
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

Ph.D. Thesis of the University of Ulsan 

 

 

 

Modified GSC Method to Reduce the Distortion of 

Enhanced Speech Signal Using Cross-correlation and 

Sidelobe Neutralization 

 

 

 

 

 

 

 

Department of Mechanical and Automotive Engineering 

University of Ulsan 

Ulsan, Korea 

 

Hang Su 

2021 



虱/篮鑫嫂孟gl窍嫂Gs1cI Met斑 o滚 to 1Reduce the Distort孟om of

En廴弼 ced Spsech s虽gna二 L【 s孟逍g iCIrossocorFena狂】Dm and

S昱骥e篷θ勖e理
`罩

e寥氇r变 I昱
=a氆
最瑟搬

S狂p辍:喊簿or:Pro虽 ChangoMyung邑咯e

^崴k~饔翡搬罨罗塞蔓Ⅱ鹭鑫爨毽器裰

Depar齿 ment Qfl腹 s△h蔽豇扯 跛 熬n建 盛 【t老ma珏 Ve E露醛 露峦翕蓝蓝爨

U狻搀 龛r鑫蠡罅 翻f1旺露露露

A喊重瑟愁寸er摄簸搬 gub血强 ed t】D the搬c△1铮 oftLe u篮贽 r盛圩 af1旺搬△至△paF容娃

搬篮搬褒搬磙嵌奄漶 er畲碾嘁F1g:蓝e斌 勤r逸t degree alfDoc执 r Of Fk避镞oPh了 至n the

De「跛 ment OfM|ecLa波饿至an建 A豳 mO狂ve E蘑Ⅱeering.

U·k豇变,lKore豇

蔓》夸露。1每摄,21隈 .篮篮

AppF舍ved协y

|Ⅳ旺yung乙ee



SU Ⅱ盎NG羽 ′J器L繁叶碎音羽 芒导鲁 啦子管

奄辟羽毯奢   ol咽导

每碎寄钍  召王子

畏辩耦钜  叶到羽

堪磷割毯  ol昏嗯

用蜡羽毯   姓干鼙

鲁铿罐繁蓝 喇繁毯

厣勒膨纩
V· J   ˇ

`

脚
·/搀

20及 刂 玺2锂



i 

ABSTRACT 

Modified GSC Method to Reduce the Distortion of Enhanced Speech 

Signal Using Cross-correlation and Sidelobe Neutralization 

Hang Su 

Department of Mechanical and Automotive Engineering 

The Graduate School 

University of Ulsan 

Online meetings are widely used today. A microphone array is used to extract the 

desired audio signal by analyzing the spatial information of signals. This dissertation 

proposes the modified GSC (generalized sidelobe canceller) method to reduce the 

distortion of the enhanced signal using cross-correlation and sidelobe neutralization. 

The relative research background and academic achievement are displayed first. 

The fixed beamforming, LCMV (linearly constrained minimum variance), MVDR 

(minimum variance distortionless response), GSC, etc., are introduced. The GSC 

method is described in detail. The three parts of the GSC method could be optimized 

respectively to adapt to the various situations. 

Next, the related fundamental knowledge about the proposed method is introduced. 

The formula of the beamforming pattern is derived first. Then the affection of the setup 

of a microphone array (radius of the microphone array and the number of the 

microphones) to the performance of the microphone array is displayed by figures. It 

illustrates that a larger diameter of the microphone array and a greater number of 

microphones in the microphone array could produce a better performance of spatial 

filtering. The correlation coefficient is also introduced and explained. The Person 
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correlation coefficient could be used to calculate the linear relationship between two 

variables and the rank correlation coefficient could give the variation tendency between 

two variables. The LMS (least mean square) algorithm is described as an adaptive 

algorithm of the adaptive filter. It also can be modified to adapt to various work 

situations. 

Then the modified GSC method is proposed to reduce the distortion of the 

enhanced signal using cross-correlation and sidelobe neutralization. Distortion of the 

enhanced audio signal consists of two parts: the residual acoustic noise and the 

distortion of the desired audio signal, which means the damage to the desired audio 

signal. The modified GSC method is proposed to reduce both kinds of distortion if the 

desired signal is a nonstationary speech signal. First, the GSC-MCC (GSC method with 

the minimum cross-correlation coefficient) method is proposed that the cross-

correlation coefficient between the canceling signal and the error signal of the LMS 

algorithm is added to the adaptive process of the GSC method. The cross-correlation 

coefficient is used to control the step size of the update process of the LMS algorithm 

to reduce the distortion of the enhanced signal while the energy of the desired signal 

frame is increased suddenly. 

The sidelobe neutralization method is proposed to reduce the residual noise 

component in the output signal of the fixed beamforming method. This method could 

reduce the residual noise component effectively when the estimated noise direction is 

correct. The formula demonstrates that if the estimated noise direction is inaccurate, the 

amount of the noise component in the output signal of the beamforming method 

processed by the sidelobe neutralization method is still similar to the original noise 

component. Hence, the noise component of the beamforming output signal could be 
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decreased by subtracting the estimated noise signal to improve the denoising 

performance of the GSC method, which is referred to as the GSC-SN (GSC method 

with sidelobe neutralization) method. 

Finally, the GSC-SN-MCC method is proposed by merging the above the GSC-

MCC method and the GSC-SN method. The detailed performed steps are provided. 

The experiment is performed in an anechoic chamber to validate the proposed 

method in various SNR (signal-noise ratio) conditions. The result demonstrates that the 

proposed method could reduce both kinds of noise effectively in various SNR 

conditions. The performance of the proposed method is like a parabolic curve with the 

SNR increasing, the best performance would be obtained when the energy of the speech 

and noise is almost equivalent, like the SNR is +5dB. 

Furthermore, a simulated calculation with assumed inaccurate estimated noise 

directions is conducted based on the experiment data to inspect the robustness of the 

proposed method to the error of the estimated noise direction. The result shows that the 

denoising effect will be declined when the estimated noise direction becomes far away 

from the actual noise direction. However, even the estimated noise direction is opposite 

to the actual noise direction, the amount of the residual noise component is still similar 

to the original residual noise component, which implies the feasibility of the proposed 

method in practical cases. 

The experiment data and calculation results indicate that the proposed method 

could reduce the distortion effectively under various SNR conditions and would not 

cause more distortion if the estimated noise direction is far from the actual noise 

direction. 
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Chapter 1 Introduction 

1.1 Background 

Online meetings are widely used in the current time. The quality of meeting audio 

has become increasingly important. Though the audio hardware about recording and 

playing becomes more precise and higher dynamic range, some problems like 

interfering speech, background noise, and speech reverberation still are necessary to 

research further to improve the user experience. 

 
Figure 1-1. Diagram of the noise of the online meeting. 

There are several thoughts to alleviate the problems. One is to use some signal-

processing methods to improve the quality of meeting audio with a single-channel 

microphone, like the spectral subtraction method [1], Wiener filter [2], etc. However, 

these methods should work under several specific conditions, like noise is stationary 

and the correlation is low between the speech and the noise. Another thought is to 

deploy the microphone with every participant. It will raise the hardware cost and 

increase the meeting system complexity. 

Then, the microphone array technology is proposed to solve the problems because 

all these problems are related to the spatial direction of the sound source. Therefore, a 

multichannel microphone array is used to extract the desired signal by analyzing the 
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spatial information of the received signals. 

1.2 Methods of the microphone array 

The primary method of a microphone array is the delay-and-sum beamforming 

(DSB) method presented by Flanagan et al. [3]. The multichannel signals are aligned at 

the looking direction by compensating with the proper delay, as shown in Figure 1-2. 

The aligned signals are summed to ensure that the gain of the looking direction is 

maximum. In other words, the signals from other directions are suppressed. By 

changing the delay of channels, the detected direction of the microphone array could be 

steered easily. Furthermore, the sound of multi-target in different directions could be 

obtained by steering the direction of the microphone array. At the same time, the DSB 

method is not required the particular demands on the sound source and is easy to 

combine with signal processing methods. 

 
Figure 1-2. Diagram of delay-and-sum beamforming [4]. 

However, it is difficult to improve the efficiency of the microphone array unless to 

increase the number of microphones in the array. More microphones could suppress the 

non-looking direction signal more efficiently. 

Several researchers studied to achieve better denoising performance without 

increasing the number of microphones [5]. Capon [6] proposed the minimum variance 
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distortionless response (MVDR) method in 1969. The weight coefficients of different 

channels were adjusted to preserve the gain of the looking direction and decrease the 

total power of the final output signal. Habets [7] modified the MVDR method to adapt 

the indoor acoustic conditions in 2010. This method could work effectively with the 

correlation noise signal in the diffuse sound field. Pan [8] analyzed the influence of the 

different incident angles of the sound for the MVDR method with a line microphone 

array in 2014. The experiment result demonstrated that the gain of the microphone array 

was mainly determined by the incident angle of the sound and the number of 

microphones in the microphone array. Vincent [9] proposed a speech enhance method 

by measuring the coherency based on ad hoc microphone arrays in 2016. Habets [10] 

proposed a speech distortion and interference rejection constraint beamformer method. 

This method was derived to minimize the ambient noise power subject to specific 

constraints that allow a tradeoff between speech distortion and interference-plus-noise 

reduction. 

Frost [11] developed the MVDR method that extended the constraint in the MVDR 

method to linear equations. Therefore, the weight coefficients could be adjusted 

adaptively based on the constraints. This method was referred to as the linearly 

constrained minimum variance (LCMV) method. Shmulik [12] modified the LCMV 

method to apply two microphone arrays in the noisy reverberant environment in 2009. 

Both stationary and non-stationary noise could be suppressed. The authors 

reconstructed the LCMV method with the fixed beamforming (FB), blocking matrix 

(BM) and adaptive noise canceller (ANC). 2016 Norholm [13] used the harmonic linear 

chirp model to describe the voice model for speech enhancement with the LCMV 

method. The article showed that the higher SNR is obtained by the LCMV method than 
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the Wiener filter. 

The constraints could be independent of the LCMV method to simplify the 

algorithm. Griffiths and Jim [14] proposed the generalized sidelobe canceller (GSC) 

method in 1982. GSC method consists of three parts. The first part is the same as a 

conventional beam-forming method to reduce the noise roughly. The second part is a 

blocking matrix to generate a reference noise signal by removing the desired signal 

from the original multichannel signals. The third part is an adaptive filter to estimate 

the noise component of the first part's output signal. Then, the estimated noise is 

subtracted from the output signal of the first part to obtain a cleaner desired signal. The 

GSC method converts the optimization goal of the LCMV method from the optimal 

weights with constraints to the optimal weights without constraints. Therefore, a simple 

adaptive algorithm could be adopted to reduce the residual noise in the final output 

signal. 

The three parts of the GSC method could be optimized individually to improve the 

aggregate denoising performance of the adaptive algorithm. Hoshuyama et al. [15] and 

Lee et al. [16] modified the blocking matrix to decrease the sensitivity of the GSC 

method to a mismatch between the estimated and actual direction of arrival (DOA) of 

the desired signal. The robustness of the GSC method was increased by reducing the 

leakage of the desired signal into the reference noise signal [17]. 

Gannot et al. [18] considered the complicated acoustic environments and proposed 

a transfer function GSC (TF-GSC) method. The blocking matrix of the TF-GSC method 

was modified with the transfer function ratio (between different microphones in an 

array) to adapt the GSC method to reverberation conditions. Reuven et al. [19] 

combined the TF-GSC with an acoustic echo cancelation to improve the performance 
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of the algorithm in noisy and reverberant environments. Reuven et al. [20] also 

extended the TF-GSC method to a dual transfer function GSC (DTF-GSC) method for 

double talk scenarios to cancel the nonstationary interferences signal. Rombouts et al. 

