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Abstract

Bayesian Uncertainty Quantification of Transition SST Model on Flat 

Plate Transition Flow

Computational study was performed to improve the prediction of transition flow 

simulated with the Transition SST model. Bayesian inference was applied to calibrated 

and quantify the uncertainties caused by the Transition SST model coefficients, model 

inadequacy, and observation error using experiment data. A surrogate model based on the 

non-intrusive polynomial chaos (NIPC) expansion for effective posterior sampling 

procedure was applied to predict the skin friction coefficients (Cf ) for various coefficients

of the transition SST model. Variation of transition SST model coefficients was assumed 

to be independent uniform distributions. Model inadequacy was modeled by a correlated

additive Gaussian model with Gaussian covariance function; from the model evidence, 

Gaussian covariance function was more suitable than the other two covariance function

(Linear, Matérn 5/2). Observation error was modeled with an independent additive 

Gaussian model. The affine invariant ensemble sampler (AIES) algorithm was used to 

sample the posterior distribution in 2,000 steps and 300 parallel chains. Posterior results

showed that uncertainty due to the model inadequacy was greater in predicting Cf than due 

to observation error. Prediction of Cf in transition region was improved by 6% . 

Keywords: Transition SST model, Uncertainty Quantification (UQ), Non-Intrusive

Polynomial Chaos (NIPC), Additive Gaussian Model, Covariance Function, Bayesian 

Inference, Experiment Data, Monte Carlo Markov Chain (MCMC), Affine invariant

ensemble algorithm sampler (AIES), Posterior Distribution
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Chapter 1. Introduction

Prediction of transition region is important in many engineering problems. In the 

turbulent boundary layer, since the motion of the fluid is chaotic and shows 3D unsteady 

behavior, heat transfer and wall shear stress increase, and the characteristic of separation 

behavior is improved compared to that of laminar. For this reason, many engineering 

applications, such as turbo machines and wind turbines, have used the transition turbulence 

model to predict the transition region. However, predicting a transition region using the 

Reynolds-averaged Navier-Stokes (RANS) model has limitations because complex 

transition and turbulence mechanisms are modeled with heuristic and mathematical 

assumptions. It means that RANS model has the uncertainty caused by model and model 

coefficients. Boundaries, initial conditions, geometry uncertainties, and discretization 

errors can also be a source of uncertainty in computational fluid dynamics (CFD) situations.

With the rapid development of computational power, efforts to quantify and reduce 

uncertainty associated with computational models has attracted much attention. There are 

two kinds of processes to quantify uncertainty. One is the forward problem, which

quantifies the propagation of uncertainty by computational simulation, and the other is the 

inverse problem, which is the process of quantifying the input random variables and 

calibrating the model from the observation.

Hosder et al. [1] applied the non-intrusive polynomial chaos (NIPC) expansion based 

on the spectral representation of the uncertainty to quantify the propagation of input 

uncertainty in CFD simulations. They simulated (1) the inviscid oblique shock wave 

problem with geometric uncertainty, (2) the inviscid expansion wave problem with 

geometric uncertainty, and (3) the subsonic laminar boundary layer flow over a flat plate 

with a free-stream dynamic viscosity uncertainty to validate the NIPC method. Their NIPC 

results were in good agreement with Monte Carlo simulations. They also found that a 
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fourth-order polynomial chaos expansion was sufficient to approximate the statistics and 

the shape of the output uncertainty distributions with appropriate accuracy.

Schaefer et al. [2] employed uncertainty quantification and sensitivity analysis of 

turbulent models in RANS codes due to uncertainty in the value of each closure coefficients. 

Transonic flow over an axisymmetric bump and the RAE 2822 transonic airfoil with three 

turbulent models (the Spalart-Allmaras model, the Wilcox (2006) k-ω model, and the SST 

k-ω) was simulated. Their uncertainty propagation analysis was conducted by NIPC. Each 

closure coefficient was ranked by the contribution of uncertainty in integrated and point 

quantities by Sobol indices. They identified several closure coefficients in each turbulence 

model, for which more information would significantly reduce the amount of uncertainty 

in the output for transonic wall-bounded flows.

The previous two studies focused on quantifying the propagation of uncertainty in 

computational simulations and found the major model coefficients that contributed to the 

uncertainty. But the following studies applied Bayesian inference for the inverse problem, 

wherein unknown parameters that cannot be directly measured are estimated based on 

experimental data.

