3 The sensitivity of uncertain parameters 

The sensitivity of each of the 10 parameters of SFM, FPCE, and SPCE is analyzed from 

the posterior (behavior) parameter distributions obtained by GLUE, as depicted in Fig. 2.19. In 
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general, parameters that have pointed distributions are relatively sensitive and identifiable, while 

parameters with flat-shaped distributions are insensitive and more uncertain. From a visual 

inspection of Fig. 2.19, it can be seen that the parameters 𝛼 , 𝐾𝑏𝑎𝑠 , 𝑃𝑏𝑎𝑠 , and 𝑃𝑐ℎ𝑛  are highly 

sensitive to the value of the objective function, NSE, because their distributions are relatively 

narrow. The remaining parameters have broader distributions, so they cannot be specified by any 

certain value. Additionally, marginal differences can be observed in the posterior distributions 

between the three models. The sensitivity results of SPCE are more analogous to those of SFM 

than for FPCE, especially for insensitive parameters (Fig. 2.19). Several posterior parameter 

distributions obtained from FPCE have a narrower shape than those obtained from both SFM and 

SPCE – see 𝐾𝑏𝑎𝑠, 𝑃𝑏𝑎𝑠, and 𝑇𝑙𝑏𝑎𝑠  for Event 1; 𝛼, 𝑓1, 𝑅𝑠𝑎, 𝐾𝑏𝑎𝑠, 𝑃𝑏𝑎𝑠, and 𝑇𝑙𝑏𝑎𝑠 for Event 4; and 

𝑃𝑏𝑎𝑠, and 𝑇𝑙𝑏𝑎𝑠 for Event 7. 

Similar interpretations can be drawn with quantitative sensitivity analysis using the Sobol’ 

index (Fig. 2.20). It can be confirmed that the four parameters 𝜶, 𝑲𝒃𝒂𝒔, 𝑷𝒃𝒂𝒔, and 𝑷𝒄𝒉𝒏 are the 

most sensitive parameters to the likelihood function, NSE, in all events. Specifically, the 

sensitivities of 𝑲𝒃𝒂𝒔 and  𝑷𝒃𝒂𝒔 are the largest for most events, and 𝜶 and 𝑷𝒄𝒉𝒏 are the next most 

sensitive parameters. For events with smaller return periods (e.g., Events 4 and 5), 𝑷𝒄𝒉𝒏 becomes 

more sensitive than the severe flood events. For medium to large streamflow (e.g., Events 1, 3, 7, 

and 9), the Sobol’ index values of the four above-mentioned sensitive parameters in SPCE are 

more similar to those in SFM than in FPCE (Fig. 2.20).  
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Figure 2.19. Posterior distributions of 10 model parameters for 3 streamflow events. In each 

subplot, probability density functions (PDFs) are drawn by using the kernel density estimation for 

the 1,000 behavior parameters obtained through GLUE. The range on the x-axis matches the 

original range values for each parameter presented in Table 2.12. Results for high, medium, and 

low return periods are only demonstrated for simplicity. 

 

Identification of principal parameters through SA can improve efficiency in the process of 

optimizing parameters [Zhang et al., 2013]; through the analysis of the interactions, influences, 

and correlations among parameters, we can support a better understanding of the process 

mechanisms of hydrological systems [Ricciuto et al., 2018; Dwelle et al., 2019; Tran and Kim, 

2019; Wang et al., 2020]. Besides these benefits, SA helps to construct a more efficient surrogate 
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model embracing only a subset of principal parameters. Thus, the number of PCE coefficients and 

the size of the experimental design could be reduced, minimizing the complexity of the model. 

 

Figure 2.20. Sobol' sensitivity analysis for the ten parameters of SFM (grey), FPCE (red), and 

SPCE (blue), computed for the objective function of NSE over nine streamflow events.  

 

2.3.5.4 The efficiency of surrogate models 

To investigate efficiency performance, all simulations were implemented under the same 

computer configuration (CPU Intel(R) Xeon(R) CPU E5-4660 v4 @ 2.20GHz). The total time 

required for executing the (surrogate) models includes building time and runtime. The building 
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time consists of the time for evaluating the experimental design and the time for estimating the 

PCE coefficients; the runtime refers to the time for performing ensemble simulations (Fig. 2.21 

and Table 2.16). Note that the total runtime of SFM includes only the runtime, that is, the building 

time is zero. Table 2.16 shows the comparisons of the total runtime to obtain 100,000 ensemble 

runs among models for nine streamflow events. Although the total runtime may vary depending 

on the duration of the event, SFM took 12 to 30 days to perform 100,000 ensemble runs, while it 

took 6.1 to 14.3 hours for FPCE and only 1.5 to 3.6 hours for SPCE to produce the same number 

of ensembles. In other words, the degree of efficiency improvement can be up to about 50 times 

for FPCE relative to SFM and up to about 200 times for SPCE. The efficiency increases for greater 

than 100,000 ensemble runs (Fig. 2.21b). For example, SPCE can complete even 10,000,000 

ensemble runs within 2 to 4 hours, whereas SFM can take up to several years. When comparing 

the total runtime between the surrogate models, SPCE is about four times faster than FPCE. The 

main reason for such a difference in efficiency is that the size of the experimental design required 

in SPCE is smaller (𝑁 = 500 vs. 2,000 in FPCE). Thus, the time to secure the experimental design 

is about four times shorter than that of FPCE (Table 2.16 and Figure 2.21a). Also, with fewer 

polynomial terms used, the runtime of SPCE is faster than that of FPCE about 12-14 times (see (ii) 

in Table 2.16). The ability of SPCE to perform thousands of model runs in a very short wall time 

enables computational problems that require a significant number of iterative calls, such as local 

or global optimization, data assimilation, and sensitivity analysis, to be solved efficiently [Tran et 

al., 2020]. 
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Figure 2.21. (a) Building time of FPCE and SPCE versus the size of experimental design (𝑁) for 

9 streamflow events. The building times at the optimal 𝑁 = 2,000 for FPCE and at 𝑁 = 500 for 

SPCE are used for (b) (see the stem plots and zoom-in sub-boxes in (a)). (b) Total runtime needed 

for carrying out the number of model (SFM, FPCE, and SPCE) runs (from 1 to 1,000,000 on x-

axis) for the 9 events. Note that the intercepts of FPCE and SPCE in (b) are equal to the building 

times computed in (a); and the intercepts of SFM are zero. 

 

Table 2.16. Comparisons of the total runtime for 9 streamflow events. The total runtime consists 

of (i) the building time and (ii) the running time. In surrogate models (FPCE and SPCE), the 

additional building time consists of (i-1) the time to secure the experiment design (i.e., the optimal 

2,000 runs for FPCE and 500 for SPCE) and (i-2) the time to compute the PCE coefficients. (ii) 

the latter runtime refers to the time for performing 100,000 ensemble model (SFM, FPCE, and 

SPCE) simulations. The unit of values is in seconds. 

Event 

SFM FPCE  SPCE 

Total 

(ii) 

Total 

(i)+(ii) 

(i) 
(ii) 

Total 

(i)+(ii) 

(i) 
(ii) 

(i-1) (i-2) (i-1) (i-2) 

1 2569231 51473 51385 27 61 12894 12846 43 5 

2 2448715 49066 48974 29 63 12287 12244 39 4 

3 1728473 34634 34569 21 44 8679 8642 33 4 

4 1610260 32260 32205 17 38 8078 8051 24 3 

5 1144300 22923 22886 11 26 5745 5722 21 2 

6 2514114 50373 50282 29 62 12622 12571 46 5 

7 1338584 26818 26772 14 32 6716 6693 20 3 

8 1098940 22016 21979 11 26 5514 5495 17 2 

9 1102654 22090 22053 11 26 5531 5513 16 2 
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2.4 Conclusions 

A unified framework for quantitatively performing uncertainty analysis in hydrologic flow 

prediction is presented in this Chapter. In the framework, the posterior probabilities of uncertain 

parameters were inferred using the GLUE method, and their uncertainty propagation was 

quantified efficiently using PCE theory. The applicability of this framework is confirmed through 

two case studies, including the Vu Gia river watershed in Vietnam and the Hongcheon river 

watershed in South Korea, and the corresponding two models used that are NAM and SFM, 

respectively.  

For the first case study, overall results demonstrate that both GLUE and PCE methods have 

produced reasonable uncertainty when compared with observed data. The principal outcomes are 

summarized as follows: 

 First, the results of the PCE model confirmed its ability to mimic a deterministic model 

and quantify its uncertainty for hydrologic prediction. The PCE model results are 

comparable to NAM results as well as observation – this can be validated from the high 

degree of matching between NSE, PE or VE values. We also investigated the 

performance of a PCE model for reducing computation time. Particularly, the efficiency 

of the PCE model increases significantly as the ensemble size for uncertainty 

quantification is increased. This increase is up to seventeen times faster (~18 minutes 

versus ~5 hours in Event 5) for an ensemble size of 100,000. Therefore, the efficiency 

of the PCE model is worthy of attention from a practical point of view and that flood 

forecasting results should be provided early for flood warning or risk management. 
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 Second, despite the significant advantages of GLUE, its inherent difficulty lies in the 

subjectivity related to the selections of the likelihood function and cutoff threshold. To 

determine the cutoff threshold values, we designed two indices (𝐴𝐼 and 𝐸𝐼) such that 

their tendencies are opposite. The intersection point of these two index curves can be 

accounted for as an optimal value that meets some degree of accuracy and efficiency 

at the same time, referred to as behavioral acceptance threshold. In this research, we 

determined the behavioral acceptance threshold as the average over the results of 8 

events, resulting in a value of 0.82 for NSE, 4.05% for PE, and 4.35% for VE. 

Furthermore, a way of resolving the number of ensemble behavioral sets was presented 

to maintain a sufficient range of uncertainty and to avoid any unnecessary computation. 

An ensemble size of 500 was determined based on a visual inspection of Fig. 2.6 for 

the uncertainty characteristics of hydrographs (i.e., flood peak and flood volume). 

 Third, the total time needed for estimating the uncertainty of a PCE model consists of 

(i) the time required to carry out 500 PCE behavioral runs, (ii) the time to determine 

the number of experimental designs and (iii) the time to compute the PCE coefficients 

(Table 8). The least square regression method was employed to efficiently estimate the 

PCE coefficients. This procedure is affected by the number of experimental designs (𝑁) 

and degree of polynomial (𝑝). Figs. 7 and 8 illustrate the effects of N and p on the 

accuracy of the PCE model results (i.e., NSE, PE, VE, and R2), and we concluded that 

a 𝑁 of 50 and a 𝑝 of 4 would be preferred. 

 Last, both the visual inspection of the posterior distribution and the mathematical 

computations of the Sobol’ and Morris indices were investigated to see if constraining 

the range of dominant parameters could enhance efficiency. Two parameters (“CQOF” 
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and “CK12”) turned out to be more sensitive than the other seven parameters. 

Excluding these dominant parameters from the calibration process (by using Case 1 to 

3) helped to determine the behavioral sets even faster, and thus it can be one of the most 

efficient ways to decrease runtime. 

 Regarding the second study, an approach to building an efficient surrogate model is focused. 

Specifically, SPCE and LAR were combined to allow for efficient construction of a surrogate 

model and fast quantification of its uncertainty for hydrological predictions. The essence of LAR 

is to learn and retain only the most significant polynomial basis terms, resulting in a sparse set of 

PCE coefficients that could be estimated more straightforwardly. The advantages of SPCE were 

investigated in comparison to the performance of a surrogate model (FPCE) constructed using 

ordinary least square regression (OLS), as follows: 

 The performance of SPCE is superior to FPCE because SPCE can build a more accurate 

surrogate model (i.e., smaller 𝐿𝑂𝑂) with an experimental design of one-quarter the size 

(i.e., 500 versus 2,000). 

 Streamflow results obtained through GLUE demonstrated that SPCE could sufficiently 

capture the uncertainty of the streamflow, which is comparable to that of SFM (see high 

degree of agreement for NSE and PE). 

 Sensitivity analysis attained through visual inspection of the posterior parameter 

distributions and mathematical computation of the Sobol’ index has been of great success 

for SPCE to capture the parameter sensitivity of SFM in middle to high flow predictions. 

In all models and in all events, the four parameters 𝛼, 𝐾𝑏𝑎𝑠, 𝑃𝑏𝑎𝑠, and 𝑃𝑐ℎ𝑛 were most 

sensitive to the likelihood function, NSE. 
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 The computational power of SPCE is about 200 times faster than SFM and about four times 

faster than FPCE when executing 100,000 ensemble runs. This efficiency enhancement of 

SPCE is particularly important when larger ensemble runs are needed.  

Overall, this Chapter has provided an efficient framework to quantify the uncertainty in 

hydrological model simulations without sacrificing accuracy as compared to typical deterministic 

model results. Although we applied the methodology to two watersheds and two lumped models, 

it is expected to work well when estimating streamflow for other regions and other distributed 

models as well. One can maximize efficiency, especially when using complex models. Therefore, 

the proposed framework will ultimately be helpful for providing flood warnings and mitigating 

flood risk in a timely manner. 
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CHAPTER III 

 

A novel modeling framework for real‐time ensemble 

flood forecasting with uncertainty quantification 

“There’s a way to do it better, find it” 

- (Edison, TA) 

 

3.1 Introduction 

Real-time forecasting is an important component of flood risk management and mitigation 

but is subject to multiple uncertainties caused by meteorological inputs, initial states, model 

structures, and model parameters [Beven, 1989; Ajami et al., 2007; Moradkhani and Sorooshian, 

2008; Mockler et al., 2016]. Due to the complexities of natural phenomena represented by 

equifinality [Beven and Freer, 2001; Beven, 2006], hysteresis [Wei and Dewoolkar, 2006; Ivanov 

et al., 2010; Fatichi et al., 2015; Fatichi et al., 2016b], non-uniqueness [Beven, 2000; McKenna 

et al., 2003; Kim and Ivanov, 2014; Kim et al., 2016a], non-linearity [Kitanidis and Bras, 1980; 

Xie and Zhang, 2010; Kim and Ivanov, 2015], and internal variability [Nikiema and Laprise, 2011; 

Mondal and Mujumdar, 2012; Lafaysse et al., 2014; Fatichi et al., 2016a; Kim et al., 2016c; Kim 

et al., 2016b; Kim et al., 2018],  perfect predictions using numerical models are infeasible. The 

problem exacerbates, if one attempts to simulate constitutive models derived from empirical or 

phenomenological observations rather than basic conservation laws of physics that would also 

require embracing a large number of parameters. Forecasting systems must therefore rely on 
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approaches with intrinsic tools to quantify and reduce associated uncertainties and allow end-users 

to make informed decisions [Todini, 1999; 2004].  

Forecasts made with sufficient lead time can mitigate flood damages considerably. Results 

should therefore be provided within a predetermined time horizon and accurate enough to promote 

community confidence in actions taken for emergency preparedness [Todini, 2004; APFM, 2013]. 

Extensive efforts have been devoted to enhance forecast accuracy, predictability, and efficiency in 

real time with uncertainty quantification (Table 3.1). However, simultaneous improvement of 

predictive accuracy and efficiency, while evaluating effectiveness, remains a major challenge [Liu 

et al., 2012; Cintra and Velho, 2018]. 

For the purpose of enhancing model accuracy in real-time flood forecasting where no 

information of model states and parameters is available, data assimilation (DA) has been proven 

useful. Due to the nature of forecasting, the effect of future unknowns (model parameters and states) 

on flood prediction will change over time. In addition, uncertainty can be amplified not only by 

the features of the model itself, but also by errors in forcing data and observations. Therefore, 

model adjustment for the forecasting period may be necessary [Young, 2002; Moradkhani et al., 

2005c]. Several assimilation methods have been developed using Kalman or particle filters and 

optimization or inference techniques such as the back-fitting algorithm [Zhang et al., 2018b], 

shuffled complex evolution algorithm [Li et al., 2014], shuffled complex evolution metropolis 

[Vrugt et al., 2005], generalized likelihood uncertainty estimation (GLUE) [Beven and Freer, 

2001], and sequential Bayesian combination [DeChant and Moradkhani, 2014]. Due to the higher 

computational requirements of the latter techniques, filter-type approaches have attracted attention 

as assimilation tools [Moradkhani and Sorooshian, 2008; Gharamti et al., 2013]. 
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Table 3.1. Literature review of applications involving real-time, ensemble streamflow forecasting. 

The last column corresponds to the taxonomy of the predictive approach (A) that we define in 

Table 3.2. “Warm-up” methods have a warm-up period, while “Arbitrary” do not. 

Study 
Deterministic 

model 

Surrogate 

model 

Parameter 

specification 

State 

initialization 
DA A 

Zhang et al. [2018b] Xinanjiang - Optimization Warm-up Dual A12 

Abbaszadeh et al. [2018] SAC-SMA - Random Arbitrary Dual A12 

Wang et al. [2018] HyMOD PCE NA Warm-up Dual A6 

Davison et al. [2017] MESH - Random NA Dual A3 

Thiboult et al. [2016] Multimodels - NA Warm-up Single A2 

Fan et al. [2016] HyMOD PCE Random NA Dual A6 

Zahmatkesh et al. [2015] HyMOD, HBV, 

SWMM 

- Bayesian 

inference 

Warm-up None A10 

Li et al. [2014] GR4H - Optimization NA Dual A12 

DeChant and 

Moradkhani [2014] 

VIC - NA Warm-up Dual A3 

Xie and Zhang [2013] SWAT - Random Warm-up Dual A3 

Chen et al. [2013] HyMOD - Bayesian 

inference 

NA Single A11 

Moradkhani et al. [2012] HyMOD - Random Warm-up Dual A3 

He et al. [2012] SNOW17+ 

SAC-SMA 

- Bayesian 

inference 

Warm-up Single A11 

Mendoza et al. [2012] TopNet - Manual 

calibration 

Warm-up Single A11 

Clark et al. [2008] TopNet - Bayesian 

inference 

Warm-up Single A11 

Ajami et al. [2007] HyMOD, SWB - Bayesian 

inference 

Warm-up None A10 

Weerts and El Serafy 

[2006] 

HBV-96 - NA NA Single A2 

Vrugt et al. [2005] HyMOD - Random Arbitrary Dual A3 

Moradkhani et al. 

[2005b] 

HyMOD - Random Arbitrary Dual A3 

Madsen and Skotner 

[2005] 

Mike 11 - Optimization Warm-up Single A11 

Beven and Freer [2001] TOPMODEL - Bayesian 

inference 

Warm-up Dual A12 

NA: Not Available 

 

Currently, the ensemble Kalman filter (EnKF) [Evensen, 1994] and its modifications (e.g., 

ensemble Kalman smoothers, ensemble square-root filters, and gain function) are the most 

commonly used techniques in the hydrology community (Table 3.1), despite the issue of slow 

convergence caused by intrinsic assumptions, especially for domains with complexities 

[Moradkhani et al., 2005b; Weerts and El Serafy, 2006; Moradkhani et al., 2012; Wang et al., 

2017]. Recent studies have suggested that particle filtering (PF) [Arulampalam et al., 2002] is an 
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alternative method to resolve the inclusion of unrealistic Gaussian assumptions in the EnKF. The 

PF method has more advantages than EnKF in reducing numerical instability by providing particle 

weights and using non-Gaussian state-space models [Liu et al., 2012]. However, this method is 

computationally more expensive as it generally requires more ensemble members [Moradkhani et 

al., 2005b; Liu et al., 2012].  

When assimilating data, model parameter specification and state initialization may play a 

crucial role, especially for short-range forecasting [Houtekamer and Zhang, 2016]. Generally, 

ensemble initialization of model states and parameters for the forecasting period can be generated 

approximately, e.g., using a random selection from uniform distributions for parameters and 

setting up the initial state values as an arbitrary number (e.g., zero) at the beginning of the 

forecasting period [Moradkhani et al., 2005b; Vrugt et al., 2005; Moradkhani et al., 2012; Xie and 

Zhang, 2013; DeChant and Moradkhani, 2014; Davison et al., 2017; Abbaszadeh et al., 2018]. 

Alternatively, the ensemble can be generated more carefully, e.g., specifying parameters from 

relevant distributions [Beven and Freer, 2001; Madsen and Skotner, 2005; Ajami et al., 2007; 

Clark et al., 2008; He et al., 2012; Mendoza et al., 2012; Chen et al., 2013; Zahmatkesh et al., 

2015] and using a warm-up technique for states [Ajami et al., 2007; He et al., 2012; Mendoza et 

al., 2012; DeChant and Moradkhani, 2014; Wang et al., 2018], as summarized in Table 3.1. 

The assimilation techniques described above generally require a large number of model 

evaluations to update parameter and state values and present predictive uncertainties, leading to 

computational challenges [Vrugt et al., 2008c; Vrugt, 2016; Zhang et al., 2017], even with the 

benefit of parallel computation with multiple processors [Cintra and Velho, 2018]. Because 

keeping calculation time to a minimum is a key element for timely flood warnings and responding 

to emergency situations [Ballio and Guadagnini, 2004; Sene, 2008], it is necessary to find 
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alternatives that significantly increase forecast lead time. Surrogate modeling can address this 

challenge by substituting computationally intensive models with computationally efficient 

metamodels, such as the polynomial chaos expansion (PCE). Through the expansion of orthogonal 

polynomials, approximate functions can be constructed and applied to hydrologic models. Recent 

studies have used PCE to perform robust uncertainty assessment of diverse hydrologic problems 

[Sochala and Le Maître, 2013; Fan et al., 2014; Wu et al., 2014; Wang et al., 2015; Fan et al., 

2016; Wang et al., 2017; Wang et al., 2018; Dwelle et al., 2019] rather than running deterministic 

models. However, few studies have tested its effectiveness in a setting of real-time flood 

forecasting [Wang et al., 2015; Fan et al., 2016; Wang et al., 2017; Wang et al., 2018].  

To fill the above gaps, we propose a novel integrated modeling framework that improves 

accuracy, predictability, and efficiency of real-time flood forecasting. Eighteen approaches to the 

framework are presented, combining ways of constructing the surrogate models, specifying model 

parameters and states, and assimilating newly observed data. This Chapter investigates (i) the 

effects of building methods of the PCE model and its capacity for real-time flood forecasting; (ii) 

the effects of specifying methods on predictive performance; (iii) the effects of single- and dual-

assimilation techniques; and (iv) the computational time of the proposed approaches. 

3.2 Methods 

3.2.1 New invariant surrogate model: polynomial chaos expansion 

Polynomial chaos expansion (PCE) [Wiener, 1938; Ghanem and Spanos, 1991] can build 

a surrogate model ( 𝓜𝑃𝐶𝐸)  for any (deterministic rainfall-runoff) model ( 𝓜 ) through the 

expansions of orthogonal polynomials. This enables a polynomial approximation of the model 
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through its deterministic input/output relationship. The form of a PCE model approximating a 

model output (e.g., streamflow 𝑦𝑡) as a function of model parameters 𝜽𝑡 is given as:  

𝑦𝑡 = 𝓜(𝜽𝑡) ≈ 𝓜𝑃𝐶𝐸𝑡(𝜽𝑡)     (3.1) 

Note that the surrogate model (𝓜𝑃𝐶𝐸) in Eq. 3.1 has the subscript of 𝑡, indicating that the 

surrogate model is a collection of PCEs constructed at each time step of interest. Also, only the 

parameter 𝜽𝑡 (this includes a subscript of 𝑡 as well) is chosen as an input variable during PCE 

construction, and other forcing or state inputs required to simulate hydrologic models are held 

constant [Sochala and Le Maître, 2013; Fan et al., 2016; Meng and Li, 2018; Wang et al., 2018; 

Dwelle et al., 2019; Tran and Kim, 2019]. This mathematical formulation conveys that PCE should 

be built separately for each time step at which a meteorological condition or model state is updated.  

Unlike previous studies based on Eq. 3.1, this work constructs the surrogate PCE model 

with Eq. 3.2, which has three characteristics: (i) the model input consists of meteorological data, 

model states, and model parameters; (ii) model parameters do not change over time, which is 

different from Eq. 3.1; and (iii) there is no need to constantly create the PCE model over time 

(which is the most important practical feature). The single PCE model represents streamflow 

phenomena over the entire calibration period during which the PCE model was generated. 

Specifically, ensemble model output (𝒀𝒕) at each time step, including streamflow (𝑦𝑡) and states 

(𝒙𝑡), can be written as a function of model inputs (𝑿𝑡), including states (𝒙𝑡−1), climate data (𝒖𝑡), 

and time-invariant parameters (𝜽): 

𝒀𝒕 = 𝓜(𝑿𝑡) ≈ 𝓜𝑃𝐶𝐸(𝑿𝑡) = ∑ 𝜀Ψ(𝑿𝑡)𝑁Ψ−1
=0     (3.2) 

𝒀𝒕 = [𝑦𝑡 𝒙𝑡], 𝑿𝑡 = [𝒙𝑡−1 𝜽 𝒖𝑡]    (3.3) 
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where Ψ(𝑿𝑡) represents the multivariate polynomials corresponding to the given input 𝑿𝑡. The 

polynomials are constructed as the product of univariate orthonormal polynomials: 

Ψ(𝑿𝑡) =  ∏ Ψj

(𝑗)
(𝑿𝑡

𝑗
)

𝑁𝑋
𝑗=1      (3.4) 

where the size of 𝑿𝑡, 𝑁𝑋, is equal to the summation of the number of parameters, states, and forcing 

inputs of the deterministic model (i.e., 𝑁𝑋 = 𝑁𝑃 + 𝑁𝑆 + 𝑁𝐼). Note that the NAM model is selected 

to implement in this Chapter, that is, 𝑁𝑃 = 9, 𝑁𝑆 = 5, and 𝑁𝐼 = 1 are used. More information 

about the NAM model can be found in Section 2.2.1.2. Thus, the number of PCE coefficient can 

be determined as: 

𝑁Ψ =
(𝑁𝑋+𝑝)!

𝑁𝑋!𝑝!
     (3.5) 

Given the set of multivariate orthonormal polynomials (Ψ(𝑿𝑡)), the next step is to 

compute the PCE coefficients (𝜀), which are influenced by the number of experimental designs 

(𝑁) and the polynomial degree, 𝑝 [Blatman and Sudret, 2010; Blatman and Sudret, 2011]. For this 

work, the least-squares regression (OLS) is adopted. The detail of this method can be found in 

Section 2.2.1.1. According to the approach by Blatman and Sudret [2010], a metric of the leave-

one-out (𝐿𝑂𝑂) cross-validation error in Eq. 2.21 can illustrate the performance of the PCE model.  

3.2.2 Parameter inference: GLUE 

GLUE [Beven and Binley, 1992] refers to a series of procedures for inferring parameter 

posterior distributions and quantifying the associated uncertainties. The objective of GLUE is to 

select “behavioral” model runs based on the threshold values of likelihood functions with 

observations, among a large number of runs simulated with random combinations of parameter 
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values. The latter parameter’s values can be sampled randomly from the prior distributions of each 

parameter (constrained in this study with upper and lower bounds of Table 2.3) using Monte Carlo 

or Latin hypercube sampling (LHS). For more efficient performance, LHS was used [Helton and 

Davis, 2003]. The likelihood functions proposed are three metrics of Nash–Sutcliffe efficiency 

(𝑁𝑆𝐸), peak error (𝑃𝐸), and volume error (𝑉𝐸) defined in Eqs. (2.9-2.11), representing the model 

performance with respect to the shape, peak, and volume of hydrograph, respectively. Acceptance 

threshold values are determined according to an approach presented in Section 2.2.3.1 in which 

relationships between accuracy and efficiency indices are identified for their determinations. 

Specifically, cutoff threshold values for the likelihood functions of 𝑁𝑆𝐸 , 𝑃𝐸 , and 𝑉𝐸  are 

suggested as 0.8, 5%, and 5%, respectively. The model runs (or parameters) that satisfy the 

modelling error within the above thresholds for all the likelihood functions are defined here as 

“behavioral” runs (or parameters). 

3.2.3 Data assimilation: Ensemble Kalman filter 

Among many reported techniques, the single ensemble Karman filter (EnKF) and the dual-

ensemble Karman filter (dual EnKF) are often chosen to optimally update the ensemble of model 

states (and parameters) of forecasting systems with real-time observations, which can be coupled 

with any models [Evensen, 1994; Burgers et al., 1998; Moradkhani et al., 2005c; Whitaker, 2012].  

3.2.3.1 States updated 

An ensemble of state vector, 𝒙 consisting of 𝑛 ensemble members by 𝑁𝑆  is propagated 

through 𝑴𝒐𝒅𝒆𝒍  of both deterministic model and PCE models, such that each state vector 

represents one realization of the model states. Then, the state forecast is made for each ensemble 

member as follows (forecast step): 
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𝒙𝑡
𝑖− = 𝑓(𝒙𝑡−1

𝑖+ , 𝜽𝑖 , 𝒖𝑡) + 𝑤𝑡
𝑖 ,       𝑖 = 1, … , 𝑛    (3.6) 

where 𝒙𝑡
𝑖− is the i-th forecasted states vector at time 𝑡, 𝒙𝑡−1

𝑖+  is the i-th updated states vector at time 

𝑡 − 1, 𝑁𝑆 is the number of model states 𝒙 = {𝑥𝑗 , 𝑗 = 1, … , 𝑁𝑠}, and 𝑛 is the number of ensemble 

members. The nonlinear propagator 𝑓(·) contains 𝑁𝐼  model input vector 𝒖𝑡, {𝑢1,𝑡, … , 𝑢𝑁𝐼,𝑡} and 

the i-th model parameter vector 𝜽𝑖 corresponding to the model state 𝒙𝑡−1
𝑖+ . The term 𝑤𝑡

𝑖 is the i-th 

model error and presents all uncertainty related to model structure, forcing data and model 

parameter [Moradkhani et al., 2005c]. In this work, the model error is represented by the 

uncertainty of model parameters. 

Suppose that the actual observation (𝑦𝑡+1
𝑜𝑏𝑠) is taken at time 𝑡 + 1 and that we intend to 

assimilate the vector of observations into the model. The predicted output of model, 𝑦𝑡 +1
𝑖  at time 

𝑡 + 1 is computed with the propagator ℎ(·) as a function of 𝜽𝑖 , 𝒖𝑡+1 , and 𝒙𝑡
𝑖− , which can be 

written as: 

𝑦𝑡+1
𝑖 = ℎ(𝒙𝑡

𝑖−, 𝜽𝑖 , 𝒖𝑡+1)     (3.7) 

To represent the error statistics in the forecast step, we assume that at time 𝑡 + 1, we have 

an ensemble of n forecasted states, 𝒙𝑡
− ≜ (𝒙𝑡

1−, … , 𝒙𝑡
𝑛−)  and an ensemble of n forecasted 

outputs,  𝑦𝑡+1 ≜ (𝑦𝑡+1
1 , … , 𝑦𝑡+1

𝑛 ) . Then the ensemble means of forecasted state ( �̅�𝑡
− ) and the 

ensemble mean of forecasted output (�̅�𝑡+1) are estimated by: 

�̅�𝑡
− ≜

1

𝑛
∑ 𝒙𝑡

𝑖−𝑛
𝑖=1      (3.8) 

�̅�𝑡+1 ≜
1

𝑛
∑ 𝑦𝑡+1

𝑖𝑛
𝑖=1      (3.9) 
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 Then, we define the ensemble error matrix of forecasted state, 𝐸𝑡+1
−  around the ensemble 

mean by: 

𝐸𝑡+1
− ≜ [𝒙𝑡

1− − �̅�𝑡
− … 𝒙𝑡

𝑛− − �̅�𝑡
−]    (3.10) 

and the ensemble of output error matrix, 𝐸𝑡+1
𝑦

 is: 

𝐸𝑡+1
𝑦

≜ [𝑦𝑡+1
1 − �̅�𝑡+1 … 𝑦𝑡+1

𝑛 − �̅�𝑡+1]    (3.11) 

The error covariance matrix is calculated including: 

- The error covariance matrix of ensemble forecast state: 

𝑸𝑡+1
𝑥 =

1

𝑛−1
𝐸𝑡+1

− (𝐸𝑡+1
− )T    (3.12) 

- The error covariance matrix of model output: 

𝑸𝑡+1
𝑦

=
1

𝑛−1
𝐸𝑡+1

𝑦
(𝐸𝑡+1

𝑦
)T    (3.13) 

- The forecast cross-covariance of the states and output: 

𝑸𝑡+1
𝒙𝑦

=
1

𝑛−1
𝐸𝑡+1

− (𝐸𝑡+1
𝑦

)T    (3.14) 

In order for the EnKF to maintain sufficient spreads in ensemble and to prevent from filter 

divergence [Whitaker and Hamill, 2002], observations should be treated as random variables. At 

each time, an observation is perturbed by adding noise drawn from a Gaussian distribution of mean 

zero and predefined covariance [Burgers et al., 1998]. Thus, in the updated step, the forecasted 

state set 𝒙𝑡+1
𝑖−  is updated using the Kalman gain 𝐾𝑡+1

𝑥  as follow: 

𝒙𝑡
𝑖+ = 𝒙𝑡

𝑖− + 𝐾𝑡+1
𝑥 (𝑦𝑡+1

𝑜𝑏𝑠,𝑖 − 𝑦𝑡+1
𝑖 )    (3.15) 
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where 𝑦𝑡+1
𝑜𝑏𝑠,𝑖

 is the i-th trajectory of the observation replicates generated by adding to the actual 

observation ( 𝑦𝑡+1
𝑜𝑏𝑠)  error, 𝜂  (i.e., a perturbation to observation) that has zero mean and the 

covariance, 𝐸𝑡+1
𝑦𝑜𝑏𝑠

, which is determined as follow: 

𝑦𝑡+1
𝑜𝑏𝑠,𝑖 = 𝑦𝑡+1

𝑜𝑏𝑠 + 𝜂𝑡+1
𝑖 , 𝜂𝑡+1

𝑖 ~𝑁 (0, 𝐸𝑡+1
𝑦𝑜𝑏𝑠

)   (3.16) 

The Kalman gain matrix can be calculated by: 

𝐾𝑡+1
𝑥 = 𝑸𝑡+1

𝒙𝑦
[𝑸𝑡+1

𝑦
+ 𝑸𝑡+1

𝑜𝑏𝑠 ]
−1

    (3.17) 

where 𝑸𝑡+1
𝑜𝑏𝑠  is the covariance matrix of the observation, 𝑦𝑡+1

𝑜𝑏𝑠,𝑖
, which is defined similar to 𝑸𝑡+1

𝑦
. 