[21] estimated a room impulse response and a desired speech signal model jointly to 

reduce the computational complexity dramatically for specific applications. Krueger, et 

al. [22] estimated the acoustical transfer function ratios in the presence of stationary 

noise and tracked the eigenvector adaptively to obtain better noise and interference 

reduction. This method relied on solving a generalized eigenvalue problem in each 

frequency bin. 

The GSC method also could be optimized by using efficient complex value 

arithmetic to reduce the calculation complexity [23] and introducing the external 

microphones into the local microphone array to improve the performance of speech 

estimates [24]. Kim [25] proposed an improved generalized sidelobe canceller utilizing 

a phase-error filter for multi-channel signal enhancement. The experimental results 

showed that the proposed method provides better perceptual evaluation and 

intelligibility scores under multiple noise conditions. 

The least mean square (LMS) algorithm is a common adaptive algorithm for the 

GSC method to estimate the noise signal. The LMS algorithm adjusts the filter 

coefficients to make the mean square of the error signal (difference between the 

canceling signal and the received noise signal) is least [26,27]. The stochastic gradient 

descent method is used to ensure that the error signal could be decreased iteratively in 

real-time, which was derived by Widrow and Hoff [28] in 1960. Based on the 

calculation mode, the LMS algorithm can derive to other branched algorithms, like 

filtered-x least mean square (FxLMS) algorithm [29], iterative learning control (ILC) 
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algorithm [30], repetitive control (RC) [31] algorithm, etc. 

Several modified LMS algorithms were proposed for some practical consideration. 

Nagumo and Noda [32] introduced the normalized LMS (NLMS) algorithm to make 

the algorithm convergence speed independent of the reference signal power because the 

step size of the filter coefficient updating was inversely proportional to the reference 

signal power. Shan and Kailath [33] proposed the correlation LMS algorithm, which 

adjusted the step size of the filter coefficient updating to be proportional to the cross-

correlation coefficient between the reference signal and the error signal. This step size 

control scheme made the adaptive algorithm more robust to disturbances such as the 

system-measured noise. Gitlin et al. [34] proposed the leaky LMS algorithm, in which 

a leakage factor was added to the adaptive weight update path. The leakage factor could 

avoid the overflow of the unconstrained weight to increase the stability of the algorithm. 

Some studies introduced post-filtering methods to the microphone array for 

additional noise reduction to the beamforming output signal. Gannot [35] used 

multichannel post-filter in a diffused noise field to increase noise reduction, Cohen 

[36,37] discriminated the non-stationary noise and the voice by multichannel post-filter 

to improve the performance of the microphone array. Some studies [38-40] decomposed 

the multichannel signal into two subspace domains, desired signal subspace domain and 

noise signal subspace domain, based on statistic features (like the singular value 

decomposition of the covariance matrix of the multichannel signal). The signal in the 

noise subspace domain was removed or suppressed and the desired signal was restored 

from the desired signal subspace domain. Some researchers [41,42] attempted to extract 

the desired signal that had been contaminated by noise without a signal model or 

transmission model, which can be referred to as blind source separation or independent 
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component analysis, most were based on the statistic features or a neural network. This 

kind of research is mainly in the laboratory stage because of the complexity of the 

calculation and the feasibility in actual environments. 

The distortion of the enhanced signal consists of two parts: the residual noise and 

the distortion of the desired signal, which means that the desired signal is damaged. 

Most researchers attempted to reduce the residual noise of the output of the microphone 

array. Whereas, the desired signal is sometimes a nonstationary signal, as in speech 

application. The varying speech signal may degrade the denoising performance of the 

adaptive algorithm. Some researchers [43] employed the voice activity detection (VAD) 

method to make the adaptive filter only be adjusted in speech-absent frames and avoid 

the affection of a varying speech signal. On the other hand, though some researchers 

modified the VAD method to improve its performance [44,45], the VAD method is not 

always feasible, especially when the background noise is strong or the sound field is 

complex. 

In this study, the conventional GSC method was modified to reduce the enhanced 

speech distortion without the VAD method. The formula of the beamforming pattern 

was derived first. Then the sidelobe in the desired direction of the estimated noise 

source was calculated and subtracted from the output signal of the beamforming. This 

method was called the sidelobe neutralization (SN) method. Based on the excess mean 

square error (MSE) of the LMS algorithm [46] and the theoretical limits of the noise 

reduction performance [47], the SN method could reduce the noise component in the 

beamforming output signal of the GSC method to realize reducing the residual noise of 

the enhanced signal. To decrease the distortion that caused by the change of the 

amplitude of the speech signal, the step size of the adaptive algorithm in the GSC 
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method was controlled by the cross-correlation coefficient (CC) between the canceling 

signal and the error signal. This meant that when the canceling signal and the error 

signal are correlated, the step size would be big to change the weight coefficients of the 

adaptive filter rapidly. If the canceling signal and the error signal were uncorrelated, the 

step size would be small to slightly update the weight coefficients for reducing the 

distortion of the enhanced speech signal. This step size control method made the 

adaptive filter of the GSC method more robust to the energy variation of the desired 

signal. 

1.3 Outline 

This dissertation is organized as follows:  

Chapter 1 introduces the research background and reviews the relative academic 

achievements.  

Chapter 2 presents the foundation knowledge about beamforming patterns, 

correlation coefficient and the LMS algorithm. 

Chapter 3 depicts the GSC method and modifies it with the cross-correlation 

coefficient and the SN method, respectively. Then the proposed modified GSC method 

is given by combining them. 

Chapter 4 offers the implementation of the experiment and the experiment result 

analysis. The experiment is designed on different SNR conditions and different error 

angles of estimated incident noise direction. 

Chapter 5 provides the conclusions of this study. 
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Chapter 2 Foundation Knowledge 

2.1 Beamforming patterns 

2.1.1 Introduction 

Beamforming, also called spatial filtering, is a signal processing technique based 

on a sensor array to achieve spatial selectivity. It is achieved by combining elements in 

a sensor array so that signals at particular angles experience constructive interference 

while others experience destructive interference. The signal in the interesting direction 

would remain and interference in other directions would be rejected. The improvement 

compared with omnidirectional reception is known as the directivity of the array [48,49]. 

There are various kinds of microphone array configurations, like uniform linear 

array (ULA), uniform circle array (UCA), uniform rectangular array (URA), spiral-

shaped array [50-52], etc. In most cases, the complex array configuration is designed to 

improve the performance of the array, higher dynamic range or more narrow spatial 

resolution. At the same time, it is inevitable to make the microphone array system more 

complex to implement in hardware and increase calculation burden in software. 

For analysis and implementation easy, the UCA is chosen to validate the 

effectiveness of the algorithm in this study, as shown in Figure 2-1. At the same time, 

the elevation angle of the sound source is assumed as 0°, which means the sound source 

and the microphone array are in the same plane to simplify the calculation and display 

the beamforming pattern with more clarity. The beamforming pattern on the plane in 

which the elevation angle is 0° could be mapped to other horizontal planes (other 

elevation angles) with the appropriate trigonometric function about the elevation angle. 



10 

 
Figure 2-1. Diagram of UCA. 

2.1.2 Calculation formula 

In this study, the microphone array is assumed to be a uniform circle array (UCA) 

with M microphones deployed evenly on a circle with a radius of r. The reference 

received signal (p0) of the microphone array in a reference point (most time is the array 

center point) is shown in Equation 2-1. A0 is the complex amplitude of sound source 

generated, also related to the wave propagation mode. x0 is the wave propagation 

distance from the sound source to the reference point of the microphone array. ωk is the 

circular frequency of the signal, k is the wavenumber of the signal as shown in Equation 

2-2, where c is the sound speed, f is the corresponding frequency of the signal. 

( )0

0 0
kj t kx

A ep  +
= . (2-1) 

2k f c=   . (2-2) 

Set the center point of the microphone array as the origin of the Cartesian 

coordinate system. The microphone is deployed uniformly around the origin. The mth 

microphone is placed at angle αm as Equation 2-3. Assume the sound source is placed 

far enough from the microphone array. Thus, the sound field near the microphone array 

is a plane wave field. Ф is the sound source incident angle. xm is the relative distance of 

the mth microphone to the origin. Thus, the signals of microphones received (pm) are 
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represented by multiplying the proper phase shift as Equation 2-5. Furthermore, the 

phase shift of every microphone could be extracted as the sound source direction vector 

ν as Equation 2-6. 

2 ( 1) /m m M = − . (2-3) 

( )cosm mx r  =  − . (2-4) 

( )( ) ( ) ( ) ( )0 0

0 0 0
k m k m mj t k x x j t kx j kx j kx

mp A e A e e p e
 + + +

= = = . (2-5) 

( ) ( ) ( ) ( )1 2, ,... ,...m M
T

j kx j kx j kx j kx
e e e e  
 

= . (2-6) 

The received signal of reference point could be derived by inverting the phase shift 

that relative distance (between the microphone and reference point) caused as follows: 

( )
0

mj kx

mp p e
−

= . (2-7) 

Let ω(s,m) is the weight of the microphone channel to adjust the looking direction 

Фs of the microphone array. Фi represents the actual incident direction of the sound 

source. Thus, the beamforming pattern could be derived using the following equations 

[53]: 

( )

( )( )

( , ) ( , )

1

(cos( ) cos( ))

1

2 sin( )sin( )
2 2

1

1

,

1

1

1
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s i s m i m

m

M
jkr

m
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M
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M

   

   


   

 


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− − −

=
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=

=
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







, (2-8) 

where 2 sin( )
2

s iz kr
 −

= , 
2

s i 


+
= . 

Based on the Jacobi-Anger identity: 

( )( ) ( ) ( )exp sin expn

n

jz J z jn 


=−

=  , (2-9) 

Thus, the function of the beamforming pattern could be modified to Equation 2-10. 
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, (2-10) 

where Jn is the nth-order Bessel function. 

Let b = n/M, if b is an integer, the Equation 2-11 is workable. 

( )( )
1

1
exp 2 1 1

M

m

j m b
M


=

− = , (2-11) 

If b is not integer, based on the geometric series formula: 

( )1 1

1

n

n

a q
S

q

−
=

−
, (2-12) 

Hence, ( )( )
( )
( )1

1 exp 21
exp 2 1 0

1 exp 2

M

m

j n
j m b

M j b




=

−
− = =

−
 , (2-13) 

Finally, the function of the beamforming pattern could be simplified as Equation 2-14. 

If M is even, the equation could be simplified further to Equation 2-15. 

( ) ( ) ( ), exps i bM

b

B J z jbM  


=−

= − . (2-14) 

( ) ( ) ( ) ( )0

1

, 2 coss i bM

b

B J z J z bM  


=

= +  . (2-15) 

Consequently, the beamforming pattern could be formed by the Bessel functions. 

Considering the property of the Bessel function as shown in Figure 2-2, the value of the 

second item of Equation 2-15 will be close to zero and can be neglected with the 

increasing number of microphones. Thus, the beamforming pattern could be 

approximated as a zero-order Bessel function. 
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Figure 2-2. Bessel Function. 

When |z|<n, the result of Bessel function |Jn(z)| is small that makes the second item 

of Equation 2-15 be neglected. Thus, Equation 2-17 could be derived from Equation 2-

16. It means that if the arc length between the microphones is less than the half 

wavelength of the interesting frequency, the beamforming pattern would be similar to 

a zero-order Bessel function and that no grating lobe generated. 

max( ) 2M z kr = . (2-16) 

2
2

r
M

  . (2-17) 

2.1.3 Influence factors 

The beamforming pattern could be compared by adjusting factors of the 

microphone array. The radius of the microphone array and the microphone number were 

changed to show the affection of the beamforming pattern. The beamforming pattern 

was calculated according to Equation 2-8. The radius of the microphone was set as 0.1m, 

0.2m and 0.4m. The microphone number of the microphone array is 4, 6, 8, 16, 

respectively. 