Cheung et al. [3] applied Bayesian uncertainty quantification techniques to the 

calibration processes in the Spalart-Allmaras turbulence model. They also suggested three 

competing model classes and compared them in terms of their posterior probabilities and 

their prediction of quantities of interest (QoIs). The model posterior probability represents 

the relative plausibility of each model class given the data. The stochastic model with 

correlated Gaussian uncertainty is overwhelmingly favored over the other two model 

classes.

Zhang et al. [4] proposed the Bayesian uncertainty quantification approach using the 

adaptive high-dimensional model representation (HDMR) technique and the stochastic 
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collocation (SC) method based on generalized polynomial chaos (gPC) to construct a 

surrogate model for the sampling procedure in Bayesian calibration. They also conducted 

a rigorous convergence study of the approximate posterior for the proposed approach using 

simple mathematical functions and a k-ω-γ transition model. Their results showed not only 

that the quantified uncertainty overlapped well with the experimental data, but also a great 

improvement of the match between the prediction mean and the experimental data.

In the present work, three uncertainty sources were quantified and calibrated by 

Bayesian inference with the experimental data (T3A) [5]. The Bayesian approach is one 

general method to treat the inverse problem, where the goal is to back-propagate 

information about the observation to obtain insight on the input parameters. Here, the

uncertainties came from the model coefficients, the model inadequacy, and the observation 

error. Uncertainty from the model coefficients was modeled with independent uniform 

distributions within ±10% and ±50% intervals from each nominal value because do not 

know exact range of uncertainty. Simulation results according to the model coefficients

were replaced with NIPC expansion-based surrogate model. Because the surrogate model

is cheaper than 2D flat plate simulation in a posterior sampling procedure. Uncertainty 

from the model inadequacy was modeled with a correlated additive Gaussian model with 

three kinds of covariance functions, and uncertainty from the observation error was 

modeled with an independent additive Gaussian model. The AIES algorithm was used to 

sample the posterior distribution in 2,000 steps and 300 parallel chains.
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Chapter 2. Numerical Methods

In this chapter, the numerical method is explained. This work incorporates a

Transition SST model to simulate a 2D flat plate transition flow. The fluid is considered 

incompressible and viscous, and the flow is assumed to be steady-state. The SIMPLE-

Consistent (SIMPLEC) algorithm [7] is used for pressure and velocity coupling. All spatial 

discretization schemes use the second order upwind scheme.

2.1 Governing Equations

These assumptions are used here.

1. Incompressible and viscous fluid.

2. The flow is steady-state.

3. The gravity can be neglected.

Considering these assumptions, the mass conservation equation can be expressed as:

���
���

= 0 (2.1)

where � is the density of the fluid and �� are the each velocity components. The momentum 

conservation equation (called the Navier-Stokes equation) can be written as follows:

���
��

+
�������

���
= −

1

�

��

���
+

�

���
��

���
���

− ������������� (2.2)

where −������������ is the Reynolds stress term; how this term is modeled creates the difference 

between turbulence models (in this case, RANS Transition SST model). These governing 

equations were discretized with the second-order upwind scheme, and SIMPLEC was used 
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for the pressure-velocity coupling method.

2.2 Transition SST k-ω

The Transition SST k-ω model was proposed by Menter and Lengtry [6]. It is also 

known as the γ-���model or the k-ω SSTLM. The transition SST k-ω model includes two 

additional transport equations to estimate the transition, one for intermittency γ and one for

a Reynolds number based on the transition onset momentum thickness, �����. The transport 

equation for the intermittency γ is described as follows:

�(��)

��
+
∂������

∂x�
= �� − �� +

�

���
��� +

��
��
�
��

���
� (2.3)

The intermittency source term controls the length of the transition region, and the 

dissipation term allows the boundary layer to relaminarize. Each term is defined as follows:

�� = ������������[�������]
�.�(1 − ����) (2.4)

where � is the strain rate magnitude, ������� controls the strength of the production, and  

������  switches the production of γ. 

�� = ����Ω������(���� − 1) (2.5)

where Ω is the vorticity magnitude.