𝑸𝑡+1
𝑜𝑏𝑠 =

1

𝑛−1
𝐸𝑡+1

𝑜𝑏𝑠(𝐸𝑡+1
𝑜𝑏𝑠)T    (3.18) 

𝐸𝑡+1
𝑜𝑏𝑠 ≜ [𝑦𝑡+1

𝑜𝑏𝑠,1 − 𝑦𝑡+1
𝑜𝑏𝑠 … 𝑦𝑡+1

𝑜𝑏𝑠,𝑛 − 𝑦𝑡+1
𝑜𝑏𝑠]   (3.19) 

3.2.3.2 Dual parameters-states updated 

The dual EnKF requires two interactive and parallel filters for the states and parameters 

estimation [Moradkhani et al., 2005c]. The parameters are first updated and then the states. In 

order to extend the applicability of the single EnKF to the simultaneous parameters–states EnKF, 

one needs to treat the ensemble size of parameter sets similar to the model state. However, the 

parameter values are not changed after the forecast step:  

𝜽𝑡+1
𝑖− = 𝜽𝑡

𝑖+     (3.20) 

 Using the parameters forecasted and the replicates of forcing data, states of the ensemble 

model and model prediction are computed as follows: 
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𝒙𝑡
𝑖− = 𝑓(𝒙𝑡−1

𝑖+ , 𝜽𝑡+1
𝑖− , 𝒖𝑡) + 𝑤𝑡

𝑖,       𝑖 = 1, … 𝑛   (3.21) 

𝑦𝑡+1
𝑖 = ℎ(𝒙𝑡

𝑖−, 𝜽𝑡+1
𝑖− , 𝒖𝑡+1)    (3.22) 

Updating the ensemble parameter member is made: 

𝜽𝑡+1
𝑖+ = 𝜽𝑡+1

𝑖− + 𝐾𝑡+1
𝜽 (𝑦𝑡+1

𝑜𝑏𝑠,𝑖 − 𝑦𝑡+1
𝑖 )    (3.23) 

where 𝐾𝑡+1
𝜽  is the Kalman gain for correcting the parameter trajectories obtained with: 

𝐾𝑡+1
𝜽 = 𝑸𝑡+1

𝜽𝑦
[𝑸𝑡+1

𝑦
+ 𝑸𝑡+1

𝑜𝑏𝑠 ]
−1

    (3.24) 

where 𝑸𝑡+1
𝜽𝑦

 is the cross-covariance matrix of model parameters and model output. Now use the 

updated parameter 𝜽𝑡+1
𝑖+  to the step given in Section 3.2.3.1 to update the ensemble model states 

simultaneously. 

3.3 New modeling framework 

3.3.1 Obtaining prior and posterior parameter distributions of a deterministic model 

The first preparation step of the modeling framework is to obtain the prior and posterior 

parameter distributions for a deterministic model. There could be various ways to handle this, but 

in this study the following assumptions and methodologies are specifically applied. We first 

assume that each of the parameters follows a uniform distribution within specified bounds – the 

prior parameter distributions are simply attained by utilizing prior-known information for the 

bounds in Table 2.3. In contrast, the posterior parameter distributions are fitted to the 500 behavior 

parameters of GLUE – the 500 NAM behavior samples are identified as an optimal number from 

Chapter II which has confirmed that more than the 500 parameter sets does not change the shape 
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of the posterior distributions (see Section 2.2.3.1). For consistency, this number will be also used 

for making the posterior distributions of PCE-I and PCE-II in Sec. 3.3.2.  

 

Figure 3.1. A schematic illustration for real-time ensemble flood forecasting, which consists of 3 

intervals: warm-up, calibration, and forecasting periods. The light red shaded region in the warm-

up and calibration periods refers to the 𝑛 behavior results of GLUE that are employed to estimate 

posterior parameter distributions, while the light blue region refers to the 𝑛𝑤  random results 

obtained from parameter sets sampled from prior (uniform) distributions to attain the 𝑛 behavior 

runs. The construction of PCE models is carried out over the calibration period: PCE-I model is 

built from the NI training samples extracted from the light blue region, while PCE-II is from the 

NII samples from the light red region. The (dense) blue and red shaded regions correspond to the 

approaches using the “Random” (A1 to A9) and “Selected” (A10 to A18) parameter specifications 

with the same 𝑛 ensemble runs, respectively. 

 

The mathematical expression of this step is as follows. For the warm-up and calibration 

periods, a model 𝓜 (NAM) can be simulated to attain behavioral runs with GLUE, i.e., 

[𝑦𝑡
𝑖𝑖  𝒙𝑡

𝑖𝑖] = 𝓜(𝒙𝑡−1
𝑖𝑖 , 𝜽𝑖𝑖, 𝒖𝑡), 𝑖𝑖 = 1, … , 𝑛𝑤;  𝑡 = 1, … , 𝑡𝑐   (3.25) 
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where 𝑛𝑤 is the number of model runs to obtain the 𝑛 number of the behavioral set based on the 

likelihood scores estimated with the GLUE method. Among the 𝑛𝑤 random runs (referring to the 

light blue shaded region in Fig. 3.1) that are simulated by using parameter sets (𝜽𝑖𝑖) sampled 

randomly from the prior (uniform) distributions, the only 𝑛 behavior runs (referring to the light 

red shaded region in Fig. 3.1) are employed for making the posterior distributions. 

Reducing the effects of uncertainty by initial conditions (𝒙0
𝑖𝑖) is necessary for modeling. In 

this framework, a “warm-up” technique was employed to calibrate the deterministic model. 

Generally, a sufficient period of time (called the ‘warm-up’ period) can be set such that the 

influence of the initial condition is dissipated, and the warm-up is performed before entering the 

calibration period. This technique produces behavioral parameter sets much faster in GLUE, 

compared with cases that do not use the warm-up technique.  

3.3.2 Building PCE with two types of experimental design  

We propose two types of approaches for constructing the PCE model, depending on how 

the sample collections of the experimental design (𝓧𝒕) is composed. One approach is to build a 

PCE model (“PCE-I”) by collecting the training samples that are generated from the prior 

parameter distributions. The other approach is (“PCE-II”) uses samples that are formed by the 

posterior parameters distributions. The associated mathematical expression is 

[𝑦𝑡
𝑖𝑖𝑖  𝒙𝑡

𝑖𝑖𝑖] = 𝓜(𝒙𝑡−1
𝑖𝑖𝑖 , 𝜽𝑖𝑖𝑖, 𝒖𝑡), 𝑖𝑖𝑖 = 1, … , 𝑁;  𝑡 = 1, … , 𝑡𝑐   (3.26) 

where the 𝑁I set of 𝓧𝒕 (i.e., 𝑁 = 𝑁I for PCE-I) consists of model 𝓜 simulation results calculated 

from parameters sampled from the prior distributions (correspond to 𝑁I  set sampled randomly 

from the results in the light blue shaded region over the calibration period in Fig. 3.1) [Sudret, 
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2008; Blatman and Sudret, 2010; Blatman and Sudret, 2011]. In contrast, the experimental design 

of the latter approach assumes that the 𝑁II set of 𝓧𝒕 (i.e., 𝑁 = 𝑁II for PCE-II) are drawn from the 

more constrained, posterior parameter distributions (correspond to the light red shaded region over 

the calibration period in Fig. 3.1). All the samples were taken through LHS sampling [McKay et 

al., 1979b].  

The former approach can be implemented easily and therefore has been used more 

commonly in the literature [Sudret, 2008; Blatman and Sudret, 2010; Blatman and Sudret, 2011]. 

However, for past periods in which observations exist, the second approach using a well-calibrated 

set of parameters is beneficial in significantly reducing computational time [Tran and Kim, 2019]. 

It takes less time to build PCE in the second approach because less training samples (𝑁I is generally 

larger than 𝑁II) are required when estimating coefficients. On the other hand, in the context of real-

time forecasting when no observations have been attained, the latter approach might cause a 

problem. Specifically, PCE models built with a set of “good” posterior parameters sets obtained 

only for a certain historic period of time would not necessarily demonstrate validity for unknown 

prediction periods. Evaluation of the applicability of the two approaches to real-time flood 

forecasting will be addressed in Section 3.5.  

Once the PCE models were constructed, the same GLUE procedure is made to obtain the 

posterior parameter distributions of both PCE models: 

[𝑦𝑡
𝑖𝑖  𝒙𝑡

𝑖𝑖] = 𝓜𝑃𝐶𝐸(𝒙𝑡−1
𝑖𝑖 , 𝜽𝑖𝑖, 𝒖𝑡), 𝑖𝑖 = 1, … , 𝑛𝑤;  𝑡 = 1, … , 𝑡𝑐 (3.27) 

Note that the number 𝑛𝑤 is different depending on 𝑴𝒐𝒅𝒆𝒍 =  {NAM, PCE-I, PCE-II}. 
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3.3.3 Specifying model parameters for data assimilation 

Determining initial conditions and parameter values before assimilating real-time 

observations over the forecasting period is a necessary step. The mathematical expression for 

preparing data assimilation (forecasting) is written as: 

[𝑦𝑡
𝑖  𝒙𝑡

𝑖 ] = 𝑴𝒐𝒅𝒆𝒍(𝒙𝑡−1
𝑖 , 𝜽𝑖 , 𝒖𝑡), 𝑖 = 1, … , 𝑛;  𝑡 = 1, … , 𝑡𝑐  (3.28) 

where the initial ensemble of states (𝒙0
𝑖 ) is set to an arbitrary number (e.g., zero) at the beginning 

of simulation (i.e., 𝑡 = 0) (Fig. 3.1). In terms of specifying the model parameters, two types of 

approach are proposed. First, similarly to most previous studies of data assimilation [Moradkhani 

et al., 2005c; Vrugt et al., 2005; Wang et al., 2009; Gharamti et al., 2013; Xie and Zhang, 2013; 

DeChant and Moradkhani, 2014; Davison et al., 2017], the ensemble of parameters over the 

periods (0 ≤ 𝑡 ≤ 𝑡𝑐) is assumed to follow a prior distribution. That is, the 𝑛 number of parameter 

sets are sampled from uniform distributions with predefined bounded ranges (i.e., from the results 

in the light blue shaded region in Fig. 3.1). The values of parameters remain unchanged, while 

those of state vectors are continuously updated until the beginning of the forecasting period (i.e., 

𝑡 = 𝑡𝑐). This is hereafter named “Random” set — referring to the use of random parameter sets for 

running Model of NAM, PCE-I, and PCE-II. 

An alternative way to this Random specification method is enabled by taking the advantage 

of the ability to calibrate model parameters with observed data before the forecasting period. 

Specifically, this method uses the posterior results of GLUE behavioral runs (referring to the light 

red shaded region in Fig. 3.1), i.e., selected parameter sets for running Model — called “Selected” 

specification method. The selected parameter sets for Model remain unchanged over the warm-up 

and calibration periods as well. As with the former approach, the values of state vectors are initially 
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set to be zero at 𝑡 = 0 but are continuously updated until 𝑡 = 𝑡𝑐. We expected to see the EnKF 

process converge much faster and the forecasting results improve. 

3.3.4 Modeling approaches for forecasting 

In total, 18 modeling approaches (see Fig. 3.2) were developed by combining the modeling 

options with various techniques (NAM + PCE + GLUE + EnKF) in Sections 3.3.2 and 3.3.3. The 

modeling techniques were coupled to successfully perform ensemble flood forecasting and to meet 

the need for accurate and efficient flood forecasting. The 18 approaches represent permutations of 

the 3 × 2 × 3 subcases (Table 3.2). First, they were divided into three subcases corresponding to 

𝑴𝒐𝒅𝒆𝒍, depending on whether a deterministic model or a PCE model was used over the calibration 

period (see Section 3.3.2) and how the latter was developed. Second, these modeling sets were 

divided into two subcases corresponding to Random or Selected sets, depending on how the 

parameter sets before the forecasting period were specified (see Section 3.3.3). Lastly, they were 

divided into three subcases depending on the methodology of data assimilation. The first of the 

three subcases did not use any data assimilation, and the other two used single- and dual-ensemble 

Kalman filters (see Section 3.2.3). We evaluated the modeling performance of the coupling 

framework by assessing accuracy, efficiency, and predictability in Section 3.5.2. The performance 

comparisons of the 18 approaches are expected to be a guide to which approach demonstrates 

better skill and most appropriate and which should be avoided. 
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Figure 3.2. The overview of an ensemble flood forecasting framework. The top box, “PCE 

construction” is for the process of building 2 PCE models (blue box for PCE-I and red box for 

PCE-II). The middle box, “Specification” describes 2 distinct approaches of specifying model 

parameters before forecasting including Random (blue box) and Selected (red box). The bottom 

box, “Forecasting” corresponds to data assimilation for flood forecasting in real-time (single and 

dual EnKFs). The top and middle blue boxes correspond to sampling 𝑁I and 𝑛, independently from 

the same prior uniform distributions, respectively, while the red boxes sampling 𝑁II and 𝑛 from 

the same posterior distributions. 
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Table 3.2. Forecasting approaches employed in this Chapter 

Approach Specification Model Data assimilation 

A1 

Random 

NAM 

None 

A2 EnKF 

A3 Dual EnKF 

A4 

PCE-I 

None 

A5 EnKF 

A6 Dual EnKF 

A7 

PCE-II 

None 

A8 EnKF 

A9 Dual EnKF 

A10 

Selected 

NAM 

None 

A11 EnKF 

A12 Dual EnKF 

A13 

PCE-I 

None 

A14 EnKF 

A15 Dual EnKF 

A16 

PCE-II 

None 

A17 EnKF 

A18 Dual EnKF 

 

3.4 Experimental setups 

3.4.1 Case study 

In this work, the unified framework is applied to predict hourly streamflow in the Vu Gia 

watershed as shown in Fig. 3.3. The watershed is one of the largest in central Vietnam, with a total 

area of 1,679.8 km2 in the tropical region. It experiences a typical continental monsoon climate, 

with concentrated rainfall mainly from September to December. As the Vu Gia watershed is 

characterized by a large difference in elevation (slopes of approximately 30 %), floods occur 

rapidly and frequently. The region has experienced intense severe flooding and significant damage 

[UNDP, 1999; Nga et al., 2015]. 



89 

 

 

Figure 1.3. Study area: Vu Gia watershed 

 

Figure 3.4. Flood event used in the study. The black line is the discharge of outlet and the gray 

hyetograph represents the average rainfall of Vu Gia watershed. 
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Streamflow data used for the outlet of the basin was collected hourly at Thanh My station 

– the only hydrometric station in the domain. Rainfall data was also observed hourly and obtained 

from two weather stations near the study area (Thanh My and Kham Duc stations). The average 

rainfall over the basin (Fig. 3.4) was calculated through the Thiessen polygon method. 

Observations from Dec. 1 to 17, 2016, are employed, in which the data from Dec. 1 to 13 was used 

for the warm-up period (i.e., from 0 to 𝑡𝑤), the data from Dec. 13 to 15 for the calibration period 

(i.e., from 𝑡𝑤  to 𝑡𝑐 ), and the remaining data (assuming numerically that this data was newly 

provided at an hourly basis) corresponds to the forecasting period (i.e., from 𝑡𝑐 to 𝑡𝑓) (Fig. 3.4). 

Note that rainfall forecasts has not been considered in this experimental design, what is done is 

hindcasting but one refers to the period between 𝑡𝑐 and 𝑡𝑓 as the “forecasting period”, allowing for 

replicating real-life operational flood-forecasting process. Also note that a source of uncertainty 

for rainfall forecasts has not been presented, but it could have been addressed in Eq. 3.1 that has 

the flexibility to include ensemble precipitation inputs (𝒖𝑡). 

To investigate the effects of different warm-up lengths, we initialize NAM a number of 

days before the calibration period. The warm-up periods chosen are 12 days (289 hours), 20, 30, 

and 60 days. We then compared the posterior probability densities estimated through GLUE for 9 

model parameters and 5 model states at the beginning of the calibration period (at 𝑡 = 290 hr). Fig. 

3.5 shows that longer warm-up lengths do not change the posterior distributions of model 

parameters and states significantly, although have some effects on the parameter of Lm and the 

variable of L related to subsurface flow. However, we can confirm that the most sensitive two 

parameters of CQOF and CK12 on the flood hydrograph reach their equilibrium. Such an 

equilibrium can be obviously found in the hydrographs and the metrics (Fig. 3.6) over the 
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calibration period. From above, we contend selecting 12 (289 hours) days as the length of the 

warm-up period is acceptable. 

 

Figure 3.5. The posterior probability distributions of (left) 9 model parameters and (right) 5 model 

states at the beginning of the calibration period (at t = 290) for different warm-up lengths. 



92 

 

 

Figure 3.6. The effects of different warm-up lengths on (left) hydrographs and (right) NSE, PE, 

and VE metrics for A1, A2, A3 and A10, A11, A12 over the calibration period. 
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3.4.2 Data assimilation setups 

The EnKF allows for the perturbation of observations to generate replicates of 𝒙𝑡−1 and 

𝜽𝑡, and the correction of the ensemble forecast members through an update step [Moradkhani et 

al., 2005c]. This prevents the EnKF from a collapse in which all ensemble forecast members are 

likely to have similar values [Burgers et al., 1998]. As shown in Eq. 3.16, observations can be 

perturbed by adding stochastic noise to the observed value. This observed error in measurements 

is assumed to be independent and is set to be proportional to the observed values, following a 

Gaussian distribution with predetermined variance. In this work, to select an appropriate 

observational error, we attempt to conduct sensitivity analysis of the noises of observation and 

rainfall in the data assimilation. In order to evaluate the ensemble performance, the Normalized 

RMSE Ratio (𝑁𝑅𝑅) discussed by Anderson [2001] and Moradkhani et al. [2005c] is used. 

𝑁𝑅𝑅 =  
𝑅𝑎

𝐸[𝑅𝑎]
      (3.29) 

𝑅𝑎 =
𝑅1

𝑅2
      (3.30) 

𝑅1 =  
1

T
∑ √[(

1

𝑛
∑ 𝑦𝑡

𝑖𝑛
𝑖=1 ) − 𝑦𝑡

𝑜𝑏𝑠]
2

T
𝑡=1     (3.31) 

𝑅2 =  
1

𝑛
∑ √1

T
∑ (𝑦𝑡

𝑖 − 𝑦𝑡
𝑜𝑏𝑠,𝑖)

2
T
𝑡=1

𝑛
𝑖=1     (3.32) 

𝐸[𝑅𝑎] =  √
(𝑛+1)

2𝑛
     (3.33) 

where Ra is the ratio of the time-averaged RMSE of the ensemble mean (𝑅1) to the ensemble-

averaged RMSE of the ensemble members (𝑅2); 𝐸[𝑅𝑎] is the expected value of the RMSE ratio 

𝑅𝑎. An ideal ensemble generation should produce a 𝑁𝑅𝑅 value close to unity value (i.e., 1). 
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𝑁𝑅𝑅 > 1 indicates that the ensemble has too little spread, while 𝑁𝑅𝑅 < 1 is an indication of an 

ensemble with too much spread. 

A sensitivity analysis is examined for the range of observation noise (1 - 30 %) and rainfall 

noise (1 - 30 %). Fig. 3.7 shows that 𝑁𝑅𝑅 is more sensitive to the observation noise than the 

rainfall noise. It means that accurate prediction is highly dependent on the observation replication. 

As seen, the small values of observation noise (approximately 4 and 5 %) will keep the 𝑁𝑅𝑅 within 

the acceptable range (0.99 - 1.01). Thus, 5 % was selected as the perturbation of streamflow 

observation in this study. 

 

Figure 3.7. 𝑁𝑅𝑅  space with respect to the varying noises of rainfall and observation. 500 

ensemble members are used for the computation of 𝑁𝑅𝑅. 

 

Furthermore, overshooting or filter divergence problem in data assimilation happens when 

the ensemble size is small or the initial values of ensemble members are quite different from the 

true. To resolve this issue, we used a sufficiently large ensemble size and the posterior information 
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of parameters to initialize the ensemble of EnKF. Also, determining the size of ensemble for 

forecasting (𝑛) is related to quantifying the uncertainty bounds and representing the EnKF. In 

previous studies, the ensemble size was selected randomly or large enough (at least 100 members) 

to fully identify the uncertainty confidence intervals [Cameron et al., 2000; Beven and Freer, 2001; 

Hossain and Anagnostou, 2005; Choi and Beven, 2007; Blasone et al., 2008b; Jin et al., 2010; 

Shen et al., 2012]. A sufficient number of ensemble parameter sets to achieve both goals of 

efficiency and uncertainty quantification should be determined. Following the results in Chapter 

II, we used an n of 500 as the optimal size of the ensemble. 

3.4.3 Performance metrics 

To assess the modeling performance of the 18 approaches, metrics representing accuracy, 

predictability, and efficiency were chosen, beginning with the accuracy metrics of Nash–Sutcliffe 

efficiency (𝑁𝑆𝐸), absolute error (𝐴𝐸), and relative entropy (𝑅𝐸) [Kullback and Leibler, 1951; 

Kullback, 1997; Kleeman, 2002]. Second, Brier scores (𝐵𝑆 ) [Brier, 1950], and the range of 

uncertainty (𝑈𝑅) were used to assess the predictability of probabilistic forecasts. Lastly, a metric 

calculating total runtime (𝑇𝑅𝑇) was evaluated to compare the computational efficiency of the 

tested approaches. 

𝑁𝑆𝐸, which is traditionally used to evaluate the accuracy power of deterministic models, 

is computed for each ensemble member (𝑖) over the entire computation time (see Eq. (2.9)) 

Absolute error (𝐴𝐸) is differences between actual observations and predictions of each 

ensemble members at each time t. Thus, it varies with time and can be written as: 

𝐴𝐸𝑡
𝑖 = |𝑦𝑡

𝑜𝑏𝑠 − 𝑦𝑡
𝑖|, 𝑡 =  1, … , T;  𝑖 = 1, … , 𝑛   (3.34) 
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Relative entropy ( 𝑅𝐸 ) is a measure of the statistical difference between probability 

distributions over the entire forecasting period of observations and model simulations [Kleeman, 

2002; Shukla et al., 2006; Giannakis and Majda, 2012]. Following Kleeman [2002] and Heo et al. 

[2014], 𝑅𝐸 can be defined as: 

𝑅𝐸𝑖 = [log
𝜎

𝑦𝑜𝑏𝑠
2

𝜎
𝑦𝑖
2 +

𝜎
𝑦𝑖
2

𝜎
𝑦𝑜𝑏𝑠
2 − 1 ] + [

(𝜇
𝑦𝑖−𝜇

𝑦𝑜𝑏𝑠)2

𝜎
𝑦𝑜𝑏𝑠
2 ] , 𝑖 = 1, … , 𝑛  (3.35) 

where 𝜇𝑦𝑜𝑏𝑠 and 𝜇𝑦𝑖 are the mean, while 𝜎𝑦𝑜𝑏𝑠 and 𝜎𝑦𝑖 are the variance of streamflow observation 

and the i-th model prediction over the entire computation time from 𝑡𝑐  to 𝑡𝑓 . Small values of 

relative entropy indicate that distribution of a given model is close to that of the observation. This 

is also called Kullback-Leibler divergence between the two distributions, model and data, 

assuming Gaussianity of both. 

The Brier score (𝐵𝑆) is one of the most commonly used verification measures for assessing 

the predictability of probabilistic forecasts. The score is defined as the mean squared error of the 

probabilistic forecasts over the verification sample, expressed as: 

𝐵𝑆 =
1

T
∑ (𝑝𝑡

𝑓
− 𝑜𝑡)

2
T
𝑡=1     (3.36) 

where 𝑝𝑡
𝑓

 is the forecast probability for the t-th time, which refers to the ratio among ensemble 

reaching a predefined flow threshold; 𝑜𝑡 is the observed probability, which is 1 if observation at t-

th time, 𝑦𝑡
𝑜𝑏𝑠 is larger than the threshold, and 0 if it is not. In this study, this threshold value was 

chosen as the proportional rate of 90% of the true discharge peak. 
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The uncertainty range (𝑈𝑅 ) is the range between the 5th and 95th percentiles of the 

ensemble outcomes (𝑦). It is computed over each computational time 𝑡 in hydrographs, expressed 

as: 

𝑈𝑅𝑡 = 𝑦𝑡
95 − 𝑦𝑡

5, 𝑡 =  1, … , T    (3.37) 

Lastly, the total run time (𝑇𝑅𝑇) for all of the approaches is defined as: 

𝑇𝑅𝑇 = (𝑅𝑇𝑤+𝑐,𝑴𝒐𝒅𝒆𝒍 × 𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍 + 𝑅𝑇𝑓,𝑴𝒐𝒅𝒆𝒍,𝐷𝐴) × 𝑛 + 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍 (3.38) 

where 𝑅𝑇𝑤+𝑐,𝑴𝒐𝒅𝒆𝒍 is the run time to compute one simulation of Model (NAM, PCE-I, and PCE-

II) over the warm-up and calibration periods, i.e., from 0 to 𝑡𝑐; 𝑅𝑇𝑓,𝑴𝒐𝒅𝒆𝒍,𝐷𝐴 is the run time to 

compute one simulation of Model with different DA methods over the forecasting period, i.e., from 

𝑡𝑐 to 𝑡𝑓; and 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍 is the run time needed for building Model. For example, because it is 

unnecessary for constructing the deterministic model, the time for NAM is zero. The building run 

times for PCE-I and PCE-II will be calculated in detail in Sec. 3.5.1.2. The factor 𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍 

represents the number of Model runs to obtain a single behavior run in GLUE, and remains 1 in 

A1 to A9, while it depends on Model for the rest of approaches. 

 Eq. 3.38 is a linear function with respect to the number of ensembles run, in which 

𝑅𝑇𝑤+𝑐,𝑴𝒐𝒅𝒆𝒍 × 𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍 + 𝑅𝑇𝑓,𝑴𝒐𝒅𝒆𝒍,𝐷𝐴  serves as the slope of the linear function and 

𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍 the intercept. The values of the slope and intercept and the executed times of the 18 

approaches are addressed in Section 3.5.2.  
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3.5 Results 

3.5.1 Preparation steps before forecasting 

3.5.1.1 Attaining parameter posterior distributions 

The posterior distributions of parameters can be generally attained by using Bayesian 

inference. As detailed in Section 3.2.2, we employed a relatively simple and robust method, GLUE 

[Beven and Binley, 1992], that does not require reformulation of the deterministic model code. 

Details on why we choose the likelihood functions of 𝑁𝑆𝐸, 𝑃𝐸, and 𝑉𝐸, how we determine the 

cutoff threshold values of each function, and which parameters are more sensitive, are described 

in Chapter II. We confirmed the benefits of a warm-up technique that significantly speeds up the 

GLUE process of finding the behavioral sets: without warm-up, no behavioral set was obtained 

from GLUE even after a sufficiently large number of NAM model runs, while with warm-up, a 

behavioral set was obtained after approximately 118.0 model runs for NAM (A10 to A12), 26.9 

for PCE-I (A13 to A15), and 3.6 for PCE-II (A16 to A18), respectively. Therefore, the factors, 

𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍 are 118.0, 26.9, and 3.6 for NAM, PCE-I, and PCE-II, respectively in A10 to A18. 

3.5.1.2 Constructing the PCE models 

Determining the coefficients of the PCE-I and PCE-II models depends on the number of 

the experimental design (𝑁) and the polynomial degree (𝑝) [Blatman and Sudret, 2010; Blatman 

and Sudret, 2011]. To discover appropriate values for 𝑁 and 𝑝, the effect of experimental design 

𝑁 on PCE performance was first evaluated. Specifically, a number of simulations were repeated 

with the 𝑁 value varied between 10 and 5,000 but the value of 𝑝 was set as 3, and the performance 

results of 𝐿𝑂𝑂 for streamflow (𝑦) and the five model states computed. Fig. 3.8 shows that the 𝐿𝑂𝑂 

values for streamflow and five state variables become smaller as the value of 𝑁 increases, and 
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ceases to become smaller when 𝑁  approaches a certain value. For 𝑁  values larger than this 

threshold, the model performance was almost indistinguishable (the left column plots in Fig. 3.8). 

From a visual inspection of Fig. 3.8, the optimal 𝑁 value for constructing the PCE-I and PCE-II 

models would be 1,000 and 100, respectively.  

 

Figure 3.8. The effects of (left plots) the experimental design, N and (right plots) the polynomial 

degree, p on the leave-one-out cross-validation error (𝐿𝑂𝑂) in constructing PCE-I and PCE-II 

models, for (a) streamflow and (b to f) 5 model states.  
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A selection of the polynomial degree 𝑝 was made in a fashion similar to the aforementioned 

procedure. The value of 𝑝 was varied from 1 to 6 and 𝑁 was set as 1,000 (PCE-I) and 100 (PCE-

II). From the results of Fig. 3.8 (the right column), the gradients of the 𝐿𝑂𝑂  metrics assessed 

changed considerably when 𝑝 was set to 3 and the values remained stable for large magnitudes of 

𝑝. In terms of reducing the computational time to construct a PCE model, a low polynomial degree 

would be preferred. Thus, a 𝑝 of 3 would be an appropriate value to use when building both PCE 

models. With optimal values of 𝑁 of 1,000 and 100, and a 𝑝 of 3, PCE-I and PCE-II models can 

be built to quantify the uncertainty range for flow prediction and to compare the degree of accuracy 

and efficiency with the results of the deterministic NAM.  

The total time to establish both PCE models is described. Obviously, the larger the number 

of the experimental design set, the more time is needed for computing 𝑁 ensemble runs. The time 

required to perform the 𝑁I and 𝑁II ensemble runs of NAM was 121.9 and 12.6 seconds for PCE-I 

and PCE-II, respectively. It also takes much more time to estimate PCE-I coefficients if one uses 

an ensemble set (𝑁I) generated from the prior distribution of the parameters than to compute PCE-

II coefficients from parameter sets informed by the likelihood function. The time required to 

estimate PCE coefficients was 419.3 and 11.3 seconds, respectively. The summation of these two 

times was considered to be the total time required to build the PCE models before forecasting: 

approximately 541.2 and 23.9 seconds for PCE-I and PCE-II, respectively. The construction time 

of PCE-II is much (~22 times) faster than that of PCE-I. 
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3.5.1.3 Comparing the ensemble results of NAM and PCE models 

Over the calibration period, ensemble results composed of 500 Random and Selected runs 

were compared for three different models. To make the 500 Selected behavioral results, 58,977, 

13,444, and 1,822 (𝑛𝑤) random runs were required for NAM, PCE-I, and PCE-II, respectively. 

Compared with the NAM itself, using PCE models can reduce the amount of computational runs 

by a factor of about 4.4 for PCE-I and 32.4 times for PCE-II model. The composing behavioral set 

for PCE-II was even faster (~7.4 times) than for PCE-I. 

Fig. 3.9 shows hydrographs for the 500 Random (A1 to A9) and Selected (A10 to A18) 

simulations for the three models. Their uncertainties are illustrated with a 90% confidence interval, 

which corresponds to 5 and 95% quantiles of the 500 ensemble members. Because we controlled 

the conditions for the behavioral set of GLUE, the overall comparison with the observed values 

for the results of the Selected cases (A10 to A18) is very satisfactory. Specifically, the 𝑁𝑆𝐸 value 

was always higher than 0.9 and both 𝑃𝐸 and 𝑉𝐸 values were less than 5% for all cases. However, 

streamflow curves for the Random simulations (A1 to A9) clearly show different patterns 

depending on the model. It can be anticipated that the results of these Random cases will not be 

encouraging and their uncertainties will be large. However, the results of some cases using PCE-

II model were very satisfactory and their uncertainties small. 

As mentioned above, when making using observations to constrain the parameter sets (A10 

to A18), the results of both PCE models are similar to those of the NAM and no substantial 

differences were observed. This confirmed that both PCE models have an equivalent degree of 

accuracy as the NAM and can provide an excellent match to the deterministic model. In terms of 

efficiency, it is also advantageous to use the PCE model (discussed in Sections 3.5.2.1 and 3.6.1), 

and there is no reason to hesitate adopting the PCE model for streamflow prediction. 
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Figure 3.9. The left column plots show hydrographs for the calibration period. The shades in the 

plots correspond to 90% confidence interval for 500 Random model runs (A1 to A9, light gray 

shade) and 500 Selected model runs (A10 to 18, dark gray shade) for 18 approaches in Table 3.2. 

The boxplots in the right column demonstrate the verification metrics of 𝑁𝑆𝐸, 𝑃𝐸, and 𝑉𝐸 for the 

18 approaches used. 

 

3.5.2 Flood forecasting with 18 approaches 

3.5.2.1 PCE-I versus PCE-II model for real-time flood forecasting 

Depending on the model used in forward simulations (NAM, PCE-I, and PCE-II), the 

results for the 18 approaches were divided into three groups. Almost all of the results of the six 
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approaches using the PCE-II model were worse than those obtained with both NAM and PCE-I 

(Figs. 3.10 and 3.11). The only exception is for the A1 and A4, which did not have assimilation 

and whose parameter sets used were based on prior uniform distributions. No verification metrics 

computed using the results of forecasting based on PCE-II were satisfactory, except for the metric 

of 𝑈𝑅̅̅ ̅̅ . However, if the accuracy is not ensured, the better performance in terms of 𝑈𝑅̅̅ ̅̅  is not 

meaningful. Specifically, 𝑁𝑆𝐸 values were low, approximately 0.7; 𝐴𝐸 values at flood peak time 

(𝐴𝐸𝑝𝑒𝑎𝑘) were larger than 750 m3/s; 𝑅𝐸 was approximately 0.01; and 𝐵𝑆 was equal to 1 (Fig. 3.12). 

No metric improvements was found for the approaches based on PCE-II, even if combinations of 

assimilation and calibration techniques were applied. We concluded that the PCE-II model can 

reproduce streamflow characteristics well for the past period, but not for the future. 

 

Figure 3.10. Hydrographs over the forecasting period, with a 90 % confidence interval of 500 

Random model runs (A1 to A9). 
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Figure 3.11. Hydrographs over the forecasting period, with a 90 % confidence interval of 500 

Selected model runs (A10 to A18). 

 

Conversely, the forecasting results of the approaches based on the PCE-I model are almost 

similar to those obtained with NAM, and in some cases even better. The latter can be seen in Fig. 

3.12; the verification metrics of 𝑁𝑆𝐸, 𝐴𝐸𝑝𝑒𝑎𝑘, 𝑅𝐸, and 𝑈𝑅̅̅ ̅̅  show better performance for PCE-I 

than for NAM results (e.g., A5 vs. A2, A6 vs. A3, A14 vs. A11, and A15 vs. A12) (see Table 3.3). 

In particular, the 𝑅𝐸 results in Fig. 3.12c illustrate that the PCE-I results are closer to the observed 

values than those obtained with NAM (A15 is the best result with the smallest value of 𝑅𝐸). 𝐵𝑆 

corresponding to PCE-I also has smaller values, close to zero, which indicates instances of when 

predictability of probabilistic forecasts matched predictability of observation (Fig. 3.12d). 
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Therefore, the PCE-I model can be adapted to substitute the NAM in performing real-time flood 

forecasting, as well as in capturing the uncertainty of calibration period. 

 

Figure 3.12. The performance metrics reflecting accuracy and predictability of the 18 approaches 

for the forecasting period. Boxplots of (a) 𝑁𝑆𝐸, (b) 𝐴𝐸𝑝𝑒𝑎𝑘 (𝐴𝐸 at flood peak time) and (c) 𝑅𝐸 

show 500 ensemble values with the statistics of median (central mark), the 25th and 75th 

percentiles (edges of the box), and maximum and minimum except for outliers (whiskers). (e) 𝑈𝑅̅̅ ̅̅  

is the mean of uncertainty range, 𝑈𝑅𝑡 over the entire forecasting period. 
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Table 3.3. Performance metric values of 18 approaches. The values in the first 3 columns are the 

medians of 𝑁𝑆𝐸, 𝐴𝐸𝑝𝑒𝑎𝑘, and 𝑅𝐸, which match the values in Fig. 3.12. 