The beamforming patterns of the microphone array with different hardware setups 

are shown in Figure 2-3, Figure 2-4 and Figure 2-5, Figure 2-6. Figure 2-3-1 is selected 

to explain the meaning of the axes in the figure and the meaning of other figures is the 
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same as this figure. 

The beamforming pattern of the 4 microphones array with the 0.1m radius is shown 

in Figure 2-3(a). The left part of the figure is the 3-D beamforming pattern. The x-axis 

represents the angle of the sidelobe from -180° to 180°. The y-axis just shows the 

frequency of the signal from 0Hz to 4000Hz, because the energy of speech is 

concentrated in a low and medium frequency band. The z-axis means the coefficient of 

the pressure attenuation of the sidelobe. The right part of the figure displays the contour 

of the beamforming pattern. The ordinate axis represents the angle of the sidelobe and 

the abscissa axis represents the frequency of the signal. There are three contour curves 

shown in the figure. The yellow and blue curves in the figure mean the pressure 

attenuation of the sidelobe is 0.9 and 0.5 times to the desired direction of the 

microphone array. The green curve represents the pressure attenuation of the sidelobe 

is about 0.707 times to the desired direction of the microphone array, namely half the 

energy of the sidelobe signal is suppressed. This contour curve is selected to illustrate 

the efficiency of the microphone array with the different hardware setups. The sound 

speed is assumed as 343m/s. 

(1) 4 microphones array 

The number of microphones of the microphone array is 4. The radius of the 

microphone array is 0.1m, 0.2m, 0.4m, respectively. Based the Equation 2-17, if the 

radius of the microphone array is 0.1m, 0.2m, 0.4m, it means if the wavelength is more 

than 0.314m, 0.628m, 1.256m, namely the frequency is lower than 1092 Hz, 546 Hz, 

273Hz, there will not grating lobes generated. 
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(a) 

 
(b) 

 
(c) 

Figure 2-3. Beamforming Pattern of the microphone array with 4 microphones: (a) the radius 

is 0.1m; (b) the radius is 0.2m; (c) the radius is 0.4m. 

(2) 6 microphones array 

The number of microphones of the microphone array is 6. The radius of the 

microphone array is 0.1m, 0.2m, 0.4m, respectively. Based the Equation 2-17, if the 
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radius of the microphone array is 0.1m, 0.2m, 0.4m, it means if the wavelength is more 

than 0.209m, 0.419m, 0.837m, namely the frequency is lower than 1641Hz, 818Hz, 

409Hz, there will not the grating lobes generated. 

 
(a) 

 
(b) 

 
(c) 

Figure 2-4. Beamforming Pattern of the microphone array with 6 microphones: (a) the radius 

is 0.1m; (b) the radius is 0.2m; (c) the radius is 0.4m. 
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(3) 8 microphones array 

The number of microphones of the microphone array is 8. The radius of the 

microphone array is 0.1m, 0.2m, 0.4m, respectively. Based the Equation 2-17, if the 

radius of the microphone array is 0.1m, 0.2m, 0.4m, it means if the wavelength is more 

than 0.157m, 0.314m, 0.628m, namely the frequency is lower than 2184Hz, 1092 Hz, 

546 Hz, there will not grating lobes generated. 

 
(a) 

 
(b) 
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(c) 

Figure 2-5. Beamforming Pattern of the microphone array with 8 microphones: (a) the radius 

is 0.1m; (b) the radius is 0.2m; (c) the radius is 0.4m. 

(4) 16 microphones array 

The number of microphones of the microphone array is 16. The radius of the 

microphone array is 0.1m, 0.2m, 0.4m, respectively. Based the Equation 2-17, if the 

radius of the microphone array is 0.1m, 0.2m, 0.4m, it means if the wavelength is more 

than 0.0785m, 0.157m, 0.314m, namely the frequency is lower than 4369Hz, 2184Hz, 

1092Hz, there will not grating lobes generated. 

 
(a) 
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(b) 

 
(c) 

Figure 2-6. Beamforming Pattern of the microphone array with 16 microphones: (a) the radius 

is 0.1m; (b) the radius is 0.2m; (c) the radius is 0.4m. 

The beamforming pattern could be divided into 3 areas: main lobe area, low-

frequency area and sidelobe area based on the 0.707 contour curve as shown in figures. 

In the main lobe area, most energy of the signal in the looking direction is preserved. 

In the low-frequency area, the wavelength of the signal is long that the phase shift of 

the received signal of the array is too small to distinguish the different incident 

directions. It means that the capability of the spatial filter of the microphone array is 

invalid. In the sidelobe area, most of the un-looking direction signal is suppressed 

according to the different attenuation factors. However, in several specific angles and 

specific frequencies, the grating lobes are generated and the attenuation factor is close 

to one. It means on a specific angle and specific frequency condition, the microphone 
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array loses the spatial filter capability as in the low-frequency area. When the 

microphone array loses the ability to attenuate the signal in an un-looking direction, it 

just works as a single channel microphone and should use the single-channel method to 

deal with the received signal. 

Table 2-1 is established to exhibit the concrete value about the 3 areas with the 

different hardware setups. The first column of the table depicts the parameters of the 

microphone array. M04R01 means the microphone array consist of 4 microphones and 

the radius is 0.1m. The meaning of other items in the first column follows the same 

rules as the M04R01. The contour curve, which value is 0.707, means half the energy 

of the signal from the un-look incident direction is attenuated, is chosen as the criterion 

of spatial filter function of the microphone array is valid or not. The maximum 

frequency of the low-frequency area means when the frequency is lower than it, the 

signal attenuation will be less than 0.707, the spatial filter function of the microphone 

array is invalid. For comparison, the low-frequency area ratio is proposed that is the 

proportion of low-frequency area to the whole spectrum area. 

The main lobe area is described by the angle of the sidelobe attenuation factor, 

which is 0.707 on several frequency bins (100Hz, 200Hz, 500Hz, 1000Hz, 2000Hz, 

4000Hz). As similar to the low-frequency area ratio, the main lobe ratio is the 

proportion of the main lobe area (not including the overlap part with the low-frequency 

area) to the whole spectrum area. The grating lobes are shown in the figure if their 

attenuation factors are high than 0.707. The number of the grating lobes in which the 

attenuation factors are high than 0.707 is presented in the table. The grating lobe ratio 

is the proportion of the grating lobe area to the whole spectrum area. The total 

attenuation ratio considers the mentioned 3 areas ratio could be proposed as follows: 
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rt = 1 – rl – rm – rg. (2-18) 

Table 2-1 The attenuation performance of microphone array with different hardware setups 

The attenuation performance of the microphone array with different hardware 

setups is provided in Table 2-1. The table demonstrates that the low-frequency area and 

the main lobe area are only related to the radius of the microphone array and unrelated 

to the microphone number, just like a continuous microphone array. A bigger radius of 

the microphone array could generate the lower max frequency of the low-frequency 

area and narrower main lobe area. More microphone numbers could make the 

performance of the microphone array more similar to a continuous microphone array. 

 

Low 

frequency 

area (rl) 

Main lobe area (rm) 
Grating lobe 

area (rg) 

Total 

attenu

-ation 

area 

ratio 

(rt) 

max 

frequ

-ency 

/Hz 

area 

ratio 

100 

Hz 

200 

Hz 

500 

Hz 

1000 

Hz 

2000 

Hz 

4000 

Hz 

area 

ratio 

num

-ber 

area 

ratio 

M04R01 301.5 7.5% / / ±72° ±37° ±18° ±9° 14.4% 12 14.2% 63.9% 

M06R01 301.5 7.5% / / ±73° ±36° ±18° ±9° 14.3% 4 4.0% 74.2% 

M08R01 301.5 7.5% / / ±73° ±36° ±18° ±9° 14.3% 4 1.5% 76.7% 

M16R01 301.5 7.5% / / ±73° ±36° ±18° ±9° 14.3% 0 0% 78.2% 

M04R02 172.3 4.3% / ±89° ±35° ±18° ±9° ±5° 9.0% 40 17.1% 69.6% 

M06R02 172.3 4.3% / ±91° ±35° ±18° ±9° ±4° 8.9% 18 7.2% 79.6% 

M08R02 172.3 4.3% / ±91° ±35° ±18° ±9° ±4° 8.9% 16 4.5% 82.3% 

M16R02 172.3 4.3% / ±91° ±35° ±18° ±9° ±4° 8.9% 0 0% 86.8% 

M04R04 86.1 2.2% ±125° ±42° ±17° ±9° ±5° ±2° 5.9% 156 24.5% 67.4% 

M06R04 86.1 2.2% ±126° ±42° ±17° ±9° ±4° ±2° 5.9% 68 9.9% 82.0% 

M08R04 86.1 2.2% ±126° ±42° ±17° ±9° ±4° ±2° 5.9% 60 5.5% 86.4% 

M16R04 86.1 2.2% ±126° ±42° ±17° ±9° ±4° ±2° 5.9% 4 0.09% 91.8% 
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The less and smaller grating lobe area would be generated and the frequency of the 

lowest frequency of the grating lobe would be higher. 

The phenomenon of the beamforming pattern coincides with Equation 2-15. The 

low-frequency area and the main lobe area correspond to the zero-order Bessel function 

in Equation 2-15, just be related to the frequency of the received signal and the radius 

of the microphone array. The grating lobe area corresponds to the high-order Bessel 

function in the equation. Less microphone number would lead to the considerable value 

of the high-order Bessel function in Equation 2-15, which means the ability of sidelobes 

suppression is impaired. When the microphone number increases, the frequency of the 

lowest frequency of the grating lobe would be higher and the grating lobe would be 

faded. 

2.2 Correlation coefficient 

2.2.1 Pearson correlation coefficient 

The correlation coefficient is a statistical measure of the strength of the relationship 

between the relative movements of two variables. The values range between -1.0 and 

1.0. A calculated number is greater than 1.0 or less than -1.0 means that there is an error 

in the correlation measurement. A correlation of -1.0 shows a perfect negative 

correlation, while a correlation of 1.0 shows a perfect positive correlation. A correlation 

of 0.0 shows no linear relationship between the movement of the two variables [55]. 

There are several types of correlation coefficients, but the one that is most common 

is the Pearson correlation coefficient. It measures the strength and direction of the linear 

relationship between two variables. It ignores many other types of relationships or 

correlations between two variables and cannot differentiate between dependent and 
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independent variables [56]. 

The Pearson correlation coefficient (PCC), the bivariate correlation [57], or 

colloquially simply as the correlation coefficient [58] is the ratio between the 

covariance of two variables and the product of their standard deviations. Thus, it is 

essentially a normalized measurement of the covariance, such that the result always has 

a value between -1 and 1. 

As shown in Figure 2-7 [59], Values range between -1 (strong negative relationship) 

and +1 (strong positive relationship). Values at or close to zero imply a weak or no 

linear relationship. A value of exactly 1.0 means there is a perfect positive relationship 

between the two variables. For a positive increase in one variable, there is also a positive 

increase in the second variable. A value of -1.0 means there is a perfect negative 

relationship between the two variables. This shows that the variables move in opposite 

directions—for a positive increase in one variable, there is a decrease in the second 

variable. If the correlation between two variables is or close to 0, there is no or a weak 

linear relationship between them. 

 
Figure 2-7. Correlation coefficients indicate relationships between variables. 

The strength of the relationship varies in degree based on the value of the 

correlation coefficient. For example, a value of 0.2 shows there is a positive correlation 
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between two variables, but it is weak and likely unimportant. Analysts in some fields 

of study do not consider correlations important until the value surpasses at least 0.8. 

However, a correlation coefficient with an absolute value of 0.9 or greater would 

represent a very strong relationship [57]. 