If  ������� is very large, γ is going to be produced very rapidly and will saturate to a value 

of 1 very quickly. This results in a short length of the transition region. ������is a type of 
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switch function that has a value of 0 for the laminar region; it is activated as the production 

term for transition region in the boundary layer. ������� is based on ����� from an empirical 

correlation, and ������ is a function of ���� as follows:

������� =

⎩
⎪
⎨

⎪
⎧

�398.189 ∙ 10�� + (−119.27 ∙ 10��)����� + (−132.567 ∙ 10��)�����
� � ����� < 400

�263.404 + (−123.939 ∙ 10��)����� + (194.548 ∙ 10��)�����
� + (−101.695 ∙ 10��)�����

� � 400 ≤ ����� < 596

�0.5 − ������ − 596.0� ∙ 3.0 ∙ 10��� 596 ≤ ����� < 1200

[0.3188] ����� < 1200

(2.6)

��� =
����

�
(2.7)

������� =
���

2193����
(2.8)

������� = ���(���(�������, �������
� ), 2.0) (2.9)

�� =
��

��
(2.10)

������� = ��� �1 − �
��
2.5

�
�

, 0� (2.11)

������ = ���(������� − �������, 0) (2.12)

where � is the wall distance and ���� is Reynolds number based on momentum thickness

which turbulent fluctuation onset. The constants for the intermittency equation are:

��� = 2.0; ��� = 1.0; ��� = 0.06; ��� = 50; �� = 1.0.
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The transport equation for the transition momentum thickness Reynolds ����� is:

�������� �

��
+

�

���
��������� � = ��� +

�

���
����(� + ��)

�

���
������ �� (2.13)

��� = ���
�

�
����� − ������(1.0 − ���) (2.14)

� =
500�

���
(2.15)

Outside the boundary layer, the source term is included to force ����� to take the local 

value of ���� calculated from the empirical correlation. In Eq. (2.14), the blending function 

��� makes the source turn off in the boundary layer and allows the transported scalar  �����

to diffuse from the freestream. ��� is equal to 0 in the freestream and is 1 near the wall.

��� = ��� ���� �������
��
�
�
�
�

, 1.0 − �
� − 1/���
1.0 − 1/���

�
�

� , 1.0� (2.16)

��� =
������

��
, ��� =

15

2
��� , � =

50Ω�

�
��� , ��� =

����

�
(2.17)

����� = ���
���
���

�
�

(2.18)

The boundary condition for ����� at a wall is zero flux. The boundary condition for 

����� at an inlet should be calculated from the empirical correlation in Eq. (2.21) based on 
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the inlet turbulence intensity as follows: 

�� =
100

�
�
2

3
� (2.19)

�� =
���

�
∙
��

��
,
��

��
= �(�/�)

��

��
+ (�/�)

��

��
+ (�/�)

��

��
� (2.20)

���� = �
�1173.51 − 589.428�� +

0.2196

���
� �(��) �� ≤ 1.3

331.50[�� − 0.5658]��.����(��) �� > 1.3

(2.21)

�(��) = �
1 − �−12.986�� − 123.66��

� − 405.689��
� ����

��
�.�

�
�.�

�� ≤ 0

1 + 0.275�1 − �[���.���]���
���
�.�

� �� > 0

(2.22)

For numerical robustness, the acceleration parameters, the turbulence intensity, and the 

empirical correlation should be limited as follows:

−0.1 ≤ �� ≤ 0.1 �� ≥ 0.027 ���� ≥ 20

The model constants for the ����� equations are: ��� = 0.03; ��� = 2.0.

The transition model interacts with the SST k-ω as follows:

�(��)

��
+
∂������

∂x�
= ��� −��� +

�

���
�(� + ����)

��

���
� (2.23)
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��� = ������; ��� = min(max����� , 0.1� , 1.0)�� (2.24)

�� =
��√�

�
; �� = ��(

��
���

)�; �� = max(������, ��) (2.25)

where �� and �� are the original production and destruction terms of the SST k-ω, and 

������ is the blending function for the original SST k-ω. As shown in Eq. (2.24), the 

production term is going to zero when γ has the value of zero at the laminar boundary layer, 

but the production term has the same value as that of SST k-ω in the turbulent boundary 

layer.
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Chapter 3. Deterministic Simulations

This chapter shows a deterministic simulation setup to create the dataset used to

construct the surrogate model. The boundary conditions were assigned similarly to 

Coupland’s experiment [5]. The inlet turbulence intensity was assigned considering the 

turbulence decay. A grid convergence test was also conducted.