Approach 
median of 

𝑵𝑺𝑬 [-] 

median of 

𝑨𝑬𝒑𝒆𝒂𝒌 

[m3/s] 

median 

of 𝑹𝑬 

[-] 

𝑩𝑺 [-] 
𝑼𝑹̅̅ ̅̅  

[m3/s] 

A1 -3.62 2292.19 0.019 1.00 1834.18 

A2 0.70 515.64 0.009 0.75 367.34 

A3 0.75 500.45 0.009 0.66 340.12 

A4 -3.84 1928.86 0.015 0.97 1760.11 

A5 0.82 126.48 0.005 0.16 327.86 

A6 0.79 55.84 0.005 0.20 131.92 

A7 0.68 904.21 0.009 1.00 26.52 

A8 0.68 901.91 0.010 1.00 20.59 

A9 0.68 902.79 0.010 1.00 19.63 

A10 0.82 612.60 0.007 1.00 193.95 

A11 0.88 401.26 0.005 0.78 161.69 

A12 0.89 242.62 0.005 0.24 172.18 

A13 0.44 532.35 0.004 1.00 139.54 

A14 0.74 157.07 0.003 0.25 102.98 

A15 0.80 176.00 0.003 0.26 91.98 

A16 0.73 787.18 0.010 1.00 55.75 

A17 0.71 839.31 0.010 1.00 44.64 

A18 0.71 840.19 0.010 1.00 46.37 

 

Comparing the modeling results in terms of the computation speed, it is clear that 

simulating a surrogate model using the PCE theory is significantly faster than with a deterministic 

model such as NAM. The “slopes” of the runtime curves of Fig. 3.13 indicate both PCE approaches 

are approximately 20 times faster (A4 to A9) and ~80 times faster (A13 to A18) than the 

corresponding approaches using the NAM. Similarly, if we compare efficiency between PCE 

model approaches, using PCE-II may or may not offer much improvement in efficiency over PCE-

I. There is only 10 % improvement when Random specification is applied (see the slope of A4, 

A5, A6 vs. A7, A8, A9 in Fig. 3.13), while there is about six times improvement when simulating 

Selected approaches (see the slope of A13, A14, A15 vs. A16, A17, A18). The use of surrogate 
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models therefore did not sacrifice accuracy. The flood prediction accuracy of PCE-1 model 

presented here is similar to that of the original NAM, and computational efficiency has been found 

to be highly superior. 

 

Figure 3.13. The total runtime (𝑇𝑅𝑇) corresponding to 18 approaches in the forecasting period 

versus ensemble size (n). Note that although we plot on logarithmic axis, the actual total runtime 

has the form of a linear function with the ensemble size at linear scale; its slope and intercept 

values for all approaches are tabulated on the right. 
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3.5.2.2 Random versus Selected specification for forecasting 

The approaches using the Selected specification generally show a better performance than 

those using the Random specification. This is especially noticeable in the NAM and PCE-I 

approaches, and rarely in PCE-II. First, in the approaches without data assimilation, their accuracy 

was significantly improved (compare A1 vs. A10 and A4 vs. A13). The performance of A10, 

represented by the 𝑁𝑆𝐸, 𝐴𝐸𝑝𝑒𝑎𝑘, 𝑅𝐸, and 𝑈𝑅̅̅ ̅̅  metrics, was improved by about 95, 73, 61, and 89% 

compared with A1, and the performance of A13 about 86, 72, 79, and 92% over A5, respectively. 

Despite the noticeable improvement of A10 and A13, these results were still not ideal. The large 

𝐴𝐸 error at the peak of A10 and A13 was approximately 450 m3/s less than the observation, and 

the 𝐵𝑆 value was close to 1 (Fig. 3.12, Table 3.3). On the other hand, in the approaches in which 

data assimilation was used, the improvement effect for Selected specification was not greater than 

when it was not used. The increasing performance for the same metrics was about 55, 22, 36, and 

56% (A2 vs. A11), and about 56, 52, 44, and 49% (A3 vs. A12). Here, the parameter specification 

effect was smaller because DA improves the absolute error magnitude. 

Determination of states and parameters that can increase accuracy and predictability 

requires more computation time because a large number of model runs are carried out to make an 

inference for posterior distributions. For approaches using NAM (A1 vs. A10, A2 vs. A11, and A3 

vs. A12), it took 56, 41, and 30 times longer; while for PCE-I (A4 vs. A13, A5 vs. A14, and A6 

vs. A15), it took 13, 10, and 8 times, respectively (Fig. 3.13). Because of this computational burden, 

parameter inference can be a weakness for real-time flood forecasts where it is important to ensure 

sufficient time ahead. However, if the surrogate model is employed, the necessary repetition of 

estimating the posterior distribution can be performed quickly, and such a weakness can be 

overcome. 
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3.5.2.3 Single versus dual EnKF in real-time flood forecasting 

Convincing evidence is presented that both single and dual EnKF can improve accuracy 

and predictability during real-time forecasting (with the exception of approaches using PCE-II). 

Both of these techniques perform well but the dual EnKF is the superior choice. As an example of 

the approaches using NAM, the three metrics of 𝐴𝐸𝑝𝑒𝑎𝑘 , 𝐵𝑆 , and 𝑈𝑅̅̅ ̅̅  in the Random cases 

provided slightly better results: 515.64 vs. 500.45, 0.75 vs. 0.66, and 367.34 vs. 340.12, 

respectively (A2 vs. A3). But, in the Selected cases, there was a relatively large performance 

improvement for the two metrics of 𝐴𝐸𝑝𝑒𝑎𝑘 and 𝐵𝑆: 401.26 vs. 242.62 and 0.78 vs. 0.24 (A11 vs. 

A12). Similar trends were observed when using PCE-I, and the difference is remarkable, especially 

for the 𝐴𝐸𝑝𝑒𝑎𝑘 metric (e.g., about 2.5 times for A5 vs. A6). 

 

Figure 3.14. Comparisons of the three assimilation methods (none, EnKF, and Dual EnKF) for 

500 ensemble flood peaks over the forecasting period. The left, middle, and right plots correspond 

to the approaches using NAM, PCE-I, and PCE-II, respectively. The first and second row plots 

correspond to the approaches using Random and Selected methods for parameter specification. 

The black square represents observed value at peak time; the circles are the expected values of the 

sample probability density functions. 
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From the overall inspection, it can be determined that the dual EnKF can adjust the peak 

of a hydrograph more accurately, and give a more confident result with a smaller uncertainty range. 

Therefore, we compared the distribution of flood peak values for 500 ensemble members in Fig. 

3.14. This figure confirms that the joint update of states and parameters improves accuracy at flood 

peak more effectively than a single update of states. Also for the joint update, the expected value 

of the distribution was closer to the peak observation, and its variability is smaller (a narrower 

distribution). 

Because the updating process is made twice, the dual EnKF is computationally more 

expensive. The computation time it takes to update states and parameters increased almost linearly. 

That is, the calculation time doubled or tripled for the cases of single and dual EnKF (using 

Random specification), respectively, as compared to the case without assimilations. However, for 

the approaches using the Selected specification, the calculation time did not seem to change 

significantly (Fig. 3.13), not because the time required for Kalman filtering was reduced, but 

because the time required for the parameter inference was so large that the filtering effect was 

masked. 

3.6 Discussions 

3.6.1 How can PCE be constructed for flood forecasting? 

From the simulated flood forecasting results presented in Section 3.5.2, it is apparent that 

the manner of PCE construction has a significant impact on forecasting. The biggest difference in 

building PCE-I and PCE-II involves setting the range of the training sample (called experimental 

design). It is not surprising that a surrogate model trained for an event provides acceptable results 
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only for the event trained. The flexibility to generalize to well-behaved outcomes for another event 

(e.g., a future event) is relatively low. This is why the calibrated model is often not appropriate for 

future forecasting. On the other hand, if a surrogate model can mimic the behavior of the original 

model to the greatest extent possible in a wide variety of situations and conditions, it will be able 

to capture its characteristics more comprehensively, thus playing a sufficient role in forecasting 

future events. Here we provide evidence the PCE-I model behaves like the NAM for the 

forecasting period, while the PCE-II behaves differently (despite both models behaving properly 

for the calibration period). To examine the robustness of both PCE model results, the Sobol’ 

method (detailed in Section 2.2.1.4) was used to implement the variance-based measures of 

parameter sensitivities [Sobol', 2001]. 

First, the PCE-I posterior histograms of the nine parameters obtained from GLUE for the 

calibration period are similar to those of the NAM, except for Lm and TG (Fig. 3.15). For these 

two parameters, a posterior histogram difference is a minor issue because the choice of the 

parameter values does not affect the end result, i.e., the sensitivity of the parameters is low. Other 

parameters of CQOF (1st) and CK12 (2nd) are the two most influential parameters to the model 

results, that is, their sensitivities are high. This result is consistent for both NAM and PCE-I (Fig. 

3.16). The slight difference between the results of PCE-I and NAM, observed from the 

investigation of the sensitivity and the posterior distribution, is because we chose an appropriate 

number of training samples when constructing the PCE-I model. If one greatly increases the 

number of training sets, the difference in the above results will essentially disappear. 
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Figure 3.15. The posterior histograms for the 9 model parameters from 500 behavioral sets of 3 

models (NAM, PCE-I and PCE-II) inferred by GLUE over the calibration period. 

 

 

Figure 3.16. Sobol’ sensitivity analysis for the 9 parameters, computed for the 3 likelihood 

functions of (top) 𝑁𝑆𝐸, (middle) 𝑃𝐸, and (bottom) 𝑉𝐸 over the calibration period. The sensitivity 

results are attained based on (a, b, and c) the prior distributions of parameters for the 3 models of 

NAM, PCE-I, and PCE-II, respectively; and (d) the posterior distributions of parameters for NAM 

model. The posterior are also used to select the training parameter set for building PCE-II. 
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Second, the failure of PCE-II to mimic the NAM for the forecasting period can be explained 

largely due to the fact that PCE-II was trained using the only 100 behavioral parameter sets that 

were optimized for the calibration event. Model results will only vary within the boundaries that 

its trained data understand, and it will not be able to simulate the behavior of another event with a 

high skill, i.e., model “overfitting” occurs. However, over the calibration period, PCE-II always 

shows a good predictive performance for almost all parameter sets (compare the hydrographs of 

A1 to A3 with A7 to A9 in Fig. 3.9). In other words, no matter what parameter one chooses, 

satisfactory results are always achieved, which indicates that the influence of parameters is 

excluded. The posterior histograms of parameters for PCE-II (Fig. 3.15c) are almost uniform, 

except for the parameter of CQOF, which is the only one that can affect the end result, especially 

maintain the accuracy of the flood peak (note that the sensitivity of this parameter for PE is 

unusually high in Fig. 3.16c). If we change the threshold value of the likelihood function 

corresponding to the flood peak chosen to make the behavior set a slightly less constrained, this 

parameter will no longer play a role in constraining the result and follow a uniform distribution as 

well. 

Another interesting aspect of the sensitivity test is that the sensitivity results of PCE-II 

differ from those of NAM and PCE-I, but are similar to those of NAM-II. The sensitivities of 

parameters have been altered in PCE-II. The NAM-II in Fig. 3.16d is hypothetically introduced to 

mimic the situations of PCE-II. Specifically, it refers to the sensitivity results when the NAM 

model was tested based on the posterior distributions (which are also used to select the training 

parameter set for building PCE-II), not the prior distributions of the parameters. 
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3.6.2 Is it feasible to construct a time-invariant PCE model? 

A long-lasting challenge in hydrologic modeling is how to estimate parameters or state 

vectors optimized for all external and internal conditions. This would not be an issue for estimating 

previously described variables if the amount of data for calibration was sufficient. However, in the 

case of future forecasts during which no observation for calibration is available, it poses a problem. 

To tackle this challenging problem, Fan et al. [2016] and Wang et al. [2017] adopted a modeling 

framework in Eq. 3.1, so that PCE models should be reconstructed continuously at every time step. 

This method is flawless in theory, but requires additional computational resources (see efficiency 

comparisons in Appendix B). That is, the time to configure the PCE at every time step must be 

added to the total model simulation time, i.e., making the slope of Fig. 3.13 steeper. This 

disadvantage can be more pronounced when constructing surrogate models for complex, process-

based deterministic models. 

Unlike previous efforts, this study adopted an alternative modeling framework such as Eq. 

3.2; that is, the PCE model is time invariant and thus developed only once over the calibration 

period. Therefore, during real-time forecasting, the total run time consists only of computational 

intervals needed for data assimilation of all ensemble members. This enhances computational 

efficiency significantly (see efficiency comparisons in Supplementary Material). This framework 

is not perfect, but the potential error that can occur by using the time-independent PCE model is 

minimized by coupling the data assimilation technique, thus complementing accuracy. From a 

comparison of the results of 18 approaches, we confirmed that the modeling framework needed 

for building a PCE model (especially PCE-I) is feasible. This embraces the notion that the PCE 

construction does not require information for future conditions but can be made with historically 

available data available prior to the forecasting period. 
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3.6.3 Do surrogate and specification sacrifice efficiency? 

Our results indicate that a sophisticated combination of three independent techniques (i.e., 

surrogate modeling, parameter inference, and data assimilation) supplies superior predictive 

performance for real-time ensemble flood forecasting. The combination of many methods however 

leads to an essential reduction in efficiency. Because data assimilation has been shown to be 

necessary, we must accept efficiency deterioration. However, for surrogate modeling and 

parameter specification, it remains to be determined whether the additional time required by the 

technique combination leads to efficiency deterioration. First, for construction of the surrogate 

model, particularly PCE-I, the efficiency issue may not be relevant because the task does not 

require any observations for calibration and can be completed before the flooding season. In 

contrast, obtaining an ensemble of parameter sets from posterior distributions should be carried 

out immediately prior to the flood forecasting period, when observations are necessary. Therefore, 

it may take an appreciable time for completing this task, and method efficiency may be affected. 

3.6.4 What are the differences between PCE and data-driven models? 

Both PCE and data-driven models can provide satisfactory results for short-term forecast, 

but key differences between them exist. (1) PCE has a functionality of including model parameters 

and states as an input vector – this enables formal uncertainty quantification and model sensitivity 

analysis; (2) hydrologic/hydraulic model state variables (and parameters) are theoretically 

observable and in the case of process-based models have their own physical meaning, making it 

easier to physically interpret the results of PCE; (3) while purely data-driven methods are trained 

with observations, PCE is trained through high-fidelity samples supervised by physical relations, 

thus requiring fewer data samples for training; (4) data-driven models often have assumptions 
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about the distributions governing variability of their outputs, and therefore this can lead to non-

physical results (e.g., negative outputs quantifying mass, streamflow, etc.) and fail to display non-

normal, bi-modal, or other complex behaviors.  

3.6.5 Can modeling framework be applied to high-dimensional problems? 

While the implementation and analysis of experiments is valid for the presented scope of 

the experimental design, one needs to proceed with care when extending this approach to more 

complex models. The most fundamental concern that remains is whether the proposed framework 

can be applied to high-dimensional problems in which fully distributed models are used. The 

dimension of a distributed model can be defined as the product of the number of grids cells and 

the number of parameters (and states). The dimension order of any truly physical models is 

therefore large, and extending our framework directly to such a model is not straightforward – 

known as the “curse of dimensionality” [Caflisch, 1998; Davis and Rabinowitz, 2007; Sudret, 

2007]. By examining how each of the methods mentioned in the framework resolves the problem 

of reducing dimensions efficiently and to what extent it has been applied, the feasibility of applying 

the proposed framework can be estimated. 

Regarding the surrogate modelling (PCE), techniques such as Bayesian compressive 

sensing [Sargsyan et al., 2014] and sparse regression [Blatman and Sudret, 2008; Blatman and 

Sudret, 2010] proved capability and efficiency in many prior studies using complex models with 

high dimensions, up to 80 dimension [Sargsyan et al., 2014]. However, these studies avoided the 

calculation of fully distributed problems by assuming the spatial variability of parameters to be 

homogeneous. Second, for the parameter specification, any optimization technique applied to 

high-dimensional problems could be relevant. For example, one of the large scale optimization 
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algorithms, the competitive swarm optimizer (CSO) [Cheng and Jin, 2015] was employed up to 

the dimension of 5,000. These algorithms have been successfully optimized for problems of very 

large scale, but their optimizations have been applied to simple analytical functions rather than 

(hydrologic or meteorological) models. To our knowledge, the number of dimensions has not yet 

been high in problems of hydrologic optimization, in which the dimension order is almost identical 

to the number of parameters. The spatial variability of parameters is not fully addressed in most 

studies, although a “multiplier” concept [Pokhrel et al., 2008]. Last, EnKF is made possible in 

problems of higher dimensionality through covariance localization. It is mainly applied in 

meteorological models with many parameters, and the number of dimensions can be up to the order 

of millions, e.g., 2,592,000 [Fujita et al., 2007]. The localization technique was able to reduce the 

dimensions efficiently.  

3.7 Conclusions 

This Chapter presents a new robust, accurate, and efficient modeling framework that 

consists of the novel integration of three individual techniques: surrogate modeling, parameter 

inference, and data assimilation. This unified framework is suited for ensemble flood forecasts 

quantifying prediction uncertainty. The strengths of each technique are (i) the use of PCE offers 

significant computational savings; (ii) the inference of parameters before data assimilation allows 

for faster convergence, smaller uncertainties, and greater accuracy of the end results; and (iii) the 

Kalman filters assimilate errors that occur in real-time flood forecasting. Based on the results of 

the 18 refined approaches according to the permutations of the above methods, the following 

conclusions can be drawn: 
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 Of the two methods for PCE construction, only PCE-I (constructed based on prior, uniform 

distributions) is acceptable for forecasting, although both methods reproduce observations 

of the calibration period well. Note that PCE-II (constructed based on posterior 

distributions) does not provide satisfactory results, even when coupled with other inference 

and assimilation techniques. The results obtained from PCE-I are similar, and in some cases 

even superior to those based on the original deterministic NAM model. The PCE used is a 

single model constructed before the forecast period and thus does not change over time — 

this is a unique feature different from previous studies in which PCE was rebuilt at each 

calibration or forecasting time step. 

 Especially for short-range forecasting, model parameter input and state initialization plays 

a crucial role. In some previous studies, posterior distributions were employed to derive a 

parameter ensemble before forecasting, but the effect of such parameter specification was 

not quantified for the data assimilation. Selected parameter specification (made through the 

GLUE framework in this study) offers improved accuracy and predictability of forecast 

outcomes over the Random parameter specification. However, it is less computationally 

efficient, and the issue is expected to be especially problematic when using complex 

deterministic models. 

 The usefulness of single and dual EnKFs is demonstrated through comparisons of the 18 

approaches. Both techniques have excellent overall performance, but the dual EnKF 

showed a slightly better performance than the single EnKF. There was a remarkable 

improvement in reproducing the hydrograph peak values (Table 3.3). In the absence of 

assimilation, the Selected approach offers superior results and if it cannot be used, data 

assimilation must be applied. 
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 The computational time discussed in this study consists of three principal components: 

surrogate building time, parameter inference time, and data assimilation time. Our 

conclusions may marginally vary depending on the particular model used and the region in 

which it is applied, but here the efficiency improvement from using the surrogate modeling 

technique overwhelms any efficiency deterioration derived from the other two components. 

That is, the use of the surrogate model makes it possible to effectively address 

computational efficiency. This feasibility is maximized when many ensemble outcomes 

are needed and when complex, physically-based models should be simulated. 

 From the comprehensive analyses presented above, A15 is our first choice and A14 is the 

second. When only a deterministic model is used, we recommend A12 (or A11). Using the 

unified framework developed here, real-time and ensemble flood forecasting are promising 

directions, allowing for satisfactory measures of accuracy, predictability, and efficiency. 

Ultimately, the framework developed in this dissertation contributes to a shift in modeling 

paradigm arguing that complex, high-fidelity, physical hydrologic and hydraulic models 

should be increasingly adopted for real-time and ensemble flood forecasting. 
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CHAPTER IV 

 

A novel surrogate data assimilation for real-time 

ensemble flood forecasting 

“Knowing is not enough, we must apply. 

Willing is not enough, we must do” 

- (Lee, B) 

 

4.1 Introduction 

Making accurate and timely predictions of floods, one of the natural disasters that cause 

enormous economic damage and casualties, is a major task in hydrology [Moradkhani and 

Sorooshian, 2008]. In order to alert communities immediately and support emergency response 

plans, forecasting flood in real-time plays a crucial role; however, it suffers from inherent 

difficulties due to epistemic and aleatoric uncertainties associated with future conditions of rainfall 

forcing, initial and boundary conditions, and model parameters [Beven, 1989; Ajami et al., 2007; 

Kim et al., 2016b; Kim et al., 2016c; Beven et al., 2018; Dwelle et al., 2019]. As the development 

of in situ or remote sensing techniques over several decades makes it possible to collect real-time 

observation, data assimilation (DA) has proven to be one of the most effective ways to improve 

the performance and quantify the uncertainty of real-time predictions [Liu et al., 2012]. The central 

idea of DA is to find a way to reduce the bias of hydrological model states and/or parameters 

sequentially by incorporating real-time observations into pre-forecasted results [Evensen, 1994; 

Clark et al., 2008; Moradkhani and Sorooshian, 2008]. At present, DA techniques are becoming 
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more and more sophisticated, from simple rule-based direct insertion to advanced smoothing and 

sequential techniques [Liu et al., 2012]. 

Despite the effectiveness of data assimilation, the computational burden required to 

perform model evaluations in real time remains an obstacle [Liu et al., 2012; Houtekamer and 

Zhang, 2016; Bannister, 2017; Loos et al., 2020]. Since DA includes the process of predicting and 

updating states (and model outputs), the number of model evaluations should be carried out 

multiple times compared to predicting only once when DA is not applied. If a model takes a lot of 

computation time, this problem can become even more critical. Examples are when running 

hydrological models coupled with the multi-dimensional governing equations of Navier-Stokes 

[Marshall et al., 1997; Giraldo and Restelli, 2008; Tossavainen et al., 2011], Saint-Venant [Kim 

et al., 2012a; Kim et al., 2012b], Richards [Maxwell et al., 2007; Kollet et al., 2010], and Hairsine-

Rose [Kim et al., 2013; Kim and Ivanov, 2014] on atmosphere, surface, subsurface, and surface 

erosion, respectively – their CPU runtimes required for a 1-day simulation generally reach up to 

the order of days. Furthermore, most DA techniques use ensemble representations for the 

covariances of forecast (e.g., streamflow) and analysis error of model states (and/or parameters). 

Maintaining a larger set of ensembles for initial states, model noises, and perturbed observations 

helps reduce sampling errors that can occur when the state (and parameter) variables are non-

Gaussian and non-linear [Evensen, 2003; Li and Xiu, 2008; Liu et al., 2012; Slivinski and Snyder, 

2016; Bannister, 2017]. The size of the ensemble can be at least 𝒪(102) to more than 𝒪(108) 

[Houtekamer and Zhang, 2016], resulting in a higher computational barrier. This is indeed not 

desirable in situations such as flood forecasting where real-time decisions are needed. 

Parallel computing, a computational cluster, or cloud computing infrastructure using 

thousands of processors could be a solution to cope with this concern [Neal et al., 2010; 
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Houtekamer et al., 2014; Wittmann et al., 2017; Glenis et al., 2018]. However, for problems with 

fine resolutions or high dimensions, even parallel computations require significant runtime [Cintra 

and Velho, 2018; Echeverribar et al., 2019; Wing et al., 2019; Hosseiny et al., 2020]. The 

efficiency depends heavily on computer facilities with high processor requirements [Houtekamer 

et al., 2014]. Another approach that has attracted attention recently is the use of surrogate models, 

which are used widely in many research areas to mimic nonlinear dynamic models [Laloy et al., 

2013; Dwelle et al., 2019; Tran et al., 2020; Zhang et al., 2020]. This surrogate model performs 

thousands of simulations in seconds, resulting in improved computational efficiency that 

dramatically reduce CPU runtime [Razavi et al., 2012b; Asher et al., 2015; Mohanty, 2015]. The 

most common methods used to build surrogate models include genetic programming, support 

vector machines (SVM), artificial neural networks (ANN), Gaussian process emulation (GPE, also 

called Kriging), and polynomial chaos expansion (PCE) [Simpson et al., 2001; Wang and Shan, 

2007; Rajabi, 2019]. In particular, PCE has shown its merit and attractiveness in recent studies 

[Wang and Shan, 2007; Rajabi, 2019], and it turns out to be more effective than the other data-

driven methods [Razavi et al., 2012b; Rajabi, 2019; Torre et al., 2019]. For example, PCE 

performs better than the data-driven models (e.g., ANN or SVM) when applied to small training 

sets and minimal configurations [Torre et al., 2019]. Another merit of using PCE occurs when 

predicting extreme events beyond the boundaries of training data [Flood and Kartam, 1994; Minns 

and Hall, 1996; Tokar and Johnson, 1999]. Rare events can be captured more completely because 

PCE is built based on high-fidelity samples supervised by physical models [Schöbi et al., 2017; 

Dubreuil et al., 2018; Tran et al., 2020]. Due to its advantages, PCE has been used extensively in 

many types of hydrological problems from simple to complex [e.g., Sochala and Le Maître, 2013; 
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Sargsyan et al., 2014; Wang et al., 2017; Dwelle et al., 2019; Tran and Kim, 2019; Tran et al., 

2020]. 

In the literature, conventional ways of constructing PCE are to build a ‘single’ PCE that 

can mimic the entire model process, for ‘each’ computational time step; however, these are 

problematic. When tackling a high-dimensional problem with a large number of uncertain 

parameters/states, its PCE construction may be challenging due to the exponential increase in the 

number of PCE coefficients [Blatman and Sudret, 2010; Sargsyan et al., 2014; Konakli and Sudret, 

2016; Dwelle et al., 2019; Tran et al., 2020; Tran and Kim, 2021b]. If one provides necessary 

design (sampling) points to have substantial and sufficient search space for all the dimensions, that 

points for the model evaluation could be overly large. Advanced techniques such as the least angle 

regression [Blatman and Sudret, 2011] and the Bayesian compressive sensing [Sargsyan et al., 

2014] have been able to solve some of the high-dimensional (~ 80 dimension) problems by 

calculating coefficients only for the most relevant PCE basis terms; but, dealing with a larger 

dimension is still intricate. Additionally, when making a real-time prediction, the conventional 

approach requires building a new PCE at every time step prior to forecasting [Wang et al., 2018; 

Hu et al., 2019a; Tran et al., 2020]. From the context of real-time flood predictions that should be 

provided within a very short time (usually less than an hour), generating PCE every time is a huge 

burden. Therefore, finding alternative ways to reduce the dimension or to avoid the recurring PCE 

construction is the right direction. 

Another issue of PCE construction is that to mimic the original model and yield a reliable 

outcome for a wide range of conditions, PCE should be trained through as many training sets 

(called experimental design, 𝓧) as possible [Schöbi et al., 2017]. Choosing a suitable size for the 

experimental design is also a challenge [Razavi et al., 2012b]. In order to circumvent this problem, 
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Blatman and Sudret [2010] proposed a sequential experimental design (SED) scheme to limit the 

size of the experimental design when constructing the PCE, minimizing its building time. 

Specifically, the size of the experimental design (𝑁), one of two important parameters, is increased 

until a given statistic for computing the error between the surrogate and original models reaches a 

target value. This scheme allowed us to successfully determine the size of 𝓧. However, the order 

of the polynomial (p), the other parameter that directly affects the performance of the PCE [Dwelle 

et al., 2019; Tran and Kim, 2019], was not considered in that SED scheme. The value of the 

polynomial degree had to be selected ad-hoc or by trial and error. Additionally, the SED scheme 

uses only a single convergence criterion for a relative error (e.g., leave-one-out cross-validation 

error, 𝐿𝑂𝑂 (see Eq. (2.21))) and sets a small target value (e.g., 10-5) to define acceptance level. 

However, its inherent assumption that the relative error should decrease monotonically as 𝑁 or 𝑝 

increases is not always satisfied [Hu and Youn, 2010; Sargsyan et al., 2014; Diaz et al., 2018; 

Dwelle et al., 2019; Torre et al., 2019]. The criterion proposed by the SED scheme may not reach 

a small target for problems where the error does not decrease continuously, and thus infinite 

iterations may occur. We need to investigate whether this criterion is appropriate for flood 

simulations and how to modify the scheme if it is not. 

In this Chapter, we present a robust surrogate data assimilation approach based on 

polynomial chaos expansion theory. This approach includes novel solutions to significantly reduce 

the computational cost of data assimilation and to effectively determine the optimal 𝑁 and 𝑝 of 

PCE construction. It is organized as follows. Eight filters replacing the Ensemble Kalman filter 

are developed and necessary modifications to the SED scheme are presented in Section 4.2. From 

the synthetic and real experimental setups in Section 4.3, the performance of the proposed 



125 

 

surrogate filters is evaluated in Section 4.4. Discussions and conclusions drawn from 

comprehensive analyses continue in Sections 4.5 and 4.6, respectively. 

4.2 Methods 

4.2.1 Single and dual ensemble Kalman filters 

Since the ensemble Kalman filter (EnKF) has become the most broadly used DA technique 

in many discipline due to its ease of implementation in solving diverse DA conundrums [Weerts 

and El Serafy, 2006; Clark et al., 2008; Liu et al., 2012; Pathiraja et al., 2018; Tran et al., 2020], 

EnKF was chosen as an original filter to be substituted in this study. Both single and dual EnKFs 

were used to perform the experiments. Both filters have in common that they update model states 

at each time step. The main difference is whether these filters update model parameters. Because 

the internal structure and principles of EnKFs have already been described in detail in the literature, 

this study will briefly address the key equations that are necessary to describe the surrogate filter 

we will propose later. More details of EnKFs can be referred to Section 3.2.3. 

Regarding a nonlinear (deterministic or statistical) model on discrete time domains, a 

transition equation for its state (𝒙) is described by: 

 𝒙𝑡
𝑖− = 𝑓(𝒙𝑡−1

𝑖+ , 𝜽𝑡−1
𝑖+ , 𝒖𝑡−1

𝑖 ) + 𝑤𝑡−1
𝑖 ,       𝑖 = 1, … 𝑛 (4.1) 

Different to Chapter III, where parameters are not changed after the forecast step, in this 

Chapter, we assume that model parameters also follow a random walk, the i-th ensemble 

parameters at time t are treated by adding Gaussian noise, 𝜏𝑡−1
𝑖  with covariance 𝑬𝑡−1

𝜽  to 𝜽𝑡−1
𝑖+  

[Moradkhani et al., 2005c]: 

 𝜽𝑡
𝑖− = 𝜽𝑡−1

𝑖+ + 𝜏𝑡−1
𝑖 , 𝜏𝑡−1

𝑖 ~𝑁(0, 𝑬𝑡−1
𝜽 ) (4.2) 
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The i-th prediction (model output) at time t, 𝑦𝑡 
𝑖−  is the function of the model states, 

parameters, and forcings: 

 𝑦𝑡
𝑖− = ℎ(𝒙𝑡

𝑖−, 𝜽𝑡
𝑖−, 𝒖𝑡

𝑖 ) (4.3) 

The i-th ensemble parameters at time t, 𝜽𝑡
𝑖+ are corrected by using the Kalman gain, 𝐾𝑡

𝜽 

and the i-th observations at time t, 𝑦𝑡
𝑜𝑏𝑠,𝑖: 

 𝜽𝑡
𝑖+ = 𝜽𝑡

𝑖− + 𝐾𝑡
𝜽(𝑦𝑡

𝑜𝑏𝑠,𝑖 − 𝑦𝑡
𝑖−) (4.4) 

With these updated ensemble parameters 𝜽𝑡
𝑖+, the prediction is updated once more with an 

equation similar to Eq. (4.3): 

 𝑦𝑡
𝑖+ = ℎ(𝒙𝑡

𝑖−, 𝜽𝑡
𝑖+, 𝒖𝑡

𝑖 ) (4.5) 

Finally, the i-th ensemble model states that at time t, 𝒙𝑡
𝑖+ are corrected by using the Kalman 

gain 𝐊𝑡
𝑥 and perturbed observations: 

 𝒙𝑡
𝑖+ = 𝒙𝑡

𝑖− + 𝐾𝑡
𝑥(𝑦𝑡

𝑜𝑏𝑠,𝑖 − 𝑦𝑡
𝑖+) (4.6) 

The equations above from Eq. (4.1) to Eq. (4.6) all correspond to the Dual EnKF. For the 

single EnKF, all the equations are identical except for Eqs. (4.2), (4.4), and (4.5): the noise 

parameter in Eq. (4.2) is disregarded, Eq. (4.4) is assumed as  𝜽𝑡
𝑖+ = 𝜽𝑡

𝑖−, and Eq. (4.5) is then 

simplified to 𝑦𝑡
𝑖+ = 𝑦𝑡

𝑖−. 

Combining the above six equations, the final form of EnKFs can be expressed as: 

 [𝒙𝑡
𝑖+, 𝑦𝑡

𝑖−] = EnKF(𝒙𝑡−1
𝑖+ , 𝜽𝑡−1

𝑖+ , 𝒖𝑡−1
𝑖 , 𝒖𝑡

𝑖 , 𝑦𝑡
𝑜𝑏𝑠,𝑖) (4.7) 

 [𝒙𝑡
𝑖+, 𝜽𝑡

𝑖+, 𝑦𝑡
𝑖−] = Dual EnKF(𝒙𝑡−1

𝑖+ , 𝜽𝑡−1
𝑖+ , 𝒖𝑡−1

𝑖 , 𝒖𝑡
𝑖 , 𝑦𝑡

𝑜𝑏𝑠,𝑖) (4.8) 
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4.2.2 The development of eight surrogate filters 

Here, we present eight surrogate filters based on polynomial chaos expansion (PCE) theory 

that can be substituted for EnKFs. The proposed filters expect to achieve high accuracy at low 

computational cost and inherit the same fundamental assumptions as the EnKF implementations. 

The differences among the eight filters will be described below and in Fig. 4.1. 

 

Figure 4.1. Flowchart for the construction of the eight proposed surrogate filters. The eight filters 

consist of the permutations of 2 × 2 × 2 subcases: Whole or Partial surrogate structures (left vs. 

right panels) × Invariant or Variant surrogate building systems (blue vs. red boxes) × Single or 

Dual assimilating targets (top vs. bottom panels). The rhombuses show the extent to which EnKF 

has been replaced. 
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4.2.2.1 Different surrogate structures: whole vs. partial surrogate filters 

The first criterion for distinguishing among the eight surrogate filters is to determine what 

to replace in the existing EnKF system. One possibility is to construct a single surrogate that can 

mimic the entire EnKF process. Given all the input variables on the right side of Eqs. (4.7) and 

(4.8), the output variable on the left side is computed through the surrogate filters. This is similar 

to the conventional approach, hereafter called Surrogate Whole Filter (SuWF). The other new 

approach is to configure multiple surrogates, each of which mimics a specific process in the EnKFs. 

Theoretically, it is possible to distinguish all the processes of EnKFs and construct surrogates for 

all of them, but two independent surrogates are only built for two of the processes in this study. 

These processes were chosen because they are the most unfavorable in terms of computational 

efficiency but have a great impact on accuracy [Li and Xiu, 2009]. The processes are those 

computing ensemble states and streamflow forwarded in time through the propagators 𝑓(. ) and 

ℎ(. ) in Eqs. (4.4.1), (4.3), and (4.5). Regarding the EnKF processes other than these two, the same 

applies as with the existing EnKFs. This is hereafter called the Surrogate Partial Filter (SuPF). 