To calculate the Pearson product-moment correlation, one must first determine the 

covariance of the two variables in question. Next, one must calculate each variable's 

standard deviation. The correlation coefficient is determined by dividing the covariance 

by the product of the two variables' standard deviations. 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )2 2 2 2

, ,
xy

x y

Cov x y Cov x y E XY E X E Y

Var x Var y E X E X E Y E Y


 

−
= = =

− −
, (2-19) 

Where, 

ρxy = Pearson product-moment correlation coefficient, 

Cov(x,y) = covariance of variables x and y, 

σx = standard deviation of x, 

σy = standard deviation of y, 

Var(x) = variance of x, 

Var(y) = variance of y, 

E represents the mathematical exception of the data set. X, Y represents the two 

data sets and x, y represents the sample in the corresponding data set. 

Standard deviation is a measure of the dispersion of data from its average. 

Covariance is a measure of how two variables change together, but its magnitude is 

unbounded, so it is not easy to interpret. By dividing covariance by the product of the 

two standard deviations, one can calculate the normalized version of the statistic. This 

is the correlation coefficient. 
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When the Pearson correlation coefficient is applied to a sample, it may be referred 

to as the sample Pearson correlation coefficient [60]. The formula could be obtained as 

follows: 

( )( )

( ) ( )
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n

i i
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n n

i i
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 =
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

 

, (2-20) 

Where, 

τxy = Pearson product-moment correlation coefficient, 

¯x = the mean of x, 

¯y = the mean of y. 

2.2.2 Coefficient of rank correlation 

The coefficient of rank correlation, also known as rank correlation coefficient, is a 

statistic obtained by arranging the sample values of two elements in order of data size 

and replacing the actual data with the sample values of each element. It is a statistical 

analysis index reflecting the degree of rank correlation. The commonly used rank 

correlation analysis methods include Spearman correlation coefficient and Kendall rank 

correlation coefficient [61]. 

If the rank correlation coefficient is positive, y increases as x increases; If the rank 

correlation coefficient is negative, y decreases as x increases. If the rank correlation 

coefficient is 0, it means that y has no tendency to increase or decrease as x increases. 

As x and y get closer and closer to strictly monotonic functions, the rank correlation 

coefficient becomes numerically larger. When the rank correlation coefficient is 1 or -

1, it indicates that the strict monotonicity between and increases or decreases [62]. 

In practical application, sometimes the original data obtained do not have specific 

data performance and can only be used to describe a particular phenomenon by rank, 
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and to analyze the correlation between phenomena, only rank correlation coefficient 

can be used. 

(1) Spearman correlation coefficient 

Spearman's rank correlation coefficient, named after Charles Spearman is a 

nonparametric measure of rank correlation (statistical dependence between the rankings 

of two variables). It assesses how well the relationship between two variables can be 

described using a monotonic function [63]. 

Spearman's coefficient is appropriate for both continuous and discrete ordinal 

variables [64]. The Spearman correlation between two variables is equal to the Pearson 

correlation between the rank values of those two variables; while Pearson's correlation 

assesses linear relationships, Spearman's correlation assesses monotonic relationships 

(whether linear or not). If there are no repeated data values, a perfect Spearman 

correlation of +1 or -1 occurs when each of the variables is a perfect monotone function 

of the other. 

The Spearman correlation coefficient is defined as the Pearson correlation 

coefficient between the rank variables [65] as follows: 

( ) ( )

( ) ( )( )

( ) ( )

,
s R x R y

R x R y

Cov R x R y
r 

 
= = , (2-21) 

Where, 

ρR(x)R(y) = the usual Pearson correlation coefficient, but applied to the rank variables, 

Cov(R(x),R(y)) = the covariance of the rank variables, 

σR(x) = standard deviations of the rank variables R(x), 

σR(y) = standard deviation of the rank variables R(y). 

Only if all n ranks are distinct integers, it can be computed using the popular 
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formula: 

( )

2

2

6
1

1

i

s

d
r

n n
= −

−

 , (2-22) 

( ) ( )i i id R X R Y= − , (2-23) 

Where di is the difference between the two ranks of each observation, n is the number 

of observations. 

(2) Kendall rank correlation coefficient 

The Kendall rank correlation coefficient, commonly referred to as Kendall's τ 

coefficient, is a statistic used to measure the ordinal association between two measured 

quantities [66]. It is a measure of rank correlation: the similarity of the orderings of the 

data when ranked by each of the quantities [67,68]. Kendall's rank correlation provides 

a distribution-free test of independence and a measure of the strength of dependence 

between two variables. Spearman's rank correlation is satisfactory for testing a null 

hypothesis of independence between two variables, but it is not easy to interpret when 

the null hypothesis is rejected. Kendall's rank correlation improves upon this by 

reflecting the strength of the dependence between the variables being compared [69]. 

Kendall’s rank correlation coefficient and Spearman’s rank correlation coefficient 

assess statistical associations based on the ranks of the data. Kendall rank correlation 

(non-parametric) is an alternative to Pearson’s correlation (parametric) when the data 

you’re working with has failed one or more assumptions of the test. This is also the best 

alternative to Spearman correlation (non-parametric) when your sample size is small 

and has many tied ranks. 

Kendall rank correlation is used to test the similarities in the ordering of data when 

it is ranked by quantities. Other types of correlation coefficients use the observations as 
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the basis of the correlation, Kendall’s correlation coefficient uses pairs of observations 

and determines the strength of association based on the pattern of concordance and 

discordance between the pairs [70]. Intuitively, the Kendall correlation between two 

variables will be high when observations have a similar (or identical for a correlation 

of 1) rank between the two variables and low when observations have a dissimilar (or 

fully different for a correlation of -1) rank between the two variables. 

Thus, the Kendall’s rank correlation coefficient is defined as: 

( ) ( )
( )( )

2*

1

c d c d

c d c d

n n n n

n n n n n


− −
= =

+ + −
, (2-24) 

Where, 

nc represents the number of the concordant pairs: ordered in the same way 

(consistency). A pair of observations is considered concordant if (x2 - x1) and (y2 - y1) 

have the same sign. 

nd represents the number of the discordant pairs: ordered differently (inconsistency). 

A pair of observations is considered discordant if (x2 - x1) and (y2 - y1) have opposite 

signs. 

n represents the total number of pair combinations. 

The explicit expression for Kendall's rank correlation coefficient is: 

( )
( ) ( )

2
sgn sgn

1
i j i j

i j

x x y y
n n




= − −
−
 . (2-25) 

2.3 LMS algorithm 

The LMS algorithm is an adaptive filter algorithm that is used to establish the 

desired filter by adapting the filter coefficients to reduce the least mean square of the 

error signal (the difference between the desired signal and the actual signal) as shown 

in Figure 2-8 [26][27]. It is a stochastic gradient descent method that the filter 
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coefficients can be adapted based on the error value at the current time. It was invented 

in 1960 by Stanford University professor Bernard Widrow and his Ph.D. student, Ted 

Hoff. Then, Morgan proposed the FxLMS algorithm, where the LMS algorithm was 

modified to consider the impact of the secondary path [71]. A block diagram of the 

FxLMS algorithm is shown in Figure 2-9. 

 
Figure 2-8. Block diagram of the LMS algorithm. 

Considering the influence of the secondary path (between the speaker and the 

control point), the estimated transfer function of the secondary path is added to the 

reference signal path. The residual error signal is expressed as: 

(n) ( ) '( ) ( ) ( ) ( )e d n y n d n s n y n= − = −  , (2-26) 

where d(n) is the output signal of the primary path and y'(n) is the output signal of the 

secondary path at the error microphone location. s(n) is the transfer function of the 

secondary path S(z), and * denotes linear convolution. y(n) is the anti-phase signal 

calculated by the algorithm. 

( ) ( ) ( )y n w n x n=  , (2-27) 

where w(n) is the coefficient vector of the ANC adaptive filter W(z), and w(n)=[w0(n), 

w1(n), w2(n), …, wn(n)]. x(n) is the reference input signal at time n, x(n)=[x0(n), x0(n-

1), x0(n-2), …, x0(n-l+1)], and l denotes the order of the adaptive filter. 
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x'(n) is the modified reference signal which is formed by filtering the original 

reference signal with the estimated transfer function of the secondary path: 

ˆ'( ) ( ) ( )x n s n x n=  , (2-28) 

where s^(n) is the estimated impulse response of the secondary path. 

For step size μ, the coefficient vector of the ANC adaptive filter is updated as: 

( 1) ( ) '( ) ( )w n w n x n e n+ = + . (2-29) 

 
Figure 2-9. Block diagram of the FxLMS algorithm. 

2.4 Conclusion 

This chapter introduced the related foundation knowledge about the microphone 

array.  

The formula of the beamforming pattern of the UCA was derived first. Then the 

influence factors of the beamforming pattern were displayed. The formula of the 

beamforming pattern could be formed by the Bessel functions. The simulation with 

different microphone setups demonstrated the validity of the derived formula of the 

beamforming pattern. The radius of the microphone array would affect the spatial 

resolution of the main lobe of the microphone array. It was because the zero-order 

Bessel function that determined the width of the main lobe of the beamforming pattern 

was related to the radius of the microphone array. The larger diameter would bring the 
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narrower main lobe. The high-order Bessel functions determined the attenuation of the 

sidelobe, the more microphones in the microphone array would make the beamforming 

pattern more like the continuous microphone array that avoiding the grating lobe being 

generated. 

Then the correlation coefficient was introduced. The Pearson correlation 

coefficient shows the linear relationship of two variables. And the rank correlation 

coefficient, like the Spearman correlation coefficient and Kendall rank correlation 

coefficient, could show the variation trend of two variables concordant or discordant. 

The formulas of the correlation coefficient were given. 

Last, the LMS algorithm was described. The LMS algorithm is a common adaptive 

filter algorithm to estimate the transfer function between the reference noise signal and 

the received noise signal. The LMS algorithm could be modified to the FxLMS 

algorithm by adding the estimated transfer function of the secondary path to the 

coefficient update process of the LMS algorithm to improve the converge performance. 
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Chapter 3 Modified GSC method 

3.1 Conventional GSC method 

The GSC algorithm can be divided into two transmission paths: primary path and 

auxiliary path, as shown in Figure 3-1. The primary path generates a denoising signal 

with residual noise by the fixed beamforming method. The auxiliary path estimates the 

noise component in the output signal of the primary path. ωm is the weight vector to 

make the microphone array signal x(n) aligned in the looking direction to suppress noise 

from other directions. ym(n) is the sum of the aligned signals as the beamforming output 

signal of the primary path. The auxiliary path estimates the noise component in the 

beamforming output signal of the primary path ym(n) as the canceling signal. The 

canceling signal yb(n) will be removed from the beamforming output signal. Hence, the 

enhanced signal yout(n) consists of the desired signal and residual noise signal is 

obtained. 

The blocking matrix (BM) is adopted to generate the reference noise signal 

excluded the desired signal from the noisy signal in the auxiliary path for estimating 

the noise component of the beamforming output signal. Various methods can be used 

to design the blocking matrix for different purposes. The typical blocking matrix is as 

follows: 

BM = [1 -1 0 0 … 0 0 

0 1 -1 0 … 0 0 

… 

0 0 0 0 … 1 -1](M-1)*M 

where M is the number of microphones in the microphone array. This matrix can block 
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the desired signal completely in theory and introduce a low calculation complexity. The 

output zb(n) of the blocking matrix is offered to the adaptive filter as the reference noise 

signal to estimate the noise component of the beamforming output signal. The LMS 

algorithm is commonly used as an adaptive filter to adjust the filter coefficients ωf. Thus, 

the error signal of the LMS algorithm yout(n), which is also the output signal of the GSC 

method, is obtained by removing the estimated noise signal from the beamforming 

output signal. The filter coefficient ωf is then updated based on the reference noise 

signal and error signal. 

 
Figure 3-1. Block diagram of the conventional GSC method. 

3.2 TF-GSC method 

TF-GSC method is based on the conventional GSC method [54]. The block method 

of the conventional GSC method is modified with the transfer function ratios between 

different microphones in the array to adapt to the reverberation condition. 