3.1 Geometry

The geometry is adopted from the simulation of Malan et al [8]. The domain extended

from 0.15m upstream of the plate to 1.7m. The domain height was 0.3m. Details of the 

geometry and computational domain are shown in Fig 1. 

Figure 1. Computational domain

3.2 Boundary Conditions

The Reynolds number, which was based on the plate length L (1.7 m) and the inlet

velocity U (5.4 m/s) was 6.3 × 10�. Because of turbulence decay, the turbulence intensity 

of the inlet was set to 4.0% and the decay was set to the value of Coupland’s experiment (3%)

at the leading edge. Slip walls were used on the top boundary and upstream of the plate. 

Fluid density was taken to be 1.2 kg/m3 and the viscosity as 1.8 kg/m. More details are 

shown in Fig. 2 and Table 1.
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Figure 2. Boundary conditions

Table 1. Specific boundary conditions

Name Boundary condition Value

Inlet

Velocity inlet (m/s)

Turbulence intensity (%)

Turbulent kinetic energy (��/��)

Specific dissipation rate (1/�)

U=5.4

Tu = 4.0

0.06998

159.7

Outlet Pressure outlet � = 0��

Slip wall Slip �ℎ��� ������ = 0��

Wall No slip -

3.3 Freestream Turbulence decay

The turbulence intensity specified at the inlet can decay depending on the inlet 

viscosity ratio. Therefore, validation of the turbulence intensity is important in the 

Transition SST model because the turbulence intensity at the leading edge can be smaller 

than the inlet value. The good agreement with the experimental data shown in Fig. 3 

indicates that appropriate boundary conditions (inlet turbulence intensity, turbulent 

viscosity ratio) were used in this simulation.
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Figure 3. Turbulence decay along the flat plate

3.4 Grid Test

The grid test was achieved using coarse (83 × 112 nodes), medium (100 × 135 nodes), 

and fine mesh (144 × 194 nodes), as shown in Table 2. The height of the first cell from the

wall was set to 10-5 m for resolving the turbulent boundary layer. The skin friction

coefficient (Cf) was compared along the flat plate length depending on the number of nodes, 

as shown in Fig. 4. The figure shows that the fine mesh estimated the transition region 

earlier than the experimental data, but the coarse mesh had the opposite result. The medium 

mesh showed good agreement with the experimental data. Thus, the medium mesh was 

selected as appropriate in this work.

Table 2. Grid independence test

Coarse Medium Fine

Number of nodes 9,296 13,500 27,936
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Figure 4. Cf along the flat plate depending on grid size
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Chapter 4. Theoretical Background for UQ

4.1 The Classification of Uncertainty and UQ

Uncertainty is a factor that causes errors in predictions and observations. It can enter 

computational models and experimental measurements in various contexts. The sources of 

uncertainty can be categorized as follows [9]:

1. Parameter uncertainty: This comes from the model parameters that are inputs to the 

computational model (mathematical model) but whose exact values are unknown to the 

experimentalists and cannot be controlled in physical experiments, or whose values cannot 

be exactly inferred by statistical methods (e.g., boundaries, initial conditions, model

coefficients, etc.)

2. Model inadequacy: This comes from the lack of knowledge of the underlying physics 

in the problem. It depends on how accurately a mathematical model describes the true 

system for a real-life situation, considering the fact that models are almost always only 

approximations of reality (e.g., RANS, Euler equation, etc.)

3. Observation error: This comes from the variability of experimental measurements. 

The experimental uncertainty is inevitable and can be determined by repeating a 

measurement many times, using exactly the same settings for all of the inputs/variables.

These uncertainties can be expressed in terms of probability distributions and 

quantified by “uncertainty quantification” (UQ). UQ is the process of quantifying and 

reducing the uncertainties in both computational models and observed real-world 

phenomena. There are two major types of problems in UQ. One is the forward propagation 

of uncertainty, where the various sources of uncertainty are propagated through the model 

to predict the overall uncertainty in the system response. The other is the inverse problem 

of model uncertainty and parameter uncertainty, where the model parameters are calibrated 
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simultaneously using observation data. The present work focuses on the inverse problem 

using Bayesian inference to quantify the model inadequacy, observation error, and finally 

calibrate the model coefficients. The entire process of UQ was here conducted by the 

UQLab framework [10] using MATLAB [11].