4.2.2.2 Different building systems: variant vs. invariant surrogate filters 

The second criterion is whether or not the PCE employed to create the surrogate filters 

changes over time. One conventional type of PCE is a time-variant PCE (VaPCE), which is 

continuously reconstructed based on new information about forcings and streamflow at all 

forecasting steps of data assimilation [Fan et al., 2016; Wang et al., 2017; Wang et al., 2018; 

Dwelle et al., 2019; Hu et al., 2019a; Tran and Kim, 2019]. The collection of the training set is 

much more straightforward than in the other type because precipitation forcing and streamflow are 

known during the assimilation process (that is, 𝒖𝑡−1, 𝒖𝑡 and 𝑦𝑡
𝑜𝑏𝑠 are real data) [Tran et al., 2020]. 
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We will refer to the surrogate filters created using the time-variant PCE as Variant Surrogate Filters 

(VaSuFs, i.e., VaSuWF and VaSuPF). 

The other type of PCE is built only once over the calibration period and is used later for 

the forecasting period [Tran et al., 2020]. This time-invariant PCE (hereafter referred to as InPCE) 

has the advantage of maximizing applicability and efficiency because it does not need to be re-

built during real-time forecasting. One notes that InPCE should be made to better represent the 

behavior of the original model under a wide range of conditions. Trained for a limited dataset from 

the past, the PCE model has shown excellent performance with other events similar to the 

calibration sets. However, for events that differ from those in the training series, it is challenging 

to construct a surrogate model that mimics the original model [Tran et al., 2020]. This issue can 

be addressed by training with as much data as possible, but attaining large amounts of data is still 

far away for some (ungauged) domains. We therefore propose a new procedure of collecting 

training sets to build an invariant PCE that does not require measurement data. In this study, we 

assume that all input variables of a filter (model) in Eqs. (4.7) and (4.8), i.e., model states, model 

parameters, rainfall measurements, and observed discharges, are uncertain and vary within a 

particular range. Instead of arranging them in a deterministic way, their input values are 

stochastically perturbed through a sampling process. The Latin hypercube (LHS) sampling 

technique [McKay et al., 1979b] is used in this work. This procedure makes the invariant PCE 

suitable for as many input conditions as possible. We will refer to the surrogate filters created by 

the invariant PCE as Invariant Surrogate Filters (InSuFs, i.e., InSuWF and InSuPF).  

Such a differentiating criterion is related to the amount of information needed to generate 

a PCE, that is, whether to select training information for just a single time step or all periods. It 

thus involves setting the extent to which the generated PCE can replace the original model. In other 
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words, a PCE generated using a wider range of training data can mimic the results of the original 

filter in a wider range of simulation conditions. A more detailed comparison and discussion on this 

subject can be found in Chapter III. 

4.2.2.3 Different assimilating targets: single vs. dual surrogate filters 

The last criterion is based on the goal of data assimilation: whether to update only state 

vectors (like single EnKF in Eq. (4.7)) or to update model parameters as well as the state vectors 

(like Dual EnKF in Eq. (4.8)). Surrogate filters that replace single and Dual EnKF can be called 

Single Surrogate filters (SuFs, i.e., InSuWF, InSuPF, VaSuWF, and VaSuPF) and Dual Surrogate 

filters (Dual SuFs, i.e., Dual InSuWF, Dual InSuPF, Dual VaSuWF, and Dual VaSuPF), 

respectively.  

The mathematical denotations of these eight surrogate filters are presented in Appendix A 

for clarity. This includes the denotations for both surrogate filters and their corresponding PCEs. 

The latter specifically consists of 4 variant PCEs (VaPCE1, VaPCE2, VaPCE3, and VaPCE4) and 

4 invariant PCEs (InPCE1, InPCE2, InPCE3, and InPCE4).  

4.2.2.4 Denotation of eight surrogate filters 

The eight surrogate filters proposed (Fig. 4.1) consist of 2 × 2 × 2 subcases (whole or partial 

× variant or invariant × single or dual). Denotation of the filters are described below.  

The Single Variant Surrogate Whole filter (VaSuWF) has the same mathematical form as 

Eq. (4.7). The entire set of processes of the EnKF is replaced with a (first) variant PCE (named 

VaPCE1), where VaSuWF = VaPCE1.  

 [𝒙𝑡
𝑖+, 𝑦𝑡

𝑖−] = VaSuWF(𝒙𝑡−1
𝑖+ , 𝜽𝑡−1

𝑖+ , 𝒖𝑡−1
𝑖 , 𝒖𝑡

𝑖 , 𝑦𝑡
𝑜𝑏𝑠,𝑖),       𝑖 = 1, … 𝑛 (4.9) 
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[𝒙𝑡
𝑖+, 𝑦𝑡

𝑖−] = VaPCE1(𝒙𝑡−1
𝑖+ , 𝜽𝑡−1

𝑖+ , 𝒖𝑡−1
𝑖 , 𝒖𝑡

𝑖 , 𝑦𝑡
𝑜𝑏𝑠,𝑖),       𝑖 = 1, … 𝑛 (4.10) 

The Dual Variant Surrogate Whole filter (Dual VaSuWF) has the same mathematical form 

as Eq. (4.8). The entire set of processes of the Dual EnKF is replaced with a (second) variant PCE 

(VaPCE2), where Dual VaSuWF = VaPCE2. 

[𝒙𝑡
𝑖+, 𝜽𝑡

𝑖+, 𝑦𝑡
𝑖−] = Dual VaSuWF(𝒙𝑡−1

𝑖+ , 𝜽𝑡−1
𝑖+ , 𝒖𝑡−1

𝑖 , 𝒖𝑡
𝑖 , 𝑦𝑡

𝑜𝑏𝑠,𝑖),       𝑖 = 1, … 𝑛 (4.11) 

[𝒙𝑡
𝑖+, 𝜽𝑡

𝑖+, 𝑦𝑡
𝑖−] = VaPCE2(𝒙𝑡−1

𝑖+ , 𝜽𝑡−1
𝑖+ , 𝒖𝑡−1

𝑖 , 𝒖𝑡
𝑖 , 𝑦𝑡

𝑜𝑏𝑠,𝑖),       𝑖 = 1, … 𝑛 (4.12) 

The Single Variant Surrogate Partial filter (VaSuPF) has the same mathematical form as 

Eq. (4.7). However, the process of computing 𝒙𝑡
𝑖− in the latter EnKF is replaced with a (third) 

variant PCE (VaPCE3) and the process of computing 𝑦𝑡
𝑖 is replaced with a (fourth) variant PCE 

(VaPCE4), where VaSuPF includes VaPCE3 and VaPCE4. 

 [𝒙𝑡
𝑖+, 𝑦𝑡

𝑖−] = VaSuPF(𝒙𝑡−1
𝑖+ , 𝜽𝑡−1

𝑖+ , 𝒖𝑡−1
𝑖 , 𝒖𝑡

𝑖 , 𝑦𝑡
𝑜𝑏𝑠,𝑖),       𝑖 = 1, … 𝑛 (4.13) 

 𝒙𝑡
𝑖− = VaPCE3(𝒙𝑡−1

𝑖+ , 𝜽𝑡−1
𝑖+ , 𝒖𝑡−1

𝑖 ) + 𝑤𝑡−1
𝑖 ,       𝑖 = 1, … 𝑛 (4.14) 

 𝑦𝑡
𝑖 = VaPCE4(𝒙𝑡

𝑖−, 𝜽𝑡
𝑖 , 𝒖𝑡

𝑖 ),       𝑖 = 1, … 𝑛 (4.15) 

The Dual Variant Surrogate Partial filter (Dual VaSuPF) has the same mathematical form 

as Eq. (4.8). However, the process of computing 𝒙𝑡
𝑖− in the latter Dual EnKF is replaced with the 

third variant PCE (VaPCE3), as shown in Eq. (4.14), and the two processes of computing 𝑦𝑡
𝑖 are 

replaced with the same fourth variant PCE (VaPCE4) as in Eq. (4.15). 

[𝒙𝑡
𝑖+, 𝜽𝑡

𝑖+, 𝑦𝑡
𝑖−] = Dual VaSuPF(𝒙𝑡−1

𝑖+ , 𝜽𝑡−1
𝑖+ , 𝒖𝑡−1

𝑖 , 𝒖𝑡
𝑖 , 𝑦𝑡

𝑜𝑏𝑠,𝑖),       𝑖 = 1, … 𝑛 (4.16) 

 Another four invariant filters are set up similarly to VaSuFs except for using the time-

invariant PCE (InPCE). The fifth filter, Single Invariant Surrogate Whole filter (InSuWF), also 

has the same mathematical form as Eq. (4.7). The entire set of processes of the EnKF is replaced 

with an (first) invariant PCE (named InPCE1), where InSuWF = InPCE1. 
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[𝒙𝑡
𝑖+, 𝑦𝑡

𝑖−] = InSuWF(𝒙𝑡−1
𝑖+ , 𝜽𝑡−1

𝑖+ , 𝒖𝑡−1
𝑖 , 𝒖𝑡

𝑖 , 𝑦𝑡
𝑜𝑏𝑠,𝑖),       𝑖 = 1, … 𝑛 (4.17) 

[𝒙𝑡
𝑖+, 𝑦𝑡

𝑖−] = InPCE1(𝒙𝑡−1
𝑖+ , 𝜽𝑡−1

𝑖+ , 𝒖𝑡−1
𝑖 , 𝒖𝑡

𝑖 , 𝑦𝑡
𝑜𝑏𝑠,𝑖),       𝑖 = 1, … 𝑛 (4.18) 

The Dual Invariant Surrogate Whole filter (Dual InSuWF) has the same mathematical form 

as Eq. (4.8). The entire set of processes of the Dual EnKF is replaced with an (second) invariant 

PCE (InPCE2), where Dual InSuWF = InPCE2.  

[𝒙𝑡
𝑖+, 𝜽𝑡

𝑖+, 𝑦𝑡
𝑖−] = Dual InSuWF(𝒙𝑡−1

𝑖+ , 𝜽𝑡−1
𝑖+ , 𝒖𝑡−1

𝑖 , 𝒖𝑡
𝑖 , 𝑦𝑡

𝑜𝑏𝑠,𝑖),       𝑖 = 1, … 𝑛 (4.19) 

[𝒙𝑡
𝑖+, 𝜽𝑡

𝑖+, 𝑦𝑡
𝑖−] = InPCE2(𝒙𝑡−1

𝑖+ , 𝜽𝑡−1
𝑖+ , 𝒖𝑡−1

𝑖 , 𝒖𝑡
𝑖 , 𝑦𝑡

𝑜𝑏𝑠,𝑖),       𝑖 = 1, … 𝑛 (4.20) 

The Single Invariant Surrogate Partial filter (InSuPF) has the same mathematical form as 

Eq. (4.7). However, the process of computing 𝒙𝑡
𝑖− in the EnKF is replaced with an (third) invariant 

PCE (InPCE3) and the process of computing 𝑦𝑡
𝑖  is replaced with an (fourth) invariant PCE 

(InPCE4).  

[𝒙𝑡
𝑖+, 𝑦𝑡

𝑖−] = InSuPF(𝒙𝑡−1
𝑖+ , 𝜽𝑡−1

𝑖+ , 𝒖𝑡−1
𝑖 , 𝒖𝑡

𝑖 , 𝑦𝑡
𝑜𝑏𝑠,𝑖),       𝑖 = 1, … 𝑛 (4.21) 

 𝒙𝑡
𝑖− = InPCE3(𝒙𝑡−1

𝑖+ , 𝜽𝑡−1
𝑖+ , 𝒖𝑡−1

𝑖 ) + 𝑤𝑡−1
𝑖 ,       𝑖 = 1, … 𝑛 (4.22) 

 𝑦𝑡
𝑖 = InPCE4(𝒙𝑡

𝑖−, 𝜽𝑡
𝑖 , 𝒖𝑡

𝑖 ),       𝑖 = 1, … 𝑛 (4.23) 

The Dual Invariant Surrogate Partial filter (Dual InSuPF) has the same mathematical form 

as Eq. (4.8). However, the process of computing 𝒙𝑡
𝑖− in the Dual EnKF is replaced with a third 

invariant PCE (InPCE3), as in Eq. (4.22), and the two processes of computing 𝑦𝑡
𝑖 are replaced with 

the same fourth invariant PCE (InPCE4), as in Eq. (4.23). 

[𝒙𝑡
𝑖+, 𝜽𝑡

𝑖+, 𝑦𝑡
𝑖−] = Dual InSuPF(𝒙𝑡−1

𝑖+ , 𝜽𝑡−1
𝑖+ , 𝒖𝑡−1

𝑖 , 𝒖𝑡
𝑖 , 𝑦𝑡

𝑜𝑏𝑠,𝑖),       𝑖 = 1, … 𝑛 (4.24) 
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4.2.3 PCE based surrogate filters 

To develop the surrogate filters explained in Section 4.2.2 and handle the computational 

burden mentioned above, a PCE is used. Given inputs 𝐗𝑡
𝑖  and outputs 𝐘𝑡

𝑖  of 𝓜 shown in Eqs. 

(4.10), (4.12), (4.14), (4.15), (4.18), (4.20), (4.22), and (4.23), the relationship between 𝑿𝑡
𝑖  and 𝒀𝑡

𝑖  

is described as: 

 𝒀𝑡
𝑖 = 𝓜(𝑿𝑡

𝑖 ) ≈ 𝓜𝑃𝐶𝐸(𝑿𝑡
𝑖 ) = ∑ 𝜀Ψ(𝑿𝑡

𝑖 )

∈ℕ𝑁𝑋

,       𝑖 = 1, … 𝑛 (4.25) 

where the numbers of inputs 𝑿𝑡
𝑖  and outputs 𝒀𝑡

𝑖  (each member of the PCE outputs is called a 

quantity of interest, QoI) in Eq. (4.25) are 𝑁𝑋 and 𝑁𝑌, respectively, which vary depending on the 

aforementioned PCEs. Specifically, the values of 𝑁𝑋 are 𝑁𝑆 + 𝑁𝑃 + 2𝑁𝐼 + 1, 𝑁𝑆 + 𝑁𝑃 + 2𝑁𝐼 + 1, 

𝑁𝑆 + 𝑁𝑃 + 𝑁𝐼, and 𝑁𝑆 + 𝑁𝑃 + 𝑁𝐼 for PCE1, PCE2, PCE3, and PCE4, respectively, regardless of 

whether the PCEs are variant or invariant, whereas the corresponding values of 𝑁𝑌 are 𝑁𝑆 + 1, 

𝑁𝑆 + 𝑁𝑃 + 1, 𝑁𝑆, and 1 for the 4 PCEs, respectively. In this Chapter, LAR is used to construct 

surrogate filters. More information and discussion about LAR can be found in Section 2.3 of this 

dissertation. 

4.2.4 Optimization of PCE hyper-parameters 

The constructed PCE includes two hyper-parameters: the size of experimental design 𝑁 

and the degree of polynomials 𝑝. It is important to set the values of the hyper-parameters prior to 

estimating the PCE coefficients, which directly affects the ability to capture the behavior of the 

original filter [Blatman and Sudret, 2010]. However, such a determination is not straightforward 

and often has been decided by trial and error [Hu and Youn, 2010; Laloy et al., 2013; Sochala and 

Le Maître, 2013; Wang et al., 2017; Dwelle et al., 2019; Tran and Kim, 2019]. To address this 
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problem, we propose a procedural version in which the ultimate values of  𝑁 and 𝑝 are identified 

by continuously increasing their values until any convergence criteria are met. This method is the 

extension of the sequential experimental design [Blatman and Sudret, 2010].  

4.2.4.1 Sequential experimental design – polynomial degree scheme 

 

 

Figure 4.2. Flowchart of the sequential experimental design – polynomial degree (SED-PD) 

scheme proposed for optimizing 𝑁 and 𝑝 in building PCE for each quantity of interest (QoI). The 

SED-PD scheme includes two iterative loops. The first (inner) loop is inside the grey box, aiming 

to optimize the value of 𝑝 . The second (outer) loop includes the first one, allowing for the 

determination of the optimal values of 𝑁 and 𝑝. 𝑁∗ is an increment that determines the amount of 

sample added to the existing sample for each iteration. The leave-one-out cross-validation error 

(𝜖𝐿𝑂𝑂
QoI ) is used. 
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In the original sequential experimental design (SED) scheme suggested by Blatman and 

Sudret [2010], the enrichment of experimental design (𝓧) is stopped when an accuracy metric 

reaches a target error. That is, a single stopping criterion was employed. Because some studies do 

not meet its intrinsic assumption that the accuracy metric decreases monotonically [Hu and Youn, 

2010; Sargsyan et al., 2014; Diaz et al., 2018; Dwelle et al., 2019; Torre et al., 2019], this study 

extends the existing scheme so that multiple stopping (convergence) criteria can be satisfied 

sequentially by enriching both 𝑁  and 𝑝  in the so-called sequential experimental design – 

polynomial degree (SED-PD) scheme. Specifically, this SED-PD consists of two subsequent 

iterative cycles to determine the optimum values of 𝑁  and 𝑝 , in which the sub-loop of 𝑝  is 

influenced by the iteration of 𝑁  enrichment. A stepwise description of the SED-PD scheme is 

provided as follows, and an associated flowchart is sketched in Fig. 4.2. 

1. The first step is to initialize the size 𝑁 of the experimental design with a feasible number. 

If one chooses an initial value of 𝑁 that is too small, it will take a long time to converge; conversely, 

an initial value that is too large may not converge at all. Therefore, selecting an appropriate number 

for the initial value of 𝑁  is an important task. In general, determining the optimal size of the 

experimental design depends largely on the complexity of the original model, as well as on the 

computational budget available [Razavi et al., 2012b]. The relevant literature has not reported a 

well-established rule of thumb for the initialization of 𝑁 to build the PCE [Blatman and Sudret, 

2010; Schöbi et al., 2017; Diaz et al., 2018; Dubreuil et al., 2018; Dwelle et al., 2019; Torre et al., 

2019]. Here, we attempt to appraise an approximate order of an initial value for 𝑁: regarding the 

four variant PCEs (i.e., VaPCE1, 2, 3, and 4) in Eqs. (4.10), (4.12), (4.14), and (4.15), 𝑁 can be 

expressed in the order of the number of ensemble members 𝑁𝑃𝐶𝐸 (i.e., initial 𝑁 =  𝑁𝑃𝐶𝐸) because 
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these PCEs reconstructed in each computational time have a single time step (the number of time 

steps, 𝑁𝑇 = 1). Regarding the other invariant PCEs (i.e., InPCE1, 2, 3, and 4), the smallest starting 

value could be the product of the number of time steps, 𝑁𝑇 and the number of ensemble members 

𝑁𝑃𝐶𝐸 (i.e., initial 𝑁 =  𝑁𝑇 × 𝑁𝑃𝐶𝐸). Such a number indicates that an original filter (model) needs 

to be computed over the number of ensemble members of the input variables per each time step. 

2. Given 𝑁 , the experimental design 𝓧  is sampled using the LHS technique, and the 

corresponding response 𝓨. 

 3. The other hyper-parameter, the polynomial degree p, needs to be initialized as well. 

Unlike the initialization of 𝑁, the starting value of p can be chosen to be 1 without much effort. 

4. Given the values of 𝑁  and p, a candidate surrogate for each QoI, 𝓜𝑃𝐶𝐸,QoI  is 

constructed. 

5. To quantify the difference between the results of the original and surrogate filters, judge 

the degree of convergence, and evaluate the performance of the latter filters, a statistic is 

introduced and will be computed for each QoI for each iteration. Following the study by Blatman 

and Sudret [2010], the accuracy metric, 𝐿𝑂𝑂, is computed for each QoI, hereafter specified as  

𝜖𝐿𝑂𝑂
QoI

 (see Eq. (2.21)). This leave-one-out cross-validation error metric, 𝜖𝐿𝑂𝑂
QoI

 is designed to 

quantify how exactly the surrogate model behaves compared to the original model by computing 

a deviation between these model outputs; and to detect an overfitting phenomenon more easily 

[Blatman and Sudret, 2010].  

6. The inner iterative cycle refers to Steps (4) through (6) (Fig. 4.2) and aims to determine 

an optimal 𝑝 given a value of 𝑁. If the convergence (stopping) criteria for p are not satisfied, the 

inner loop is executed again (i.e., 𝑙𝑝  increased by one) for the new 𝑝  increased by one. Such 
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iterations continue until convergence criteria based on the accuracy metric are met. The details for 

the criteria will be described in the next section.  

7. Once the inner loop is finished, the second bigger iterative cycle begins, comprising 

Steps (2) through (7). This outer loop includes the former inner loop, determining optimal values 

of both hyper-parameters. For the fixed value of 𝑝 determined in the first loop, a similar decision 

is made as to whether other criteria for 𝑁 are met. If they are not, the iterative algorithm goes back 

to Step (2) with the new 𝑁 increased by 𝑁∗ (i.e., 𝑙𝑁 increased by one). New samples with size 𝑁∗ 

are added to the existing samples of the experimental design. Then, Steps (2) through (7) are 

repeated until these criteria for 𝑁 are satisfied. Note that each time a new 𝑁 is chosen and the outer 

loop executes, 𝑝  is newly determined within the inner loop. Eventually, both criteria must be 

satisfied to complete the SED-PD algorithm; optimal values of 𝑁 and 𝑝 are determined for each 

QoI. 

4.2.4.2 Convergence (stopping) criteria 

A set of multiple convergence (stopping) criteria based on the error metric have been 

proposed to stop the loop iterations of the SED-PD scheme. This is similar to an optimization 

problem that can maximize the accuracy of the PCE while minimizing the computational cost 

required for PCE construction. Following the successive procedure of SED-PD, convergence 

criteria are applied twice to the selections of 𝑁 and 𝑝, respectively. Four criteria are proposed to 

ensure stopping the enrichment of 𝑝 and 𝑁 (Fig. 4.3). The increase of 𝑝 or 𝑁 is stopped if any of 

the following four convergence criteria are satisfied: 

(1) One can stop if the 𝜖𝐿𝑂𝑂
QoI

 value reaches a sufficiently small target error. It is acceptable 

that the difference between two comparing models is negligible. The threshold error 𝜖𝑡ℎ
𝑙𝑜𝑤𝑒𝑟 
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targeted in this study is set to 10-5, similar to the previous study [Blatman and Sudret, 2011]. The 

optimal values are specifically determined by selecting the values of 𝑝 and 𝑁 at the moment when 

𝜖𝐿𝑂𝑂
QoI,𝑙

 at iteration 𝑙  ( 𝑙 = {𝑙𝑝, 𝑙𝑁} ) (see Fig. 4.3) is smaller than the lower threshold. The 

corresponding mathematical expression is: 

 stop if  𝜖𝐿𝑂𝑂
QoI,𝑙 ≤  𝜖𝑡ℎ

𝑙𝑜𝑤𝑒𝑟 (4.26) 

 (2) The first criterion is valid only with the expectation that the error decreases 

monotonically. However, due to the complexity of the model, which is affected by many sources 

of uncertainty, the first criterion may not be met within a finite number of iterations. Besides, an 

excessive increase in the number of 𝑁  and 𝑝 does not mean that they always provide a better 

surrogate model, which can lead to an increase in 𝜖𝐿𝑂𝑂
QoI

 called over-fitting. Such a phenomenon 

can be avoided by addition of another criterion. That is, one can stop if the 𝜖𝐿𝑂𝑂
QoI

 increases in three 

consecutive iterations and  𝜖𝐿𝑂𝑂
QoI,𝑙−2

 is smaller than 𝜖𝑡ℎ
𝑢𝑝𝑝𝑒𝑟

: 

 stop if 𝜖𝐿𝑂𝑂
QoI,𝑙−2 ≤ 𝜖𝐿𝑂𝑂

QoI,𝑙−1 ≤ 𝜖𝐿𝑂𝑂
QoI,𝑙

 and 𝜖𝐿𝑂𝑂
QoI,𝑙−2 ≤ 𝜖𝑡ℎ

𝑢𝑝𝑝𝑒𝑟
 (4.27) 

where 𝜖𝐿𝑂𝑂
QoI,𝑙−2

, 𝜖𝐿𝑂𝑂
QoI,𝑙−1

, and 𝜖𝐿𝑂𝑂
QoI,𝑙

 are the error estimates computed at the successive iterations of 

𝑙 −2, 𝑙 −1, and 𝑙, respectively. To avoid instances where the iterations stop very early or the 

optimal 𝜖𝐿𝑂𝑂
QoI

 value is still large, we also introduced another threshold, 𝜖𝑡ℎ
𝑢𝑝𝑝𝑒𝑟

, as a safeguard. In 

this study, the value of 𝜖𝑡ℎ
𝑢𝑝𝑝𝑒𝑟

 is set to be 10-1. The optimal values are then determined as the 𝑝 or 

𝑁 values at the iteration when 𝜖𝐿𝑂𝑂
QoI

 is the smallest. For example, in Fig. 4.3, 𝑝 or 𝑁 value at 𝑙 − 2 

is selected.  

(3) Another possible case where the scheme will not converge is when the error is not small 

and rarely decreases. By calculating the degree of reduction, i.e., slope, one can take into account 
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divergence in such a case. This can be stopped if the slope in Eq. (4.28) calculated using the errors 

estimated in three consecutive iteration steps is insignificant. Thus, the third stopping criterion is: 

 stop if 
|𝜖𝐿𝑂𝑂

QoI,𝑙 − 𝜖𝐿𝑂𝑂
QoI,𝑙−1|

|𝜖𝐿𝑂𝑂
QoI,𝑙−2 − 𝜖𝐿𝑂𝑂

QoI,𝑙−1|
≤  𝜖𝑡ℎ

𝑠𝑙𝑜𝑝𝑒 𝑎𝑛𝑑 𝜖𝐿𝑂𝑂
QoI,𝑙−1 ≤ 𝜖𝑡ℎ

𝑢𝑝𝑝𝑒𝑟
 (4.28) 

where 0.05 is used as the value of 𝜖𝑡ℎ
𝑠𝑙𝑜𝑝𝑒

, as in prior studies [Echard et al., 2011; Schöbi et al., 

2017; Dubreuil et al., 2018]. Like the second criterion, the value of 𝜖𝐿𝑂𝑂
QoI

 is restricted to be smaller 

than 𝜖𝑡ℎ
𝑢𝑝𝑝𝑒𝑟

. The 𝑝  or 𝑁  value is determined at the iteration when 𝜖𝐿𝑂𝑂
QoI

 is the smallest. For 

example, 𝑝 or 𝑁 values at 𝑙 − 1 are selected in Fig. 4.3. 

(4) The fourth and final criterion is given in case that divergence or overflow can still occur 

even though the above three safety measures have been implemented. According to the 

computational power employed, the 𝑝 and 𝑁 values should be limited to avoid infinite iterations 

of the SED-PD when the above three criteria do not work. That is, the fourth stopping criterion is: 

 stop if 𝑝 ≥  𝑝𝑚𝑎𝑥  𝑜𝑟  if 𝑁 ≥  𝑁𝑚𝑎𝑥 (4.29) 

where a maximum degree of polynomials, 𝑝𝑚𝑎𝑥, of 15 is used in this study. The maximum number 

of experimental design, 𝑁𝑚𝑎𝑥, is set to be (𝑝𝑚𝑎𝑥 + 1)𝑁𝑋, analogous to the total number of model 

evaluations when using the Gaussian quadrature method [Sudret, 2008]. The 𝑝  or 𝑁  value is 

determined at the iteration when 𝜖𝐿𝑂𝑂
QoI

 is the smallest. For example, 𝑝 or 𝑁 values at 𝑙 − 1 (not 

𝑙𝑚𝑎𝑥) are selected in Fig. 4.3. 
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Figure 4.3. A schematic illustration for stopping iterations given four convergence criteria 

proposed by the SED-PD scheme. The circle point in each line refers to the iteration at which the 

value of 𝑝 or 𝑁 should be determined. 

 

4.3 Experimental configurations 

4.3.1 Flood events 

All experiments were carried out in the Vu Gia watershed in central Vietnam (see Fig. 4.4 

and Section 3.4.1 for more detail) with NAM model (see Section 2.2.1.2). Three flood events from 

the rainy season in 2016 were selected for verification and application of the surrogate filters. 

Precipitation data was observed at the Thanh My and Kham Duc stations, and discharge data at 

the outlet of the watershed, at the Thanh My station (Fig. 4.4a). All the hourly data available in 

this domain were taken into account and the data are provided by the Vietnam National Centre for 

Hydro-Meteorological (Fig. 4.4b). The areal average of rainfall used for a hydrological model was 

computed through the Thiessen method, while the potential evapotranspiration was not considered 

due to its insignificant effects on flooding.  
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Figure 4.4. (a) Geographical location and topographic characteristics of the Vu Gia watershed, 

located in central Vietnam, and (b) three flood events used for testing the surrogate filters, 

including average rainfall over basin (navy bars) and observed discharge (black lines) at the outlet, 

the Thanh My station. 

 

4.3.2 Modeling procedure for the variant PCE construction 

Building the variant PCEs should be performed in real time for the present forcings at each 

time step. The first task is to initialize the state vector and specify the parameters of the 

hydrological model: zero initial states are assumed and parameters are sampled from the posterior 

distributions estimated by the generalized likelihood uncertainty estimation (GLUE) [Beven and 

Freer, 2001] (for more details, see Section 2.2.1.3). Since a much smaller number of training 

samples (e.g., 50) can make the PCE successfully [Tran and Kim, 2019], the initial 𝑁  of the 

experimental design 𝓧  is given as the number of ensembles, 𝑁𝑃𝐶𝐸  of 10. In this type of 
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construction, real-time forcings and observations are employed for the EnKF assimilations. Then, 

the SED-PD scheme stops iterating if criteria for 𝑁 are met; otherwise, it continues the iterations 

with the 𝑁 increased by 𝑁∗ = 10. Note that to construct the variant PCEs, stochastically-varying 

rainfall and discharge is not essential – real data for the three events is directly employed. Four 

variant PCEs are built at each time step; that is, 51, 50, and 34 variant PCEs are built for the first, 

second, and third flood events, respectively. 

4.3.3 Modeling procedure for the invariant PCE construction 

The first task to constructing invariant PCEs is also to initialize the state vector and specify 

the parameters of the NAM model. This study initializes the ensemble of the states with zero and 

specifies the ensemble of the parameters with samples chosen randomly from the Uniform (prior) 

distribution. These ensembles start with the initial 𝑁 = 𝑁𝑇 × 𝑁𝑃𝐶𝐸 = 100 × 100 = 10,000. A 

number of 𝑁 filter evaluations are followed for rainfall forcings and streamflow observations. As 

described in Section 4.2.2.2, stochastic inputs of rainfall and discharge are preferred to build the 

invariant PCEs. We generated the stochastic samples under the assumption that these two input 

variables followed a Uniform distribution over bounded intervals. The lower bounds of the 

possible ranges for observed rainfall and discharge were set to be zero, while the upper bounds 

were subject to the domain. In this study, values of 50 mm/hour and 7,000 m3/s were employed 

for the upper bounds of rainfall and streamflow, respectively. These values were determined from 

the maximum hourly rainfall in data available since 2015 and an extreme corresponding to a 100-

year return period. The latter flood frequency analysis was made by applying the Pearson type-III 

distribution to annual flood peaks for data from 1976 to 2016. Then, according to the SED-PD 

scheme, additional 𝑁∗ filter evaluations are included if criteria for 𝑁 are not met. The 𝑁 for the 

second (next) iteration becomes 𝑁 = 𝑁 + 𝑁∗ = (100 + 10) × (100 + 10) = 12,100. This size 
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continues to grow until the criteria are satisfied. Note that each of the invariant PCEs is unique and 

can be applied to any event, including the three events given. 

4.3.4 Synthetic and real data assimilation experiments 

The first of three events was used as a synthetic experiment, the objective of which is to 

judge the performance of certain data assimilation techniques whether evaluating the convergence 

of the parameters, quantifying the parameter range adequately, and minimizing the predictive 

uncertainty [Moradkhani, 2008]. Serving as a control run, this synthetic experimental dataset was 

generated through a free run using observed rainfall (Event 1), pre-specified (also referred to as 

“true”) parameters in Table 4.1, and discharges computed from the former two. Other flood events 

(i.e., 2 and 3) were utilized for application of the proposed filters to real-time flood forecasting, in 

which the performance of the eight surrogate filters are compared and validated with the single 

and dual ensemble Kalman filters. 

Table 4.1. Description, initial range, and predefined value of parameters of NAM. 

Parameter Description Range  
Predefined 

Value 

Um [mm] Maximum water content in surface storage [5, 35] 10.99 

Lm [mm] Maximum water content in lower zone/root storage [50, 400] 302.79 

CQOF [-] Overland flow coefficient [0, 1] 0.99 

CKIF [hrs] Interflow drainage constant [200, 2000] 0.22 

TOF [-] Overland flow threshold [0, 0.9] 0.81 

TIF [-] Interflow threshold [0, 0.9] 0.60 

TG [-] Groundwater recharge threshold [0, 0.9] 1237.08 

CK12 [hrs] Time constant for routing interflow/overland flow [3, 72] 13.77 

CKBF [hrs] Time constant for base flow [500, 5000] 3482.37 

 

 All data assimilation experiments were performed with 𝑛 of 500, which was considered to 

be a rational ensemble size to adequately represent the uncertainty bounds. The initialization of 
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the states given the ensemble size was simply set to be zero. The specification of the parameters 

for the same size was performed by using the posterior distribution by GLUE for the real data 

experiment, and by using the prior Uniform distribution for the range given in Table 2.3 for the 

synthetic experiment. 

To achieve the most reliable ensemble prediction over the entire forecasting period, it is 

necessary to assume noise for quantities that contain uncertainty in the data assimilation 

framework [Renard et al., 2010; DeChant and Moradkhani, 2012]. In this study, 500 perturbations 

were applied to the precipitation and streamflow observations in both synthetic and real data 

experiments to account for uncertainties. Specifically, we assume a log-normal error distribution 

with a relative error of 25% for precipitation. The streamflow observation error is assumed to be 

normally distributed with a relative error of 15% at each time step. It is also assumed that the 

model parameters follow a random walk by adding a small amount of noise following a normal 

distribution with a relative error of 1%. 

4.3.5 Evaluation measures for accuracy and efficiency 

To evaluate the accuracy and predictability of the proposed surrogate filters, both 

deterministic and probabilistic measures were selected. For deterministic metrics, the 𝑁𝑆𝐸 and 𝑃𝐸 

are selected as defined in Eqs. (2.9) and (2.10), respectively. For probabilistic measures, the Brier 

Score (BS) (see Eq. (3.36)), the continuously ranked probability score (𝐶𝑅𝑃𝑆), and 𝑆𝑝𝑟𝑒𝑎𝑑 are 

adopted. Wherein, 𝐶𝑅𝑃𝑆 measures the proximity of the forecast distribution and the measurement 

distribution at a single time step [Gneiting and Raftery, 2007]. In this study, the temporal mean of 

𝐶𝑅𝑃𝑆, 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ is used for comparison:  
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 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ =
1

T
∑ ∫ [𝐹(𝑦𝑡

−) − 𝐹(𝑦𝑡
𝑜𝑏𝑠)]

2
𝑑𝑦

∞

−∞

T

𝑡=1

 (4.30) 

where 𝐹(𝑦𝑡
−) and 𝐹(𝑦𝑡

𝑜𝑏𝑠) are the empirical cumulative distribution of 𝑛 ensemble predictions 

𝑦𝑡
𝑖− and the actual observation 𝑦𝑡

𝑜𝑏𝑠 at time t, respectively. The value of 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ is non-negative, 

and has a value of zero if two distributions are identical. 