The block diagram of the TF-GSC method is shown in Figure 3-2. Zm(t,ejω) is the 

Fourier transform of the received time-domain signal. W0
H is the weight of the fixed 

beamformer and HH is the blocking matrix to the received signal. 

The TF-GSC method would perform the following steps: 
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Figure 3-2. Block diagram of the TF-GSC method. 

(1) The transfer function ratios H(ejω) are calculated as Equation 3-1. Am(ejω) 

represents the acoustic transfer function from the sound source to the mth microphone 

in the microphone array. 

( )
( )
( )

( )
( )

( )
( )

( )
( )

2 2

1 1 1 1

1, , ,...,

j j j j

Mj

j j j j

A e A e A e A e
H e

A e A e A e A e

   



   

 
 = =
  

. (3-1) 

(2) The blocking matrix is constructed as the conjugation transpose matrix of the 

transfer function ratios H(ejω). Thus, the blocking matrix satisfies Equation 3-2. 

( ) ( ) 0H j jH e A e  = . (3-2) 

(3) The weight of the fixed beamformer W0(t,ejω) would be as following Equation 

3-3. Therefore the output of the fixed beamformer YFBF(t,ejω) is calculated as Equation 

3-4. 

( )
( )

( )
( )0 2

,

j

j j

j

H e
W t e F e

H e



 


= . (3-3) 

( ) ( ) ( )0, ,j H j j

FBFY t e W e Z t e  = . (3-4) 

(4) The noise reference signals U(t,ejω) could be calculated as follows: 

( ) ( ) ( ) ( ) ( ), , ,j H j j T j jU t e H e Z t e H e N t e    = = . (3-5) 
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( )1
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A e
U t e Z t e Z t e m M

A e



  


= − =  . (3-6) 

(5) Output signal Y(t,ejω) of the TF-GSC method would be: 

( ) ( ) ( ) ( ), , , ,j j T j j

FBFY t e Y t e G t e U t e   = − . (3-7) 

(6) Final, the filter weights Gm(t,ejω) would be updated as follows: 

( ) ( )
( ) ( )

( )

*, ,
1, ,

,

j j

mj j

m m j

est

U t e Y t e
G t e G t e

P t e

 

 


+ = + . (3-8) 

( ) ( ) ( ) ( )
2

, 1, 1 , ; 1, , 1j j j

est est m

m

P t e P t e Z t e m M   = − + − =  − . (3-9) 

3.3 GSC method with cross-correlation coefficient 

In practice, the error signal of the GSC method consists of a residual noise signal 

and an enhanced desired signal. In speech application, the desired signal is often a 

nonstationary speech signal. When the amplitude of the speech signal increases 

suddenly, the amplitude of the error signal would also be increased synchronously even 

though the amplitude of the residual noise signal may remain stable. Hence, over-

subtraction may be caused in the subsequent frames. Considering the speech signal 

usually is uncorrelated with noise signal in practical situations, the cross-correlation 

coefficient could be introduced in the adaptive filter weight update process to alleviate 

this problem. The flowchart of the GSC with cross-correlation coefficient method is 

displayed in Figure. 3-3. The solid line represents the flowchart of the conventional 

GSC method. The dotted line denotes the module of the cross-correlation coefficient 

method. 
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Figure 3-3. Flowchart of the GSC with cross-correlation coefficient method. 

The GSC method with the cross-correlation coefficient (GSC-CC), in which the 

cross-correlation coefficient is introduced to the weight updating path, is shown in 

Figure 3-4. 

 
Figure 3-4. Block diagram of the GSC method with the cross-correlation coefficient. 

The cross-correlation coefficient between the estimated noise yb(n) and the error 

signal yout(n) is used to control the step size of the adaptive filter weight update process, 

as expressed in the following equations: 

( 1) ( ) ( 1) ( ) ( )f fw n w n k x n e n + = + − . (3-10) 

( ) ( ) ( )( ) ( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )

b out b speech residual

b speech b residual

k E y k y k E y k s k n k

E y k s k E y k n k

 = = +

= +
. (3-11) 

If ( ) ( )b beamformy k n k , (3-12) 

Thus, ( ) ( )( ) 0b speechE y k s k  , (3-13) 

Finally, ( ) ( ) ( )( )b residualk E y k n k  , (3-14) 
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where ρ(k) is the cross-correlation coefficient of the kth frame between the estimated 

noise yb(k) and the error signal yout(k). sspeech(k) represents the clean desired speech 

signal and nresidual(k) is the residual noise component of the output signal. Because of 

the speech signal is commonly assumed to be uncorrelated with the noise signal, the 

cross-correlation coefficient between the estimated noise and the speech signal is close 

to zero and can be neglected. Therefore, ρ(k) is equal to the cross-correlation coefficient 

between the estimated noise signal yb(k) and the residual noise signal nresidual(k) as 

Equation 3-14. This means that if the ρ(k) is small, the residual noise is nearly 

uncorrelated with the estimated noise, so the weight coefficient will be changed only 

slightly. Otherwise, the weight coefficient will be changed considerably to reduce the 

residual noise rapidly. 

Figures 3-5 and 3-6 illustrate the influence of the varying speech signal on the 

cross-correlation coefficient between the estimated noise signal and the output signal 

with the conventional GSC method and the GSC-CC method on different SNR 

conditions. The input original signal is a speech signal extracted from the TIMIT 

database [72] and the noise signal is the white noise obtained from the NOISEX-92 

database [73]. 

Figure 3-5 shows the original speech and noise signal, in which the signal-to-noise 

ratio (SNR) is equal to -15dB, -10dB, -5dB, 0dB, 5dB, 10dB (the ratio of the energy of 

the whole speech signal and the energy of the noise signal during the same time), 

respectively. Detailed information about the experimental setup is depicted in Chapter 

4. Figure 3-6 presents the cross-correlation coefficient between the estimated noise 

signal and the output signal with the conventional GSC method and the GSC-CC 

method on different SNR conditions. 
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(a) SNR = -15dB 

 
(b) SNR = -10dB 

 
(c) SNR = -5dB 



39 

 
(d) SNR = 0dB 

 
(e) SNR = +5dB 

 
(f) SNR = +10dB 

Figure 3-5. Clean speech signal and white noise signal on different SNR conditions. 
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(a) SNR = -15dB 

 
(b) SNR = -10dB 

 
(c) SNR = -5dB 
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(d) SNR = 0dB 

 
(e) SNR = +5dB 

 
(f) SNR = +10dB 

Figure 3-6. Cross-correlation coefficient of different methods on different SNR conditions. 

The figures illustrate that the negative peak of the cross-correlation coefficient by 
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the conventional GSC method is generated when the amplitude of the speech signal is 

increased suddenly, which implies the phenomenon of over-subtraction. With the 

increase of the SNR, the speech signal emerges from the white noise and more peaks 

of the cross-correlation coefficient are generated, some time is closed to -1, which 

implies the phenomenon of over subtraction becomes more serious. 

Figure 3-7 displays the influence of the varying speech signal on the estimated 

noise signal. The figures present the energy of the estimated noise frame with different 

methods on different SNR conditions. 

 
(a1) SNR = -15dB 

 
(b1) SNR = -15dB 
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(a2) SNR = -10dB 

 
(b2) SNR = -10dB 

 
(a3) SNR = -5dB 
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(b3) SNR = -5dB 

 
(a4) SNR = 0dB 

 
(b4) SNR = 0dB 
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(a5) SNR = +5dB 

 
(b5) SNR = +5dB 

 
(a6) SNR = +10dB 
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(b6) SNR = +10dB 

Figure 3-7 Comparison of the energy of the estimated noise frame with different methods on 

different SNR conditions: (a1~a6) all frames; (b1~b6) 50th to 100th frame. 

The part (b1~b6) of the figures displays the partially enlarged view of the 

corresponding part (a1~a6) of the figures from the 50th to 100th frame. When the SNR 

is low, as SNR is -15 dB, the speech signal is almost submerged by the background 

noise. The estimated noise by the adaptive algorithm is stable and barely affected by 

the variation of the speech signal. With the increase of the SNR, the speech signal 

becomes emerging from the background noise and the estimated noise by the adaptive 

algorithm is increased rapidly though the background noise is stable. 

The energy of the estimated noise frame with the conventional GSC method would 

increase when the energy of the speech frame is much more than the actual noise frame. 

As shown in Figure 3-7 (a4, b4, SNR=0dB), the frame energy of the estimated noise is 

raised when the frame energy of the speech signal is noticeable than other frames. When 

the SNR of the received signal is as high as +10dB, the frame energy of the estimated 

noise is changed rapidly with the frame energy of the speech signal even though the 

actual noise is still stable. 

 The figures illustrate the GSC-CC method could flatten the energy curve of the 
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estimated noise frame, which is consistent with the trend of the energy curve of the 

original white noise signal on different SNR conditions. This means that the distortion 

of the enhanced speech signal is reduced since the desired signal is damaged less when 

the amplitude of the speech signal is changed. 

The GSC-CC method could decrease the overestimation of the noise efficiently 

when the desired speech signal amplitude is increased suddenly (Figure 3-7). On the 

other hand, the figures also show that the energy curve of the estimated noise frames 

with the GSC-CC method is lower than the conventional GSC method. This is because 

the correlation coefficient is less than or equal to one, the step size of the adaptive filter 

of the GSC-CC method is always smaller than the GSC method so that the convergence 

speech of the LMS algorithm becomes slow. Consequently, the energy of the residual 

noise signal with the GSC-CC method is higher than the conventional GSC method. 

The GSC method with minimum cross-correlation coefficient (GSC-MCC) method 

is proposed by combining the conventional GSC method and the GSC-CC method to 

utilize the advantages of the two methods. The conventional GSC method and the GSC-

CC method are run synchronously. One frame of the output signal frames of these two 

methods, which has the smaller cross-correlation coefficient (between the estimated 

noise signal and the corresponding output signal), is adopted to synthesize the final 

output signal. 

Considering the overlap of speech frames and the nonstationary nature of a speech 

signal, the principle of the GSC-MCC method is modified as Equation 3-15 to choose 

the frame to synthesize the final output signal. 

( ) ( )( )
1

1

( ), 1
( )

( ),

k

out corr conv corr

i kout final

out conv

y k sign i i
y k

y k otherwise

 
+

−

= −−

−


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= 




, (3-15) 
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where yout-corr(k) and yout-conv(k) represent the output signal frame of the GSC-CC method 

and the conventional GSC method, respectively. 

Figure 3-8 displays the distortion-noise ratio of frames with different methods from 

the 50th to 100th frame under different SNR conditions (-15dB, -10dB, -5dB, 0dB, 

+5dB, +10dB). The smaller distortion-noise ratio means lighter distortion. The 

distortion-noise ratio will be introduced in Chapter 4. The figures illustrate that the 

signal distortion processed by the GSC method is raised with the SNR increasing. The 

GSC-CC method could reduce the peak value of the distortion efficiently. However, the 

residual noise is increased since the correlation coefficient impaired the efficiency of 

the adaptive algorithm. The GSC-MCC method could combine the advantages of the 

GSC method and the GSC-CC method to reduce the distortion efficiently to adapt to 

nonstationary speech signals under different SNR conditions. 

 
(a) SNR = -15dB 
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(b) SNR = -10dB 

 
(c) SNR = -5dB 

 
(d) SNR = 0dB 
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(e) SNR = +5dB 

 
(f) SNR = +10dB 

Figure 3-8. Distortion-noise ratio of frames with different methods from the 50th to 100th 

frame under different SNR conditions. 