4.2 Bayesian Inference

The Bayesian method is a powerful tool to address the inverse problem, where the goal 

is to back-propagate information about an observation to obtain insight on the model inputs. 

Bayesian inference can estimate parameters using only a handful of data points, compared 

with data-heavy statistical inference. In Bayesian inference, the parameters are inferred by 

combining some prior knowledge on the parameters with the observed data using Bayes’ 

theorem as follows:

�(�|�) =
�(�|�)�(�)

�(�)
(4.1)

where � are the uncertainty parameters to be inferred and �(�) is the prior distribution of

the parameters The choice of prior distribution should reflect the level of information 

existing on the parameters � before any measurement is carried out. �(�|�) is the 

likelihood (or likelihood function) that represents an estimate of a parameter, and it 

indicates which parameters are most likely. �(�) is a normalizing factor known as the 

evidence or marginal likelihood. From these we can estimate the posterior distribution of 

the parameters.
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4.3 Non-Intrusive Polynomial Chaos (NIPC)

Deterministic modeling is being gradually replaced by stochastic modeling to account 

for the inevitable uncertainty in physical phenomena and measurements. It requires 

modification of the deterministic code, and this may be inconvenient for many complex 

computational problems since the modification of the existing code can be difficult, 

expansive, and time-consuming [12]. Metamodeling (or surrogate modeling) attempts to 

offset the increased costs of stochastic modeling by substituting the expensive-to-evaluate 

computational models (like CFD) with inexpensive-to-evaluate surrogate model [13]. 

NIPC expansions are a powerful metamodeling technique that aims at providing a 

functional approximation of a computational model through its spectral representation on 

a suitably built basis of polynomial functions.

The method is to define the joint probability density function �� from a random vector 

with independent components � ∈ ℝ� . The next step is to consider a finite variance 

computational model as a map � = ℳ(�), � ∈ ℝ such that:

�[��] = � ℳ�(�)��(�)�� < ∞
��

(4.2)

Then the polynomial chaos expansion of ℳ(�) is defined as follows: 

ℳ(�) ≈ ℳ��(�) = �����(�) (� ⊂

�∈�

ℕ�) (4.3)

where �� ∈ ℝ are the corresponding coefficients, and � ⊂ ℕ� is the set of selected multi-

indices of multivariate polynomials. In Eq. (4.4), the ��(�) are the multivariate 
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polynomials that are assembled as the tensor product of their univariate counterparts, 

shown in Table 3.

��(�) ≡����
(�)(��)

�

���

(4.4)

Table 3. List of classic univariate polynomial families

Type of variable Distribution
Orthogonal 

polynomials
Hilbertian basis ��(�)

Uniform

�(−1,1)

1(�)

2
Legendre ��(�) ��(�) / �

�

����

Gaussian

�(0,1)

1

√2�
���

� �⁄ Hermite ���(�) ���(�) / √�!

Gamma

Γ(�, � = 1)
����� Laguerre ��

�(�) ��
�(�) / �

�(�����)

�!

Beta

�(�, �)
1(�)

(1 − �)�(1 + �)�

�(�)�(�)
Jacobi  ��

�,�(�) ��
�,�(�) / ��,�,�
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Chapter 5. Bayesian Inference for the Flat Plate Transition Flow

5.1 Stochastic Model

As mentioned in the previous chapter, three uncertainty sources are considered in the 

Bayesian inference. Each uncertainty source is modeled in terms of a stochastic model.

Uncertainty from the model coefficients is treated as parameter uncertainty and it is 

modeled with independent uniform distributions within ±10%, ±50% intervals from each 

nominal value because do not have any information and is calibrated to fit well with

experimental data [5] by Bayesian inference. Simulation results according to the model 

coefficient uncertainty is replaced by the NIPC expansion-based surrogate model for 

effective posterior sampling. RANS error propagation through the domain was treated as 

model inadequacy. Model inadequacy was modeled with a correlated additive Gaussian 

model with three kinds of covariance functions to represent the spatial correlation. Finally, 

observation error is modeled with an independent additive Gaussian model.