Since a reliable forecast with an excessively high dispersion is not desired, the 𝑆𝑝𝑟𝑒𝑎𝑑 can 

be considered. This parameter is equal to the square root of the average ensemble variance over 

the evaluation period [Fortin et al., 2014; Liu et al., 2019] and is non-negative with the best value 

of zero. It has the same unit as streamflow: 

 𝑆𝑝𝑟𝑒𝑎𝑑 = √
1

T
∑ [

1

𝑛 − 1
∑(𝑦𝑡

𝑖− − 𝑦𝑡
𝑜𝑏𝑠)

2
𝑛

𝑖=1

]

T

𝑡=1

 (4.31) 

Regarding the modeling efficiency, runtime at each time step (𝑅𝑇𝑡) and cumulative runtime 

(𝑅𝑇𝑐𝑢𝑚,𝑡) are established as: 

 𝑅𝑇𝑡 = 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡 + 𝑅𝑇𝑟𝑢𝑛,𝑡 × 𝑛 (4.32) 

 

𝑅𝑇𝑐𝑢𝑚,𝑡 = ∑ 𝑅𝑇𝑡

𝑡

𝑡=1

 

(4.33) 

where 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡 is the runtime needed for building a filter at each time step of the assimilation; 

𝑅𝑇𝑟𝑢𝑛,𝑡 is the runtime to perform the filter for assimilation at each time step for one ensemble 

member. The runtime 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡 consists of the time 𝑅𝑇𝓧,𝑡 required to configure the experimental 

design (𝓧) (i.e., model evaluations) and the time 𝑅𝑇𝑜𝑝𝑡,𝑡 required to determine the optimal hyper-

parameters and coefficients of PCE. The latter runtime is the summation of 𝑅𝑇𝑜𝑝𝑡,𝑡
QoI𝑚 for each QoI 
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because a filter is made after PCE construction over each QoI. In contrast, the former runtime 

chooses the largest time among all 𝑅𝑇𝓧,𝑡
QoI𝑚 because the PCE is built by recycling all the previously 

performed model evaluations, i.e., it shares the experimental design with the largest 𝑁 of all QoIs. 

That is, 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡 for the variant filters (𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡
𝑉𝑎 ) is written as: 

 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡 = 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡
𝑉𝑎 = max(𝑅𝑇𝓧,𝑡

QoI𝑚|𝑚 = 1, … , 𝑁𝑌,𝑓𝑖𝑙𝑡𝑒𝑟) + ∑ 𝑅𝑇𝑜𝑝𝑡,𝑡
QoI𝑚

𝑁𝑌,𝑓𝑖𝑙𝑡𝑒𝑟

𝑚=1

 (4.34) 

where m is an index for the number of PCE outputs of the filter (𝑁𝑌,𝑓𝑖𝑙𝑡𝑒𝑟). 𝑁𝑌,𝑓𝑖𝑙𝑡𝑒𝑟 for SuWF, 

Dual SuWF, SuPF, and Dual SuPF are 𝑁𝑆 + 1, 𝑁𝑆 + 𝑁𝑃 + 1, 𝑁𝑆 + 1, and 𝑁𝑆 + 1 respectively, 

regardless of whether the filters are Variant or Invariant Surrogate filters. Note that because the 

variant surrogate filters need to re-build at every time step of the assimilation, 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡
𝑉𝑎  is subject 

to the time step 𝑡. On the other hand, 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡 for the invariant filters (𝑅𝑇𝑏𝑢𝑖𝑙𝑑
𝐼𝑛 ) does not need the 

subscript 𝑡 and is independent of time because their construction could be done before forecasting. 

Thus, 𝑅𝑇𝑏𝑢𝑖𝑙𝑑
𝐼𝑛  is similarly expressed as:  

 

𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡 = 𝑅𝑇𝑏𝑢𝑖𝑙𝑑
𝐼𝑛 = max(𝑅𝑇𝓧

QoI𝑚|𝑚 = 1, … , 𝑁𝑌,𝑓𝑖𝑙𝑡𝑒𝑟) + ∑ 𝑅𝑇𝑜𝑝𝑡
QoI𝑚

𝑁𝑌,𝑓𝑖𝑙𝑡𝑒𝑟

𝑚=1

 (4.35) 

4.4 Results 

4.4.1 Optimization of the PCE hyper-parameters 

Hyper-parameters, 𝑁 and 𝑝 must be predetermined to construct PCE for each QoI, but their 

optimal values to maximize the performance of constructing PCE are unknown. Here, we present 

the results of the SED-PD scheme, which can be a guideline for other studies. The results are 

shown in Fig. 4.5, including the convergence criteria used for stopping the scheme and the number 
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of iterations needed for optimizing 𝑁 and 𝑝. Table 4.2 presents the optimal values of  𝑁 and 𝑝, the 

error 𝜖𝐿𝑂𝑂
QoI

 at stopping, and the building time. These results are subject to vary depending on the 

surrogate solutions proposed but are significantly different between the variant and invariant PCEs. 

 

Figure 4.5. Illustrations of the criteria (colored in subplots) used for stopping and the number of 

iterations (numbered) for each QoI (in y-axis) in optimizing the hyper-parameters, 𝑝 (the left larger 

box of each subplot) and 𝑁 (the right box of each subplot). Subplots, (a) to (h) correspond to 

constructing different PCEs using the SED-PD scheme. One of the four stopping criteria is shown 

with colors in each cell for 𝑝 and 𝑁. The number of iterations, 𝑙𝑝 and 𝑙𝑁, for optimizing 𝑝 and 𝑁 

is written inside each cell.  
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The SED-PD adopts four criteria for attaining the optimal values of  𝑁 and 𝑝. For the 

selection of 𝑝, the second (~57%, in magenta) or the first (~28%, in yellow) stopping criterion is 

used for the variant PCEs. That is, over-fitting predominantly happens or 𝜖𝐿𝑂𝑂
QoI

 smaller than the 

threshold of 10-5 exists. The number of iterations 𝑙𝑝 is smaller and varies from 1 to 5, specifically 

1 (~25 %), 3 (~29 %), 4 (~20%), and 5 (~12 %) (see Fig. 4.5). In contrast, the third (~87%, in 

green in Fig. 4.5) or fourth (~13%, in cyan) criterion is frequently used to construct the invariant 

PCEs. That is, the optimal 𝑝 (𝑝𝑜𝑝𝑡
QoI

) is largely determined when the consecutive values of  𝜖𝐿𝑂𝑂
QoI

 

remain unchanged or the degree of polynomials reaches its maximum value of 15. This implies 

that it is difficult for the value of 𝜖𝐿𝑂𝑂
QoI

 to reach its ideal predefined value, 𝜖𝑡ℎ
𝑙𝑜𝑤𝑒𝑟. The number of 

iterations 𝑙𝑝 to optimize 𝑝 is generally greater than 5, with the most commonly identified numbers 

of iterations being 5 (~72%), 7 (~16%), and 15 (~29%). These results confirm that finding an 

optimal 𝑝 when constructing VaPCEs requires fewer iterations and is much faster than in making 

InPCEs. 

For determining the optimal 𝑁 of each QoI (𝑁𝑜𝑝𝑡
QoI

), a similar approach using four criteria 

was made. In building VaPCEs, the most commonly used criteria were 1 (~67%), 2 (~19%), and 

3 (~15%), and the numbers of iterations 𝑙𝑁 required were only 1 (~48%) or 3 (~30%). These results 

indicate that the values of 𝜖𝐿𝑂𝑂
QoI

 easily reach the desired values so the 𝑙𝑁 is lower. In contrast, in 

constructing InPCEs, the criteria used were 2 (~78%) and 3 (~22%), and the values of 𝑙𝑁 were 

mostly from 3 to 8, but ranged up to 23. In summary, the results of the optimization of 𝑁 and 𝑝 

demonstrate that it is much easier to identify appropriate 𝑁 and 𝑝 values in constructing VaPCEs 

than InPCEs. 
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Table 4.2. Results of the SED-PD scheme in constructing four PCEs for each QoI, including the 

optimal sizes of the experimental design 𝑁 (𝑁𝑜𝑝𝑡,𝑡
QoI

, 𝑁𝑜𝑝𝑡
QoI) and the polynomial degree 𝑝 (𝑝𝑜𝑝𝑡,𝑡

QoI
, 𝑝𝑜𝑝𝑡

QoI), 

the magnitude of the accuracy metric at stopping (𝜖𝐿𝑂𝑂,𝑡
QoI

, 𝜖𝐿𝑂𝑂
QoI ), the runtime needed to perform 𝑁 

model evaluations ( 𝑅𝑇𝓧,𝒕
QoI, 𝑅𝑇𝓧

QoI
), and the runtime to estimate the PCE coefficients 

(𝑅𝑇𝑜𝑝𝑡,𝑡
QoI , 𝑅𝑇𝑜𝑝𝑡

QoI
).  

 QoI 

VaPCE* InPCE 

𝑁𝑜𝑝𝑡,𝑡
QoI

 𝑝𝑜𝑝𝑡,𝑡
QoI

 𝜖𝐿𝑂𝑂,𝑡
QoI

 
Runtime [sec] 

𝑁𝑜𝑝𝑡
QoI

 𝑝𝑜𝑝𝑡
QoI

 𝜖𝐿𝑂𝑂
QoI

 
Runtime [sec] 

𝑅𝑇𝓧,𝒕
QoI

 𝑅𝑇𝑜𝑝𝑡,𝑡
QoI

 𝑅𝑇𝓧
QoI

 𝑅𝑇𝑜𝑝𝑡
QoI

 

PCE1 

𝑦 20 6 7.69E-04 3.2 1.52 12100 5 0.0608 1936 108 

U 10 1 4.63E-31 1.6 0.05 40000 5 0.0294 6400 364 

L 10 1 7.26E-08 1.6 0.05 52900 5 0.0180 8464 1123 

OF 40 3 3.38E-05 6.4 6.72 22500 5 0.0869 3600 278 

IF 10 1 1.00E-04 1.6 0.53 90000 5 0.0079 14400 24712 

BF 10 1 1.26E-06 1.6 0.05 12100 15 0.0111 1936 4403 

PCE2 

𝑦 30 2 1.11E-04 9.3 0.86 22500 5 0.0869 6975 278 

U 10 1 5.18E-06 3.1 0.05 16900 5 0.0388 5239 103 

L 20 1 3.26E-06 6.2 0.20 14400 5 0.0241 4464 86 

OF 30 2 3.70E-05 9.3 0.60 19600 5 0.0674 6076 1116 

IF 50 2 1.18E-04 15.5 1.33 22500 7 0.0122 6975 292 

BF 10 5 3.01E-07 3.1 0.24 19600 15 0.0094 6076 5021 

Um 10 1 5.18E-06 3.1 0.05 28900 15 0.0076 8959 5489 

Lm 10 1 2.69E-06 3.1 0.04 16900 15 0.0098 5239 5090 

CQOF 20 1 1.86E-07 6.2 0.23 25600 15 0.0083 7936 11486 

CKIF 10 4 1.25E-08 3.1 0.18 19600 5 0.0129 6076 97 

TOF 10 1 6.45E-07 3.1 0.06 12100 15 0.0084 3751 1403 

TIF 10 1 6.88E-06 3.1 0.05 16900 15 0.0084 5239 6801 

TG 10 1 6.73E-08 3.1 0.05 16900 15 0.0091 5239 3038 

CK12 30 1 4.23E-08 9.3 0.47 44100 7 0.0088 13671 4036 

CKBF 10 1 6.74E-08 3.1 0.05 10000 15 0.0109 3100 2376 

PCE3 

U 10 1 4.85E-32 1.6 0.05 19600 5 0.0595 3136 68 

L 30 1 9.96E-06 4.8 0.33 10000 5 0.0364 1600 148 

OF 10 1 3.96E-04 1.6 0.61 40000 5 0.0531 6400 63 

IF 30 1 8.65E-06 4.8 0.36 16900 5 0.0022 2704 567 

BF 10 3 2.34E-05 1.6 0.66 40000 5 0.0001 6400 130 

PCE4 𝑦 80 2 3.37E-04 12.8 15.39 10000 5 0.0528 1600 565 

*The results at 𝑡 = 50 are shown over Event 2. 

 

Table 4.2 reports the values of 𝑁𝑜𝑝𝑡
QoI

, 𝑝𝑜𝑝𝑡
QoI

, 𝜖𝐿𝑂𝑂
QoI

, 𝑅𝑇𝓧
QoI

 and 𝑅𝑇𝑜𝑝𝑡
QoI

 in constructing eight 

PCEs for each QoI. The 𝑁𝑜𝑝𝑡
QoI

 and 𝑝𝑜𝑝𝑡
QoI

 values of the variant PCEs are smaller than 100 and 3, 

respectively, and their 𝜖𝐿𝑂𝑂
QoI

 values are mostly smaller than 10-4. Conversely, the 𝑁𝑜𝑝𝑡
QoI

 and 𝑝𝑜𝑝𝑡
QoI

 

values of the invariant PCEs are greater than 10,000 and 5, respectively, and their 𝜖𝐿𝑂𝑂
QoI

values are 
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greater than 10-3. PCEs generated based on more sampling data (i.e., larger 𝑁𝑜𝑝𝑡
QoI

) and more 

complex models (i.e., higher 𝑝𝑜𝑝𝑡
QoI

) do not necessarily provide better results, i.e. smaller errors. 

Furthermore, the differences in the time required to implement the SED-PD are evident. The build 

times of the invariant filters are significantly greater than those of the variant filters, by factors of 

approximately 2962, 3027, 263, and 263 times in the comparisons of InSuWF versus VaSuWF, 

Dual InSuWF versus Dual VaSuWF, InSuPF versus VaSuPF, and Dual InSuPF versus Dual 

VaSuPF, respectively (see Table 4.2). These results indicate that a more universal (invariant) PCE 

built with enormous margins of all uncertain variables takes significantly more time than a specific 

(variant) PCE in which all forcings and observations are confirmed in real time.  

4.4.2 Parameter specification for data assimilation 

In Chapter II, we emphasized that the Selected parameter specification (sampled from a 

posterior) provides improved accuracy and predictability of forecast outcomes over the Random 

parameter specification (sampled from a prior). A wide range of random parameters show 

undesirable and inaccurate forecasts. In this work, GLUE was also used to determine the posterior 

distribution of the parameters. A likelihood function, 𝐿 including Nash–Sutcliffe efficiency (𝑁𝑆𝐸), 

peak error (𝑃𝐸), and volume error (𝑉𝐸) is selected as a likelihood function. 

 𝐿 = (1 − 𝑁𝑆𝐸) +
𝑃𝐸

100
+

𝑉𝐸

100
  (4.36) 

Since individual acceptance thresholds for the 𝑁𝑆𝐸, 𝑃𝐸, and 𝑉𝐸 were determined to be 

0.8, 5%, and 5%, respectively, according to the robust analysis [Tran and Kim, 2019], the posterior 

parameter sets are obtained when 𝐿 is smaller than 0.3. The GLUE was applied to Event 1, and 
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then its posterior distribution was assumed to be the initial parameter values needed in the 

following section. 

We estimated the marginal and pairwise marginal posterior distributions of parameters by 

using GLUE, as illustrated for Event 1 in Fig. 4.6a. The posterior distributions of Lm, CQOF, and 

CK12 have a pointed shape, indicating that those parameters are highly sensitive to the 𝐿 and are 

easily identifiable. The remaining six parameters are almost equally distributed over the entire 

parameter range, and such flat distributions indicate that their parameters are relatively insensitive 

to the 𝐿 and are more uncertain. The same conclusion also can be drawn for the results of the 

pairwise posterior distributions; namely, that any combinations of six insensitive parameters are 

evenly distributed over the squared domains, except for the combinations of Lm, CQOF, and CK12. 

Additionally, a sensitivity analysis (SA) was carried out in order to identify critical 

parameters effecting predictive accuracy. By using Sobol’ variance-based global sensitivity 

analysis (see Section 2.2.1.4), both overall interaction of each parameter through the total-order 

(main) sensitivity index and pairwise (joint) interaction between parameters are shown in Fig. 4.6b. 

The results also confirmed that Lm, CQOF, and CK12 are the most sensitive parameters to the 

objective function, while other parameters have relatively low sensitivity. Regarding the joint 

sensitivities, the diagonal interactions among Lm, COQF, TG, and CK12 illustrated by the 

connecting lines with larger width and lower opacity principally affect the results of 𝐿 as compared 

to other interactions. The main and joint sensitivities using Sobol’ indices were consistent with the 

results inferred from the aforementioned posterior distribution. It is worth noting these results 

because the most influential parameters can be primarily examined for data assimilation of real-

time predictions. 
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Figure 4.6. (a) The marginal and pairwise marginal posterior distributions of nine parameters over 

Event 1 by using GLUE; (b) the qualitative representation of Sobol’ sensitivity analysis for the 

nine parameters based on the likelihood function (𝐿). In (a), the red nodes are selected as the 

predefined, “true” parameter values, which will be used in the synthetic experiment. In (b), the 

diameter of the nodes around the circle is proportional to the total-order sensitivity, and the width 

and opacity of the lines connecting the nodes are proportional to the pairwise interaction sensitivity. 

 

4.4.3 Data assimilation of the synthetic experiment 

Synthetic experiments are often employed to examine whether parameters converge 

satisfactorily, whether the range of parameters is adequately quantified, and whether predictive 

uncertainty is minimized [Moradkhani, 2008]. First, we ensured that the model parameters updated 
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from dual data assimilation can converge to the predefined parameter values for Event 1. Fig. 4.7 

shows the time evolution of posterior distributions of nine parameters for five dual filters. The 

most easily identifiable parameters are CQOF and CK12, while the rest of the parameters could 

not reduce the large uncertainty range over time, as also inferred from the results of GLUE and 

sensitivity analysis in Section 4.4.2. All dual filters except for Dual InSuWF successfully provided 

the posterior distribution of these parameters that almost converged to the predefined values at the 

end stage of assimilation. 

 

Figure 4.7. The time evolution of posterior distributions of nine parameters for five dual filters: 

(a) Dual EnKF, (b) Dual InSuWF, (c) Dual InSuPF, (d) Dual VaSuWF, and (e) Dual VaSuPF. 

Data assimilation with the ensemble size of 500 was performed for the synthetic experiment over 

Event 1. Shaded areas and black lines represent the 90% confidence intervals and the mean values 

of ensemble parameters, respectively. Red nodes refer to the predefined value of parameters in 

Table 4.1. 
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Compared to the tendency of Dual EnKF to converge to the predefined parameters, the 

dual variant filters (Dual VaSuWF and Dual VaSuPF) can accurately update the posterior 

parameters in terms of convergence speed and degree. On the other hand, the dual invariant partial 

filter (Dual InSuPF) provides a slightly different converging tendency wherein the magnitude of 

the uncertainty of CK12 is larger than Dual EnKF, and the convergence is slower. Specifically, 

the mean value of ensemble members of CK12 (black line in Fig. 4.7) converges to its predefined 

value at about 20 hours in Dual EnKF (as well as both Dual Variant filters), but it takes an 

additional 7 hours in Dual InSuPF. The other dual invariant whole filter (Dual InSuWF) 

completely fails to estimate the parameter posterior distribution, because the influential parameters 

converge to a lesser extent and the identified posterior distributions do not converge to the 

predefined values (Fig. 4.7d). 

Ensemble streamflow predictions and their error measures were compared for ten filters in 

the synthetic experiment over Event 1 in Fig. 4.8. (1) Deterministic and stochastic error measure 

values in Figs. 4.8b to 4.8d indicate that all surrogate filters are functioning properly to improve 

the accuracy of streamflow predictions. The results of 𝑁𝑆𝐸, 𝑃𝐸, 𝐵𝑆, 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅, and 𝑆𝑝𝑟𝑒𝑎𝑑 when 

using DA are significantly better than those without DA. (2) The single and dual surrogate filters 

were compared, clearly demonstrating the effect of simultaneously updating the states and 

parameters on the accuracy. All dual filters, except for Dual InSuWF, produce superior results to 

single filters and provide almost the same results as the original Dual EnKF. For example, the 

performance of four dual filters increases by at least about 8, 65, 48, 68, and 51% for the ensemble 

median of 𝑁𝑆𝐸 (𝑁𝑆�̃�), the ensemble median of 𝑃𝐸 (𝑃�̃�), 𝐵𝑆, 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅, and 𝑆𝑝𝑟𝑒𝑎𝑑, respectively. 

The interquartile uncertainty range of 𝑁𝑆𝐸 is also reduced to 0.02 – 0.07 in dual filters from 0.03 
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– 0.39 in single filters, and that of 𝑃𝐸 is reduced to 2 – 10% in dual filters from 10 – 30% in single 

filters. (3) Dual InSuWF showed no performance improvement for 𝑁𝑆𝐸  and 𝑃𝐸  compared to 

InSuWF, while there were improvements of about 36 and 22% for 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ and 𝑆𝑝𝑟𝑒𝑎𝑑, respectively. 

Dual InSuWF is less accurate than Dual EnKF, while InSuWF has more accurate prediction 

performance than EnKF. 

 

Figure 4.8. (a) Comparisons of 500 ensemble streamflow predictions with 90% confidence 

intervals, and (b to d) comparisons of the accuracy metrics for ten filters in the synthetic 

experiment over Event 1 for (b) 𝑁𝑆𝐸, (c) 𝑃𝐸, and (d) 𝐵𝑆, 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅, and 𝑆𝑝𝑟𝑒𝑎𝑑. In each boxplot, 

the central mark is the median, the edges of the box are the 25th and 75th percentiles, and the upper 

and lower whiskers are the maximum and minimum except for outliers (dot symbols). In (d), the 

circle plots qualitatively represent probabilistic measures for 𝐵𝑆 (dark blue nodes), 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ (blue 

lines), and 𝑆𝑝𝑟𝑒𝑎𝑑 (yellow lines). The size of nodes corresponds to the magnitude of 𝐵𝑆; the 

distance from points on the blue and yellow lines to the center of the circle corresponds to the 

magnitude of 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ and 𝑆𝑝𝑟𝑒𝑎𝑑. 

 

In summary, the analyses above in the synthetic experiment indicate that all of the four 

single filters (InSuWF, InSuPF, VaSuWF, and VaSuPF) worked similarly to the original single 

filter, EnKF, in terms of accuracy for streamflow forecasting. Furthermore, three of the four dual 

filters (Dual InSuPF, Dual VaSuWF, and Dual VaSuPF) showed equivalent performance to the 
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original dual filter, Dual EnKF in terms of increased accuracy and parameter posterior estimation. 

However, Dual InSuWF failed to converge to predefined parameters during the assimilation 

process, nor did it improve predictive performance. 

4.4.4 Data assimilation of the real experiment 

In this section, two data assimilation experiments using real rainfall and streamflow 

observations were conducted to further examine the performance of proposed filters in a real-time 

forecasting framework. The forecasting results over Events 2 and 3 are reported from Figs. 4.9 to 

4.12. In general, the results of the real data assimilation experiment have equivalent conclusions 

to those of the synthetic experiment. Qualitative inspections for observation consistency and 

uncertainty interval from Figs. 4.9 and 4.10 reveal that all surrogate filters provided similar results 

to EnKFs, and dual filters are more accurate and have narrower uncertain ranges than single filters. 

 

Figure 4.9. Comparisons of 500 ensemble streamflow predictions with 90% confidence intervals 

for ten filters in the real data assimilation experiments over (top) Event 2 and (bottom) Event 3. 
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Figure 4.10. Comparisons of the accuracy metrics for ten filters with an ensemble size of 500 in 

the real data assimilation experiments over (a to c) Event 2 and (d to f) Event 3: (a,d) 𝑁𝑆𝐸, (b,e) 

𝑃𝐸, and (c,f) 𝐵𝑆, 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅, and 𝑆𝑝𝑟𝑒𝑎𝑑. The boxplots demonstrate the median (central mark), the 

25th and 75th percentiles (the edges of the box), and the maximum and minimum (the upper and 

lower whiskers) except for outliers (dot symbols). The circle plots qualitatively represent 

probabilistic measures for 𝐵𝑆 (dark blue nodes), 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ (blue lines), and 𝑆𝑝𝑟𝑒𝑎𝑑 (yellow lines). 

The size of nodes corresponds to the magnitude of 𝐵𝑆; the distance from points on the blue and 

yellow lines to the center of the circle corresponds to the magnitude of 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ and 𝑆𝑝𝑟𝑒𝑎𝑑. 

 

Since it is evident that streamflow predictions were improved by using data assimilation, 

we omitted the comparison for the absence of DA and showed the comparison between filters 

regarding the reliability of surrogate filters. Three paired comparisons were performed based on 

three standards of surrogate filter construction described in Section 4.2.2: Whole versus Partial, 

Variant versus Invariant, and Single versus Dual. Such comparisons can be done easily with the 

help of a relative ‘difference’ metric (∆) between the values of the evaluation metrics (Metric), 

including 𝑁𝑆�̃� , 𝑃�̃� , 𝐵𝑆 , 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ , and 𝑆𝑝𝑟𝑒𝑎𝑑 . This difference metric is defined in the unit of 

percentage as: 
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 ∆=
|Metric(SuFs1) − Metricideal| − |Metric(SuFs2) − Metricideal|

|Metric(SuFs1) − Metricideal|
× 100 (4.37) 

where SuFs1 denotes the former group filters, i.e., whole, variant, and single filters, while SuFs2 

denotes the latter filters, i.e., partial, invariant, and dual filters. Metricideal represents the ideal 

(perfect) values of the metrics of 𝑁𝑆𝐸, 𝑃𝐸, 𝐵𝑆, 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅, and 𝑆𝑝𝑟𝑒𝑎𝑑, that is 1, 0, 0, 0, and 0, 

respectively. The positive (or negative) values of ∆ indicate that the prediction results of the latter 

group filters are more (or less) accurate than those computed by the former filters.  

 

Figure 4.11. Three paired comparisons of a relative ‘difference’ metric (∆) in Eq. (4.37) for the 

five evaluation metrics (x-axis) over (a) Event 2 and (b) Event 3. These comparison pairs are based 

on three standards of surrogate filter construction described in Section 4.2.2. The positive (negative) 

values of ∆ indicate that the prediction results of Partial, Invariant, and Dual filters are more (less) 

accurate than those computed by Whole, Variant, and Single filters, respectively. 
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The results of ∆ for the three paired comparisons are illustrated in Fig. 4.11 and also 

reported in detail in Table C.1 (Appendix C). First, the results of ∆ between whole and partial 

filters are mostly negative, revealing that whole filters outperform partial filters by up to 203, 117, 

115, 41, and 44% for 𝑁𝑆�̃�, 𝑃�̃�, 𝐵𝑆, 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅, and 𝑆𝑝𝑟𝑒𝑎𝑑, respectively, over both Events 2 and 3. 

The only exception for this tendency can be found in Dual InSuWF, which does not show an 

obvious superiority over Dual InSuPF. As an example for Event 2, 𝑁𝑆�̃�, 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅, and 𝑆𝑝𝑟𝑒𝑎𝑑 of 

Dual InSuWF are inferior (i.e., positive ∆ values) to those of Dual InSuPF by about 31, 19, and 

29%, respectively, while 𝑃�̃� and 𝐵𝑆 are improved (i.e., negative ∆ values) by about 34 and 59%, 

respectively (Fig. 4.11). Regarding the second paired comparisons of building systems between 

variant and invariant filters, three out of four invariant filters have better performance than the 

corresponding variant filters (Fig. 4.11). In particular, the values of ∆ for all metrics have positive 

values ranging up to 60, 45, 27, 79, and 37% for 𝑁𝑆�̃�, 𝑃�̃�, 𝐵𝑆, 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅, and 𝑆𝑝𝑟𝑒𝑎𝑑, respectively. 

Conversely, for the forecasting results of the remaining invariant filter, Dual InSuWF (i.e., blue in 

Fig. 4.11), it is hard to conclude which building systems are superior. The performance results are 

mixed depending on the metrics, e.g., results of 𝑃�̃� are 68% worse than those in Dual VaSuWF 

while those of 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ are 27% better  for Event 3. Third, convincing evidence was found that dual 

filters outperform single filters. As also seen in Section 4.4.3, the dual updates of parameter and 

state significantly enhance the forecasting results and narrow their uncertainty spreads. 

Quantitatively, the ‘difference’ metric results of dual filters are improved by up to 9, 48, 34, 54, 

and 50% over Event 2 for 𝑁𝑆�̃�, 𝑃�̃�, 𝐵𝑆, 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅, and 𝑆𝑝𝑟𝑒𝑎𝑑, respectively. For Event 3, these 

improvements are more substantial, with improvements of up to 38, 69, 90, 56, and 52%, 

respectively (Fig. 4.11). In summary, the Dual VaSuWF and Dual InSuPF filters have proven to 
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be superior to the others in providing accurate forecasting results, followed by Dual VaSuPF, with 

prediction results closest to the above two filters. 

The above comparisons were made for prediction results for short lead times (LT) of 1 hour. 

As predictions for greater lead times are usually in demand, additional analysis was performed to 

examine whether the surrogate filters can provide reliable and accurate streamflow predictions for 

larger lead times of 1 to 6 hours. As expected, the forecasting performance for ten filters decreases 

with the lead time – decreasing for all metrics. Such a tendency is clearly shown in Fig. C.1 (in 

Appendix C), where the evaluation metrics at each lead time are compared with those at the lead 

time of 1 hour for ten filters. Specifically, in Event 2, the ranges of degradation of 𝑁𝑆�̃�, 𝑃�̃�, 𝐵𝑆, 

𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅, and 𝑆𝑝𝑟𝑒𝑎𝑑 at a lead time of 6 hours compared to those at lead time of 1 hour are 181-

1430, 0-469, 0-853, 51-154, and 46-152%, respectively. In Event 3, these ranges are 235-1206, 

105-395, 115-585, 51-203, and 66-196%. Interestingly, some filters (all single filters and Dual 

InSuWF) have much worse predictability with respect to lead time, while all dual filters except for 

Dual InSuWF are not as good, but better than the former filters.  

In order to compare the degree of performance deterioration for lead time among 10 filters, 

another relative ‘difference’ metric (Γ) is computed as:  

 Γ =
|Metricbest − Metricideal| − |Metric(SuFs, 𝐿𝑇) − Metricideal|

|Metricbest − Metricideal|
× 100 (4.38) 

where Metric(SuFs, 𝐿𝑇) denotes the evaluation metric of a surrogate filter at a lead time (LT) that 

is varied from 1 to 6 hours. Metricbest represents the best of the 60 values (corresponding to 10 

filters × 6 different lead times) closest to the Metricideal. The negative values of Γ indicate the 

degree of performance deterioration as compared to the best value. 
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Figure 4.12. The comparisons of a relative ‘difference’ metric (Γ) in Eq. (4.38) for the five 

evaluation metrics (y-axis) with different lead times from 1 to 6 hours (x-axis) over (a) Event 2 

and (b) Event 3. These values in each subplot were compared for the best of 60 values (10 filters 

× 6 lead times) closest to the ideal value of each evaluation metric. The negative values of Γ 

indicate the degree of performance deterioration as compared to the best value. 

 

Compared to the best performance of 𝑁𝑆�̃�, its performance degradation at the longest lead 

time of 6 hours stretches from 293, 714, and 626% in Dual VaSuWF, Dual VaSuPF and Dual 
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InSuPF, respectively, up to 1724 % in Dual InSuWF. Such a degradation is highest in 𝑁𝑆�̃�, and 

then in 𝐵𝑆 and 𝑃�̃� (Fig. 4.12). Another interesting phenomenon is that the performance between 

the 10 filters is not very different for a lead time of 1 hour, but the performance difference between 

the filters increases significantly as the lead time increases. For example, the performance 

differences of Γ at 1 hour lead time are about 216, 233, 146, 115, and 126% for 𝑁𝑆�̃�, 𝑃�̃�, 𝐵𝑆, 

𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅, and 𝑆𝑝𝑟𝑒𝑎𝑑, respectively. At a lead time of 6 hours, the differences extend up to 1724, 606, 

853, 343, and 288% (Fig. 4.12a). Filters that perform well at longer lead times are Dual VaSuWF, 

Dual InSuPF, and Dual VaSuPF, which means that filters that performed better at a lead time of 1 

hour outperform other surrogate filters at longer lead times. 

4.4.5 Evaluation of the superiority of computational performance to EnKF 

Fig. 4.13 demonstrates the superiority of SuFs to EnKFs in terms of efficiency by 

computing the cumulative and instantaneous runtime (𝑅𝑇𝑐𝑢𝑚,𝑡 and 𝑅𝑇𝑡) of ten filters for Event 2. 

From Fig. 4.13a displaying the cumulative runtime versus time for 𝑛 of 500, it can be seen that the 

calculation speed of InSuFs is much faster than that of EnKFs, whereas the speed of VaSuFs is 

slightly faster. For example, at the end of forecasting (𝑡 = 50), the best filter, Dual InSuPF is about 

500 times more efficient than Dual EnKF. Since the building time (𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡) of both of these two 

filters is equal to zero, the difference of 500 times is the same as the difference in the running time 

(𝑅𝑇𝑟𝑢𝑛,𝑡) of the two filters (i.e., about 4.6×10-4 and 0.23 secs; see the slope of Eq. (4.32) written 

in the legend of Fig. 4.13b). Comparing the runtime of VaSuFs to EnKFs is the case when the 

additional runtime required for building the filters (𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡) offsets the efficiency of the runtime 

in running the filters (𝑅𝑇𝑟𝑢𝑛,𝑡). When  is small, the efficiency improvement of Dual VaSuPF and 

Dual VaSuWF to Dual EnKF is relatively low (e.g., only 4 and 6 times faster for 𝑛 = 500), but as 



163 

 

𝑛 gets larger, this improvement becomes much greater (e.g., 65 and 100 times faster for 𝑛 =

10,000). 

 

Figure 4.13. Comparisons of runtime for ten filters: (a) the cumulative runtime (𝑅𝑇𝑐𝑢𝑚,𝑡) with 

respect to forecasting timestep (𝑡) and (b) the runtime at the end of forecasting (𝑅𝑇𝑡=50) with 

respect to the number of ensemble (𝑛). In (a), 𝑅𝑇𝑐𝑢𝑚,𝑡 is computed over the fixed ensemble size 

of 500 while in (b), 𝑅𝑇𝑡=50 is computed for the fixed time of 50. 𝑅𝑇𝑡=50 shows a linear relationship 

with the ensemble size; its slope (𝑅𝑇𝑟𝑢𝑛,𝑡 in Eq. (4.32)) and intercept (𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡) for all filters are 

written in the parentheses on the legend. Note that 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡 for the invariant filters (𝑅𝑇𝑏𝑢𝑖𝑙𝑑
𝐼𝑛 ) are 

set to be zero to compare only the time required for forecasting, because these filters can be built 

prior to forecasting. The results of Event 2 were used. 

 

4.5 Discussions 

4.5.1 Is a Partial surrogate approach more promising? 

The primitive rationale of the Partial approach was to individually replace the time-

consuming processes (e.g., Eqs. 4.1, 4.3, and 4.5) in the original filter (model). The rest of the 

EnKF processes (Eqs. 4.4 and 4.6), which take less time but play an important role, remain the 

same. Since Kalman gain (𝐾) in that Partial filter was directly calculated and reflected in updating 

the parameters and states, it was possible to present more accurate results than the conventional 

Whole approach that blackboxed this process. Thus, a remarkable question to be addressed is how 
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to select the process to be replaced among processes included in original filters (models) when 

designing a surrogate filter (model). Considering the trade-off between the time taken to execute 

the process and its physical importance, a flexible surrogate model design will be possible. 