3.4 GSC method with sidelobe neutralization 

Based on Chapter 2.1, the microphone array is determined with 6 microphones in 

a circle which radius is 0.1m. Because the configuration of the microphone array is 

determined, the sidelobe of the beamforming pattern could be calculated as Equation 

2-15. If there are two sound sources s1 and s2, deployed in the direction vector ν1 and 

ν2, respectively, in the sound field, the sidelobe neutralization method could be derived 

using the following equations: 
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 1 2,S s s= ,  1 2,V v v= . (3-16) 

The received signal of microphones xm could be written as: 

1 (1, ) 2 (2, )m m mx SV s v s v= = + . (3-17) 

The output signal of the beamforming function to the specific direction is: 

1 ( 1, ) (1, ) 1 (1, ) (1, ) 2 (2, ) 1 (1, ) 2 (2, )

1 1 1

M M M

v s m m m m m m m m

m m m

y x v s v v s v s v s v   

= = =

= = + = +   , (3-18) 

2 ( 2, ) (2, ) 1 (1, ) (2, ) 2 (2, ) 2 (2, ) 1 (1, )

1 1 1

M M M

v s m m m m m m m m

m m m

y x v s v v s v s v s v   

= = =

= = + = +   . (3-19) 

Let ( )( , ) ( , )

1

,
M

ab a m b m a b

m

u v v B  

=

= = , (3-20) 

( ) ( )2

1 2 1 12 2 1 12 2 12 2 12 21 1 1 12 21 1 121 1v s v vy y u y s u s u s u u s s u u s u= − = + − − = − = − , (3-21) 

where uab represents the attenuation coefficient of the sidelobe when the sound source 

is placed at direction b and beamformed to direction a. Moreover, the attenuation 

coefficient will be the conjugate of uab when the cast direction is inverse. 

Hence, Equation 3-21 could be used for direction ν1 to reduce the noise received 

from direction ν2. This equation proves that the noise signal from the interference 

direction can theoretically be removed entirely from the beamforming output signal of 

the looking direction. When the attenuation coefficient is not equal to one, the signal 

amplitude from the looking direction could be recovered by multiplying a proper scale 

factor. On the other hand, if the attenuation coefficient of the frequency is equal to one, 

this frequency signal would be lost completely and cannot be compensated. 

Therefore, the sidelobe neutralization method could be modified as Equations 3-23 

by combining Equations 3-22. The desired signal component in the noise direction was 

calculated and subtracted from the beamforming output of the noise direction as 

Equations 3-22. Hence, the estimated noise signal becomes the pure noise without the 

desired signal. The output of the sidelobe neutralization method is calculated using 
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Equations 3-23. This equation proves that the sidelobe neutralization method would not 

lose the frequency signal with an attenuation coefficient of even one. Because most 

time uab is less than 1, the cube of uab is less than itself. Combine Equations 3-18 and 

Equations 3-23, it means (u12)3 would be less than u12 most time. Thus, the 

beamforming output with less noise is obtained. 

( ) ( )2

2 1 2 21 1 2 21 1 21 1 21 12 2 2 21 12 2 211 1v s v vy y u y s u s u s u u s s u u s u= − = + − − = − = − . (3-22) 

( ) ( )
2 3

1 2 1 1 12 2 1 1 12 2 12 2 21 1 2 121v s s v v sy y u y s u s u s u s s u= − = + − − = + . (3-23) 

However, the estimated noise direction is often inaccurate in practice. The error of 

the estimated noise direction would affect the performance of the sidelobe 

neutralization method. ν3 is assumed to be the inaccurately estimated noise direction 

and Equations 3-22 and 3-23 can be modified as follows: 

3 ( 3, ) (3, ) 1 (1, ) (3, ) 2 (2, ) 31 1 32 2

1 1

M M

v s m m m m m m

m m

y x v s v v s v u s u s  

= =

= = + = +  . (3-24) 

( )3 1 3 31 1 31 1 32 2 31 1 31 12 2 2 32 31 12v s v vy y u y u s u s u s u u s s u u u= − = + − − = − . (3-25) 

( ) ( )1 3 1 1 13 3 1 1 12 2 13 2 32 31 12 1 2 12 13 32 31 12v s s v v sy y u y s u s u s u u u s s u u u u u = − = + − − = + − −  . (3-26) 

Let 
( )12 13 32 31 12
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12

v

u u u u u
r

u

− −
= , (3-27) 

hence, rν3 is the ratio that the noise signal processed by the sidelobe neutralization 

method with the inaccurate noise direction to by the beamforming method. rν3 can be 

qualitatively analyzed as follows: 

if u12 is small or near to zero, rν3 may be extremely big, 

( ) ( )1 3 1 1 2 12 13 32 31 12 1 2 13 32v s sy s s u u u u u s s u u = + − − = + −  . (3-28) 

If u12 is big, there are roughly two cases: 

(1) ν3 is near ν2, thus, 2 2 213 32 12 22
3 13 13 13

12 12

1 1 1v

u u u u
r u u u

u u
= − +  − + =  . (3-29) 
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(2) ν3 is far from ν2, thus, u32 is small, 2 213 32 32
3 13 13

12 12

1 1 3v

u u u
r u u

u u
= − +  + +  . (3-30) 

Assume an instance, which ν1 is 0° and ν2 is 30°, 60°, 90°, 120°, 150°, 180°, 

respectively, to illustrate the affection of the inaccurately estimated noise direction for 

the residual noise. According to Equation 3-27, Figure 3-9 shows rν3 in different 

estimated noise directions (ν3 from -180° to +180°). 

        
(a1) Actual noise direction: 30° 

 

(b1) Actual noise direction: 30° 
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(a2) Actual noise direction: 60° 

 

(b2) Actual noise direction: 60° 

        
(a3) Actual noise direction: 90° 
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(b3) Actual noise direction: 90° 

        
(a4) Actual noise direction: 120° 

 

(b4) Actual noise direction: 120° 
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(a5) Actual noise direction: 150° 

 

(b5) Actual noise direction: 150° 

        
(a6) Actual noise direction: 180° 
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(b6) Actual noise direction: 180° 

Figure 3-9. (a1~a6) Ratio of the noise processed using the sidelobe neutralization method 

with the different estimated noise directions and different actual noise directions. (b1~b6) 

Coefficient of sidelobe attenuation in the actual noise direction. 

The figures show that when the actual noise direction is farther from the speech 

signal direction, the number of the polar point of the coefficient of the sidelobe 

attenuation in actual noise direction becomes more and the grating lobe may be 

generated. 

The blue gap near the actual noise direction in Figure 3-9 (a1~a6) shows that the 

residual noise signal processed by the sidelobe neutralization method with an inaccurate 

noise direction is less than by the original beamforming method in a relatively wide 

direction range near the actual noise direction. When the sidelobe attenuation 

coefficient of the actual noise direction is close to one, it means the grating lobe is 

generated and the microphone array loses the ability of the spatial filter in this frequency 

band. Even the estimated noise direction is mismatched a lot, the obtained noise would 

be almost equal to the residual noise of the original beamforming method. 

When the sidelobe attenuation coefficient of the actual noise direction is close to 

zero, the ratio of the residual noise processed using the sidelobe neutralization method 

would be big. It is because that the sidelobe attenuation of the actual noise direction is 

strong, namely the denominator of Equation 3-27 is small which leads to the ratio is 
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big, even though the real noise component of the noise processed by the sidelobe 

neutralization method is not so big. When the estimated noise direction is far away from 

the actual noise direction, the ratio value is close to one in figures, which means that 

the energy of the noise signal processed by the sidelobe neutralization method is almost 

equal to that by the original beamforming method. In the high-frequency band in several 

directions, the ratio becomes higher, but it is still less than two. 

Therefore, the conclusion could be derived that the sidelobe neutralization method 

could work effectively when the estimated noise direction is near the actual noise 

direction. When the estimated noise direction is far away from the actual noise direction, 

the denoising performance of the sidelobe neutralization method is similar to the 

beamforming method except in the frequency range which the effect of the sidelobe 

attenuation in the actual noise direction is strong. 

Thus, combining the LMS theory, in which the denoising performance of the 

algorithm is related to the energy of the received noise signal [46], the GSC-SN method 

is proposed by adding the sidelobe neutralization method to the primary path of the 

conventional GSC method. The block diagram of the GSC-SN method is presented in 

Figure 3-10. The sidelobe neutralization method is used to reduce the output noise of 

the beamforming method to improve the performance of the GSC method. When the 

noise weight vector is estimated to be ωn, the noise signal yn(n) in the noise direction 

could be estimated using Equation 3-19. The desired signal in the noise direction ynm(n) 

is calculated and subtracted from the estimated noise signal as Equation 3-22. Therefore, 

the pure estimated noise signal ynsm(n) is obtained without the desired signal. The pure 

estimated noise signal is subtracted from the beamforming output signal of the desired 

signal direction ym(n). Thus, the beamforming output of the primary path with less noise 
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is obtained as Equation 3-23. The denoising performance of the GSC method could be 

improved when the beamforming output signal with less noise. 

 

Figure 3-10. Block diagram of the GSC method with sidelobe neutralization. 

3.5 Proposed GSC-SN-MCC method 

Finally, the GSC-SN-MCC method was proposed by combining the GSC-MCC 

method and the GSC-SN method to improve the performance of the GSC method. The 

GSC-MCC method was used to reduce the distortion of the enhanced signal caused by 

the varying desired signal. The sidelobe neutralization method was placed in the 

primary path of the GSC-MCC method to generate the beamforming output signal with 

less noise to improve the denoising ability of the proposed method. 

As shown in Figure 3-11, the received signal of the microphone array is 

beamformed in the desired signal direction ωm and the noise signal direction ωn, 

respectively. Based on Equation 3-18, 3-19, 3-22, 3-23, the beamforming output signal 

with less noise than the original beamforming method is obtained. Then the system is 

run as usual GSC method until updating the adaptive filter coefficient. The cross-

correlation coefficient ρ (between the estimated noise signal and the corresponding 
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output signal) is added to the adaptive filter coefficient update equation to control the 

overestimating of the noise component, as Equation 3-10. 

 

Figure 3-11. Block diagram of the GSC-SN-MCC method. 

The GSC-SN-MCC method would perform like the following steps: 

(1) The received signals are aligned in the looking direction and the estimated noise 

direction, respectively. Sum the aligned signal to obtain the corresponding output signal 

(ym(n)), (yn(n)) of the fixed beamforming method. 

(2) The sum signal in the looking direction would be mapped to the estimated noise 

direction based on the beamforming pattern equation. The sidelobe value (ynm(n)) is 

obtained. 

(3) The sidelobe value of the sum signal in the looking direction (ynm(n)) would be 

subtracted from the sum signal (yn(n)) in the estimated noise direction, the estimated 

noise in the estimated noise direction without the desired signal component (ynsm(n)) is 

obtained. 

(4) The estimated noise in the estimated noise direction without the desired signal 

component (ynsm(n)) would be mapped to the looking direction based on the 
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beamforming pattern equation. The sidelobe value (ymn(n)) is obtained. 

(5) The sidelobe value of the sum signal in the estimated noise direction (ymn(n)) 

would be subtracted from the sum signal (ym(n)) in the looking direction. The summed 

signal in the looking direction with less noise component and undamaged desired signal 

(ymsnsm(n)) is obtained. 

(6) The estimated noise in the estimated noise direction without the desired signal 

component (ynsm(n)) would be projected to every microphone in the array. The projected 

signal would be subtracted from the aligned received signals (in the looking direction, 

ym(n)) to reduce the noise component in the aligned received signals. 

  The aligned received signals in the looking direction with less noise component 

would be input to the blocking matrix to get the pure reference noise without the desired 

signal component. 

(7) The pure reference noise signal would be put into the adaptive filter to generate 

the estimated noise signal (yb(n)). 

(8) The estimated noise signal (yb(n)) would be subtracted from the output signal 

of the beamformer with less noise (ymsnsm(n)) to get the error signal (yout(n)). The error 

signal (yout(n)) is the final output signal of the GSC-SN-MCC method. 

(9) The cross-correlation coefficient ρ between the estimated noise signal (yb(n)) 

and the error signal (yout(n)) is used to control the step size of the LMS algorithm to 

update the coefficient of the adaptive filter. 