5.1.1 Parameter Uncertainty

Model coefficients ensure robustness in common problems and prevent non-physical 

results, but they can reveal the error in complex or specific problems. Therefore, this work 

assumes that the model coefficients are treated as parameter uncertainty and will reduce 

the error through the Bayesian inference based on experimental data [5]. The Transition

SST model has seven model coefficients for intermittency γ, and a transition onset 

momentum thickness Reynolds number �����. Because of we do not have any information 

about the model coefficients uncertainty range, it is modeled with two kinds of range (±10% 

and ±50% intervals from each nominal value) with independent uniform distributions and 

proper range can be found by posterior distribution. If range of uncertainty is small, the
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most of posterior samples are truncated at the edge of domain.

Table 4. Transition SST model closure coefficients ±50% intervals

Model Coefficient Nominal Value Lower Bound Upper Bound

��� ~ Uniform 2.0 1.0 3.0

��� ~ Uniform 1.0 0.5 1.5

��� ~ Uniform 0.06 0.03 0.09

��� ~ Uniform 50.0 25.0 75.0

�� ~ Uniform 1.0 0.5 1.5

��� ~ Uniform 0.03 0.015 0.045

��� ~ Uniform 2.0 1.0 3.0

However, in the posterior sampling procedure of Bayesian inference, it is time-

intensive to calculate the CFD results according to the model coefficient variation. 

Therefore, in order to alleviate this problem, the NIPC-based surrogate model used here 

was constructed from 200 CFD data points and was used in the posterior sampling 

procedure that required at least tens of thousands of simulation repetitions.

ℳ(�) ≈ ℳ��(�), � = [���, ���, ���, ���, �� , ��� , ��� ] (5.1)

After constructing a surrogate model, it is necessary to evaluate how accurately it 

predicts. Therefore, 160 data points were used for the training set and 40 data points were 

used for the validation set. Validation of the surrogate models was accomplished using the 

validation error as follows: 
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���� =
� − 1

�
�
∑ �ℳ�����

(�) � −ℳ�������
(�) ��

�
�
���

∑ �ℳ�����
(�) � − ��

����
�
�

�
���

� (5.2)

Figure 5. Validation error according to the 16 monitoring points

5.1.2 Model Inadequacy

Not only description of the uncertainty related with the model coefficients, but 

description of the uncertainty from model is also important. Because the turbulent models, 

especially RANS, are derived from the assumption of relatively simple flows like isotropic 

turbulence and boundary layer flow, they are different from the actual turbulence 

phenomenon in complex flow. This model inadequacy becomes a source of uncertainty 

that propagates through the computational model and leads to errors in the prediction of 

the model. Assuming �� as the true process with no error, then the computational model 

ℳ(�) and the model inadequacy � can be related as follows:
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�� = ℳ(�) + � (5.3)

Cheung et al. [3] suggested a three-model classification of model inadequacy (no 

uncertainty, independent Gaussian uncertainty, and correlated Gaussian uncertainty). The 

correlated Gaussian uncertainty showed the highest posterior plausibility among these 

model classes.

�~�������� �0,���, �� = ��
���� �−

1

2
�
� − �′

�
�

�

� (5.4)

��~�������(0, 0.1) (5.5)

Those researchers only considered the model error variation with one kind of covariance 

function. Therefore, the present work considers three kinds of covariance functions (Linear, 

Gaussian, and Matérn 5/2) as follows:

�� = ��
� ��� �0,1 −

|� − �`|

�
� (5.6)

�� = ��
���� �−

1

2
�
� − �′

�
�

�

� (5.7)
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�� = ��
�(1 +

√5|� − �`|

�
+
5

3

|� − �`|�

��
)��� �−

√5|� − �`|

�
� (5.8)

where �� is the variance magnitude and � is the characteristic length. The correlation 

metrics according to distance are shown in Fig. 6. In the order of Linear, Matérn 5/2, and 

Gaussian covariance functions, the correlation according to the distance was less expressed. 

This means that the Linear covariance function can be used for models where the 

uncertainty propagation does not spread far, and the Gaussian function can be applied in 

the opposite case.

Figure 6. Correlation metrics for each covariance function

5.1.3 Observation Error

Observation error is one of the unavoidable uncertainties in experimental works.

parameter uncertainty is calibrated by experimental data, modeling the observation error is

important process in Bayesian inference. However, information on the error bars of the 

experimental data [5] could not be obtained, it was assumed to be an independent Gaussian 

model. The true process �� , observation error �, and observation data � can be related as 

follows:
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� = �� + � (5.9)

�~��������(0,��), �� = ��
�� (5.10)

��~�������(0, 0.02) (5.11)

where �� is a diagonal matrix with each diagonal component equal to the variance. 