What are the central advantages of the Partial approach in terms of efficiency, other than 

the aforementioned accuracy improvement? The Partial approach can effectively reduce the 

number of dimensions of the PCE input. In this study, the total number of dimensions, 𝑁𝑋 was 

𝑁𝑆 + 𝑁𝑃 + 𝑁𝑢 in the Partial filter, while 𝑁𝑆 + 𝑁𝑃 + 2𝑁𝑢 + 𝑁𝑜𝑏𝑠 (the number of observations) in 

the Whole approach. The number of dimensions is reduced by 𝑁𝑢 + 𝑁𝑜𝑏𝑠 from 17 (Whole) to 15 

(Partial). Although the decrease in the number of dimensions, 2, may seem small, its contribution 

from the perspective of PCE coefficients is by no means small. That is, the number of PCE 

coefficients decreases significantly from 26,334 to 15,504 (~ 40 % reduction) estimated by the 𝑁𝑋 

and a common 𝑝 of 5 from Eq. (2.3), thus resulting in the smaller size of experimental design (e.g., 

from 90,000 to 40,000 for building Dual InSuFs; see Table 4.2). If forcings and observations with 

different values for space are considered (i.e., if 𝑁𝑢 and 𝑁𝑜𝑏𝑠 are not equal to 1), such a reduction 

effect by the Partial approach will be even greater. 

How can the Partial approach be extended to a fully distributed model with much larger 

dimensions rather than a lumped model? In this case, the total number of dimensions is as large as 

the total dimensions of the lumped model multiplied by the number of computational cells (𝑁𝑐𝑒𝑙𝑙). 

That is, 𝑁𝑋 = (𝑁𝑆 + 𝑁𝑃 + 2𝑁𝑢 + 𝑁𝑜𝑏𝑠) × 𝑁𝑐𝑒𝑙𝑙 in the Whole approach. Note that such a number 

is incredibly too high. A pragmatic solution by the Partial approach is to create independent 

surrogate PCEs as many as 𝑁𝑐𝑒𝑙𝑙. It is enabled if each cell is treated as a separate process and thus 

is superseded with an independent PCE. This ultimately has the effect of turning the problem of 

generating one PCE with the entire dimension into a problem of generating several (𝑁𝑐𝑒𝑙𝑙) PCEs 
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with dimensions of 𝑁𝑋/𝑁𝑐𝑒𝑙𝑙. Even more productive solution is enabled by combining this Partial 

approach with Karhunen-Loève (KL) decomposition [Karhunen, 1946], where it can lump cells 

with high correlation between model outputs in space (or time) into one group. Once the spatially-

correlated groups are identified, the Partial approach is then employed to construct a PCE for that 

group cells. Surely, results simulated by the constructed PCE can be pertained only to the portion 

of domain determined previously.  

4.5.2 Is building a ‘universal’ PCE achievable and consequential? 

A well-known characteristic and challenge of data-driven models is that they cannot be 

applied to domains outside the scope of trained data. Basically, data-driven models have only one 

unique model suitable for each training data space. Likewise, PCE also has one optimal model for 

each data set (experimental design). If new data needs to be taken into account for future 

forecasting, as with most studies in the past [Sargsyan et al., 2014; Bazargan et al., 2015; Wang 

et al., 2018; Dwelle et al., 2019; Hu et al., 2019a; Tran and Kim, 2019; Zhang et al., 2020], it is 

natural to create a new PCE model like the time-variant approach. However, this approach cannot 

be applied when measurement (or forecasted) data is scarce, and even if the data is sufficient, there 

is a very critical disadvantage that a time-consuming operation must be repeated whenever data is 

altered. One of the goals of this study was to determine whether a ‘universal’ invariant PCE that 

could be applied to a wide range of rainfall events could be generated.  

It is apparent that the higher the degree of generalization of rainfall events represented by 

the experimental design, the more the PCE can be applied to various conditions. An effortless way 

to expand the scope of the data space (i.e., the Invariant approach) was proposed and verified based 

on the results of the synthetic and real experiments. A ‘universal’ surrogate filter using the 
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Invariant approach (Dual InSuPF) is the most efficient filter and one of the three surrogate filters 

that provide the most reliable predictability. These results confirm that a single ‘universal’ PCE 

could be constructed across a wide range of random data space (e.g., for rainfall and streamflow) 

and applied to new input space. This idea of using a ‘random input generator’ allows for creating 

as many hypothetical events as possible that can happen in that region. This does not require any 

specific historical event data, so it has the advantage of being easily applied even if there is no 

historical data. 

What are the practical implications of the universal Invariant filter? While many studies 

have highlighted the benefits of PCE in saving computational costs, most studies have been limited 

to hindcasting based on historical data (e.g., focusing on uncertainty quantification or sensitivity 

analysis) [Wu et al., 2014; Meng and Li, 2018; Miller et al., 2018; Dwelle et al., 2019]. To the best 

of our knowledge, no surrogate model (or filter) was applied to real-time flood forecasting because 

there is a downside of having insufficient time to rebuild a new PCE at each computation step for 

inputs provided in real time. Therefore, the idea of making a unique surrogate filter during non-

flood season can bridge the gap between hindcasting and real-time forecasting.  

4.5.3 Is an advanced SED-PD necessary in constructing PCE? 

In this dissertation, we propose a SED-PD scheme, an advanced version of SED introduced 

by Blatman and Sudret [2010], that was employed to determine the optimal values of 𝑁 and 𝑝 in 

estimating PCE coefficients. As a result of investigating the accuracy errors below and in the 

literature [Hu and Youn, 2010; Sargsyan et al., 2014; Diaz et al., 2018; Dwelle et al., 2019; Torre 

et al., 2019], we found that it is inappropriate to apply the SED originally developed for finite 



167 

 

element problems directly to hydrologic problems of interest. Here, we underscore the limitations 

of SED and the necessities of SED-PD. 

Fig. 4.14 clearly shows the difference between the hypothetical results obtained using SED 

and those from SED-PD, in terms of evolution of the error over runtime. The results of SED were 

derived specifically for the VaPCE1 and InPCE1 constructions of QoI = 𝑦; the 𝑝 values were fixed 

from 1 to 7, and the maximum iterations for 𝑁 (𝑙𝑁,𝑚𝑎𝑥) were limited to 1000 and 100 for VaPCE1 

and InPCE1, respectively; there was a single stopping criterion (the first criterion) where the lower 

threshold 𝜖𝑡ℎ
𝑙𝑜𝑤𝑒𝑟 is 10-5. Interestingly, in both VaPCE1 and InPCE1, 𝜖𝐿𝑂𝑂

QoI
 could not reach to the 

threshold value, which implies that one cannot create any PCE that satisfies the desired condition 

within a limited time when using SED. Apparently, such an optimization using SED should be 

amended.  

Three possibilities are discussed for why SED-PD is necessary in optimizing the hyper-

parameters (𝑁 and 𝑝). First, the use of a single criterion cannot guarantee convergence if the target 

error is not reached. Errors computed are no longer reduced even if a large number of iterations 

(e.g., up to 1000 and 100 of 𝑙𝑁,𝑚𝑎𝑥 , equivalently 10000 and 1188100 of 𝑁 , for VaPCE1 and 

InPCE1 in Fig. 4.14a and 4.14c) have been implemented. Compared to the SED-PD case, SED has 

not been able to obtain the desired convergence even after spending an enormous amount of time, 

or has to invest an almost infinite amount of time until convergence (see SED vs. SED-PD 

comparisons when stopping iterations: 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡=50
𝑉𝑎,𝑄𝑜𝐼=𝑦

 are infinite vs. 7.92 secs for VaPCE1 in Fig. 

4.14a, and 𝑅𝑇𝑏𝑢𝑖𝑙𝑑
𝐼𝑛,𝑄𝑜𝐼=𝑦

 are infinite vs. 2.81 × 103 secs for InPCE1 in Fig. 4.14c). On the other hand, 

SED-PD can determine the optimal 𝑁 and 𝑝 quickly through the four criteria proposed, ensuring 

system convergence and computational stability. 
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Figure 4.14. Illustrations of building runtime (𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡=50
𝑉𝑎,𝑄𝑜𝐼=𝑦

, 𝑅𝑇𝑏𝑢𝑖𝑙𝑑
𝐼𝑛,𝑄𝑜𝐼=𝑦

) versus error (𝜖𝐿𝑂𝑂,𝑡=50
𝑄𝑜𝐼=𝑦

,

𝜖𝐿𝑂𝑂
𝑄𝑜𝐼=𝑦

) under SED and SED-PD in constructing PCE for QoI = 𝑦 (streamflow) for (a, b) VaPCE1 

and (c, d) InPCE1. In SED, the polynomial degree 𝑝 was fixed at values, in turn, from 1 up to 7; 

iterations for 𝑁 were performed up to 𝑙𝑁,𝑚𝑎𝑥 of 1000 for VaPCE1 and 100 for InPCE1. In SED-

PD, zoomed-in subplots b and d, the blue dashed line separates each iteration of the outer loop 

(𝑙𝑁); the solid blue point separates the iteration of the inner loop (𝑙𝑝). The blue empty circle marks 

the optimal 𝑝 value in each inner loop; and the cyan empty circle marks the optimal 𝑁 and 𝑝 in 

constructing PCE. The green double arrow denotes the runtime needed for attaining the 

experimental design (𝑅𝑇𝓧
QoI

), while the blue double arrow represents the runtime to implement 

SED-PD (𝑅𝑇𝑜𝑝𝑡
QoI

). For VaPCE1, the results at 𝑡 = 50 are shown for Event 2. 
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The second possibility is related to whether or not to include the optimization process of 

the 𝑝  value in SED. Since the optimal value of 𝑝  is unknown, a common way to reveal an 

acceptable 𝑁 value in SED is to start from 𝑝 = 1 and increase the value by 1 until the optimal 𝑁 is 

determined (as in Fig. 4.14a and 4.14c). Or, if one can assume an appropriate 𝑝 value, the optimal 

𝑁 for that random 𝑝 value can be determined. Since the optimal 𝑝 value that causes the smallest 

error can vary from case to case (for example, optimal 𝑝  is determined as 6 when 𝑙𝑁 = 2  for 

VaPCE1 and as 5 when 𝑙𝑁 = 2 for InPCE1; see the cyan empty circles in Fig. 4.14b and 4.14d), 

SED always requires additional analysis (of similar form to Fig. 4.14a and 4.14c). However, in 

SED-PD, dual optimizations for both 𝑝  and 𝑁  are adopted such that the optimal value of 𝑝  is 

automatically identified at each iteration 𝑙𝑁 (like the blue empty circles in Fig. 4.14b and 4.14d). 

Such a dual optimization system ultimately improves the existing approach of SED by which the 

𝑝 value had to be selected ad-hoc or by trial and error. 

Note that the performance of SED is highly influenced by the PCE types and the lower 

threshold, 𝜖𝑡ℎ
𝑙𝑜𝑤𝑒𝑟  (see Fig. 4.14). In particular, the success or failure of the SED optimization 

process depends on the latter threshold value. Therefore, one might wonder how the optimization 

result will change if a larger value is chosen for  𝜖𝑡ℎ
𝑙𝑜𝑤𝑒𝑟  of SED. In this regard, Fig. 4.15 

demonstrates the effects of the lower threshold, 𝜖𝑡ℎ
𝑙𝑜𝑤𝑒𝑟 on the runtime for building the PCE: the 

larger the threshold value, the sooner SED can stop and the higher the probability of attaining an 

optimal 𝑁 value. The empty red squares in Fig. 4.15 indicate that there is no probability to get its 

optimum that satisfies the criterion within the maximum number of iterations given 𝑝. In order to 

avoid SED failure, a feasible threshold greater than the minimum value of 𝜖𝐿𝑂𝑂
QoI

, say about 1.5 × 

10-4 for VaPCE1 and about 5.5 × 10-2 for InPCE1, must be selected in advance. Then, a question 
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arises of how to pre-determine the value of  𝜖𝑡ℎ
𝑙𝑜𝑤𝑒𝑟 for each PCE construction. A practical and 

general answer to this question is to perform an additional analysis similar to Fig. 4.15 that uses 

trial and error with different thresholds – this analysis is however unnecessary in SED-PD. 

 

Figure 4.15. Effects of the lower threshold, 𝜖𝑡ℎ
𝑙𝑜𝑤𝑒𝑟, on the runtime for building (a) VaPCE1 and 

(b) InPCE1 for QoI = 𝑦 (streamflow) when using SED and SED-PD. The empty red squares 

indicate that there is no optimal 𝑁 value that satisfies the criterion within the maximum number of 

iterations given 𝑝. For VaPCE1, the results at 𝑡 = 50 are shown for Event 2. 

 

4.5.4 Is the surrogate filter broadly applicable to geophysical science? 

Surrogate filter approaches proposed can be applied to various geophysical fields that 

require data assimilation to improve the accuracy and efficiency of real-time predictions. All DA 

techniques generally consist of (“prediction step”) predicting the values of current state variables 

given information at the previous time step, and (“update (analysis) step”) updating the predictands 

by calculating the error between the predicted values and the currently observed values. Although 

the DA techniques differ in how they calculate and analyze the error in detail, the fact that states, 

parameters, and forcings are transited to the predictions through a propagator (e.g., Eqs. (4.1), (4.3), 

and (4.5)) is identical. Since the Partial filter proposed replaces these equations, it can be applied 
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seamlessly to other DA techniques without much modification. Obviously, the Whole filter can be 

generated only with evaluation results of the original filter, so there is no limitation in applying it 

to other DA applications. Moreover, these approaches are all based on any geophysical model that 

should be used for the prediction and update. Thus, the more complex governing equations the 

model contains, the more the computational effect using the surrogate filter will be maximized. 

4.6 Conclusions 

The main objectives of this Chapter are: (1) to present a robust and efficient data 

assimilation technique in the framework of hydrologic flood forecasting, embracing the merits of 

the ensemble Kalman filter (EnKF) and polynomial chaos expansion (PCE) in order to produce 

reliable streamflow predictions with significantly reduced runtime; (2) to underscore the 

advantages of the novel partial and invariant approaches in making a surrogate filter, by 

investigating the accuracy and efficiency of the eight surrogate filters categorized according to 

different surrogate structures (whole and partial), building systems (variant and invariant), and 

assimilating targets (single and dual); (3) to propose an advanced dual optimization system with 

multiple stopping criteria, named sequential experimental design-polynomial degree (SED-PD), 

that simultaneously determines the hyper-parameters of 𝑁  and 𝑝  necessary for the PCE 

construction. The following are the principal results and conclusions of this study. 

 The SED-PD scheme has evolved into a dual optimizing system and requires four stopping 

criteria, dealing with two issues that originally occurred in SED during PCE construction. 

In particular, the inherent assumption of SED that its accuracy error should decrease 

monotonically with iterations is not always satisfied. Thus, the multiple criteria were 

needed to ensure convergence of the optimization process and avoid the possibility of 
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infinite iterations. Additionally, the exclusion of polynomial degree from the optimization 

process leads to a practical issue, wherein the value of polynomial degree had to be selected 

ad-hoc or by trial and error. The dual optimization system proposed resolves this existing 

issue of SED. 

 A comprehensive investigation into how to configure a surrogate filter has been carried out. 

Conventionally, the Whole (replacing entire processes of the original filter) and Variant 

(requiring reconstruction at each time step) approaches have been employed. However, we 

have confirmed that this traditional approach deteriorates forecasting performance in terms 

of accuracy and efficiency. A novel Partial (replacing part of the original filter) and 

Invariant (valid for whole time periods) approach is proposed for the filter construction, 

which outperforms the conventional approach. The Partial approach can directly reduce the 

number of dimensions by turning the problem of generating one PCE with the entire 

dimension into a problem of generating several PCEs with a reduced dimension. The 

Invariant approach making a unique surrogate filter during non-flood season can bridge the 

gap between hindcasting and real-time forecasting. 

 Specific results from the synthetic and real data assimilation experiments are (1) Dual SuFs 

except for Dual InSuWF successfully mimic the convergence characteristics of Dual EnKF 

in updating model parameters; (2) The comparing results of eight surrogate filters show 

that Dual VaSuWF, Dual VaSuPF, and Dual InSuPF illustrate the most superior 

performance, equivalent to that of Dual EnKF; (3) These three filters perform relatively 

well at longer lead times as well, although forecasting performance decreases with lead 

time for all filters. 
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 Regarding efficiency, the use of surrogate filters dramatically improves the computational 

performance. In particular, Dual VaSuWF, Dual VaSuPF, and Dual InSuPF are about 6, 4, 

and 500 times faster than Dual EnKF, respectively, (when comparing the cumulative 

runtime (𝑅𝑇𝑐𝑢𝑚,𝑡) over event 2 with the ensemble size of 500). This efficiency gain is more 

pronounced when original filters being replaced are time-consuming or larger ensemble 

sizes are employed. Since the calculation speed of the generated PCE is related to the time 

of the arithmetic operation level, it is always fast regardless of how complicated and time-

consuming the original filter is. 

 Based on in-depth analyses, the Dual Invariant Partial filter (i.e., Dual InSuPF) is the best 

one, being superior in terms of usefulness, effectiveness, and robustness as an EnKF 

replacement. Therefore, the proposed surrogate filter will be a promising alternative tool 

for performing computationally-intensive data assimilation in high-dimensional problems. 

Ultimately, it not only provides equivalently accurate forecasting results in real time, but 

also significantly reduces the computational burden of larger ensemble predictions. 
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CHAPTER V 

 

A new surrogate model enables predictions for 

extreme events that deviate significantly from the 

training dataset 

“The only way of finding the limits of the 

possible is by going beyond them into the 

impossible” 

- (Clarke, AC) 

 

5.1 Introduction 

Floods have long been studied in practical and scientific fields because they cause severe 

damage to the environment and societies around the world [Hirabayashi et al., 2013; Ward et al., 

2013]. Timely and accurate predictions of extreme flood events play a pivotal role in decision-

making processes to mitigate risk [Ward et al., 2013; Sanders et al., 2020]. However, predictions 

are confronted with various uncertainties due to incomplete understanding of the actual natural 

systems [Kim et al., 2016c; Kim et al., 2016b] and unknown distributions of the parameters that 

are difficult to measure directly [Beven and Binley, 1992; Kavetski et al., 2006; Moradkhani and 

Sorooshian, 2008; Kim and Ivanov, 2014; Kim et al., 2016a]. Rigorous enforcement of high‐

fidelity predictions through understanding, quantifying, and reducing such uncertainties often 

requires a calibration, optimization, or assimilation process that adjusts a modeling system to the 

available measurements (e.g., streamflow) [Beven and Freer, 2001; Vrugt and Robinson, 2007; 
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Moradkhani and Sorooshian, 2008; Tran and Kim, 2021a]. However, this inverse type of modeling 

generally entails significant computational resources because it relies on a considerable number of 

repeated model runs for various scenarios [Liu and Gupta, 2007; Keating et al., 2010; Beven and 

Binley, 2014; Zhang et al., 2020]. Recently, a very attractive solution has been developed and 

applied that can drastically reduce the computational costs for the model run. This approach 

substitutes a high-cost deterministic model with a cheap-to-run “surrogate” model that reproduces 

comparable physical properties but has a lower computational cost [Razavi et al., 2012b; Asher et 

al., 2015; Tran et al., 2020]. 

Surrogate models that originated in a wide range of disciplines are being developed and 

implemented for water resources problems [Razavi et al., 2012a; Sargsyan et al., 2014; Christelis 

and Hughes, 2018; Dwelle et al., 2019; Hu et al., 2019a; Tran et al., 2020; Wang et al., 2020]. The 

central premise for a surrogate model to provide results consistent with the original model is to be 

able to approximate the relationship between input and output similar to the original model [Wang 

and Shan, 2007; Smith, 2013; Asher et al., 2015; Rajabi, 2019]. However, the current surrogate 

models based on this relationship cannot provide a reliable prognosis for outliers (or extremes) 

beyond the training data space, although they generally have excellent predictive power for regions 

within the training data [Razavi et al., 2012b; Asher et al., 2015; Matos et al., 2017; Tran et al., 

2020]. This is because the surrogate model is adapted locally to a constrained number of training 

points (also referred to as design sites), and thus only sites close to the training space can be 

diagnosed [Bowden et al., 2012]. For example, in the context of water resource problems, there 

will be a high probability of extreme events that, due to climate change, have not been experienced 

in the past [Prein et al., 2016; Bao et al., 2017; Bloschl et al., 2020]. There is also the possibility 

that extreme events that deviate from recorded events will occur due to climate internal variability, 
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even assuming that climate stationarity is maintained [Kim et al., 2015; Matos et al., 2017; Kim et 

al., 2018; Kim et al., 2019b; Doi and Kim, 2020; 2021]. Therefore, a common solution for ensuring 

the predictive power in the entire data space is to expand the data range of the design site to cover 

all possible cases [Schöbi et al., 2017]. However, obtaining sufficient collections of extreme events 

for training is unfeasible, so one needs to develop an alternative solution to ensure predictability 

for the events beyond the data space. 

Generalized likelihood uncertainty estimation (GLUE) is an uncertainty quantification 

framework that has been frequently used in different research disciplines over the past 30 years 

(more than 2,700 citations as of July, 2021 from the Web of Science). GLUE estimates the 

posterior distribution of model parameters following the concept of “equifinality” whereby various 

combinations of parameter values can provide equivalently accurate predictions [Beven and Binley, 

1992; Beven, 2006]. Many studies have performed in-depth analyses to compare the performance 

of GLUE and other Bayesian inference methods, evaluate the effects of formal and informal 

likelihood functions, and improve the performance of GLUE with advanced sampling techniques. 

However, setting up an acceptance threshold — one of the most important features for determining 

the posterior distribution in the GLUE implementation — appears to have received less attention. 

This acceptance threshold has a direct impact on the accuracy and computational cost of GLUE 

[Blasone et al., 2008a; Stedinger et al., 2008], but has been arbitrarily determined as either an 

allowable degree of simulation error or a fixed ratio of the total number of simulations [Blasone et 

al., 2008b; Vrugt et al., 2008c]. The former approach is to repeat simulations continuously until 

the number that satisfies the desired accuracy is reached, while the latter is to select only the top 

few percent of the simulation results performed. Basically, the ability to obtain good behavioral 

results from both approaches is proportional to the number of simulations. That is, performing as 



177 

 

many simulations as possible is a way to achieve better results, but this is not always feasible and 

effective, especially for models with many uncertain parameters and high computational cost 

[Beven and Binley, 2014]. Therefore, it is of interest to better understand how the trade-off between 

the accuracy and efficiency of GLUE varies according to the use of different acceptance thresholds. 

The literature demonstrates that revolutionary surrogate modeling has been applied for 

many models and has proven its strengths in a wealth of publications. However, those studies 

simply focused on the development of new surrogate models and compared their accuracy with 

other models (e.g., kriging, support vector machines, or radial basis functions) [Razavi et al., 2012a; 

Schöbi et al., 2015; Rajabi, 2019; Xing et al., 2019; Zhang et al., 2020] based on multiple accuracy 

scores in their construction processes (e.g., relative mean squared error, leave-one-out error, or 

leave-one-out cross-validation) [Blatman and Sudret, 2011; Lüthen et al., 2020]. Training a 

surrogate model with data of sufficiently large size can usually achieve high accuracy, but 

unfortunately this may greatly reduce its efficiency [Razavi et al., 2012b]. Recalling that surrogate 

models are fashioned to offset the expensive computational cost of the original models, one cannot 

simply sacrifice efficiency for a slight improvement in accuracy. It is therefore paramount to strike 

a balance between accuracy and efficiency in order to fully exploit the power of surrogate models. 

In this Chapter, a primary goal was to gain comprehensive knowledge of building a well-

organized surrogate model that can provide reliable ensemble results, even for extreme events that 

deviate significantly from the training data space. For this purpose, we here present a new surrogate 

model named polynomial chaos-kriging (PCK) that combines the advantages of two well-known 

surrogate models, polynomial chaos expansion (PCE) and kriging. While the PCK model has been 

used in the field of structural engineering with some common, simple benchmarks such as Ishigami, 

Rosenbrock, borehole, four-branch, or Sobol’ functions [Schöbi et al., 2014; Kersaudy et al., 2015; 
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Cortesi et al., 2019; Du and Leifsson, 2019; Leifsson et al., 2020; Nagawkar et al., 2020], little 

research has been done with it on water resources or geophysical problems such as extreme flood 

prediction. We also present a unified modeling framework that applies GLUE to the construction 

of the proposed surrogate model. In this framework, we investigate and discuss the effects of the 

acceptance threshold types on the model accuracy and efficiency. Finally, we propose a new 

“performance score” that indicates how much better the accuracy and efficiency of the surrogate 

model are over the original model, thereby providing a guideline for selecting an appropriate 

surrogate emulator. 

5.2 Methods 

5.2.1 Surrogate modeling: Polynomial chaos-kriging 

We designed a surrogate model, polynomial chaos-kriging (PCK), with the aim of 

combining the merits of both polynomial chaos expansion (PCE) for capturing the global tendency 

of the original model with a set of orthogonal polynomials [Sudret, 2008], and kriging for handling 

the local approximation at training points via Gaussian processes [Echard et al., 2011]. Once we 

have a training dataset for the input-output relationship of the original hydrologic model, we 

endeavor to construct a surrogate model (𝓜su) that supplants the original model 𝓜. Here, the 

PCK consists of two mathematical terms with respect to 𝑿: 

 

𝒀 ≈ 𝓜su(𝑿) = PCK(𝑿) = ∑ 𝜀Ψ(𝑿)

𝑁Ψ

=1

+ 𝜎2𝑍(𝑿) (5.1) 

Note that the first term on the right side ∑ 𝜀Ψ(𝑿)𝑁Ψ
=1  is equivalent to the mathematical 

expression of PCE in Eq. (3.2) and serves as a trend function within the formulation in Eq. (D.1). 

𝜎2 is the variance (or kriging variance) of the Gaussian process 𝑍(𝑿) with zero-mean and unit-



179 

 

variance. The Gaussian process 𝑍(𝑿)  is characterized by an autocorrelation function (ACF) 

between two arbitrary input samples 𝑿  and 𝑿′ , i.e., 𝑅 (𝑿, 𝑿′) = 𝑅 (|𝑿 − 𝑿′| ; 𝜹)  and its 

hyperparameters 𝜹, which represent the amplitude and the lengths of the correlation [Bachoc, 

2013]. Various ACFs can be used, such as linear, Dirac, exponential, squared exponential (or 

Gaussian), and Matérn [Santner et al., 2003; Bachoc, 2013; Schöbi et al., 2015]. In this work, the 

Matérn ACF is adopted as it was favored in previous studies [Schöbi et al., 2015; Lataniotis et al., 

2020; Wang, 2021]. 

The PCK was established through three primary procedures [Schöbi et al., 2015]. The first 

procedure was to estimate the PCE coefficients (𝜀) using LAR method (detailed in Chapter II). 

The second procedure is to determine the parameter 𝜹 of the autocorrelation function and the 

Gaussian process variance 𝝈𝟐. The parameter 𝜹 can be obtained through a maximum-likelihood 

estimate [Marrel et al., 2008] or a leave-one-out cross-validation [Bachoc, 2013]. The latter 

method was used in this work because it provides more robust results [Bachoc, 2013] as:  

 �̂� = argmin𝜹[𝓨T𝐑(𝜹)−1diag(𝐑(𝜹)−1)−2𝐑(𝜹)−1𝓨] (5.2) 

where �̂� denotes the optimal 𝜹,  𝐑(𝜹) = 𝑅(|𝒳(𝑘1) − 𝒳(𝑘2)|; 𝜹) is the correlation matrix of two 

samples 𝓧(𝑘1) and 𝓧(𝑘2) among the experimental design 𝓧 with 𝑘1 = 𝑘2 = 1, … , 𝑁.  

The third procedure is to optimize the Gaussian variance 𝜎2 given 𝓧, 𝓨, 𝑅 (𝑿, 𝑿′), �̂�, and 

𝜀 Ψ(𝑿), wherein 𝜀 Ψ(𝑿) are considered candidates for the trend part of kriging, with the 

number of 𝑁Ψ  candidates ( = 1, … , 𝑁Ψ ). An iterative algorithm is then employed with 𝑁Ψ 

iterations. The initialization ( = 1) is a PCK with one single polynomial (i.e., 𝜀1 Ψ1(𝑿)) in the 

trend part. Iteratively, the polynomials are added one-by-one to the trend part. At each iteration, 

the Gaussian variance 𝝈𝟐 is estimated as follows:  
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 𝜎2 =
1

𝑁
(𝓨 − 𝑭𝜀)T𝐑(�̂�)

−1
(𝓨 − 𝑭𝜀) ,  = 1, … , 𝑁 (5.3) 

where 𝐑(�̂�) = 𝑅(|𝒳(𝑘1) − 𝒳(𝑘2)|; �̂�)  is the optimal correlation matrix. 𝑭  is the information 

matrix computed as Eq. (2.8). For each iteration, a surrogate model PCK𝛂 with a different variance 

𝝈𝟐 is constructed. Among the number of 𝑁Ψ constructed PCKs, an optimal PCK with a minimal 

deviation from the original model result is selected [Schöbi et al., 2015]. To quantify this deviation, 

a leave-one-out error (𝜖) in Eq. (5.4) is used [Blatman and Sudret, 2011; Vapnik, 2013]: 

𝜖 =  
1

𝑁
∑ (𝓜(𝒳(𝑘)) − PCK𝓧(−𝑘)(𝒳(𝑘)))

2
𝑁
𝑘=1     (5.4) 

where PCK𝓧(−𝑘)  denotes the PCK model built by using the experimental design 𝓧(−𝑘) =

{𝒳(1), 𝒳(2), … , 𝒳(𝑘−1), 𝒳(𝑘+1), … , 𝒳(𝑁)} with the size of 𝑁 − 1. 

5.2.2 Parameter inference using GLUE 

Parameter inference is to deduce which values of uncertain parameters 𝜽 are likely to 

provide predictions consistent with observations. From the inference results, one can generate a 

posterior distribution of parameters given the observed streamflow and demonstrate the possible 

ensemble outcomes for that distribution. The posterior distribution of 𝜽  conditioned on 

observations 𝑦𝑜𝑏𝑠 is generally expressed using Bayes’ rule as [Tarantola, 2005]: 

Π(𝜽|𝑦𝑜𝑏𝑠, 𝒙, 𝒖) ∝ ℒ(𝑦𝑜𝑏𝑠, 𝒙, 𝒖|𝜽)𝜌(𝜽)    (5.5) 

where 𝜌(𝜽)  is the prior distribution of 𝜽  generated based on their prior knowledge; 

ℒ(𝑦𝑜𝑏𝑠, 𝒙, 𝒖|𝜽) is the likelihood, which represents the conditional probability of the model results 

given the set of parameters; and Π(𝜽|𝑦𝑜𝑏𝑠, 𝒙, 𝒖) is the posterior distribution of 𝜽. 

This study employs the GLUE framework, which is straightforward to implement and 

allows flexibility in choosing an informal likelihood function and its cutoff threshold [Beven, 
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2006]. To characterize deviations for the shape, peak, and volume of a flood hydrograph 

simultaneously, a combination of Nash-Sutcliffe efficiency (𝑁𝑆𝐸), peak error (𝑃𝐸), and volume 

error (𝑉𝐸) is presented as a likelihood function (𝐿): 

𝐿 =
(

∑ (𝑦𝑡
𝑜𝑏𝑠−𝑦𝑡)2T

𝑡=1

∑ (𝑦𝑡
𝑜𝑏𝑠−𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅

)2T
𝑡=1

)+(
|𝑦𝑚𝑎𝑥

𝑜𝑏𝑠 −𝑦𝑚𝑎𝑥|

𝑦𝑚𝑎𝑥
𝑜𝑏𝑠 )+(

|𝑉𝑜𝑏𝑠−𝑉|

𝑉𝑜𝑏𝑠 )

3
    (5.6) 

where 𝑦𝑡
𝑜𝑏𝑠 and 𝑦𝑡 are the observed and simulated streamflow at time 𝑡, respectively; T is the total 

number of time steps over the flood event; 𝑦𝑚𝑎𝑥
𝑜𝑏𝑠  and 𝑦𝑚𝑎𝑥  are the observed and simulated 

streamflow at peak, respectively; 𝑉𝑜𝑏𝑠 and 𝑉 denote the total volume of observed and simulated 

hydrographs, respectively. Note that the sub-equations in the three parentheses represent the 

complementary 𝑁𝑆𝐸 (1 − 𝑁𝑆𝐸), 𝑃𝐸, and 𝑉𝐸, respectively. This likelihood function has a value 

in the range of 0 to 1, and the closer this value is to the minimum, the smaller the error. The cutoff 

threshold can be specified as either an allowable deviation of the likelihood function (here named 

“accuracy-aimed threshold”) or a fixed ratio of the total number of simulations (here named 

“efficiency-aimed threshold”) [Beven and Freer, 2001; Vrugt et al., 2008c]. The entire simulations 

performed are divided into the runs that satisfy (behavioral) or do not meet (non-behavioral) this 

threshold condition, where the behavioral runs are leveraged to trace out Π(𝜽|𝑦𝑜𝑏𝑠, 𝒙, 𝒖). 

5.2.3 A framework of a surrogate model-based uncertainty quantification 

Figure 5.1 presents a general framework for constructing PCK and inferring the model 

parameters in a computationally efficient manner by coupling PCK and GLUE. Generally, one 

uses the set of inputs and outputs (or the experimental design and model response) of an original 

hydrological model (Box A) to construct a PCK surrogate model (Box B) that allows for fast 

computation of the inverse inference for uncertain parameters of the hydrological model (Box C).  
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Specifically, in Box (A), the experimental design 𝓧 consists of 𝑁 sets of 𝜽, 𝒙, and 𝒖, 

wherein the 𝜽 values are chosen randomly from the uniform (prior) distribution 𝜌(𝜽) using Latin 

hypercube sampling (LHS), the states 𝒙 are initialized with zero vectors, and the forcing 𝒖 values 

are collected by using the climate data (i.e., rainfall) from historical events. The corresponding 

response 𝓨 values are then obtained by applying 𝓧 to the hydrological model 𝓜.  

Box (B) illustrates the construction procedure of PCK given 𝓧  and  𝓨 . The PCE 

coefficients (𝜀) are first estimated by LAR given 𝓧, 𝓨, and the polynomial degree (𝑝). The 

hyperparameter 𝜹 of the autocorrelation function 𝑅 (𝑿, 𝑿′) is then optimized as Eq. (5.2). Once 

both 𝜀 and 𝜹 are determined, an iterative algorithm begins to optimize the Gaussian variance 𝜎2 

(Eq. (5.3)) and construct a surrogate PCK (Eq. (5.1)), and this continues until 𝑁Ψ  number of 

iterations. Among the 𝑁Ψ constructed PCKs, the PCK having the smallest leave-one-out error 

computed in Eq. (5.4) is selected as the optimal PCK. 

Once a surrogate model has been constructed, one can use it for computationally 

inexpensive parameter inference. GLUE (Box C) provides the posterior (or behavioral) 

distribution of the parameters, Π(𝜽|𝑦𝑜𝑏𝑠, 𝒙, 𝒖),  and the uncertain interval of the simulated 

streamflow 𝑦. The latter predictions match with the observed streamflow 𝑦𝑜𝑏𝑠  and satisfy the 

acceptance threshold. In present work, two types of acceptance thresholds, the accuracy-aimed 

threshold and the efficiency-aimed threshold, are unitized. In GLUE, 𝜽  and 𝒙  are initialized 

similarly to Box A, while the forcing 𝒖 values are used from potential future events that include 

possible “extreme” events. 