3.6 Conclusion 

This chapter introduced the conventional GSC method and proposed a modified 

GSC method to reduce the distortion of the enhanced signal. Distortion of the enhanced 



62 

audio signal consists of two parts: the residual acoustic noise and the distortion of the 

desired audio signal, which means that the desired audio signal is damaged. A modified 

GSC method using cross-correlation and sidelobe neutralization was proposed to 

reduce both kinds of distortion if the desired signal was a nonstationary speech signal. 

First, the GSC-MCC method was proposed that the cross-correlation coefficient 

between the canceling signal and the error signal of the LMS algorithm was added to 

the adaptive process of the GSC method. The cross-correlation coefficient was used to 

control the step size of the update process of the LMS algorithm. It meant that if the 

cross-correlation coefficient was small, the step size of the updating would be small and 

the weight coefficient will be changed only slightly. Otherwise, the weight coefficient 

would be changed considerably to converge rapidly. 

Then the sidelobe neutralization method was proposed to reduce the residual noise 

component in the output signal of the fixed beamforming method. When the estimated 

noise direction was correct, the residual noise component could be reduced effectively. 

The formula demonstrates that even the estimated noise direction was not inaccurate, 

the amount of the noise component in the output signal of the beamforming method 

processed by the sidelobe neutralization method was still similar to the original noise 

component. The figures of the simulation result were displayed with the different 

estimated noise directions. The noise component of the beamforming output signal 

could be decreased by subtracting the estimated noise signal to improve the denoising 

performance of the GSC method, which was referred to as the GSC-SN method. 

Finally, the GSC-SN-MCC method was proposed by merging the above GSC-MCC 

and GSC-SN methods. The detailed performed steps were provided.  
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4. Experiment and Analysis 

4.1 Experiment implementation 

The laboratory experiments were conducted in the anechoic chamber to validate 

the proposed method. The experimental layout is shown in Figure 4-1. The laptop was 

the control center to manage the audio system for simulating a real environment. Two 

omnidirectional speakers were connected to the laptop as the speech and noise source, 

respectively, using an INTERM L-2400 power amplifier. The microphone array 

consisted of 6 MEMS microphones distributed uniformly on a circle with a radius of 

0.1 meters. The printed circuit board (PCB) of the SCIEN company was connected to 

the microphones to realize the signal amplification function, A/D conversion function 

and transfer the digital signal to the laptop for recording. The signal was processed by 

MATLAB software. The speakers and the microphone array were deployed in the same 

horizontal plane to simplify the experiment. This meant that the elevation angles of the 

incident signals (desired signal and noise signal) were 90°. 

Based on the common far-field equation as Equation 4-1, the minimum distance 

between the microphone array and the sound source was calculated to ensure that the 

position of the speakers satisfied the far-field condition. Assuming that the sound speed 

c in air was 343m/s, the highest frequency f was 4000Hz and the diameter of 

microphone array L was 0.2m. Hence, the minimum distance d was approximately 

0.933m. Thus, the speakers were deployed about 2.5m away from the microphone array 

considering the space of the anechoic chamber and the minimum distance. The azimuth 

angles of the speech signal source and the noise signal source were 0° and 90°, 

respectively. 



64 

2 22 / 2 /d L L f c=  =   . (4-1) 

 

Figure 4-1. Experiment layout in the anechoic chamber. 

The speech of a female was selected randomly from the TIMIT database [72] as 

the desired signal. White noise in the NOISEX-92 database [73] was chosen as the noise 

signal. The power of the noise signal was adjusted to simulate different SNR conditions. 

The sampling rate of the microphone array was 16000Hz and the received signal was 

filtered using a lowpass filter which cutoff frequency is 4000 Hz. The high sampling 

rate could increase the time resolution of the system and exhibit the phase difference 

between microphones more obviously. Because the most energy of speech is 

concentrated in the low and medium frequency bands, the received signal was filtered 

by a lowpass filter to reduce the calculation burden of the hardware, while most of the 

speech information was preserved. 

4.2 Experiment result analysis 

The distortion of the enhanced speech signal was calculated using Equation 4-2, 
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where k denoted the kth frame and l is the length of the frame. yout(n) and sspeech(n) 

represented the output signal of the method and the clean desired speech signal without 

noise, respectively. Less distortion meant better denoising performance of the method. 

Equation 4-3 calculated the distortion-noise ratio as the distortion divided by the pure 

noise energy to normalize the distortion for comparing the distortion degree under 

different SNR conditions. 
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For comparison, the average value of the normalized distortion-noise ratio and the 

normalized distortion value of the kth frame processed by the GSC method was as the 

unit value. The results by other methods were normalized as Equations 4-4 and 4-5. 
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4.2.1 Effect of the various SNR conditions 

Figure 4-2 compares the distortion-noise ratio of frames by different methods while 

SNR is -20dB, -10dB, -5dB, 0dB, +5dB, +10dB, respectively. Figure 4-2 (b1~b6) is the 

enlarged views of Figure 4-2 (a1~a6) from the 50th to 100th frames on different SNR 

conditions, which includes two peaks of the speech frame energy. The figures show that 

peaks of the signal distortion are generated using the GSC method when the energy of 

the speech frame is increased suddenly. 

When the SNR is low (-20dB), the speech signal is almost submerged by the noise 

signal. The residual noise is barely affected by the nonstationary speech signal. With 
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the increase of the SNR, the peaks of the signal distortion become more apparent. 

 
(a1) SNR = -20dB 

 
(b1) SNR = -20dB 

 
(a2) SNR = -10dB 
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(b2) SNR = -10dB 

 
(a3) SNR = -5dB 

 
(b3) SNR = -5dB 
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(a4) SNR = 0dB 

 
(b4) SNR = 0dB 

 
(a5) SNR = +5dB 
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(b5) SNR = +5dB 

 
(a6) SNR = +10dB 

 
(b6) SNR = +10dB 

Figure 4-2. Distortion-noise ratio of frames by different methods on different SNR conditions: 

(a1~a6) all frames; (b1~b6) from the 50th to 100th frame. 



70 

The figure illustrates that the GSC-CC method could alleviate this problem while 

the residual noise will be increased at other frames that the speech energy is stable. 

While the residual noise of the GSC-CC method is higher than the GSC method. The 

GSC-SN method could reduce the distortion caused by the residual noise, but the 

distortion problem mentioned above that the damage of the desired signal will still exist. 

The GSC-SN-MCC method could take advantage of the above two methods to decrease 

both kinds of distortion of the enhanced signal on different SNR conditions. The 

residual noise of the GSC-SN-MCC method would be similar to the GSC-SN method 

when the speech signal is stable. The peak value of the speech distortion of the GSC-

SN-MCC method would be as small as the GSC-CC method when the energy of the 

speech signal is increased suddenly. 

As shown in Figure 4-2, the maximum distortion occurred at the 83rd frame in this 

case. Figure 4-3 presents the spectrum of signal distortion of the 83rd frame on different 

SNR conditions where the fast Fourier transform is utilized. For convenience, the 

amplitude of the spectrum is normalized. Figure 4-3 (a1~a6) displays the spectrum of 

signal distortion of the 83rd frame over the entire frequency band with different 

methods on different SNR conditions. Figure 4-3 (b1~b6) shows the enlarged view of 

the frequency band (500Hz~2000Hz) of the corresponding Figure 4-3 (a1~a6). When 

the modified GSC methods are applied, there are apparent differences in the amplitude 

from 500Hz to 2000Hz, which is the frequency band that the speech energy is 

concentrated. 



71 

 
(a1) SNR = -20dB 

 
(b1) SNR = -20dB 

 
(a2) SNR = -10dB 
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(b2) SNR = -10dB 

 
(a3) SNR = -5dB 

 
(b3) SNR = -5dB 
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(a4) SNR = 0dB 

 
(b4) SNR = 0dB 

 
(a5) SNR = +5dB 
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(b5) SNR = +5dB 

 
(a6) SNR = +10dB 

 
(b6) SNR = +10dB 

Figure 4-3. Spectrum of the signal distortion of the 83rd frame by different methods on 

different SNR conditions: (a1~a6) entire frequency band; (b1~b6) from 500Hz to 2000Hz. 
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The figures show that the trend of the distortion of the enhanced signal by the GSC 

method with the SNR increasing is a curve. When SNR is -20dB, the background noise 

is so strong that the speech signal is submerged under the background noise. The change 

of speech energy rarely affects the distortion of the enhanced signal. When SNR is 

between -10dB and 0dB, the distortion of the enhanced signal becomes more prominent 

with the SNR increasing because the increased speech energy raises the energy of the 

error signal of the LMS algorithm and influences the coefficient update process of the 

adaptive filter. When SNR is between 0dB and +10dB, the distortion of the enhanced 

signal becomes flat with the SNR increasing. This is because the distortion of the 

enhanced signal in other frequencies is increased lead that the spectrum of the signal 

distortion becomes flat. 

The GSC-CC method could reduce the peak value of the spectrum of the signal 

distortion while the residual noise component is a litter higher than other methods.  

The GSC-SN method could decrease the residual noise when the speech energy is not 

noticeable while barely affecting the peak value of the signal distortion. The GSC-SN-

MCC could reduce the peak value of the distortion and the residual noise component at 

the same time. The distortion spectrum of the GSC-SN-MCC method is smaller and 

flatter than other GSC methods. Hence, the distortion of the enhanced signal caused by 

damaging the desired signal and the residual noise component is reduced successfully 

using the proposed method. 

Table 4-1 and 4-2 list the denoising performance of different methods under various 

SNR conditions. Table 4-1 lists the average of the normalized distortion-noise ratio and 

Table 4-2 presents the normalized distortion value of the 83rd frame (maximum 

distortion frame) under various conditions. 
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Table 4-1. Average of the normalized distortion-noise ratio by different methods under various 

SNR conditions. 

Normalized to result of the GSC method. 

Table 4-2. Normalized distortion ratio of the 83rd frame by different methods under various SNR 

conditions. 

SNR/dB GSC GSC-CC GSC-SN GSC-SN-MCC 

+20 100% 54.09% 109.34% 82.73% 

+10 100% 39.69% 110.58% 40.31% 

+5 100% 20.91% 106.16% 20.94% 

0 100% 17.68% 96.88% 17.11% 

-5 100% 22.38% 93.10% 18.44% 

-10 100% 38.14% 90.32% 27.24% 

-20 100% 124.24% 80.42% 72.87% 

Normalized to result of the GSC method. 

Table 4-1 shows that the GSC-SN method has better performance under low SNR 

conditions. The GSC-SN method could reduce the residual noise component effectively 

when SNR is below 5dB. Because when the SNR is high, the SN method will only 

reduce trivial noise that may not influence the average speed of the adaptive filter. 

Table 4-2 indicates that the GSC-CC method could reduce the peak value of the 

enhanced signal distortion efficiently under most SNR conditions, except the case that 

the noise is too heavy that the speech energy barely affects the estimation of the residual 

SNR/dB GSC GSC-CC GSC-SN GSC-SN-MCC 

+20 100% 65.98% 104.03% 75.75% 

+10 100% 57.93% 100.99% 46.29% 

+5 100% 54.46% 97.92% 38.51% 

0 100% 72.66% 89.87% 44.14% 

-5 100% 105.34% 83.98% 59.01% 

-10 100% 134.85% 80.22% 72.41% 

-20 100% 157.90% 77.21% 78.84% 
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noise. 

When the SNR is as high as 20 dB, the average distortion-ratio of the GSC-CC 

method is better compared to the GSC-SN-MCC. It is because that the noise level is 

extremely low in this case, the denoising effect of the SN method of GSC-SN-MCC 

method is less than the over subtraction effect caused by the SN method itself, even 

though the cross-correlation coefficient is used to control this problem. 

The proposed GSC-SN-MCC method is a combination of the above two methods. 