Observation errors are independent Gaussian random variables with zero mean and 

standard deviation.

5.2 Likelihood Function

All stochastic models are combined into the likelihood function. From Eqs. (5.3) and 

(5.9), observation data can be expressed by a conditional Gaussian distribution as follows:

�|�,� ~ ��������(ℳ(�),�) (5.12)

where � is the uncertainty parameter including  �� and ��, and � is the covariance matrix 

that is the sum of  �� + ��. Finally, if all the inferred uncertainty parameters (�,�) are put 

to � , the likelihood function and posterior distribution can be expressed as follows:

�(�|�) =
1

�

1

�(2�)����(�)
��� �−

1

2
�� −ℳ(�)�

�
����� −ℳ(�)�� (5.13)
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� = ��(�|�)�(�)�� (5.14)

�(�|�) =
1

�

1

�(2�)����(�)
��� �−

1

2
�� −ℳ(�)�

�
����� −ℳ(�)���(�) (5.15)

5.3 Markov Chain Monte Carlo (MCMC)

In practice, posterior distributions do not have a closed-form solution. One widely-

used option to solve inverse problems relies upon MCMC [14]. The basic idea of MCMC 

simulations is to construct a Markov chain that equals the posterior distribution over the 

prior support ��. Markov chains can be uniquely defined by their transition probability 

���(���)��(�)� from the step �(�) of the chain at iteration � to the step �(���) at the 

subsequent iteration � + 1. Then, the posterior is equal to the Markov chain if the specified 

transition probability fulfils the detailed balance condition:

���(�)��� ���(���)��(�)� = ���(���)��� ���(�)��(���)� (5.16)

One of the algorithms to fulfill this equation is the Metropolis-Hastings (MH) algorithm 

[15] that is based on proposing and subsequently accepting or rejecting candidate points. 

At iteration � from the current sample �(�), one then draws a candidate sample �(⋆) from a 

proposal distribution  ���(⋆)��(�)� . Subsequently, the candidate is accepted with a 

probability as follows:

���(⋆), �(�)� = min�1,
���(⋆)������(�)��(⋆)�

���(�)������(⋆)��(�)�
� (5.17)
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However, most MCMC algorithms perform poorly when the target distribution shows 

strong correlations between the parameters. A considerable amount of tuning is necessary 

to improve the performance of these algorithms. The affine invariant ensemble (AIES) 

algorithm [16] alleviates this problem to being invariant with affine transformation of the 

target distribution. The affine invariance property is achieved by generating proposals 

according to a so-called stretch move. This refers to proposing a new candidate by:

��
(∗)
= ��

(�)
+ ����

(�)
− ��

(�)�, �ℎ��� �~�(�) = �

1

√�(2√� −
2

√�
)

�� �[
1

�
, �]

0 ��ℎ������

(5.18)

This requires sampling from the distribution �(�) defined by the tuning parameter � > 1. 

The candidate ��
(∗)

is then accepted as the new location of the i-th walker with a probability 

as follows:

����
(∗)
, ��

(�)
, �� = min�1, ����

����
(∗)
���

����
(�)
���

� (5.19)

In the present work, AIES was applied to sampling the posterior distribution with 2000

steps and 300 parallel chains.

5.4 Posterior Distribution

5.4.1 Model Evidence

Cheung et al [3,17] applied Bayesian methodology to find the best stochastic model for

the given data. This study also used model evidence to find best stochastic model. And
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found the maximum likelihood from the posterior samples of each stochastic model and

compared them in terms of model evidence. ��(Gaussian covariance) was most favored

over the other two model classes as shown in Table 5. As mentioned at 5.1.2, Gaussian

covariance showed a wide spread of the correlation, and this characteristic of ��

represented the best spatial correlation in the given data.