183 

 

 

Figure 5.1. The workflow of PCK construction and its uncertainty quantification. Box (A) 

demonstrates the collection of the experimental design 𝓧 and model response 𝓨. Wherein, 𝓧 

includes the parameters 𝜽 samped from their prior distributions 𝜌(𝜽) using LHS sampling, the 

model states 𝒙, and the forcings 𝒖 generated from historical events. 𝓨 is attained by propagating 

𝓧 through an original hydrological model 𝓜. Box (B) refers to the optimization process of 

constructing PCK. Box (C) describes the use of constructed PCK to make an inference (i.e., GLUE) 

to obtain ensemble streamflow 𝑦 and posterior parameters Π(𝜽|𝑦𝑜𝑏𝑠, 𝒙, 𝒖) based on the likelihood 

function 𝐿 , two types of acceptance thresholds (‘accuracy-aimed’ or ‘efficiency-aimed’ 

thresholds), and observed streamflow 𝑦𝑜𝑏𝑠. 
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5.2.4 Performance metrics 

To investigate how accurately the three surrogate models (PCE, OK, and PCK) mimic the 

original model for the experimental design during the training process, one often uses the leave-

one-out error (𝜖) in Eq. (5.4). A smaller 𝜖 indicates a more accurate emulator.  

 For ensemble predictions, assessment through deterministic and probabilistic measures is 

necessary. The likelihood function 𝐿 adopted in GLUE is also exploited as a deterministic measure. 

For the probabilistic measures, the 𝐶𝑅𝑃𝑆 and 𝑆𝑝𝑟𝑒𝑎𝑑 are selected.  

Other than the metrics above, a new “performance score” (𝑃𝑆) is proposed that can evaluate 

the overall performance of surrogate models (𝓜su) by weighting the accuracy and efficiency of 

the surrogate model as compared to the original model. 

 𝑃𝑆(𝓜su) = 𝑑 (
𝐿(𝓜su)

𝐿(𝓜)
) × 𝑑 (

𝐺𝐿𝑈𝐸(𝓜su)

𝐺𝐿𝑈𝐸(𝓜)
)  (5.7) 

 
𝑑 (

𝐿(𝓜su)

𝐿(𝓜)
) = √∑ [𝐿(𝓜su)𝑙 − 𝐿(𝓜)𝑙]2𝑁𝐸

𝑙=1   (5.8) 

 
𝑑 (

𝐺𝐿𝑈𝐸(𝓜su)

𝐺𝐿𝑈𝐸(𝓜)
) =

𝑅𝑇(𝓜su) × 𝑁𝑟𝑢𝑛𝑠(𝓜su)

𝑅𝑇(𝓜) × 𝑁𝑟𝑢𝑛𝑠(𝓜)
 (5.9) 

where 𝐿(𝓜su) and 𝐿(𝓜) signify the values of the likelihood function for the behavioral 

runs of the surrogate and original models, respectively; 𝐺𝐿𝑈𝐸(𝓜su) and 𝐺𝐿𝑈𝐸(𝓜) are the total 

runtimes to attain the behavioral runs of the surrogate and original models by GLUE; 𝑅𝑇(𝓜su) 

and 𝑅𝑇(𝓜) denote the runtimes needed for a single run for the surrogate and original models, 

respectively; and 𝑁𝑟𝑢𝑛𝑠(𝓜su)  and 𝑁𝑟𝑢𝑛𝑠(𝓜)  respectively signify the number of prior runs 

required to acquire a predefined number of behavioral runs that satisfy the condition of cutoff 

threshold. The first term, 𝑑 (
𝐿(𝓜su)

𝐿(𝓜)
) represents the accuracy of the performance, defined as the 
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Euclidean distance between the two ensemble sets, 𝐿(𝓜su) and 𝐿(𝓜) in Eq. (5.8). A smaller 

𝑑 (
𝐿(𝓜su)

𝐿(𝓜)
) indicates that the surrogate model has the equivalent accuracy as the original model 

and effectively replaced the original model. On the other hand, the second term, 𝑑 (
𝐺𝐿𝑈𝐸(𝓜su)

𝐺𝐿𝑈𝐸(𝓜)
), 

represents the efficiency performance, defined as the relative difference in the total runtimes 

needed for uncertainty quantification. If this term is small, it means that the efficiency of a 

surrogate model is very good. Therefore, the range of possible values of 𝑃𝑆 combining those two 

terms is from 0 to infinity. When 𝑃𝑆 is close to 0, it means that the chosen surrogate model has 

accuracy similar to the original model and finishes the uncertainty quantification in a very short 

time. When 𝑃𝑆 approaches infinity, both the accuracy and efficiency of the surrogate model are 

very low. 

5.3 Experimental setup 

The Thu Bon river watershed with eight flood events and the NAM model are selected to 

conduct all experiments. The detailed information about the study area and NAM was presented 

in Chapter II (see Sections 2.2.1.3 and 2.2.2). This study highlights the robustness of PCK in its 

ability to capture the original model sufficiently, even with small experimental designs, and also 

to predict extreme flood events that are very different from the training events, compared to two 

popular surrogate models of PCE and OK. For more descriptions of OK, refer to Appendix D. All 

experiments conducted for the three surrogate models are listed as follows. 

5.3.1 Setup for constructing the surrogate models 

To construct the experimental design with the size 𝑁, we initialized the ensemble of the 

states as zero, specified the ensemble of the parameters with the values sampled from the Uniform 
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(prior) distribution, and generated random rainfall values over a bounded interval regarding the 

ensemble of forcings (i.e., hourly rainfall). In order to extract the rainfall data for training, it was 

assumed that the range of possible rainfall was 0 to 20 mm/hr, and the interval of rainfall used for 

later application and verification was 0 to 34.1 mm/hr. The number 34.1 mm/hr was the largest 

value among the rainfall events (Table 2.5) that occurred in the past in this study area. The reason 

for assuming 20 mm/hr was to use a value much smaller than the actual maximum rainfall in order 

to emphasize the predictability of the surrogate models for events beyond the training data space. 

The experimental design was established as 𝑁 = 1,000, which was considered a reasonable size to 

adequately construct a surrogate model for NAM [Tran et al., 2020]. For the polynomial degree 

(𝑝) of PCE and PCK, we chose 3, the most preferred value in prior studies [Fan et al., 2016; Wang 

et al., 2017; Hu et al., 2019a; Tran and Kim, 2019; Tran et al., 2020]. 

5.3.2 Setup for the parameter sensitivity analysis 

Once the surrogate models were constructed, a sensitivity analysis (SA) of the nine 

parameters was performed to investigate how similar the sensitive behaviors of the surrogate 

models and NAM were. A Sobol’ sensitivity analysis was selected since it has been extensively 

employed as one of the most effective and attractive methods [Sobol', 2001; Saltelli, 2002b; Sudret, 

2008]. Our SA results were analyzed based on the main (total-order) index (𝑆𝑇𝑜𝑡𝑎𝑙) of Sobol’ (see 

Section 2.2.1.4), calculated with 22,000 random runs as suggested in Tran and Kim [2019]. Their 

parameter sets were randomly generated by LHS. These SA experiments were done for the four 

models (NAM, PCE, OK, and PCK) for the eight selected rainfall events. 
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5.3.3 Setup for the parameter inference via GLUE 

GLUE was applied to infer the parameter uncertainties for the eight flood events, and the 

two types of cutoff thresholds were adopted. The first threshold was the “accuracy-aimed threshold” 

that can control the accuracy, and a value of 0.1 was specified as the threshold for the likelihood 

function 𝐿 defined in Eq. (5.6). This threshold corresponds to a combination of accuracies of about 

0.8, 5%, and 5% for 𝑁𝑆𝐸, 𝑃𝐸, and 𝑉𝐸, respectively [Tran and Kim, 2019]. The implementation 

of GLUE can be stopped when 1,000 behavioral sets are attained, or intentionally stopped when 

the number of random runs reaches 100 million, even if 1,000 behavioral sets are not obtained. 

The second threshold is the “efficiency-aimed threshold” to control the efficiency, and for a total 

of 100,000 random runs generated by LHS, the acceptance rate of the top 1% was set as the 

threshold (i.e., among 100,000 runs, the 1,000 runs with higher accuracy were selected). 

5.4 Results 

5.4.1 Training error for constructing surrogate models 

Using the same experimental design with the same size (𝑁 = 1,000) assembled in Section 

5.3.1, three surrogate models of PCE, OK, and PCK were constructed, and the leave-one-out error 

(𝜖) was computed for six QoIs (i.e., streamflow and the five model states), as reported in Fig. 5.2. 

Quantitative inspection of this figure indicates that PCK always has a smaller 𝜖  value, which 

outperforms both PCE and OK in capturing the NAM behavior, while PCE and OK have almost 

identical performance except for the two QoIs of U and OF. Specifically, the 𝜖 of PCK is always 

less than 0.01 for all the QoIs, and is about two to seven times smaller than that of PCE and OK 

(Fig. 5.2). Thus, PCK was particularly effective in accurately estimating important QoIs such as 𝑦 

(the primary output of interest), U, and OF (two model states that have a significant impact on 
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runoff, especially in the flood season). For example, the 𝜖 values computed for 𝑦 are 0.006, 0.0252, 

and 0.0248, and those for U are 0.004, 0.0194, and 0.0121 for PCK, PCE, and OK, respectively; 

for OF, the PCK 𝜖 value was about 4.4 and 7.2 times smaller compared to those of PCE and OK, 

respectively.  

 

Figure 5.2. Training error (i.e., the leave-one-out error (𝜖) in Eq. (9)) of three surrogate models 

(PCE, OK, and PCK) for six quantity of interests (QoIs).  

 

5.4.2 Comparisons of parameter sensitivity of surrogate and original models 

The comparison results for the sensitivities of the nine parameters with respect to the four 

models are displayed in Figs. 5.3 and E.1. A parameter with a large value of the Sobol’ main index 

(𝑆𝑇𝑜𝑡𝑎𝑙) indicates that it is relatively sensitive to 𝐿. Overall, several of the parameters (CQOF, 

CK12, and Lm) are the most sensitive parameters, but the more extreme the event, the more 

absolute the influence of one parameter (CQOF) (see 𝑆𝑇𝑜𝑡𝑎𝑙 of CQOF for the smallest event, Event 

2 and the largest event, Event 8 in Fig. 5.3a-b). 
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Figure 5.3. Main sensitivity indices (𝑆𝑇𝑜𝑡𝑎𝑙) of nine parameters for four models (NAM, PCE, OK, 

and PCK) based on the variance of 𝐿 for (a) Event 2 and (b) Event 8. (c) demonstrates the 1:1 

comparisons of the main indices between three surrogate models and NAM for nine parameters 

over eight test events. 

 

Rather than comparing the relative sensitivities among the parameters, comparing the 

sensitivities between the three surrogate models and NAM showed that the sensitivity results of 

PCK were more consistent with those of NAM than with those of PCE and OK, especially for the 
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three sensitive parameters Lm, CK12, and CQOF. The similarity of these parameter sensitivities 

was further confirmed by calculating R2 for a 1:1 comparison of the main indices between the 

surrogates and NAM for the eight rainfall events (Fig. 5.3c). Among the three surrogate models, 

the sensitivity similarity between PCK and NAM was the highest (R2 = 0.83), whereas PCE and 

OK were somewhat different from the sensitivity of the original model (R2 = 0.54 and 0.48, 

respectively). In summary, the sensitivity analysis demonstrated that PCK had parametric 

characteristics and behaviors comparable to NAM. 

5.4.3 Predictability skills of the surrogate models 

Using the constructed surrogate models and the two types of cutoff thresholds designed in 

Section 5.3.3, we quantified the uncertainty of the flood prediction by GLUE. A total of eight 

selected flood events were used for this experiment (Table 2.5). First, the results of GLUE using 

the accuracy-aimed threshold of 0.1 are shown in Figs. 5.4 and 5.5. Figure 5.4 shows the 

hydrographs predicted by NAM and the three surrogate models (PCE, OK, and PCK), with a 95% 

confidence interval quantified from 1,000 behavioral runs of GLUE. For the small-to-medium 

events (Events 1 to 6), the NAM and the three surrogate models have very narrow uncertainty 

ranges and provide good results close to the observations. However, for the extreme flood events 

(Events 7 and 8), of the three surrogate models, only PCK provides satisfactory results (i.e., close 

to the observations and NAM). We further clarified these latter results by comparing the 

quantitative magnitudes of the various accuracy metrics in Fig. 5.5. The values of 𝐿 , 

𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅, and 𝑆𝑝𝑟𝑒𝑎𝑑 show that PCK outperforms PCE and OK in characterizing the extreme flows 

(Events 7 and 8). All the values of 𝐿 for PCK are smaller than 0.1 and are almost equal to those of 

NAM; its values of 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ and 𝑆𝑝𝑟𝑒𝑎𝑑 are equivalent to those of NAM.  
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Figure 5.4. Streamflow observed and predicted from four models (NAM, PCE, OK, and PCK) for 

eight test events. Uncertainty of their predictions is quantified with a 95% confidence interval of 

the 1,000 behavioral ensemble members through GLUE. The accuracy-aimed threhold of 0.1 was 

used. 
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Figure 5.5. Accuracy metric comparisons of three surrogate models with NAM for the 1,000 

ensemble members from GLUE with the accuracy-aimed threhold of 0.1 over eight test events: 

(first row) 𝐿, (second row) probability distribution function (PDF) of flood peak, (third row – left 

axis) 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅, and (the third row – right axis) 𝑆𝑝𝑟𝑒𝑎𝑑. The boxplots in the first row demonstrate the 

median (central mark), the 25th and 75th percentiles (the edges of the box), and the maximum and 

minimum (the upper and lower whiskers) except for outliers (dot symbols). The PDFs in the second 

row are made by kernel density estimation over 1,000 ensemble. 

 

Then we quantified the results of GLUE using an efficiency-aimed threshold of 1% out of 

a total of 100,000 runs, shown in Figs. 5.6 and 5.7. For the two extreme events, only PCK gave 

satisfactory results that agreed with the observations, although its range of uncertainty was wide 

compared to NAM. For the rest of the normal-sized events, the simulated results of the surrogate 

models were all similar in terms of accuracy and uncertainty range (Fig. 5.6). The values of 𝐿, 

𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅, and 𝑆𝑝𝑟𝑒𝑎𝑑 reported in Fig. 5.7 further confirm that PCK made more accurate predictions 

for all the events compared to the other surrogate models, PCE and OK. The values of all the PCK 

metrics are relatively similar to those of NAM and some have better values. On the other hand, the 

values for PCE and OK were greater (giving worse results) than those for NAM and PCK. 
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Specifically, the values of �̅�, 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅, and 𝑆𝑝𝑟𝑒𝑎𝑑 for PCE were about 2.8, 1.4, and 1.6 times larger 

than those for NAM, respectively, at for Event 7, and about 3.5, 2.2, and 2.6 times larger for Event 

8. These values for OK were about 3, 1.6, and 1.8 times larger than NAM for Event 7, and about 

3.9, 2.5, and 2.8 times larger for Event 8. In comparing the flood peaks for the two extreme events, 

PCE and OK could not predict the observed peaks at all, while PCK did have some predictive 

ability.  

 

Figure 5.6. Streamflow observed and predicted from four models (NAM, PCE, OK, and PCK) for 

eight test events. Uncertainty of their predictions is quantified with a 95% confidence interval of 

the 1,000 behavioral ensemble members through GLUE. The efficiency-aimed threhold of 1% was 

used over 100,000 random runs. 
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Figure 5.7. Accuracy metric comparisons of three surrogate models with NAM for the 1,000 

ensemble members from GLUE with the efficiency-aimed threhold of 1% over eight test events: 

(first row) 𝐿, (second row) probability distribution function (PDF) of flood peak, (third row – left 

axis) 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅, and (the third row – right axis) 𝑆𝑝𝑟𝑒𝑎𝑑. The boxplots in the first row demonstrate the 

median (central mark), the 25th and 75th percentiles (the edges of the box), and the maximum and 

minimum (the upper and lower whiskers) except for outliers (dot symbols). The PDFs in the second 

row are made by kernel density estimation over 1,000 ensemble. 

 

5.4.4 Performance score (𝑷𝑺) of the surrogate models to acceptance thresholds 

Our evaluations of both the accuracy and the efficiency of the behavior sets were carried 

out simultaneously. We used the performance score (𝑃𝑆) given in in Eq. (5.7) for this purpose, and 

the changes in 𝑃𝑆 according to the different levels of criteria are shown in Figs. 5.8 and 5.9. First, 

Fig. 5.8 shows the change in 𝑃𝑆 with respect to the accuracy-aimed threshold. For a fixed threshold, 

both the denominator and numerator of the first term of 𝑃𝑆 in Eq. (5.7) have comparable values, 

that is, 𝑑 (
𝐿(𝓜su)

𝐿(𝓜)
) = 𝒪(0), so the difference in 𝑃𝑆 values was greatly affected by the second term, 
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𝑑 (
𝐺𝐿𝑈𝐸(𝓜su)

𝐺𝐿𝑈𝐸(𝓜)
). Overall, PCK showed smaller 𝑃𝑆 values (i.e., had better performance) than PCE 

and OK; also, the stricter the accuracy criterion that was applied, the greater this performance 

difference was (especially in the extreme events, Events 7 and 8). This was because only PCK 

quickly provided behavior sets that satisfied the small acceptance thresholds. In the cases of PCE 

and OK, the time for uncertainty quantification was much longer than that of PCK, and we could 

not find any behavior sets that satisfied the thresholds of < 0.2 (for PCE) and < 0.4 (for OK).  

 

Figure 5.8. Performance score (𝑃𝑆) in Eq. (5.7) of surrogate models to the accuracy-aimed 

thresholds over eight test events. Note that in Events 7 and 8, some 𝑃𝑆 values of PCE and OK 

were not drawn because we could not attain any behavior runs from 100 million random runs. 
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Figure 5.9 shows the change in 𝑃𝑆 with respect to the efficiency-aimed fixed threshold. 

Both the denominator and numerator of the second term of the 𝑃𝑆 have similar values, that is, 

𝑑 (
𝐺𝐿𝑈𝐸(𝓜su)

𝐺𝐿𝑈𝐸(𝓜)
) = 𝒪(0) , so the difference in 𝑃𝑆  values was greatly affected by the first term, 

𝑑 (
𝐿(𝓜su)

𝐿(𝓜)
). Therefore, the performance difference depends on the difference in predictability for 

the behavior sets between the models. As before, PCK showed smaller 𝑃𝑆 values (i.e., had better 

performance) than PCE and OK, and this trend was especially pronounced in the extreme events 

(see Fig. 5.9g-h). 

 

Figure 5.9. Performance score (𝑃𝑆) in Eq. (5.7) of surrogate models to the efficiency-aimed 

thresholds over eight test events. 
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5.5 Discussions 

5.5.1 How can PCK accurately diagnose extreme events beyond its training data space? 

Theoretically, a surrogate model has the predictive power of its original model, provided 

that the amount of data required to construct it is sufficient. Therefore, when past events are 

repeated countless times and serve as “big data,” a surrogate model can become a great tool to 

replace the original model. However, in the absence of such sufficient data (for a variety of 

reasons), a surrogate model will not be properly constructed. This is indeed problematic if one 

attempts to predict extreme events outside the training data space. 

The results in Section 5.4 demonstrated the promise of PCK to perform better than 

conventional surrogate models in predicting unknown extreme events. That is, the potential data 

space that PCK could simulate was much wider than that of PCE and OK, even though all three 

models were trained with the same experimental design (training set). This extraordinary capability 

of PCK can be explained by its ability to grasp real trends with a set of orthogonal polynomials 

Ψ(𝑿) associated with PCE coefficients varying between 0 and 10,429 m3/s, instead of using a 

trend as a fixed value (e.g., 3,216 m3/s in OK). It is further explained by an ability to broaden the 

predictable data space in combination with a stochastic kriging variance. Adding this variance 

stochastically can increase the overall accuracy of model simulations compared to single PCE 

when predicting points located in a sparse or rare design data space [Bichon et al., 2011; Echard 

et al., 2011; Schöbi et al., 2014]. By coupling both the ability of PCE to accurately capture global 

behaviors and the ability of OK to secure more prediction margins locally, the possibility of 
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effectively addressing the extrapolation tasks, which is difficult with existing data-driven models, 

is confirmed. 

5.5.2 A practical compromise between accuracy and efficiency in uncertainty quantification 

From the simulation results presented in Sections 5.4.3 and 5.4.4, it is apparent that both 

forms of the cutoff threshold have a significant impact on the accuracy and efficiency of the GLUE 

products. Each has its pros and cons, so it is difficult to discern which method is better from a 

practical standpoint. If one has enough computational resources and it is more important to attain 

accurate outcomes, it is better to select the accuracy-aimed threshold. It can consistently guarantee 

the accuracy of the simulation, although it can lead to a computational burden because a substantial 

number of model runs (up to billions) is entailed (Fig. 5.10b). Therefore, this method is impractical 

when applied to expensive computational models [Iorgulescu et al., 2007; Tran et al., 2020]. One 

should always mind the possibility that GLUE will fail to converge (Fig. 5.8) if one desires too 

accurate results (i.e., if the threshold selection is not appropriate). 

On the other hand, if one is concerned about non-convergence, or it is important to finalize 

the quantification of uncertainty within an allocated time, use of the efficiency-aimed threshold is 

recommended. This method can control computational efficiency with a predefined number of 

random runs, but may provide merely ordinary performance if the predefined number is 

insufficient (see the results of PCE and OK for Events 7 and 8 in Figs. 7 and 8). Note that if one 

arbitrarily selects a small efficiency-aimed threshold to yield more accurate behavioral results, the 

disadvantage of the increased computational burden may be greater than the advantage of 

improved accuracy. This is because the accuracy improvement of the posterior simulations is not 

linear with the change in the efficiency-aimed thresholds. For example, reducing the threshold by 
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a factor of 2 from 2% to 1% only reduces 𝐿 averaged over the ensemble by about 1.13, 1.10, 1.05, 

and 1.21 times for NAM, PCE, OK, and PCK, respectively (Figs. 5.10c and E.2). In summary, the 

choice of the acceptance threshold needed to attain the behavioral set of a model depends on the 

availability of computational resources and the degree of accuracy desired, and must be estimated 

a priori, like the determination of hyperparameters. 

 

Figure 5.10. The effects of two types of acceptance thresholds (accuracy and efficiency-aimed 

thresholds) on accuracy (𝐿) and efficiency (𝑁𝑟𝑢𝑛𝑠) performance for four models (NAM, PCE, OK, 

and PCK) over Event 8. The shaded areas in subplots (a) and (c) are drawn to highlight the 

difference between (cyan) NAM & PCK and (magenta) PCE & OK, representing the 90% 

confidence bands of 2,000 values of 𝐿. The boxplots demonstrate the median (central mark), the 

25th and 75th percentiles (the edges of the box), and the maximum and minimum (the upper and 

lower whiskers) except for outliers (dot symbols) of 1,000 values of 𝐿. Subplots (b) and (d) denote 

the number of random runs (𝑁𝑟𝑢𝑛𝑠) required in the implementation of GLUE for each model.  
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5.5.3 Essentials of 𝑷𝑺 and superiority of PCK in uncertainty quantification 

Can it be said that this surrogate model has excellent performance if its calculation speed 

is faster than that of its original model, or if its results are comparable with the original model? In 

the process of quantifying uncertainty through inverse modeling, simply comparing and evaluating 

computation speed and errors may fail to characterize a good surrogate model. 

First, comparing the time taken for simple iterative tasks as well as to obtain the results of 

uncertainty quantification, it can be seen that the performances of the surrogate models considered 

here are significantly different. In this study, for simple iterations the computational speed was 

improved by about 500 times by PCE and 600 times by OK and PCK compared to NAM. This is 

because the CPU runtimes required for each single execution were approximately 2.5 × 10-4 sec 

for PCE to 2.0 × 10-4 sec for OK and PCK and about 0.12 sec for NAM. In the case of a single run 

or simple repeated runs, such an improvement stands on its own merit. However, when uncertainty 

needs to be quantified through inverse modeling (not limited to GLUE), the effort required to 

retrieve the behavioral set does not always offset and this speedup does not always follow. This is 

because the number of random runs (𝑁𝑟𝑢𝑛𝑠) required to obtain 1,000 behavior sets varies greatly, 

depending on the models or events used (Table 5.1). For example, for Event 4, the surrogate 

models have more random runs, while for Event 6, the original model does. In addition, the 

surrogate models PCE and OK, which were considered not able to adequately capture the original 

model, failed to achieve a single behavioral set even after 100 million random runs (see Events 7 

and 8). In such events where uncertainty quantification is time-consuming, using the surrogate 

models PCE and OK to improve efficiency is of no benefit at all. 
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Table 5.1. The number of random model runs needed for obtaining 1,000 behavior sets when the 

accuracy-aimed threshold of 0.1 is used 

Event NAM PCE OK PCK 

1 27,992 77,883 49,901 24,662 

2 484,687 852,775 149,766 405,614 

3 213,861 363,550 111,483 78,862 

4 261,666 2,303,546 2,490,675 1,045,565 

5 30,936 27,051 498,553 50,583 

6 6,057,083 4,621,272 3,078,314 264,375 

7 631,209 – – 9,386,783 

8 75,237 – – 535,150 

‘–‘ denotes no behavior set was obtained for 100 million random runs 

 

Second, when determining an appropriate size for an experimental design by a 

conventional approach using a relative error, the performance of surrogate models may be 

misjudged. In general, the relative error of a surrogate model (𝜖 in this work) decreases as the size 

of the experimental design increases, and the error tends not to decrease beyond a certain size (Fig. 

5.11a). A surrogate model with a sufficiently small 𝜖 and guaranteed accuracy should be generated 

based on the experimental design of a certain size or larger (i.e., the elbows in Fig. 5.11a) [Schöbi 

et al., 2017; Tran and Kim, 2021a]. But, securing the size of the design 𝓧 also increases the time 

(𝑅𝑇𝓧) required to construct the training set (from the experimental design 𝓧 to the model response 

𝓨). Moreover, the computational runtime (𝑅𝑇) of PCK and OK tends to be longer as 𝑁 is larger 

(Fig. 5.11b), because it takes a substantial amount of time to compute the Gaussian variance in Eq. 

(5.3) for PCK and Eq. (D.4) for OK [Razavi et al., 2012b; Vigsnes et al., 2017]. This leads to a 

sharp drop in the performance of PCK, as evidenced by the increase of 𝑃𝑆 in Fig. 5.11c. 
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Figure 5.11. The effects of experimental design size (𝑁) for Event 8 on (a) the leave-one-out error 

( 𝜖 ) for QoI of y for three surrogate models and the runtime 𝑅𝑇𝓧  needed for generating 

experimental design of 𝑁; (b) the runtime 𝑅𝑇 per single run of NAM and three surrogate models; 

and (c) the performance score (𝑃𝑆) of three surrogate models with the accuracy-aimed threshold 

of 0.1. 
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In this study, Fig. 5.11a shows that to construct PCE, OK, and PCK to be tolerant of 

sufficiently small errors (e.g., 𝜖 = ~0.01), the sizes of their experimental designs (i.e., the elbows 

in Fig. 5.11a) need to be about 4,500, 4,000, and 4,000, respectively. This is an agreed-upon 

standard from a traditional point of view for constructing a surrogate model. However, if 

uncertainty quantification is involved, this criterion may need to be changed. That is, its 

performance (efficiency and accuracy) in the process of uncertainty quantification must be 

reflected in the performance evaluation of the surrogate model. It can be seen that the result of Fig. 

5.11c using the 𝑃𝑆 proposed in this study is very different from that of Fig. 5.11a. An experimental 

design with a size of ~4,500 for PCE and ~1,000 for PCK is required to exhibit sufficiently high 

performance (𝑃𝑆 = 0.001), which is very different from the results of Fig. 5.11a. Interestingly, in 

the case of PCK, the size of the experimental design required was drastically reduced from 4,000 

to 1,000. This indicates that one can build high-performing surrogate models by leveraging a much 

more limited training data size (Fig. 5.12), highlighting the superiority of PCK in that it helps 

modelers dramatically save computational resources. 

 

Figure 5.12. The runtime ( 𝑅𝑇𝓧 ) needed for generating experimental design of 𝑁 . 𝑅𝑇𝓧 

corresponds to 𝑁 of PCE and PCK are indicated in red and blue. 
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5.5.4 Counsels for improving outlier performance of machine learning 

Predicting outliers (extrapolation) seems to be a long‐lasting challenge in applications of 

surrogate model as well as machine learning [Kratzert et al., 2019; Frame et al., 2021; Nearing et 

al., 2021; Tran et al., 2021; Tran and Kim, 2022]. In hypothesis, this would not be a challenge if 

the amount of data for training was sufficient and covers all possible, even low frequency-extreme 

events. However, in reality, it is difficult to collect such comprehensive observation data when 

targeting rare or exceptional phenomena. This study underlines three keys that have been carried 

out to improve the predictive power of extreme events that do not have enough data and deviate 

significantly from the training data. First, high-fidelity samples supervised by physical 

relationships as well as actual observations should be utilized to ensure sufficient learning when 

the number of training samples is small. Data generated by physics-based models or governing 

equations can improve the understanding of physical processes in machine learning models 

[Ivanov et al., 2021]. The second suggestion is to enhance the extrapolation ability by extending 

the scope of the prediction space by additionally taking into account input noise and parameter (or 

learnable network weights) uncertainty [Fang et al., 2020; Abdar et al., 2021]. In this study, model 

parameters were considered as uncertain input vectors, and GLUE was used to quantify their 

uncertainty. The last suggestion is to build a hybrid model by combining a predictive model with 

a model with extrapolation capabilities. In this study, PCE, a global model that plays the role of 

trend, and kriging, an interpolation model that computes local changes, are combined. Instead of 

using PCE, other techniques that can increase extrapolation capabilities would be applied such as 

Richardson extrapolation [Bach, 2020], spectral mixing kernel [Wilson et al., 2014], extrapolation 

algorithms [Bakas, 2019], sparse identification of nonlinear dynamics [Champion et al., 2019], 

and generative models [Hatakeyama-Sato and Oyaizu, 2021]. In this work, we used PCK with the 
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three aforementioned approaches to obtain satisfactory results for extreme values. Such a 

discovery will inspire novel designs of potentially more comprehensive hybrid models. 

5.6 Conclusions 

This Chapter presents a new surrogate model, PCK, that can not only efficiently quantify 

streamflow uncertainty, but also accurately predict even extreme events that deviate significantly 

from the trained data space. To enhance the extrapolation capability, this study underlines three 

keys: enriching the understanding of physical processes by establishing high-fidelity training 

samples supervised by physical relationships; broadening the scope of the prediction space by 

additionally taking into account input noise and parameter uncertainty; and creating a new hybrid 

model (e.g., PCK) that combines a local predictive model with a model with extrapolation 

capabilities. The advantages of PCK were confirmed by investigating how well the results of 

GLUE matched observations for eight testing flood events in the Thu Bon watershed compared to 

two well-known surrogate models, PCE and OK. The principal results of this study are 

summarized as follows. 

First, with a relatively small-sized experimental design (𝑁𝓧 = 1,000), PCK outperforms 

PCE and OK in mimicking the behavior of the original model with smaller leave-one-out error (𝜖) 

values for all QoIs. Also, from the sensitivity analysis of nine parameters, the sensitivity results of 

PCK were closer to those of NAM especially for the three most sensitive parameters (CQOF, 

CK12, and Lm) than were PCE and OK. 

As a result of applying GLUE to the eight test events for the three surrogate models trained 

on the identical dataset (see the framework in Fig. 5.1), all of the surrogate models provided 

predictions equivalent to the original model for six smaller events that were similar to the training 

data space. However, for extreme Events 7 and 8, which differed significantly from the training 
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experimental design, only PCK was found to accurately predict the hydrograph and flood peaks, 

regardless of the type of acceptance threshold (accuracy- or efficiency- aimed), while both PCE 

and OK failed.  

The simulation results in Sections 5.4.3 and 5.4.4 confirmed that both types of acceptance 

thresholds had a significant impact on the performance of GLUE. Selecting the accuracy-aimed 

threshold can ensure the consistent accuracy of uncertain simulations, but can lead to a 

computational burden because of the substantial number of repeated runs needed. In contrast, the 

efficiency-aimed threshold can control the computational efficiency with a predefined number of 

random runs, but can only provide ordinary performance. Since each has its own pros and cons, 

from a practical point of view, the type and size of the threshold should be determined based on 

the availability of sufficient computational resources and the degree of accuracy needed. 

The performance of a surrogate model cannot be said to be superior just because its 

calculation speed is faster than that of its original model or because its calculation results are 

comparable to the original’s. In the process of quantifying uncertainty, the computation speed and 

outcomes of a surrogate model may deteriorate. Thus, merely comparing and evaluating 

computational speed and error in a traditional way can lead to a misjudgment in selecting a good 

surrogate model. In this study, we propose a new “performance score” (𝑃𝑆) that can measure the 

overall performance (including both accuracy and efficiency) of a surrogate model compared to 

its original model. This PS allows for assessing the actual achievement that arises in quantifying 

uncertainty, and helps to efficiently construct surrogate models and save computational budgets 

by limiting unnecessary increases in their experimental design sizes. 

The combined surrogate model presented here can not only predict events that deviate 

significantly from the trained data space, but can greatly reduce the computational burden of 
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uncertainty quantification. Such a discovery will ultimately inspire novel designs of potentially 

more comprehensive surrogate models. 
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CHAPTER VI 

 

Research summary and future efforts 

“Remember to celebrate milestones as you 

prepare for the road ahead” 

- (Mandela, N) 

 

 

6.1 Summary of research 

 Extreme floods occur more frequently than in the past due to global warming, and they 

have more profound socio-economic impacts [Hirabayashi et al., 2013; Winsemius et al., 2015]. 

Flood forecasting is an important component of flood risk management and mitigation but is 

subject to multiple uncertainties caused by meteorological inputs, initial states, model structures, 

and model parameters [Beven, 1989; Ajami et al., 2007; Moradkhani and Sorooshian, 2008; 

Mockler et al., 2016]. We have to reduce the uncertainties in some optimal fashions to get robust 

reliability of the flood predictions and to mitigate the flood damage. In recent years, numerous 

research efforts investigated the uncertainties in the tasks of flood prediction. However, at present 

we entirely lack comprehensive studies that can handle long-lasting challenges of computational 

burden, inaccuracy, and unreliable predictability in real-time ensemble flood forecasting with 

uncertainty quantification. This dissertation aims to gain comprehensive knowledge of building 

novel modeling frameworks for computationally efficient and accurate real-time ensemble flood 

forecasting with uncertainty quantification. 
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 Chapter II presents a unified uncertainty quantification modeling framework that the 

GLUE framework was revisited and combined with a PCE surrogate model that is employed to 

offset the computational demands for numerous repeated calls of the model evaluation. It provides 

the benefits of an interpretable, probabilistic framework on which to make inferences about the 

drivers of model behavior, as well as the sensitivities of the model’s output to the uncertain inputs. 

The central conclusions of Chapter II are resumed as follows: (1) the subjective aspects of GLUE 

(e.g., the cutoff threshold values of likelihood function) were investigated and reasonably 

optimized through two indices that represent for model accuracy and efficiency (i.e., 𝐴𝐼 and 𝐸𝐼). 