The tables show that the proposed method can work efficiently under both high and low 

SNR conditions. The performance trend of the GSC-SN-MCC method is a parabolic 

curve. When the SNR is too high or too low, the performance of the proposed method 

would be decreased. And the best performance of the proposed method occurs when 

the energy of speech is almost equal to the energy of noise. 

4.2.2 Effect of the inaccurate estimated noise direction 

The simulation calculation was conducted based on the previous experiment data 

to show the influence on the performance of the proposed method when the estimated 

noise direction was not accurate. Therefore, the incident direction of the desired signal 

was 0° and the actual noise direction was 90° in this subsection. The SNR condition 

was performed as -5dB. Twelve angles were chosen as the inaccurately estimated noise 

directions, which were distributed uniformly on a circle. The meaning of the coordinate 

axes in the figures and the calculation equations of the result were the same as in the 

previous subsection. 

Figure 4-4 presents the distortion-noise ratio of the frames (from 50th to 100th 

frame) with different methods when the estimated noise direction is -60°, -30°, 0°, -

+30°, +60°, +90°, +120°, +150°, +180°, -150°, -120° and -90°. 
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(a) estimated noise direction is -60° 

 
(b) estimated noise direction is -30° 

 
(c) estimated noise direction is 0° 
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(d) estimated noise direction is +30° 

 
(e) estimated noise direction is +60° 

 
(f) estimated noise direction is +90° 
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(g) estimated noise direction is +120° 

 
(h) estimated noise direction is +150° 

 
(i) estimated noise direction is +180° 
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(j) estimated noise direction is -150° 

 
(k) estimated noise direction is -120° 

 
(l) estimated noise direction is -90° 

Figure 4-4. Distortion-noise ratio of frames (from 50th to 100th frame) by different methods 

when the estimated noise direction is different. 
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The figures indicate even the estimated noise direction is far away from the actual 

noise direction, the distortion of the proposed method is still lower and flatter than the 

conventional GSC method, just a little higher than the GSC-MCC method. The figures 

demonstrate that no matter the error of the estimated noise direction, the proposed 

method still could effectively reduce both the peak value and the average value of the 

signal distortion. 

Table 4-3 and 4-4 compare the performance of the different methods in various 

estimated noise directions. Table 4-3 lists the average of the distortion-noise ratio when 

the estimated noise direction is different and Table 4-4 presents the distortion value of 

the 83rd frame (maximum distortion frame) under different estimated noise direction 

conditions. 

Table 4-3. Average of the normalized distortion-noise ratio by different methods in various 

estimated noise directions. 

Normalized to result of the GSC method. 

Estimated noise 

direction/degree 
GSC GSC-CC GSC-SN GSC-SN-MCC 

-60 100% 105.34% 112.55% 100.87% 

-30 100% 105.34% 106.33% 91.93% 

0 100% 105.34% 100% 88.07% 

30 100% 105.34% 92.92% 76.27% 

60 100% 105.34% 92.80% 68.32% 

90 100% 105.34% 83.98% 59.01% 

120 100% 105.34% 95.71% 80.68% 

150 100% 105.34% 90.56% 76.15% 

180 100% 105.34% 97.76% 82.98% 

-150 100% 105.34% 94.29% 79.13% 

-120 100% 105.34% 105.59% 93.54% 

-90 100% 105.34% 102.98% 88.94% 
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Table 4-4. Normalized distortion ratio of the 83rd frame by different methods in various 

estimated noise directions. 

Normalized to result of the GSC method. 

Table 4-3 shows that the performance of the GSC-CC method is not related to the 

estimated noise direction because the estimated noise direction information is not used 

in the GSC-CC method. The performance of the GSC-SN method would be decreased 

when the estimated noise direction is far away from the actual noise direction. When 

the estimated noise direction is identical to the actual noise signal direction, the GSC-

SN method could achieve the best denoising performance. If the estimated noise 

direction is identical to the desired signal direction, the GSC-SN method would reduce 

to the conventional GSC method. 

The trend of the performance of the GSC-SN-MCC method is similar to the GSC-

SN method. Better performance of the proposed method could be attained if the 

estimated noise direction is closer to the actual noise direction. Even when the estimated 

noise direction is the opposite of the actual noise direction, the performance of the 

Estimated noise 

direction/degree 
GSC GSC-CC GSC-SN GSC-SN-MCC 

-60 100% 22.38% 105.90% 24.68% 

-30 100% 22.38% 97.81% 23.04% 

0 100% 22.38% 100% 22.38% 

30 100% 22.38% 94.42% 21.15% 

60 100% 22.38% 103.73% 20.55% 

90 100% 22.38% 93.10% 18.44% 

120 100% 22.38% 103.00% 23.60% 

150 100% 22.38% 89.81% 21.52% 

180 100% 22.38% 98.23% 23.62% 

-150 100% 22.38% 93.95% 22.44% 

-120 100% 22.38% 102.58% 25.06% 

-90 100% 22.38% 96.50% 23.57% 
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proposed method is still not worse than the conventional GSC method. 

Table 4-4 presents the GSC-CC method that could efficiently reduce the peak value 

of the signal distortion, which is independent of the estimated noise direction. Because 

of the high SNR in the 83rd frame, the GSC-SN method barely affects the residual noise 

component of the adaptive filter. Even it is a little higher than the conventional GSC 

method in several directions. The ability of the GSC-SN-MCC method to decrease the 

peak of the enhanced signal distortion is similar to the GSC-CC method. The 

performance of the proposed method fluctuates with the performance of the GSC-SN 

method while being affected by the SN method. Overall, the proposed method could 

reduce the peak value of the signal distortion efficiently no matter the error of the 

estimated noise direction. 

The tables show that the proposed method could work effectively when the 

estimated noise direction is near the actual noise direction. When the estimated noise 

direction is far from the actual noise direction, the proposed method could still reduce 

the peak value of the enhanced signal distortion efficiently, and in that case, the average 

of the enhanced signal distortion using the proposed method is similar to the 

conventional GSC method. 

4.3 Conclusion 

This chapter presented the setup of the experiment in detail. The experiment was 

performed in an anechoic chamber to validate the proposed method in various SNR 

conditions. The experimental result demonstrated that the GSC-MCC method could 

reduce the damage to the desired signal of the enhanced signal efficiently, except in the 

case that the SNR was too low so the original damage was too minor. The GSC-SN 
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method could work more effectively when the SNR was lower. The proposed method 

could reduce both kinds of noise effectively in various SNR conditions. The 

performance of the proposed method was like a parabolic curve, the best performance 

would be obtained when the energy of the speech and noise was almost equivalent, like 

the SNR was +5dB. 

Furthermore, the simulated calculation with inaccurate estimated noise directions 

was conducted based on the experiment data to inspect the robustness of the proposed 

method to the error of the estimated noise direction. The figures of the simulation result 

with the inaccurate estimated noise directions were displayed. The simulation result 

showed that the performance of the GSC-MCC method was not related because the 

estimated noise direction was not used in this method. The ability of the GSC-SN 

method would be lost when the estimated noise direction was far away from the actual 

noise direction. The denoising effect of the GSC-MCC-SN method would be declined 

when the estimated noise direction was inaccurate. However, even the estimated noise 

direction was opposite to the actual noise direction, the residual noise component was 

still similar to the original residual noise component, which implied the feasibility of 

the proposed method in practical cases. 
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Chapter 5 Conclusions 

In this dissertation, Chapter 1 presented the research background and related 

academic achievement about the microphone array first. The microphone array method 

is proposed to filter the signal with the spatial direction. The fixed beamforming is the 

basic method to delay and sum the signals by adding the appropriate delay to different 

microphones. The setup of the microphone array could influence the performance of 

the microphone array. Then the modified methods, like LCMV, MVDR, GSC, etc., are 

out forward to improve the performance of the microphone array without modifying 

the hardware of the microphone array. 

The GSC method includes three parts and can be optimized respectively based on 

different purposes. The adaptive filter part of the GSC method is used to estimate the 

noise component in the output signal of the GSC method and try to reduce it. The 

common adaptive algorithm of the GSC method is the LMS algorithm. The modified 

LMS algorithm could improve the performance of the adaptive filter in certain 

conditions. 

The distortion of the enhanced signal could be divided into two parts: the residual 

noise and the damage of the desired signal. This dissertation tried to preserve the desired 

part of the enhanced signal from damage and reduce the residual noise more. 

Chapter 2 introduced the related foundation knowledge about the microphone array. 

The formula of the beamforming pattern of the UCA was derived first. Then the 

influence factors of the beamforming pattern were displayed. The radius of the 

microphone array would affect the spatial resolution of the main lobe of the microphone 

array. The larger diameter would bring the narrower main lobe. The more microphones 
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in the microphone array would make the beamforming pattern more like the continuous 

microphone array that avoids the grating lobe being generated. 

The Pearson correlation coefficient shows the linear relationship of two variables. 

And the rank correlation coefficient, like the Spearman correlation coefficient and 

Kendall rank correlation coefficient, could show the variation trend of two variables 

concordant or discordant. 

The LMS algorithm is a common adaptive filter algorithm to estimate the transfer 

function between the reference noise signal and the received noise signal. The LMS 

algorithm could be modified to adapt to the different situations, like the FxLMS 

algorithm that considers the transfer function of the secondary path to improve the 

convergency performance of the LMS algorithm. 

Chapter 3 proposed the modified GSC method. The damage of the desired signal 

in the enhanced signal was displayed on different SNR conditions. The figures 

illustrated that serious damage would occur when the SNR was high. The GSC-MCC 

method was proposed by adding the cross-correlation coefficient between the canceling 

signal and the error signal to the filter weight update path to control the damage of the 

enhanced desired signal when the energy of the desired signal was increased suddenly. 

The sidelobe neutralization method was derived and demonstrated that it could 

reduce the noise component in the output signal of the beamforming method. Even the 

estimated noise direction was inaccurate, the amount of noise component processed by 

the SN method was still similar to the original noise component. Thus, the SN method 

was combined with the conventional GSC method (refer to the GSC-SN method) to 

improve the performance of the GSC method by reducing the noise component in the 

beamforming output signal of the GSC method. 
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Finally, the GSC-SN-MCC method was proposed by combining the GSC-MCC 

method and GSC-SN method to synthesize the advantages of them. The performed 

steps of the proposed method were depicted in detail. 

Chapter 4 described the implementation of the experiment and analyzed the 

experimental data. The experiment was performed in the anechoic chamber and the 

experiment setup was presented. The experimental data showed that on different SNR 

conditions, the GSC-MCC method could decrease the damage of the desired signal of 

the enhanced signal significantly. The performance would be high in the high SNR 

condition. The GSC-SN method could reduce the residual noise component effectively. 

The performance of the GSC-SN method would be better when the SNR was low. 

The GSC-SN-MCC method could reduce both the damage of the desired signal of 

the enhanced signal and the residual noise component effectivity under various SNR 

conditions (the SNR range is -20~20dB). The performance of the proposed method was 

almost a parabolic curve as the SNR increased. The performance of the proposed 

method was better when the SNR condition was almost +5dB. 

The simulated calculation was conducted to reveal the influence of the inaccurate 

estimated noise directions on the denoising performance of the proposed method. The 

simulated result showed that the performance of the GSC-MCC method was not related 

to the estimated noise direction because the noise direction information was not used in 

the GSC-MCC method. Whereas the ability to reduce the residual noise component of 

the GSC-SN method would be declined with the inaccuracy estimated noise direction. 

The calculation results showed that the proposed method could work effectively 

when the estimated noise direction was near the actual noise direction. The performance 

of the proposed method would be like a parabolic curve as the estimated noise direction 
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became far away from the actual noise direction. When the estimated noise direction 

was correct, the proposed method could get the best performance. Even if the estimated 

noise direction was far from the actual noise direction, the peak of the enhanced signal 

distortion would be decreased significantly, while the average of the enhanced signal 

distortion would still be similar to the conventional GSC method, which indicated the 

feasibility of the proposed method in practice. 
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