Table 5. Posterior plausibility of the model classes

Stochastic Model Posterior Plausibility

��(Linear covariance) 0.1805

��(Gaussian covariance) 0.4973

��(Matérn 5/2 covariance) 0.3222

5.4.2 Posterior Results

From the results of the posterior plausibility, all posterior results were calculated 

through the Gaussian covariance. Figures 7-10 show the posterior distributions for the four 

model coefficients of the Transition SST model (���, ���, ���, ���) with ±10% intervals 

from each nominal value. Most of the posterior distributions are truncated at the boundary 

of the uncertainty range. This means that the estimated model coefficients were outside 

the prior setup, so the prior range was extended by ±50% from each nominal value.
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Figure 7. Posterior distribution for ±10% interval ��� Figure 8. Posterior distribution for ±10% interval ���

Figure 9. Posterior distribution for ±10% interval ��� Figure 10. Posterior distribution for ±10% interval ���
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Figures 11-17 show the posterior distributions for the seven model coefficients of the 

Transition SST model (���, ���, ���, ���, �� , ��� and ���) with ±50% intervals from each 

nominal value. The noticeable changes in the posterior distributions are the ���, ���, which 

were known as the major model coefficients from a previous study by Bae and Chang [18]. 

The model coefficient ���(located in the intermittency product term, and it controls the 

transition region with ������� ) increased and ���(opposite to ��� ) decreased from the 

nominal value. When comparing the experiment results with the simulation results of the 

nominal values, these changes were natural because the simulation predicted a longer 

transition region. This means that these changes reflected the experimental results through 

the Bayesian inference. Figures 18 and 19 show the posterior distributions for the 

uncertainty parameters (��, ��). They indicate that uncertainty from the model inadequacy 

had a standard deviation of 2% of the Transition SST model Cf prediction. In contrast, the 

observation error was estimated to be negligible with a standard deviation of 0.2%.
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Figure 11. Posterior distribution for ±50% interval ��� Figure 12. Posterior distribution for ±50% interval ���

Figure 13. Posterior distribution for ±50% interval ��� Figure 14. Posterior distribution for ±50% interval ���
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Figure 15. Posterior distribution for ±50% interval �� Figure 16. Posterior distribution for ±50% interval ���

Figure 17. Posterior distribution for ±50% interval ���
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Figure 18. Posterior distribution for �� Figure 19. Posterior distribution for ��
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Table 6 shows the calibrated model coefficients from the posterior distribution mean, 

and Figs. 20 and 21 show the Cf predictions using the calibrated model coefficients. As 

mentioned above, comparing the experimental results with the simulation results of the 

nominal values, it predicted a longer transition region, but the calibrated value predicted a 

transition region shorter than the nominal one and the Cf prediction was improved by up 

to 6% in the transition region. 

Table 6. Calibrated Transition SST model closure coefficients

Model Coefficient Nominal Value Calibrated Value

��� 2.0 2.4

��� 1.0 0.67

��� 0.06 0.072

��� 50.0 39.0

�� 1.0 0.87

��� 0.03 0.028

��� 2.0 1.8
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Figure 20. Cf predictions using calibrated model coefficients

Figure 21. Cf prediction errors compared with nominal values
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Chapter 6. Conclusion

In the present work, Transition SST model coefficients and uncertainty are calibrated 

and quantified through the Bayesian inference using experimental data (T3A [5]). For the 

experimental data, the skin friction coefficient of the zero-pressure gradient transition flow 

around a flat plate was used, and then a 2D flat plate CFD simulation was conducted under 

similar flow conditions.

Three kinds of uncertainty in the computational model are considered. Uncertainty from 

the model coefficients was modeled with independent uniform distributions within ±10% 

and ±50% intervals from each nominal value. It was then calculated by an NIPC expansion-

based surrogate model instead of the 2D flat plate CFD simulation. Uncertainty from model

inadequacy was modeled with a correlated additive Gaussian model [3] with three kinds of 

covariance functions, although uncertainty from the observation errors was modeled with 

an independent additive Gaussian model because information on error bars could not be 

obtained. AIES was used for posterior distribution sampling: a total of 600,000 samples 

were used in 2,000 steps and 300 parallel chains.

In the results, the major variables ��� and ��� increased and decreased, respectively, and these 

changes made the transition region shorter than the nominal one; this seemed to be the result of 

Bayesian inference reflecting the experimental data. The posterior results pertaining to model 

inadequacy and observation error indicated a standard deviation of 2% in the Transition SST model 

Cf prediction, and a standard deviation of 0.2% in the experimental data. The Transition SST model 

using calibrated model coefficients predicted a transition region shorter than the nominal one, and 

the Cf prediction was improved by up to 6% in the transition region.
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