Also, the number of ensemble behavioral sets was specified to maintain the sufficient range of 

uncertainty but to avoid any unnecessary computation. (2) The results computed using a PCE 

model with polynomial bases are as good as those given by the NAM and SFM, while the total 

amount of time required for making an ensemble in the PCE model are approximately 17 and 200 

times faster, respectively. (3) Identification of the posterior parameter distributions from the 

calibration process helps to find the behavioral sets even faster. (5) The construction of a surrogate 

model becomes more advantageous with the use of sparse polynomial chaos expansion (SPCE) 

coupled with the least angle regression (LAR) method. Specifically, SPCE outperforms the full 

polynomial chaos expansion (FPCE) built by a well-known, ordinary least square regression (OLS) 

method with a more accurate surrogate model (i.e., smaller leave-one-out cross-validation error) 

and smaller size of experimental design.  

 Forecasting results should be provided within a predetermined time horizon and accurate 

enough to help the preparation and mitigation of flood damages. Many approaches have been 

focused on real-time problems of model accuracy, predictability, and efficiency with uncertainty 

quantification. Yet, there is still a lack of modeling framework that can comprehensively solve 
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these aforementioned problems simultaneously [Liu et al., 2012; Cintra and Velho, 2018]. Chapter 

III outlined one of the primary goals of this dissertation that is the development of a novel model 

framework that simultaneously improves accuracy, predictability, and computational efficiency 

for real-time ensemble flood forecasting. This framework provides a holistic, robust approach to 

accounting and understanding the uncertainties of hydrological parameters and vastly reducing the 

computational burden of ensemble simulations. It embraces the benefits of three modeling 

techniques integrated together for the first time: surrogate modeling, parameter inference, and data 

assimilation. The use of PCE surrogates significantly decreases computational time. Parameter 

inference (GLUE) allows for model faster convergence, reduced uncertainty, and superior 

accuracy of simulated results. EnKFs assimilate errors that occur during forecasting. To examine 

the applicability and effectiveness of the integrated framework, 18 approaches were developed 

according to how surrogate models are constructed, what type of parameter distributions are used 

as model inputs, and whether model parameters are updated during the data assimilation procedure. 

The essential strengths of the modeling framework described in Chapter III are as follows, 

(1) PCE must be built over various forcing and flow conditions, and in contrast to previous studies, 

it does not need to be rebuilt at each time step. (2) Model parameter specification that relies on 

posterior information of parameters (so‐called Selected specification) can significantly improve 

forecasting performance and reduce uncertainty bounds compared to Random specification using 

prior information of parameters. (3) No substantial differences in results exist between single and 

dual ensemble Kalman filters, but the latter better simulates flood peaks. The use of PCE 

effectively compensates for the computational load added by the parameter inference and data 

assimilation (up to ~80 times faster). Therefore, the presented approach contributes to a shift in 
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modeling paradigm arguing that complex, high‐fidelity hydrologic and hydraulic models should 

be increasingly adopted for real‐time and ensemble flood forecasting. 

Data assimilation plays an essential role in real-time forecasting but demands repetitive 

model evaluations given ensembles. To address this computational challenge, a novel, robust and 

efficient approach to surrogate data assimilation was presented in Chapter IV. Here we further 

exploited the power of surrogate approaches to form new surrogate filters by replacing the internal 

processes of the EnKFs with PCE surrogates. Eight types of surrogate filters, which can be 

characterized according to their different surrogate structures, building systems, and assimilating 

targets, are proposed and validated. To compensate for the potential shortcomings of the existing 

sequential experimental design (SED), an advanced optimization scheme, named sequential 

experimental design-polynomial degree (SED-PD), is also advised. Its dual optimization system 

resolves the issue of SED by which the value of the polynomial degree had to be selected ad-hoc 

or by trial and error; its multiple stopping criteria ensure convergence even when an accuracy 

metric does not monotonically decrease over iterations. A comprehensive investigation into how 

to configure a surrogate filter indicates that the new partial (replacing part of original filters) and 

invariant (valid for entire time periods) approaches are preferred in terms of accuracy and 

efficiency, which helps directly reduce the number of dimensions and bridge the gap between 

hindcasting and real-time forecasting. Of the eight filters, the Dual Invariant Partial filter performs 

best, with equivalent accuracy to Dual EnKF and about 500 times greater computational efficiency. 

Ultimately, this proposed surrogate filter will be a promising alternative tool for performing 

computationally-intensive data assimilation in high-dimensional problems. 

Another crucial concern in surrogate applications is the capability of providing a reliable 

prognosis for outliers (or extremes) beyond the training data space, although they generally have 



212 

 

excellent predictive power for regions within the training data. Especially in the context of floods, 

there will be a high probability of extreme events that, due to climate change, have not been 

experienced in the past. There is also the possibility that extreme events that deviate from recorded 

events will occur due to climate internal variability, even assuming that climate stationarity is 

maintained. Therefore, a common solution for ensuring the predictive power in the entire data 

space is to expand the data range of the design site to cover all possible cases. However, obtaining 

sufficient collections of extreme events for training is unfeasible, so one needs to develop an 

alternative solution to ensure predictability for the events beyond the data space. Therefore, for 

this purpose, Chapter V introduced a new surrogate model named polynomial chaos-kriging (PCK) 

that combines the advantages of two well-known surrogate models, polynomial chaos expansion 

(PCE) and kriging. This combination enabled streamflow prediction for extreme events that 

deviated significantly from the trained data space, and allowed for quantifying predictive 

uncertainty robustly and efficiently. The uncertainty quantification results to eight test flood events 

through a modeling framework that applies GLUE to surrogate models confirm that (1) PCK 

outperformed PCE and OK (ordinary kriging) in mimicking behaviors of the original model (i.e., 

smaller leave-one-out error and closer parameter sensitivity) with a smaller-sized training dataset; 

(2) three surrogate models trained on the identical dataset exhibited equivalent predictability with 

the original model for six smaller events similar to their training data space. However, for two 

extreme events, which differed significantly from the training set, only PCK was found to 

accurately predict the hydrograph and flood peaks, while both PCE and OK failed. Additionally, 

a new “performance score” is proposed here to assess the overall performance (including both 

accuracy and efficiency) of the surrogate models. This compensates for situations in which the 

performance of a surrogate model can be misjudged through individual indices of efficiency or 
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accuracy in the process of uncertainty quantification. Our findings will ultimately inspire novel 

designs toward a potentially more comprehensive surrogate model 

Furthermore, in Chapter V, the effects of the acceptance threshold types on the model 

accuracy and efficiency were investigated and discussed. Specifically, selecting the accuracy-

aimed threshold can ensure the consistent accuracy of uncertain simulations, but can lead to a 

computational burden because of the substantial number of repeated runs needed. In contrast, the 

efficiency-aimed threshold can control the computational efficiency with a predefined number of 

random runs, but can only provide ordinary performance. Since two types of acceptance thresholds, 

defined here as “accuracy-aimed” or “efficiency-aimed” threshold, have their own pros and cons, 

the type and size of the threshold should be determined depending on the availability of 

computational resources and the degree of accuracy needed.  

6.2 Critical assumptions, limitations and future studies  

Any modeling work inherently contains a number of assumptions or limitations. Critical 

assumptions underlying this dissertation are given here. 

 Rainfall uncertainty: The rainfall uncertainty of future flood events has not really been 

accounted for in Chapters III and IV. Although in Chapter IV, the uncertainty of rainfall 

was assumed following a log-normal error distribution with a relative error of 25% for 

the observed rainfall, forecasted rainfall is actually worth noting and plays a vital role 

in accurately diagnosing flood forecasts of developed modeling framework. So to 

extend the framework to general applications, forecasted rainfall from Numerical 

Weather Prediction (NWP) models need to be carefully considered. 
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 Model structure uncertainty: This framework only accounts for parameter/input 

uncertainty, but no model structure uncertainty. Every hydrologic model will have its 

own sets of assumptions and limitations. Although simplification of complex physical 

processes of rainfall-runoff improves computational efficiency, it also lowers the 

accuracy of the representation of the real-world in the model as a trade-off. The 

quantification of model structural error is necessary and an active area of future 

research. 

 Distribution of uncertain parameters: Many distribution types (e.g., uniform, Gaussian, 

Gamma, Beta) could be chosen as the prior distribution for uncertain parameters. In 

this dissertation, the uniform distribution was selected for all experiments as it was 

preferred in prior studies. However, it is still remarkable. The importance of prior 

distribution was highlighted that it has a significant influence on the quantification of 

parameter uncertainty as well as determination of the posterior parameter [Mandel and 

Beezley, 2009; Zhang et al., 2018a]. So one needs to be aware of this configuration 

during experiment setup. 

 High-dimensional problems: Modeling frameworks in this dissertation were applied to 

conceptual rainfall-runoff models of relatively low dimension. As the discussion in 

Section 3.6.5, these frameworks can in theory be applied to higher-dimensional systems 

(e.g., distributed physical-based models), but it would be worthwhile to explore their 

applicability and transferability in further studies. 
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A Supplementary Materials for Chapter II 

 

 

 

Figure A.1. Same as Fig. 2.4 except for the remaining events. 
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Figure A.2. Same as Fig. 2.5 except for the remaining events. 
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Figure A.3. Same as Fig. 2.6 except for the remaining events. 
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Figure A.4. Same as Fig. 2.7 except for the remaining events. 
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Figure A.5. Same as Fig. 2.8 except for the remaining events. 
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Figure A.6. Same as Fig. 2.9 except for the remaining events. 
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Figure A.7. Same as Fig. 2.10 except for the remaining events. 
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Figure A.8. Same as Fig. 2.11 except for the remaining events. 
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B Comparisons between time-invariant and time-variant PCE models 

 

To compare the accuracy and efficiency between time-invariant and time-variant PCE 

models, a time-variant PCE (called hereafter PCE-III) is constructed with the experiment design, 

𝑁 of 1000 and polynomial degree, 𝑝 of 3 (similar to PCE-I).  

The total runtime (TRT) of PCE-I (as well as PCE-II and NAM) was written in Eq. (3.38) 

of the Chapter III. It computes the total runtime over the entire period including the warm-up, 

calibration, and forecasting periods. Eq. (3.38) is 

 
𝑇𝑅𝑇 = (𝑅𝑇𝑤+𝑐,𝑴𝒐𝒅𝒆𝒍 × 𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍 + 𝑅𝑇𝑓,𝑴𝒐𝒅𝒆𝒍,𝐷𝐴) × 𝑛

+ 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍 
(B.1) 

Since the time-variant PCE should be newly built at every computational time step, the 

above equation can be rewritten to consider the runtime of building 𝑴𝒐𝒅𝒆𝒍 (𝑅𝑇𝑓,𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍,𝑡) and 

the runtime of performing DA (𝑅𝑇𝑓,𝑴𝒐𝒅𝒆𝒍,𝐷𝐴,𝑡) at each time step for an ensemble member over the 

forecasting period: 

 
𝑇𝑅𝑇 = (𝑅𝑇𝑤+𝑐,𝑴𝒐𝒅𝒆𝒍 × 𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍 + 𝑅𝑇𝑓,𝑴𝒐𝒅𝒆𝒍,𝐷𝐴,𝑡 × T) × 𝑛

+ (𝑅𝑇𝑤+𝑐,𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍 + 𝑅𝑇𝑓,𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍,𝑡 × T) 
(B.2) 

This Eq. (B.2) is expressed as a linear form of an independent variable, 𝑛 given T. If 𝑛 is 

determined, this equation can be also expressed as a linear form of T. 

 
𝑇𝑅𝑇 = (𝑅𝑇𝑓,𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍,𝑡 + 𝑅𝑇𝑓,𝑴𝒐𝒅𝒆𝒍,𝐷𝐴,𝑡 × 𝑛) × T 

+(𝑅𝑇𝑤+𝑐,𝑴𝒐𝒅𝒆𝒍 × 𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍 × 𝑛 + 𝑅𝑇𝑤+𝑐,𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍) 
(B.3) 
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Note that Eq. (B.1) to (B.3) are all identical. For PCE-I and PCE-III, respectively, results 

of 𝑅𝑇𝑓,𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍,𝑡 are 0 and 3.1 secs; results of 𝑅𝑇𝑓,𝑴𝒐𝒅𝒆𝒍,𝐷𝐴,𝑡 are 1.47e-4 and 1.26e-4 secs. Such 

a fast computation time is because it is a polynomial calculation; 𝑅𝑇𝑤+𝑐,𝑴𝒐𝒅𝒆𝒍  is the runtime 

required to run one simulation of 𝑴𝒐𝒅𝒆𝒍 over the warm-up and calibration periods and these are 

0.0508 and 0.0436 secs; results of 𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍  are 27 and 76; 𝑅𝑇𝑤+𝑐,𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍  is the runtime 

required to build 𝑴𝒐𝒅𝒆𝒍 over the warm-up and calibration periods and these are 541.2 and 1069.5 

secs. 

First, using Eq. (B.2), 𝑇𝑅𝑇 is compared for PCE-I vs. PCE-III (A19 to A24) with respect 

to varying 𝑛 given the original T of 40. The left plots of Figure B.1 show that for both Random 

and Selected, PCE-I is more efficient than PCE-III and the larger the number of ensemble, the 

better, e.g., approximately 2-3 times faster. 

Second, using Eq. (B.3), 𝑇𝑅𝑇 is compared for PCE-I vs. PCE-III (A19 to A24) with respect 

to varying T given the ensemble size of 1000. The right plots of Figure B.1 show that PCE-I is 

also more efficient than PCE-III and the larger the number of time steps, the greater the efficiency 

(note that the slope refers to the efficiency of PCE-I by about 22, 11, and 8 times for ‘None’, 

‘EnKF’, and ‘Dual EnKF’, respectively). 
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Figure B.1. The total runtime (𝑇𝑅𝑇) with (left) varying the ensemble sizes (𝑛) and (right) varying 

the number of time steps over the forecasting period (T)  

 

To compare the accuracy between PCE-I and PCE-III, Figs. 3.10 to 3.12 in the manuscript 

is re-drawn for PCE-III in Figs. B.2 to B.4. The latter figures show that the results of PCE-III are 

also satisfactory enough, but the results of PCE-I are slightly better than those of PCE-III. 
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Figure B.2. Hydrographs over the forecasting period using NAM, PCE-I, and PCE-III, with a 90 % 

confidence interval of 500 Random model runs. 



228 

 

 

Figure B.3. Hydrographs over the forecasting period using NAM, PCE-I, and PCE-III, with a 90 % 

confidence interval of 500 Selected model runs. 
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Figure B.4. The performance metrics reflecting accuracy and predictability for the forecasting 

period using NAM, PCE-I, and PCE-III. 
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C Supplementary Materials for Chapter IV 

 

 

 

Figure C.1. The comparison of a relative “difference” metric (Ω) in Eq. (C.1) for the five 

evaluation metrics (five subplots in column) with different lead times from 1 to 6 hours (in x – 

axis) over (a) Event 2 and (b) Event 3. These values in each subplot were computed based on the 

metric value at lead time (𝐿𝑇 ) of 1 hour. The negative values of Ω  indicate the degree of 

performance deterioration as compared to the value at 𝐿𝑇 = 1. 

 
Ω =

|Metric(SuFs, 𝐿𝑇 = 1) − Metricideal| − |Metric(SuFs, 𝐿𝑇) − Metricideal|

|Metric(SuFs, 𝐿𝑇 = 1) − Metricideal|
× 100 (C.1) 

where Metric(SuFs, 𝐿𝑇 = 1) denote the value of metric at lead time of 1 hour. 
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Table C.1. Three paired comparisons of a relative ‘difference’ metric (∆) in Eq. (4.37) for the five evaluation metrics (in x-axis) over 

(a) Event 2 and (b) Event 3. These comparing pairs are based on three standards of surrogate filter construction described in Section 

4.2.2. The positive (negative) values of ∆ indicate that the prediction results of Partial, Invariant, and Dual filters are more (less) accurate 

than those computed by Whole, Variant, and Single filters, respectively. This table matches Fig. 4.11 over Events 2 and 3. 

 

Paired comparison 
Event 1 Event 2 Event 3 

𝑁𝑆�̃� 𝑃�̃� 𝐵𝑆 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ 𝑆𝑝𝑟𝑒𝑎𝑑 𝑁𝑆�̃� 𝑃�̃� 𝐵𝑆 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ 𝑆𝑝𝑟𝑒𝑎𝑑 𝑁𝑆�̃� 𝑃�̃� 𝐵𝑆 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ 𝑆𝑝𝑟𝑒𝑎𝑑 

Whole 

vs.  

Partial 

VaSuFs -38 -22 -41 9 2 -31 -59 3 3 4 -39 8 -9 1 -2 

Dual VaSuFs 43 -106 -89 1 -4 -160 -117 -115 -40 -40 -66 -2 22 -1 1 

InSuFs -87 -343 -103 -6 -15 -163 -112 -26 -21 -19 -203 -52 -17 -41 -44 

Dual InSuFs 77 13 55 13 28 31 -34 -59 19 29 -55 21 87 -9 10 

Variant 

vs.  

Invariant 

SuWFs 38 77 49 -5 14 59 38 35 17 30 60 45 3 26 24 

Dual SuWFs -99 -62 -164 -66 -76 -83 -14 13 -27 -25 -9 -68 -30 27 16 

SuPFs 16 18 26 -23 0 17 18 16 -3 13 13 9 -3 -6 -7 

Dual SuPFs 19 32 37 -46 -21 52 30 36 27 37 -2 -31 79 21 24 

Single 

vs.  

Dual 

VaSuWFs 68 80 76 59 62 54 48 34 54 50 55 69 30 42 31 

VaSuPFs 87 65 68 56 60 9 29 -46 33 27 47 65 50 40 32 

InSuWFs -2 -46 -25 36 22 -104 4 11 29 11 -22 5 5 42 23 

InSuPFs 87 71 72 48 51 47 40 -12 52 47 38 50 90 56 52 
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D Universal kriging 

 

 

Universal kriging (UK) is a stochastic interpolation algorithm which assumes that the 

model output 𝓜(𝑿) is a realization of an underlying Gaussian process [Santner et al., 2003]: 

𝒀 = 𝓜(𝑿) ≈ UK(𝑿) = 𝜷⏉𝑓(𝑿) + 𝜎2𝑍(𝑿)    (D.1) 

where 𝜷⏉𝑓(𝑿) is the trend (or the mean value of the Gaussian process); 𝜎2 is a Gaussian process 

variance (or kriging variance) and can be estimated using the empirical linear unbiased estimator 

as Eq. (D.4); 𝑍(𝑿) is a stationary Gaussian process with zero-mean and unit-variance. The trend 

is composed of the predefined sets of function 𝑓𝑖(𝑿) and kriging coefficients 𝛽𝑖 with 𝑖 = 1, … , 𝑃𝑈𝐾, 

where 𝑃𝑈𝐾 denotes the number of kriging coefficients. 

𝜷⏉𝑓(𝑿) = ∑ 𝛽𝑖𝑓𝑖(𝑿)𝑃𝑈𝐾
𝑖=1      (D.2) 

The Gaussian process 𝑍(𝑿) is characterized by an autocorrelation function (ACF) between 

two arbitrary input samples 𝑿  and 𝑿′ , i.e., 𝑅(𝑿, 𝑿′) = 𝑅(|𝑿 − 𝑿′|; 𝜹) , where 𝜹  is a priori 

unknown correlation parameter that can be obtained by the leave-one-out cross-validation in this 

study [Bachoc, 2013] (see Eq. (5.2)).  

Three types of Kriging are defined with different assumptions of the trend term: 

(1) Universal kriging: the trend term is a linear combination of 𝑃𝑈𝐾 predefined functions 𝑓𝑖(𝑿) as 

Eq. (D.1), where 𝛽𝑖, 𝑖 = 1, … , 𝑃𝑈𝐾, are unknown to be estimated. 

(2) Simple Kriging: the trend is a known constant with 𝑃𝑈𝐾 = 1, 𝑓1(𝑿) = 1, thus 𝜷⏉𝑓(𝑿) = 𝛽, 

where 𝛽 is known. 
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(3) Ordinary Kriging: the trend is unknown constant with 𝑃𝑈𝐾 = 1, 𝑓1(𝑿) = 1, thus 𝜷⏉𝑓(𝑿) =

𝛽1, where 𝛽 is a unknown and can be estimated using an empirical linear unbiased estimator 

[Schöbi et al., 2015]: 

𝛽1(�̂�) = (𝐹⏉𝐑−1𝐹)
−1

𝐹𝐑−1𝓨    (D.3) 

where 𝐹 is the correlation matrix of kriging, 𝐹𝑘 = 𝑓1(𝒳(𝑘)), 𝑘 = 1, … , 𝑁. 

Given the trend part, the Gaussian process variance 𝜎2 can be estimated using an empirical 

linear unbiased estimator as: 

𝜎2(�̂�) =
1

𝑁
(𝓨 − 𝐹𝜷)T𝐑(�̂�)

−1
(𝓨 − 𝐹𝜷)    (D.4)  
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E Supplementary Materials for Chapter V 

 

 

 

Figure E.1. Main sensitivity indices (𝑆𝑇𝑜𝑡𝑎𝑙) of nine parameters for four models (NAM, PCE, OK, 

and PCK) based on the variance of 𝐿 over six flood events 
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Figure E.2. The effects of two types of acceptance thresholds, (a) accuracy-aimed threshold and 

(b) efficiency-aimed threshold on the accuracy (the likelihood function, 𝐿) and the efficiency (the 

number of random runs, 𝑁𝑟𝑢𝑛𝑠) for the four models. Each boxplot on the left axis demonstrates the 

median (central mark), the 25th and 75th percentiles (the edges of the box), and the maximum and 

minimum (the upper and lower whiskers) except for outliers (dot symbols) of 1,000 𝐿 values. The 

circles on the right axis represent 𝑁𝑟𝑢𝑛𝑠 required to attain 1,000 behavior runs. 
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Acronyms and Notations 

Symbol Description 

𝐴𝐼 Accuracy index 

𝐵𝑆 The Brier score 

𝐶𝑅𝑃𝑆 The continuously ranked probability score 

Dual InSuPF Dual Invariant Surrogate Partial filter 

Dual InSuWF Dual Invariant Surrogate Whole filter 

Dual VaSuPF Dual Variant Surrogate Partial filter 

Dual VaSuWF Dual Variant Surrogate Whole filter 

𝐸𝐼 Efficiency index 

EnKF Ensemble Kalman filter 

InPCE Invariant PCE 

InSuF Invariant Surrogate Filter 

InSuPF Single Invariant Surrogate Partial filter 

InSuWF Single Invariant Surrogate Whole filter 

LAR Least angle regression 

𝐿𝑂𝑂 Leave-one-out cross-validation error 

𝐿𝑇 Lead time 

NAM Nedbør–Afstrømnings model 

𝑁𝑅𝑅 The Normalized RMSE Ratio 

NSE Nash-Sutcliffe efficiency 

OK Ordinary kriging 

OLS Ordinary least square regression 

PCE Polynomial chaos expansion 

PCK Polynomial chaos-kriging 

PE Peak error 

𝑃𝑆 Performance score 

QoI Quantity of interest 

SED-PD Sequential experimental design-polynomial degree 
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SFM Storage function model 

SuF Surrogate filter 

SuPF Surrogate Partial Filter 

SuWF Surrogate Whole Filter 

UK Universal kriging 

UR Uncertainty range 

VaPCE Variant PCE 

VaSuF Variant Surrogate Filter 

VaSuPF Single Variant Surrogate Partial filter 

VaSuWF Single Variant Surrogate Whole filter 

VE Volume error 

𝛂 Multi-indices in Eq. (2.2) 

𝐷(𝑦) Total variance of model output 𝑦 in Eq. (2.15) 

𝐷�̃� The variance averaged of model output 𝑦 in Eq. (2.17) 

𝐸 Ensemble error matrix in EnKF 

𝜀 PCE coefficients in Eq. (2.2) 

𝜖 Leave-one-out error 

𝜖𝐿𝑂𝑂
QoI  Leave-one-out cross-validation error for a QoI 

𝜖𝑡ℎ
𝑙𝑜𝑤𝑒𝑟 Lower threshold of 𝜖𝐿𝑂𝑂

QoI
 used in Eq. (27) 

𝜖𝑡ℎ
𝑢𝑝𝑝𝑒𝑟

 Upper threshold of 𝜖𝐿𝑂𝑂
QoI

 used in Eq. (28) 

𝜖𝑡ℎ
𝑠𝑙𝑜𝑝𝑒

 Slope threshold of 𝜖𝐿𝑂𝑂
QoI

 used in Eq. (29) 

𝐹 Cumulative distribution of streamflow used in Eq. (4.30) 

𝑭 Information matrix in Eq. (2.8) 

𝑓(·) nonlinear propagator for model states in Eq. (3.6) 

𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍 Factor in Eq. (3.38) 

ℎ(·) nonlinear propagator for mode output in Eq. (3.7) 

𝑖 An index for ensemble member 

𝑖𝑑 Index corresponding to varying threshold values in Eqs. (2.13) and (2.14) 

𝑗 An index for input of PCE 

𝐾 Kalman gain 

𝑘 An index for experimental design  
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𝒽𝑘 The 𝑘-th diagonal term of the matrix 𝑭 in Eq. (2.21) 

𝐿 Likelihood function 

ℒ The likelihood in Eq. (5.5) 

𝑙 An index for multi-indices   used in Eq. (2.8) 

𝓜 A deterministic hydrological model 

𝓜su Surrogate model 

𝓜𝑃𝐶𝐸 A PCE surrogate model 

𝑁 The number of experimental design 

𝑁∗ The number of increasing samples of experimental design 

𝑁𝐼 The number of hydrologic model inputs 

𝑁𝑃 The number of uncertain parameters 𝜽  

𝑁𝑆 The number of hydrologic model states 

𝑁𝑋 The number of PCE inputs 

𝑁𝑌 The number of PCE outputs 

𝑁Ψ The number of PCE coefficients 

𝑛 The number of ensemble members in data assimilation 

𝑛𝑚 The number of samples used to implement Morris method 

𝑛𝑠 The number of samples used to implement Sobol’ indices 

𝑛𝑤 The number of model runs to obtain the 𝑛 number of the behavioral set 

𝑜 observed probability in Eq. (3.36) 

𝑝 Polynomial degree 

𝑝𝑓 forecast probability in Eq. (3.36) 

𝑸 Error covariance matrix in EnKF 

𝑄 The number of random model runs in Eq. (2.14) 

𝑄𝑏𝑎𝑠 The direct runoffs (flow rates) of the basin in SFM 

𝑄𝑐ℎ𝑛 The direct runoffs (flow rates) of the channel in SFM 

𝑅𝑎 Ratio of the time-averaged RMSE in Eq. (3.30) 

𝑅𝑒 Effective rainfall 

𝑅 (𝑿, 𝑿′) The correlation matrix of two arbitrary input samples 𝑿 and 𝑿′ 

𝑅𝑇𝑤+𝑐,𝑴𝒐𝒅𝒆𝒍 
run time to compute one simulation over the warm-up and calibration periods in 

Eq. (3.38) 
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𝑅𝑇𝑓,𝑴𝒐𝒅𝒆𝒍,𝐷𝐴 run time to compute one simulation over the forecasting period in Eq. (3.38) 

𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑡
𝑉𝑎  Runtime needed to construct variant filter at each time 𝑡 

𝑅𝑇𝑏𝑢𝑖𝑙𝑑
𝐼𝑛  Runtime needed to construct invariant surrogate filter 

𝑅𝑇𝑟𝑢𝑛,𝑡 Runtime needed to implement a single run of the filter at each time 𝑡 

𝑅𝑇𝑡 Runtime needed to implement 𝑛 runs of the filter at each time 𝑡 

𝑅𝑇𝑐𝑢𝑚,𝑡 Cumulative runtime needed to implement 𝑛 

𝑅𝑇𝑜𝑝𝑡,𝑡
QoI

 
Runtime needed to estimate PCE coefficients during the implement of SED-PD for 

each QoI of VaPCE 

𝑅𝑇𝑜𝑝𝑡
QoI

 
Runtime needed to estimate PCE coefficients during the implement of SED-PD for 

each QoI of InPCE 

𝑅𝑇𝓧,𝑡
QoI

 
Runtime needed to generate corresponding response 𝓨 from given 𝓧 for each QoI 

of VaPCE 

𝑅𝑇𝓧
QoI

 
Runtime needed to generate corresponding response 𝓨 from given 𝓧 for each QoI 

of InPCE 

𝑆𝑎 First-order Sobol’ indices of 𝑎-th model parameter, 𝜽𝑎 

𝑆𝑎𝑏 Second-order Sobol’ indices of 𝑎-th (𝜽𝑎) and 𝑏-th (𝜽𝑏) parameters 

𝑆𝑏𝑎𝑠 The storage amounts of the basin in SFM 

𝑆𝑐ℎ𝑛 The storage amounts of the channel in SFM 

𝑆𝑇𝑜𝑡𝑎𝑙,𝑎 Total-order Sobol’ indices of 𝑎-th model parameter, 𝜽𝑎 

𝑆Ψ The number of significant PCE coefficients 

T The total duration of a flood/rainfall event 

𝑇𝑅𝑇 total run time in Eq. (3.38) 

𝑡 An index for the computational time step 

𝑈 Temporal average of GLUE uncertainty in Eq. (2.12) 

𝒖 Hydrologic model forcings 

𝑉 Total volume of hydrograph 

𝑤 Model errors used in Eq. (3.6) 

𝑿 Input of PCE 

𝓧 Experimental design 

𝒙 Hydrologic model states 

𝒀 Output of a deterministic hydrological model 

𝓨 The corresponding model response by given 𝓧 

𝑦 Simulated streamflow 
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𝑦𝑜𝑏𝑠 Observed streamflow 

𝑍(𝑿) The Gaussian process Eq. (5.1) 

∆ 
“Difference” metric in the paired comparison between surrogate filters used in Eq. 

(4.37) 

𝜽 Hydrologic model parameters 

𝜇 Mean value in Morris method 

𝜎 Standard deviation value in Morris method 

𝜆 Non-negative constant in Eq. (2.19) 

𝜂 Actual observation error 

𝜏 Parameter noise used in Eq. (4.2) 

𝜎2 The variance (or kriging variance) of the Gaussian process Eq. (5.1) 

𝜹 Hyperparameter of the autocorrelation function 

Ψ multivariate orthonormal polynomials 

𝜌 Prior distribution of parameters in Eq. (5.5) 

Γ 
“Difference” metric in the comparison of the performance of the filters with 

different lead times used in Eq. (4.38) 

Π Posterior distribution of parameters in Eq. (5.5) 
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Abstract in Korean 

극심한 홍수는 기후 온난화로 인해 과거보다 더 자주 발생하며, 그것들은 더 심오

한 사회-경제적 영향을 미친다. 홍수 예측은 홍수 위험 관리와 완화의 중요한 구성 요소 

중 하나이지만 기상학적 투입, 초기 상태, 모델 구조 및 모델 매개변수에 의해 야기되는 

여러 가지 불확실성의 영향을 받는다. 수많은 연구 노력이 홍수 예측 작업의 불확실성을 

조사했다. 그러나 현재, 우리는 불확실한 정량적 방법으로 홍수 예측에서 계산 부담, 부

정확성 및 신뢰할 수 없는 예측 가능성에 대한 장기간 지속되는 도전을 처리할 수 있는 

포괄적인 연구가 완전히 부족하다. 본 논문은 불확실성 정량화로 현재의 홍수 예측을 효

율적이고 정확하게 계산하기 위한 새로운 모델링 프레임워크 구축에 대한 포괄적인 지

식을 얻는 것을 목표로 한다. 

본 논문에서는 홍수 예측에서 수문학적 모델의 정확하고 강력하며 효율적인 불확

실성 정량화를 위한 일련의 혁신적인 방법론이 개발되었다. 이러한 방법에는 다음이 포

함됩니다. (i) 홍수 예측에서 수문 모델의 매개변수 불확실성을 빠르고 강력한 정량화 및 

이해를 위한 PCE(polynomial chaos expansion)와 결합된 GLUE(generalized likelihood 

uncertainty estimation) 프레임워크를 기반으로 하는 통합 모델링 프레임워크; (ii) 처음

으로 대리 모델링, 매개변수 추론 및 데이터 동화의 세 가지 모델링 기술을 결합한 계산

상 효율적이고 정확한 실시간 앙상블 홍수 예측과 불확실성 정량화를 위한 새로운 모델

링 프레임워크 (iii) Ensemble Kalman filter (EnKF)의 내부 프로세스를 대체하기 위해 PCE

를 사용한 실시간 홍수 예측을 위한 새롭고 강력하며 효율적인 대리 데이터 동화 접근 



266 

 

방식; 및 (iv) 학습 데이터 공간에서 크게 벗어나는 극단적인 이벤트에 대해서도 신뢰할 

수 있는 결합 결과를 제공할 수 있는 PCK(다항식 교란 크리깅)라는 새로운 대리 모델. 

본 논문의 주요 업적들은 다음과 같이 요약된다. (i) PCE 대리 모델은 불확실성 정

량화 작업의 계산 요구를 상쇄하기 위해 GLUE 프레임워크에 통합된다. 이는 불확실한 

투입에 대한 모델 출력의 민감도에 대해 모델 행동의 동인에 대해 추론할 수 있는 해석 

가능한 확률론적 프레임워크의 이점을 제공한다. (ii) 홍수 예측의 새로운 프레임워크는 

처음으로 세 가지 모델링 기술의 이점을 포함한다. (1) PCE 대리물은 계산 시간을 크게 

줄일 수 있다. (2) 매개 변수 추론(GLUE)은 모델의 더 빠른 수렴, 불확실성 감소 및 시뮬

레이션 결과의 우수한 정확도를 허용한다. (3) EnKF는 예측 중에 발생하는 오류를 동화

한다. 이 프레임워크는 수문학적 매개 변수의 불확실성을 설명하고 이해하는 데 총체적

이고 강력한 접근 방식을 제공하며 실시간 홍수 예측에서 시뮬레이션의 계산 부담을 크

게 줄인다. 이 모델링 프레임워크는 실시간 및 앙상블 홍수 예측을 위해 복잡하고 충실

도가 높은 수문 및 유압 모델이 점점 더 채택되어야 한다고 주장하는 모델링 패러다임의 

변화에 기여한다. (iii) EnKF의 내부 프로세스를 PCE로 대체하여 새로운 대리 필터를 개

발하기 위해 대리 접근 방식의 힘을 더욱 활용합니다. 대리 필터를 구성하는 방법에 대

한 포괄적인 조사에 따르면 새로운 부분(원래 필터의 일부 대체) 및 불변(전체 기간 동안 

유효) 접근 방식이 정확도와 효율성 측면에서 선호되며, 이는 차원 및 차원 수를 직접 줄

이는 데 도움이 된다. 그리고 실시간 예측 간의 격차를 해소한다. 이 제안된 대리 필터는 

차원 문제에서 계산 집약적인 데이터 동기를 수행하기 위한 유망한 대체도구가 될 것이
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다. 그리고 (iv) 다항식 교란 크리깅(PCK: polynomial chaos-kriging)이라는 새로운 대리 

모델은 잘 알려진 두 가지 대리 모델인 PCE와 kriging의 장점을 결합하여 개발되었다. 이

이 조합은 훈련된 데이터 공간에서 크게 벗어난 극한 사건에 대한 스트림 흐름 예측을 

가능하게 했고, 예측 불확실성을 강력하고 효율적으로 정량화할 수 있게 했다. 이 발견은 

궁극적으로 잠재적으로 더 포괄적인 대리 모델을 향한 새로운 설계를 고무할 것이다. 
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